523 research outputs found

    Short-Term Load Forecasting Using AMI Data

    Full text link
    Accurate short-term load forecasting is essential for efficient operation of the power sector. Predicting load at a fine granularity such as individual households or buildings is challenging due to higher volatility and uncertainty in the load. In aggregate loads such as at grids level, the inherent stochasticity and fluctuations are averaged-out, the problem becomes substantially easier. We propose an approach for short-term load forecasting at individual consumers (households) level, called Forecasting using Matrix Factorization (FMF). FMF does not use any consumers' demographic or activity patterns information. Therefore, it can be applied to any locality with the readily available smart meters and weather data. We perform extensive experiments on three benchmark datasets and demonstrate that FMF significantly outperforms the computationally expensive state-of-the-art methods for this problem. We achieve up to 26.5% and 24.4 % improvement in RMSE over Regression Tree and Support Vector Machine, respectively and up to 36% and 73.2% improvement in MAPE over Random Forest and Long Short-Term Memory neural network, respectively

    Enhancing household-level load forecasts using daily load profile clustering

    Get PDF
    Forecasting the electricity demand for individual households is important for both consumers and utilities due to the increasing decentralized nature of the electricity system. Particularly, utilities often have very little information about their consumers except for aggregate building level loads, without knowledge of interior details about the household appliance sets or occupants. In this paper, we explore the possibility of enhancing the day-ahead load forecasts for hundreds of individual households by clustering their daily load profile history to obtain each consumer's specific typical consumption patterns. The clustering method is based on load profile shape using the Earth Mover's Distance metric to calculate similarity between load profiles. The forecasting methods then predict the next day shape from the empirical probability of previous cluster transitions in the consumer's load history and estimate the magnitude either by using historical load relationships with temperature and forecast temperatures or previous day consumption levels. The generated forecasts are compared to a benchmark Multiple Linear Regression (MLR) day-ahead forecast and persistence forecasts for all individuals. While at the aggregate level the MLR method represents a significant improvement over persistence forecasts, on an individual level we find that the best forecasting model is specific to the individual. In particular, we find that the MLR model produces lower errors when consumers have a consistent daily temperature response and the cluster model with previous day magnitude produces lower errors for consumers whose consumption changes abruptly in magnitude for several days at a time. Our work adds to the state of knowledge surrounding individual household load forecasting and demonstrates the potential for cluster-based methodologies to enhance short term load forecasts

    Cluster Analysis and Model Comparison Using Smart Meter Data.

    Full text link
    Load forecasting plays a crucial role in the world of smart grids. It governs many aspects of the smart grid and smart meter, such as demand response, asset management, investment, and future direction. This paper proposes time-series forecasting for short-term load prediction to unveil the load forecast benefits through different statistical and mathematical models, such as artificial neural networks, auto-regression, and ARIMA. It targets the problem of excessive computational load when dealing with time-series data. It also presents a business case that is used to analyze different clusters to find underlying factors of load consumption and predict the behavior of customers based on different parameters. On evaluating the accuracy of the prediction models, it is observed that ARIMA models with the (P, D, Q) values as (1, 1, 1) were most accurate compared to other values

    K-Means and Alternative Clustering Methods in Modern Power Systems

    Get PDF
    As power systems evolve by integrating renewable energy sources, distributed generation, and electric vehicles, the complexity of managing these systems increases. With the increase in data accessibility and advancements in computational capabilities, clustering algorithms, including K-means, are becoming essential tools for researchers in analyzing, optimizing, and modernizing power systems. This paper presents a comprehensive review of over 440 articles published through 2022, emphasizing the application of K-means clustering, a widely recognized and frequently used algorithm, along with its alternative clustering methods within modern power systems. The main contributions of this study include a bibliometric analysis to understand the historical development and wide-ranging applications of K-means clustering in power systems. This research also thoroughly examines K-means, its various variants, potential limitations, and advantages. Furthermore, the study explores alternative clustering algorithms that can complete or substitute K-means. Some prominent examples include K-medoids, Time-series K-means, BIRCH, Bayesian clustering, HDBSCAN, CLIQUE, SPECTRAL, SOMs, TICC, and swarm-based methods, broadening the understanding and applications of clustering methodologies in modern power systems. The paper highlights the wide-ranging applications of these techniques, from load forecasting and fault detection to power quality analysis and system security assessment. Throughout the examination, it has been observed that the number of publications employing clustering algorithms within modern power systems is following an exponential upward trend. This emphasizes the necessity for professionals to understand various clustering methods, including their benefits and potential challenges, to incorporate the most suitable ones into their studies

    Machine learning and data segmentation for building energy use prediction—a comparative study

    Get PDF
    Advances in metering technologies and emerging energy forecast strategies provide opportunities and challenges for predicting both short and long-term building energy usage. Machine learning is an important energy prediction technique, and is significantly gaining research attention. The use of different machine learning techniques based on a rolling-horizon framework can help to reduce the prediction error over time. Due to the significant increases in error beyond short-term energy forecasts, most reported energy forecasts based on statistical and machine learning techniques are within the range of one week. The aim of this study was to investigate how facility managers can improve the accuracy of their building’s long-term energy forecasts. This paper presents an extensive study of machine learning and data processing techniques and how they can more accurately predict within different forecast ranges. The Clarendon building of Teesside University was selected as a case study to demonstrate the prediction of overall energy usage with different machine learning techniques such as polynomial regression (PR), support vector regression (SVR) and artificial neural networks (ANNs). This study further examined how preprocessing training data for prediction models can impact the overall accuracy, such as via segmenting the training data by building modes (active and dormant), or by days of the week (weekdays and weekends). The results presented in this paper illustrate a significant reduction in the mean absolute percentage error (MAPE) for segmented building (weekday and weekend) energy usage prediction when compared to unsegmented monthly predictions. A reduction in MAPE of 5.27%, 11.45%, and 12.03% was achieved with PR, SVR and ANN, respectively

    Non-intrusive load monitoring under residential solar power influx

    Get PDF
    This paper proposes a novel Non-Intrusive Load Monitoring (NILM) method for a consumer premises with a residentially installed solar plant. This method simultaneously identifies the amount of solar power influx as well as the turned ON appliances, their operating modes, and power consumption levels. Further, it works effectively with a single active power measurement taken at the total power entry point with a sampling rate of 1 Hz. First, a unique set of appliance and solar signatures were constructed using a high-resolution implementation of Karhunen LoĂ©ve expansion (KLE). Then, different operating modes of multi-state appliances were automatically classified utilizing a spectral clustering based method. Finally, using the total power demand profile, through a subspace component power level matching algorithm, the turned ON appliances along with their operating modes and power levels as well as the solar influx amount were found at each time point. The proposed NILM method was first successfully validated on six synthetically generated houses (with solar units) using real household data taken from the Reference Energy Disaggregation Dataset (REDD) - USA. Then, in order to demonstrate the scalability of the proposed NILM method, it was employed on a set of 400 individual households. From that, reliable estimations were obtained for the total residential solar generation and for the total load that can be shed to provide reserve services. Finally, through a developed prediction technique, NILM results observed from 400 households during four days in the recent past were utilized to predict the next day’s total load that can be shed

    Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data

    Get PDF
    Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201

    K-means based cluster analysis of residential smart meter measurements

    Get PDF
    A clustering module based on the k-means cluster analysis method was developed. Smart meter based residential load profiles were used to validate the clustering module. Several case studies were implemented using daily and segmented load profiles of individual and aggregated smart meters. Simulation results defined in terms of the relationship between the clustering ratio and the segmentation time window reveal that the minimum clustering ratio is obtained for the shortest time window of segmentation. Results also show that a small number of clusters is recommended for highly correlated load profiles
    • 

    corecore