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ABSTRACT
Forecasting the electricity demand for individual households is
important for both consumers and utilities due to the increasing
decentralized nature of the electricity system. Particularly, utilities
often have very little information about their consumers except
for aggregate building level loads, without knowledge of interior
details about the household appliance sets or occupants. In this
paper, we explore the possibility of enhancing the day-ahead load
forecasts for hundreds of individual households by clustering their
daily load profile history to obtain each consumer’s specific typi-
cal consumption patterns. The clustering method is based on load
profile shape using the Earth Mover’s Distance metric to calculate
similarity between load profiles. The forecasting methods then pre-
dict the next day shape from the empirical probability of previous
cluster transitions in the consumer’s load history and estimate the
magnitude either by using historical load relationships with tem-
perature and forecast temperatures or previous day consumption
levels. The generated forecasts are compared to a benchmark Mul-
tiple Linear Regression (MLR) day-ahead forecast and persistence
forecasts for all individuals. While at the aggregate level the MLR
method represents a significant improvement over persistence fore-
casts, on an individual level we find that the best forecasting model
is specific to the individual. In particular, we find that the MLR
model produces lower errors when consumers have a consistent
daily temperature response and the cluster model with previous
day magnitude produces lower errors for consumers whose con-
sumption changes abruptly in magnitude for several days at a time.
Our work adds to the state of knowledge surrounding individ-
ual household load forecasting and demonstrates the potential for
cluster-based methodologies to enhance short term load forecasts.
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1 INTRODUCTION
Traditionally, energy systems have operated on an aggregated
demand-led basis, wherein power is generated in centralized large
scale power stations and transmitted along the wires of the electri-
cal network to consumers. Individual households and other small
consumers are located at the ends of the low-voltage distribution
network and their electricity is supplied from the centralized power
plants, with electricity flowing radially outwards along the dis-
tribution network. However, with the increase in popularity of
Distributed Energy Resources (DERs) which can be embedded in
the end nodes of the distribution network, this situation is chang-
ing [29, 31]. Consumers located at the ends of the network are
increasingly supplying power into the network and modifying their
behavior according to price signals in the electricity market. To
take advantage of these changes, the future smart grid seeks to
operate the electricity system in an efficient and highly decentral-
ized manner, primarily to facilitate a sustainable energy system.
Local zones of the grid must be independently operated and finite
resources (including fuel or transmission line capacity) must be
correctly allocated. From a utility perspective, a failure to adapt
to these changes has the potential to cause both significant opera-
tional and economic disruption [22, 32]. Therefore, accurate load
forecasts on a distributed scale are crucial for ensuring reliable
system and market operation, as well as for longer term planning
activities [9, 30].
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Figure 1: (a) Total Aggregate load for all households for 10 days starting on Monday 5th January for 10 days. (b) Example
individual household loads over the same period.

Load forecasts have previously been studied on many different
levels and timescales. Historically, utilities have focused on aggre-
gated levels of hundreds of MW or more for both short and long
term load forecasting. Short Term Load Forecasting (STLF) on this
scale, which includes forecasting between 1 hour and 1 week ahead
of real time, has been used to manage the unit commitment of the
centralized utility generation fleets on awithin-day level, while long
term forecasts have helped with business and planning models [16].
Motivated by the increasing decentralization of grid operations,
recent forecasting work has looked at more and more granular
levels, including forecasting for zones [15], neighborhoods [17] and
individual buildings, including households [30], commercial [6] and
industrial buildings [36]. This work has been facilitated by the large
(and growing) amount of (publicly) available smart meter data for
individual buildings from many open data sources — for example
[26], [2] and [18]. Largely in parallel with load forecasting, there
has also been significant interest in smart meter data analytics [33].
This has included clustering daily electricity consumption patterns
of vast amounts of individual consumers for many different ap-
plications, including identifying groups of consumers suitable for
demand response [19] or energy efficiency measures [34], identify-
ing AC setpoints [11] and identifying household features [1, 3] such
as employment or physical characteristics like floor area and appli-
ance types. However, the potential for combining load forecasting
with load profile clustering has only recently been highlighted [28]
and many aspects remain unexplored.

In this work, we propose a forecasting methodology based on
clustering the daily load history from individual consumers, iden-
tifying typical daily load shapes specific to each consumer and
their probability of occurrence on different days. We use these to
estimate each consumer’s next day load. We compare the proposed
model with a developed Multiple Linear Regression (MLR) model
for forecasting day-ahead loads, which is successful at predicting
the load on an aggregate level, and which is of a similar type to
benchmark forecast models used by many utilities for zone level
forecasting [14]. We use only building-level smart meter data, as
this is much more widely available when compared with data sets
relating to building interiors (i.e. sub-metered and appliance level
usage data), and temperature data from a local weather station.

For 326 small electricity consumers, we find that our cluster-based
models lead to a small reduction (around 2%) in the median MAPE
(Mean Absolute Percentage Error) when compared with the devel-
oped MLR and a 24 hour persistence forecast for all consumers.
In addition, the differences are much more significant for some
individual consumers between the different forecasting models.
However, no one model is able to generate the lowest MAPE for
all consumers. Furthermore, in general the MAPEs for each model
are highly correlated, suggesting that if a consumer is difficult to
predict, all of the models struggle to accurately predict the load.
We interpret our results to mean that cluster-enhanced forecasts
may be useful for a large number of individual consumers, and
while it is likely that the best forecasting models for many different
households will include many different model types, cluster-based
forecasting methods like the one presented could make a useful
contribution.

2 RELATEDWORK
The range of literature regarding load forecasting for individual
buildings has employed a number of methodologies, including Mul-
tiple Linear Regression [5], Neural Networks [12, 30], Autoregres-
sive Integrated Moving Average (ARIMA) [12, 30, 37] and Holt-
Winters smoothing [37] amongst others. Many of these studies and
others have exploited highly disaggregated data sources, including
appliance level monitoring [12, 30, 38] and occupancy sensing to
better forecast the building loads. While it has been shown that
including these additional data sources relating to interior building
activities can improve the forecasting accuracy [38], questions re-
main regarding whether this type of data could be widely available
for entities seeking to forecast individual loads for many different
individual buildings (i.e. grid controllers of utilities). Therefore, in
this work we only use datasets which are likely to be available for
this purpose in the near future, including building level hourly data
and weather data.

Regarding cluster analyses, several methods have been proposed
to group consumers based on their smart meter data [8], which
include k-means [4, 19], agglomerative hierarchical clustering [19],
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finite mixture models [13] and self organizing maps [3]. Addition-
ally, different distance metrics have been used to specify the simi-
larity between load profiles. While the euclidean distance between
load profiles has been most commonly used, more recent work has
employed shape based distance metrics for clustering load profiles,
including Earth Mover’s Distance [20], Dynamic Time Warping
(DTW) distance [28, 35] and k-shape distance [35]. The advantage
of these shape-based metrics is that the different hours of the day
are not treated as orthogonal by the similarity measure. This is
appropriate given that similar behaviors may involve an appliance
usage at slightly different times, and these load profiles will be more
likely to be grouped together under a shape-based metric than with
the euclidean distance. Furthermore, it has been shown that shape-
based metrics result in a lower number of clusters representing
typical behaviors [28].

Only a handful of studies have combined cluster analysis and
load forecasting. [25] demonstrates a small improvement in fore-
casts of the aggregate load of 5000 consumers by enhancing neural
networks with clusters corresponding to common consumer usage
patterns. [28] developed a DTW cluster based forecasting model
which reduced the DTW error of the predicted loads using 22 days
of data for 1057 households. Other work has linked forecasting
with alternative unsupervised learning methods, such as in [37],
where features identified by sparse coding were shown to improve
load forecasts. Our work uses shape based clustering to identify the
typical daily consumption patterns of individual consumers, using
these and temperature data to forecast next day loads. We compare
the forecasted loads to a day-ahead MLR forecasting model and,
as well as illustrating the general error trends, examine how the
models perform for each individual consumer.

3 DATA SETS
The demand data in our study is from the Pecan Street project,
which provides 15-minute resolution electricity data for in excess of
1000 consumers on a voluntary basis [26] and which is freely avail-
able for academic purposes. The consumers are spread across many
different locations, although they are most concentrated in Austin
Texas, which is the site of the original project. We downloaded all
the available hourly electrical usage data for Austin households in
the period 1st January 2015 to 31st October 2015, and after filtering
for missing and erroneous data we select 326 consumers with a
sufficiently complete set of consumption data. We split the data
into a training set and a test set, wherein the training set spans
the period 1st January 2015 to 31st August 2015 and the testing set
spans the rest of the data, i.e. 1st September 2015 to 31st October
2015. Figure 1 shows the aggregate load from all the consumers as
well as some of the individual consumer demands.

We also use publicly available temperature data from a local
weather station (the TX_Austin_33_NW station), downloaded from
the National Oceanic and Atmospheric Administration (NOAA)
website [10]. This weather station is situated on the retired Austin
Municipal airport site on which the Pecan Street houses have been
developed, and hence the distance between the weather station and
the households is minimal. The temperature data had 61 hours in
the year 2015 where data was missing. To fill in these periods (which
were up to a maximum of 10 hours in length) we took the values

for temperature for the 10 hours preceding the missing values and
the 10 hours immediately after and used cubic interpolation to fill
in all the missing values.

4 AGGREGATE LOAD FORECASTING
We first develop a MLR model for predicting the aggregated load
(the total demand for all the households) and compare it to a naive
persistence model. When developing MLR models for STLF, it is
often useful to do some exploratory data analysis to determine
which variables and interactions should be utilized. These variables
include quantitative variables, such as the temperature or previous
load at a particular time lag, and qualitative variables such as day-
of-the-week or period-of-the-day.

Figure 2: Exploring predictors of electricity loads. (a) Auto-
correlation of the aggregate load as well as autocorrelations
for three example households. (b) Scatter plot of Tempera-
ture versus Load. Data from different times of the day has
been highlighted and fitted with distinct quadratic polyno-
mials.

Figure 2a shows the autocorrelation function of the aggregate
load (as well as the autocorrelation functions of three example
individual households). It can be seen that the function is highly
periodic, with the strongest periodicity occurring on a daily basis
(24 hour lag). Following this the autocorrelation declines further
from the period of interest, although it increases slightly at a lag of
168 hours (weekly lag). Therefore, we consider that in our model it
is beneficial to include the value 24 hours previous as well as 168
hours previous as possible predictor variables. This fits with our
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intuition, whereby we may expect that for weekdays Tuesday to
Friday, the load 24 hours previous could be a good predictor of the
load at time t , whereas for Mondays and weekend days the load
one week previous may be a better predictor.

4.1 Persistence forecasting model
The strong autocorrelation with the value 24 hours previous indi-
cates that a good choice of a persistence model is to assume the
value of the load at time t will equal the value of the load 24 hours
previously, as shown in Equation 1.

l̂t = lt−24 (1)
Here, l̂t is the predicted load at time t and lt−24 is the actual load

24 hours before t .

4.2 MLR model for aggregate load
In general, it is very important to consider the effects of tempera-
ture when predicting electricity loads, as significant proportions of
domestic electricity use goes towards heating and cooling. There-
fore, we also include temperature as a predictor variable in our MLR
model. The effect of temperature on load on has been modeled as a
piecewise linear relationship [24], as well as 2nd [7] and 3rd [14]
ordered polynomials. Based on observations from Figure 2b we opt
for a 2nd order polynomial. Additionally, the effect of temperature
is known to be different at different times of the day, as people can
respond differently to temperature depending on their activities,
which vary during different times of the day [14]. Upon inspection
of the scatter plot of temperature against load shown in Figure 2b,
we observe that this indeed appears to be the case, and the plot
indicates the presence of interaction effects between temperature
and time of day. For example, there is a clear trend that the load
is lower during the morning hours for the same temperature than
that during the late evening hours. This could be due to the fact
that in many of these households the occupancy in the morning
is typically lower and, as a result, the occupants may have higher
thermostat settings during these hours, for example, to save on
electric bills or try and reduce their energy footprint. There may
also be different interaction effects at different times of the year,
however since we are predicting loads for months for which we
have no prior data we do not include these interaction effects.

Including the interaction effects of day-of-the-week and time-of-
day, the MLR load prediction model is expressed as:

l̂t =
2∑
i=1

DoWt,i (β0,i + β1,i lt−24 + β2,i lt−168) (2)

+

4∑
i=1

HoDt,i (β3,i + β4,iTt + β5,iT 2
t )

In Equation 2, the β variables are the regression coefficients.
DoWt,i and HoDt,i are qualitative predictor variables correspond-
ing to day of the week and time of day. They are defined as follows:

[DoWt,1,DoWt,2] =
{
[1, 0] IF day is Tues, Wed, Thurs, Fri
[0, 1] otherwise

(3)

[HoDt,1,HoDt,2,HoDt,3,HoDt,4] =
[1, 0, 0, 0] IF t ∈ {23, 0, 1, 2, 3, 4}
[0, 1, 0, 0] IF t ∈ {5, 6, 7, 8}
[0, 0, 1, 0] IF t ∈ {9, 10, 11, 12, 13, 14, 15}
[0, 0, 0, 1] IF t ∈ {16, 17, 18, 19, 20, 21, 22}

(4)

For the aggregate load forecasting models, the MAPEs are shown
in Table 1. MAPE is defined as:

MAPE =
100
n

t=tn∑
t=1

l̂t − lt
lt

(5)

It is clear that the MLR model represents a significant improve-
ment over the persistence forecast. However, as may be expected
after studying Figure 3a, the persistence based forecast has rela-
tively low error to begin with, which is due to the high degree of
autocorrelation at a 24 hour lag. Figure 3a shows the evolution of
the aggregate load over the prediction period, illustrating why the
persistence model is so effective.

Table 1: MAPEs for aggregate load forecasting models

Model Training Period Testing Period

Persistence 11.10 10.71
MLR 8.53 9.32

5 INDIVIDUAL LOAD FORECASTING

Figure 3: Load evolution. (a) The evolution of the aggre-
gate load over the prediction period. Load evolution is also
shown for (b) example household 1, (c) example household
2 and, (d) example household 3.

Figure 3 also shows the load evolution over the same period for
three example households. While the aggregate load seems highly
predictable, the load for individual households has a much less clear
pattern. Nevertheless, as a first attempt at modeling the load for
all the individual households, we employ the same persistence and
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MLR models as have been used for the aggregate load. Therefore,
for each household we develop a MLRmodel with the same features
as illustrated in Equation 2. The training and testing periods are
the same for as for the aggregate load case.

5.1 Clustering methodology
We now develop an alternate load forecasting model for each of the
individual consumers by employing a clustering based approach. As
previous work has demonstrated, different consumers have differ-
ent typical lifestyles and behavior patterns which may be identified
by segmenting daily load profiles of electric usage [19]. For the
reasons outlined in the Related Work section, we opt for a shape-
based distance metric over euclidean distance for specifying the
similarity between load profiles, settling on the Earth Movers Dis-
tance (EMD) [27]. EMD essentially gives a measure of the amount
of work that must be done to change one distribution into another,
by specifying a ground distance between the distribution bins and
expressing work as the quantity moved from each bin to each other
bin integrated over the ground distance. Compared to euclidean
distance, the EMD is more computationally expensive to calculate.
Therefore, in [20], k-means and euclidean distance was first used
to create a manageable initial sized dictionary of loads shapes, and
then the dictionary entries were clustered with EMD, which allows
for a ground-distance to be specified between the different hours
of the day.

While previous work has focused on grouping the load profiles
of multiple households together to identify typical behaviors of
consumer groups, here we group the load profiles for each individual
consumer separately, since our aim is to obtain representative typi-
cal behaviors specific to each individual consumer. This also has
the advantage that it comprises a relatively small number of load
shapes — we only have 243 days of training data for each consumer.
Therefore, even though the EMD is computationally expense to
calculate, we simply employ a hierarchical agglomerative cluster-
ing with EMD as the distance metric directly on each household’s
normalized daily load profiles. The normalization of each daily load
profile is expressed as follows:

ej,D,t =
lj,D,t

TD
, TD =

24∑
t=1

lj,D,t (6)

where lj,D,t is the jth consumer’s load at time t during day D,
and Tj,D is their total load for that day.

The EMD between two different normalized load profiles is then
given by Equation 7:

dEMD (ej,D1 , ej,D2 ) =
min

∑24
t1=1

∑24
t2=1 ft1,t2d

G
t1,t2∑24

t1=1
∑24
t2=1 ft1,t2

(7)

Here, dEMD is the EMD between profiles ej,D1 and ej,D2 which
are both normalized daily load profiles of consumer j (on the days
D1 and D2 respectively). ft1,t2 is the flow from load profile ej,D1

at time t1 to load profile ej,D2 at time t2, and dGt1,t2 is the ground
distance between hours t1 and t2. The minimum flow problem is
then calculated subject to the following constraints:

ft1,t2 ≥ 0 (8)
24∑
t2=1

ft1,t2 ≤ ej,D1,t1 (9)

24∑
t1=1

ft1,t2 ≤ ej,D2,t2 (10)

Equation 8 ensures that the flows are always positive and Equa-
tions 9 and 10 ensure that the flows can never move more load
than is available each time period. We solve for the EMD using an
algorithm proposed in [23].

To perform the hierarchical clustering, we create a distance
matrix for each consumer, MEMD

j , which contains the pairwise
EMDs between each normalized daily load profile for an individual
consumer.

MEMD
j (D1,D2) = dEMD (ej,D1 , ej,D2 ) (11)

The distance matrix is symmetric. Finally we then use agglomer-
ative hierarchical clustering with complete linkage as the clustering
algorithm, using the distances specified inMEMD

j . We cut the den-
drogram at a maximum EMD = 2, which results in a maximum
distance between two load profiles in the same cluster correspond-
ing to translating a load profile by ±2 hours.

5.2 Forecasting next day load using clusters
The aforementioned clustering process creates a number of different
clusters for each individual consumer. Each consumer j then has a
set of Kj different clusters, {C1,C2,...,CKj } with the corresponding
set of centroids {ζ1,ζ2,...,ζKj }, and the number Kj depends on the
similarity between the household’s daily load profiles. Figure 4 step
3 shows the set of clusters created for an example individual user.
We find that certain clusters seem more likely to occur on different
days of the week, in particular for many users certain clusters occur
much more frequently on weekends than on weekdays or visa versa.

We consider that each cluster for each individual consumer cor-
responds to a potential state of consumption for that individual. The
previous load data for each household can then be characterized as
a sequence of cluster states, ej :(CD1 ,CD2 , ..., CDN ), corresponding
to the normalized daily load profiles on days (D1, D2, ..., DN ) and
where CD ∈ {C1, C2, ..., CKj }.

Empirically, we then study the transition probability between
different states P(Cy |Cx ). We construct separate transition proba-
bilities corresponding to weekdays and weekends, given that our
clustering procedure has identified different typical shapes for week-
ends and weekdays for many consumers. For both weekdays and
weekends, we construct a transition matrix for each consumer
MTRANS
j which gives the probability of transitioning from one

cluster on a given day to each other cluster on the next consecutive
day of the same type (separating weekends and weekdays). The
elements of MTRANS

j (Cx ,Cy ) are determined empirically by the
fractional count of transitions that we observe in the consumer j’s
load history from cluster Cx to cluster Cy .

To forecast the load profile for the prediction day,DN+1, we then
choose the cluster with the highest probability given the previous
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Figure 4: Illustrating the clustering and load forecasting processes. For each consumer the raw data is clustered using an
agglomerative hierarchical process. Transition matrices are empirically created containing the probabilities of a particular
next day load shape for weekdays and weekends respectively, and the load shape of the next day is predicted. CM1 scales the
predicted shape using the historical relationship between the consumer’s daily load magnitude and temperature and CM2
scales the load shape according to the previous day load.

day cluster. We denote the chosen cluster as C∗. The normalized
next day load is predicted as the centroid of C∗, ζC∗ . Once the cho-
sen cluster has been selected we update the transition probability
matrices and the cluster centroids accordingly.

Finally, after predicting the load shape for the next 24 hours, we
must predict themagnitude to scale the shape accordingly. Here we
split the model into two, by considering two options for predicting
the magnitude of the load shape.

5.2.1 Cluster Model 1 (CM1). First, we fit a 2nd ordered poly-
nomial to describe the relationship between temperature and total
daily consumption for all previous days for each consumer. We
then use the temperature for the prediction day DN+1 to predict
the consumption magnitude, having separate models for weekdays
and weekends. We denote this model “cluster model 1” or CM1 and
it is described in the Equations 12, 13 and 14. The load magnitude
for the predicted day is described by Equation 12, where γ0,i, j , γ1, j,i
and γ2, j,i are the coefficients of the polynomial fit between temper-
ature and consumer j’s historical daily load magnitudes. The index
i iterates the variable DoWDN+1,i which is used to differentiate the
relationship for weekdays and weekends.

|l̂CM1
j,DN+1

| =
2∑
i=1

DoWDN+1,i (γ0, j,i +γ1, j,iTDN+1 +γ2, j,iT
2
DN+1

) (12)

[DoWDN+1,1,DoWDN+1,2] =
{
[1, 0] IF DN+1 is weekday
[0, 1] otherwise

(13)

The final predicted load for the next day DN+1 in this model is
then expressed as:

l̂CM1
j,DN+1

= |l̂CM1
j,DN+1

|ζC∗ (14)
In Figure 4, the upper plots of steps 5 and 6 illustrate this process.

5.2.2 Cluster Model 2 (CM2). Second, because some households
have less dependence on temperature, we create a second estimation
of the prediction day magnitude by assuming it is equal to the
magnitude of the previous day’s consumption, |l̂CM2

j,DN+1
| = |lCM2

j,DN
|.

We denote this method “cluster model 2” or CM2. The final predicted
load for the next day DN+1 is:

l̂CM2
j,DN+1

= |lCM1
j,D |ζC∗ (15)

In Figure 4, the lower plots of step 5 and 6 illustrate this process.
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Figure 5: Number of consumers for which each model pro-
duces the lowest MAPE.

The steps of the overall clustering and load forecasting process
is illustrated in Figure 4.

After the load has been predicted for a particular day, the load
history for that consumer is updated with the actual consumption,
The actual load profile for that day is classified to the closest cluster
centroid and the transition matrix is updated accordingly. The load
profile centroids are also updated to be used for forecasting the
next day, DN+2.

5.3 Results for the individual load forecasting

Table 2: MAPEs for individual load forecasting models

Model Training Period Testing Period

Persistence 56.09 52.18
MLR 55.02 53.52
CM1 56.13 53.28
CM2 52.71 51.30

Table 2 shows the median MAPEs for each forecasting model for
the individual consumers. We can see that the median error is the
highest for the MLR model, followed by CM1, then the persistence
model and finally CM2 has the lowest median error. Interestingly,
the errors in the training period are larger than those for the test-
ing period, which is likely a result of many more unpredictable
events which occurred over the longer time of the training period
compared with the testing.

In terms of the best model for the individual consumers, we find
that no model significantly outperforms all the others across all
the individual consumers. Figure 5 illustrates this, highlighting the
number of consumers who find each model to produce the lowest
forecasting error in the testing period. While the total difference in
the median MAPE for each model is less than 5%, there are some
significant differences between the forecast models for the individ-
ual consumers. Figure 6 shows the distribution of the differences
in the MAPEs for the individual consumers between the different
forecasting models. This suggests that certain individuals may be
better predicted by different forecasting models.

Figure 6: Differences in the MAPEs for all consumers be-
tween the different forecastingmodels. CL1 and CL2 are the
abbreviations for clustermodel 1 and clustermodel 2 respec-
tively.

Figure 7: Comparing the MLR and CM2 for two consumers.
(a) A consumer for whom the CM2 has the lowest MAPE (b)
A consumer for whom the MLR has the lowest MAPE.

In general, the MAPEs for all forecast models are highly cor-
related, suggesting that if an individual consumer is difficult to
predict, it is difficult to predict for all the models and will result
in a high MAPE. In particular we find that the results of the MLR
and CM1 are highly correlated as are the persistence model and
the CM2. This is a result of explicitly including predictors for tem-
perature in the MLR as well as using temperature to predict daily
magnitude for the CM1. On the contrary, the temperature is only
accounted for implicitly in the persistence and CM2 models, due
to the fact that temperatures between one day and the next are
highly correlated. Figure 7 shows one week of the predicted loads
for two consumers, one for whom the CM2 forecast has the lowest
MAPE (Figure 7a) and one for whom the MLR forecast produces the
lowest MAPE (Figure 7b). For the first consumer, we see that on this
particular week after Friday at midday, their load profile changes
suddenly in shape and magnitude, and the error of the MLR forecast
is higher due to the inconsistent relationship with temperature. For
the second individual, we see that the cluster based forecast CM2 is
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Figure 8: CDF plot of the MAPEs for individual consumers.
The inset zooms in on the lower left region. The ‘Best’ line
shows the MAPEs when the best performing model is se-
lected for each consumer.

missing the times of the demand spikes for these days, and although
the spike magnitudes are significantly less accurate with the MLR
model, the timing has lower error, ultimately resulting in a lower
MAPE.

Figure 8 shows a CDF plot of the forecast errors for each of
the different forecasting models. We note that the smallest errors
produced with any forecast occur with the MLR forecast, however
it generally performs worse in comparison with the Persistence and
CM2 forecasts as larger numbers of consumers are considered. This
suggests that there may be a small number of consumers who have
a strong predictable dependence on temperature and as a result
are well predicted by the MLR model, while others (who are better
forecast with the Persistence or CM2 models) exhibit behavior with
significant burstiness over successive days and therefore temper-
ature is a less important factor. This further highlights that there
may be significant potential for improvement in forecasting large
numbers of individual households by using different forecasting
methods to predict the loads for different households. The hypothet-
ical case where each consumer is predicted by the best performing
model is also shown in Figure 8.

6 DISCUSSION
The ability to generate accurate day-ahead forecasts for highly
distributed sections of the network is likely to be of significant
importance in a future with an electricity system which operates
in a highly decentralized manner. The goal of this paper was to ex-
plore whether clustering the load history of individual households
could be used to accurately forecast their day ahead consumption
and compare the results to a benchmark forecasting method. We
developed a load shape forecasting method using a shape-based
clustering technique with two options for predicting the daily con-
sumption magnitude (for the CM1 and CM2 forecast models re-
spectively) and compared these with a 24-hour persistence forecast
model and a MLR model for each consumer. While both cluster
models predicted the same load shape, the method for estimating
the daily load magnitude differed, based on the historical depen-
dence of a consumers load on temperature and their previous daily

consumption respectively. The result in terms of prediction was
that CM1 produced lower MAPEs for consumers whose response
to temperature was more consistent, whereas CM2 produced lower
MAPEs for consumers who exhibited sudden large changes in daily
consumption magnitudes which persisted for more than one day.
The latter could possibly be explained by the presence of multiple
day trips away from home. It is notable that the variation in the
MAPEs for the individual consumers is high with all models, with
the 5th – 95th MAPE percentiles spanning a minimum range of
28% — 108% for CM2 to a maximum range of 26% — 127% for CM1.

Our results illustrate that, in general, unpredictable consumers
are less predictable with all models. However, we do observe that
certain models produce significantly lower MAPEs for certain con-
sumers. In particular, the consistency of the consumer’s response to
temperature has a large effect on determining model suitability, as
does whether they exhibit the tendency to have very low consump-
tion days (which most likely correspond to vacations or work trips
which are hard to predict).

6.1 Limitations and further work
In the individual forecasting models we have been careful not to
“peek” into the future of the consumer loads, however, we have
assumed that the hourly temperature is known 24 hours in advance.
Temperature forecasts are generally considered to be accurate over
this timescale [14].

It must also be conceded that the cluster forecasting models
(CM1 and CM2) and the other models (MLR and persistence) have
some incompatibility in the prediction periods. This is because the
cluster models forecast the next day based on the entire load profile
of the previous day, whereas the other models are functioning on
a rolling 24 hour basis. While we do not believe that this negates
the usefulness of the proposed cluster models, further work will
seek to make explicitly comparable forecasts. This could involve
clustering on subsections of the day or employing a rolling actual-
load-to-cluster matching process.

Recent work on load forecasting has also explored combining
forecasts [21]. Therefore, a promising avenue for future research is
to seek to minimize predicted errors by combining load forecasts.
This could be particularly successful if periods during which one
technique is significantly better than the others can be robustly
identified.

7 CONCLUSIONS
We have developed a method for short term load load forecasting
based on clustering the daily load profiles in a consumers load
history, and compared the results with a standard MLR forecasting
technique.

Our results indicate that, in general, the clustering method offers
a marginal improvement over the regression model, however the
difference is quite significant for some individual consumers. In
particular, consumer’s with large step changes in their daily behav-
ior see lower forecasting errors with the clustering model and daily
load scaled according to the previous day.

While clustering methods are a worthwhile addition to short
term electric load forecasting, it seems unlikely that any one load
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forecasting methodology will consistently produce the lowest error
for a wide range of individual electric consumers.

Future work will focus on a deeper understanding of the differ-
ences between forecasts, introducing other forecastingmethods and
investigating whether forecasts can be systematically combined to
take advantage of the strengths of individual forecasting methods.
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