167 research outputs found

    A Review on Computer Aided Diagnosis of Acute Brain Stroke.

    Full text link
    Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas

    Need for speed:Achieving fast image processing in acute stroke care

    Get PDF
    This thesis aims to investigate the use of high-performance computing (HPC) techniques in developing imaging biomarkers to support the clinical workflow of acute stroke patients. In the first part of this thesis, we evaluate different HPC technologies and how such technologies can be leveraged by different image analysis applications used in the context of acute stroke care. More specifically, we evaluated how computers with multiple computing devices can be used to accelerate medical imaging applications in Chapter 2. Chapter 3 proposes a novel data compression technique that efficiently processes CT perfusion (CTP) images in GPUs. Unfortunately, the size of CTP datasets makes data transfers to computing devices time-consuming and, therefore, unsuitable in acute situations. Chapter 4 further evaluates the algorithm's usefulness proposed in Chapter 3 with two different applications: a double threshold segmentation and a time-intensity profile similarity (TIPS) bilateral filter to reduce noise in CTP scans. Finally, Chapter 5 presents a cloud platform for deploying high-performance medical applications for acute stroke patients. In Part 2 of this thesis, Chapter 6 presents a convolutional neural network (CNN) for detecting and volumetric segmentation of subarachnoid hemorrhages (SAH) in non-contrast CT scans. Chapter 7 proposed another method based on CNNs to quantify the final infarct volumes in follow-up non-contrast CT scans from ischemic stroke patients

    Combining convolutional attention mechanism and residual deformable Transformer for infarct segmentation from CT scans of acute ischemic stroke patients

    Get PDF
    BackgroundSegmentation and evaluation of infarcts on medical images are essential for diagnosis and prognosis of acute ischemic stroke (AIS). Computed tomography (CT) is the first-choice examination for patients with AIS.MethodsTo accurately segment infarcts from the CT images of patients with AIS, we proposed an automated segmentation method combining the convolutional attention mechanism and residual Deformable Transformer in this article. The method used the encoder-decoder structure, where the encoders were employed for downsampling to obtain the feature of the images and the decoder was used for upsampling and segmentation. In addition, we further applied the convolutional attention mechanism and residual network structure to improve the effectiveness of feature extraction. Our code is available at: https://github.com/XZhiXiang/AIS-segmentation/tree/master.ResultsThe proposed method was assessed on a public dataset containing 397 non-contrast CT (NCCT) images of AIS patients (AISD dataset). The symptom onset to CT time was less than 24 h. The experimental results illustrate that this work had a Dice coefficient (DC) of 58.66% for AIS infarct segmentation, which outperforms several existing methods. Furthermore, volumetric analysis of infarcts indicated a strong correlation (Pearson correlation coefficient = 0.948) between the AIS infarct volume obtained by the proposed method and manual segmentation.ConclusionThe strong correlation between the infarct segmentation obtained via our method and the ground truth allows us to conclude that our method could accurately segment infarcts from NCCT images

    Multi-input segmentation of damaged brain in acute ischemic stroke patients using slow fusion with skip connection

    Get PDF
    Time is a fundamental factor during stroke treatments. A fast, automatic approach that segmentsthe ischemic regions helps treatment decisions. In clinical use today, a set of color-coded parametric maps generated from computed tomography perfusion (CTP) images are investigated manually to decide a treatment plan. We propose an automatic method based on a neural network using a set of parametric maps to segment the two ischemic regions (core and penumbra) in patients affected by acute ischemic stroke. Our model is based on a convolution-deconvolution bottleneck structure with multi-input and slow fusion. A loss function based on the focal Tversky index addresses the data imbalance issue. The proposed architecture demonstrates effective performance and results comparable to the ground truth annotated by neuroradiologists. A Dice coefficient of 0.81 for penumbra and 0.52 for core over the large vessel occlusion test set is achieved. The full implementation is available at: https://git.io/JtFGb.publishedVersio

    Multi-input segmentation of damaged brain in acute ischemic stroke patients using slow fusion with skip connection

    Full text link
    Time is a fundamental factor during stroke treatments. A fast, automatic approach that segments the ischemic regions helps treatment decisions. In clinical use today, a set of color-coded parametric maps generated from computed tomography perfusion (CTP) images are investigated manually to decide a treatment plan. We propose an automatic method based on a neural network using a set of parametric maps to segment the two ischemic regions (core and penumbra) in patients affected by acute ischemic stroke. Our model is based on a convolution-deconvolution bottleneck structure with multi-input and slow fusion. A loss function based on the focal Tversky index addresses the data imbalance issue. The proposed architecture demonstrates effective performance and results comparable to the ground truth annotated by neuroradiologists. A Dice coefficient of 0.81 for penumbra and 0.52 for core over the large vessel occlusion test set is achieved. The full implementation is available at: https://git.io/JtFGb

    DEVELOPING INTEGRATED MACHINE LEARNING MODELS FOR AUTOMATIC COMPUTER-AIDED DIAGNOSIS IN ISCHEMIC ACUTE STROKE MRI

    Get PDF
    Fast detection and quantification of lesion cores in diffusion weighted images (DWIs) has been highly anticipated in clinical and research communities for planning treatment of acute stroke. The recent emergence of successful machine learning (ML) methods, especially Deep Learning (DL), enables automatic Computer Aided Diagnosis (CAD) of stroke in DWIs. However, the lack of publicly available large-scale data and ML models in clinical acute stroke DWI application are still the bottlenecks. In this work, we established the first large annotated open-source database of 2,888 clinical acute stroke MRIs (Chapter 2) to train and develop ML models for automatic stroke lesion detection and segmentation in clinical acute stroke MRI (Chapter 3). For automatic measurement of infarcted arterial territories, the first digital 3D deformable brain arterial territory atlas was created (Chapter 4). In addition, a fully automatic ML system is created to generate automatic radiological reports (Chapter 5 and 6) for calculation of ASPECTS, prediction and quantification of infarcted arterial and anatomical regions, and estimation of hydrocephalus presented in acute stroke MRI. The complete ML system in this work runs locally in real time with minimal computational requirements. It is publicly available and readily useful for non-expert users

    Novel mathematical modeling approaches to assess ischemic stroke lesion evolution on medical imaging

    Get PDF
    Stroke is a major cause of disability and death worldwide. Although different clinical studies and trials used Magnetic Resonance Imaging (MRI) to examine patterns of change in different imaging modalities (eg: perfusion and diffusion), we still lack a clear and definite answer to the question: “How does an acute ischemic stroke lesion grow?” The inability to distinguish viable and dead tissue in abnormal MR regions in stroke patients weakens the evidence accumulated to answer this question, and relying on static snapshots of patient scans to fill in the spatio-temporal gaps by “thinking/guessing” make it even harder to tackle. Different opposing observations undermine our understanding of ischemic stroke evolution, especially at the acute stage: viable tissue transiting into dead tissue may be clear and intuitive, however, “visibly” dead tissue restoring to full recovery is still unclear. In this thesis, we search for potential answers to these raised questions from a novel dynamic modelling perspective that would fill in some of the missing gaps in the mechanisms of stroke evolution. We divided our thesis into five parts. In the first part, we give a clinical and imaging background on stroke and state the objectives of this thesis. In the second part, we summarize and review the literature in stroke and medical imaging. We specifically spot gaps in the literature mainly related to medical image analysis methods applied to acute-subacute ischemic stroke. We emphasize studies that progressed the field and point out what major problems remain. Noticeably, we have discovered that macroscopic (imaging-based) dynamic models that simulate how stroke lesion evolves in space and time were completely overlooked: an untapped potential that may alter and hone our understanding of stroke evolution. Progress in the dynamic simulation of stroke was absent –if not inexistent. In the third part, we answer this new call and apply a novel current-based dynamic model âpreviously applied to compare the evolution of facial characteristics between Chimpanzees and Bonobos [Durrleman 2010] – to ischemic stroke. This sets a robust numerical framework and provides us with mathematical tools to fill in the missing gaps between MR acquisition time points and estimate a four-dimensional evolution scenario of perfusion and diffusion lesion surfaces. We then detect two characteristics of patterns of abnormal tissue boundary change: spatial, describing the direction of change –outward as tissue boundary expands or inward as it contracts–; and kinetic, describing the intensity (norm) of the speed of contracting and expanding ischemic regions. Then, we compare intra- and inter-patients estimated patterns of change in diffusion and perfusion data. Nevertheless, topology change limits this approach: it cannot handle shapes with different parts that vary in number over time (eg: fragmented stroke lesions, especially in diffusion scans, which are common). In the fourth part, we suggest a new mathematical dynamic model to increase rigor in the imaging-based dynamic modeling field as a whole by overcoming the topology-change hurdle. Metamorphosis. It morphs one source image into a target one [Trouvé 2005]. In this manuscript, we extend it into dealing with more than two time-indexed images. We propose a novel extension of image-to-image metamorphosis into longitudinal metamorphosis for estimating an evolution scenario of both scattered and solitary ischemic lesions visible on serial MR. It is worth noting that the spatio-temporal metamorphosis we developed is a generic model that can be used to examine intensity and shape changes in time-series imaging and study different brain diseases or disorders. In the fifth part, we discuss our main findings and investigate future directions to explore to sharpen our understanding of ischemia evolution patterns
    • …
    corecore