
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Need for speed
Achieving fast image processing in acute stroke care
Sales Barros, R.

Publication date
2022
Document Version
Final published version

Link to publication

Citation for published version (APA):
Sales Barros, R. (2022). Need for speed: Achieving fast image processing in acute stroke
care. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/need-for-speed(bb024dc4-09b5-48da-a3c7-167f917b185a).html

NEEDFOR
SPEED

Achieving fast image processing

in acute stroke care

Renan Sales Barros

NEED FOR SPEED Achieving fast im
age processing in acute stroke care Renan Sales Barros

Need for speed
Achieving fast image processing in acute stroke care

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op dinsdag 1 november 2022, te 15.00 uur

Renan Sales Barros

© copyright Renan Sales Barros, Amsterdam 2022

Printing: ProefschriftMaken || www.proefschriftmaken.nl

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of the author or the
copyright-owning journals for previous published chapters.

Need for speed
Achieving fast image processing in acute stroke care

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel
op dinsdag 1 november 2022, te 15.00 uur

door Renan Sales Barros
geboren te Santana do Ipanema

Promotiecommissie

Promotores: 		 prof. dr. ing. A.H.C. van Kampen AMC-UvA
			 prof. dr. H.A. Marquering AMC-UvA

Copromotores: 	 	 dr. S.D. Olabarriaga AMC-UvA

Overige leden: 		 prof. dr. I. Išgum AMC-UvA
			 prof. dr. Y.B.W.E.M. Roos AMC-UvA
			 prof. dr. ir. A.G. Hoekstra Universiteit van Amsterdam
			 dr. B.J. Emmer AMC-UvA
			 prof. dr. ir. H.W.A.M. de Jong Universiteit Utrecht
			 prof. dr. R.V. van Nieuwpoort Universiteit van Amsterdam

Faculteit der Geneeskunde

Contents

Chapter 1	 Introduction	 9

Chapter 2	 Heterogeneous platform programming for high performance	 17
	 medical imaging processing

Chapter 3	 Dynamic CT perfusion image data compression for 	 31
	 efficient parallel processing

Chapter 4	 High performance analysis of compressed dynamic 	 53
	 CT perfusion image data for acute care of ischemic stroke

Chapter 5	 Remote collaboration, decision support, and on-demand 	 73
	 medical image analysis for acute stroke care

Chapter 6	 Automated segmentation of subarachnoid hemorrhages 	 89
	 with convolutional neural networks

Chapter 7	 Automatic segmentation of cerebral infarcts in follow-up 	 107
	 computed tomography images with convolutional neural networks

Chapter 8	 Discussion	 123

	 Summary	 131
	 Samenvatting	 135
	 Acknowledgements		 139
	 About the author	 143
	 Portfolio	 147

1

Chapter 1
Introduction

Chapter 1

10

Introduction

Stroke
A stroke patient loses around 22 days of life for every minute without treatment [1].
This is equivalent to losing more than 4 years of life for every hour of delayed treatment.
Therefore, fast treatment in stroke is crucial to increase the chances of good outcome.
These numbers are even more impressive when we consider how frequent stroke affects
people globally. Stroke is the second leading cause of death and the leading cause of
morbidity. One in every 4 people older than 25 will have a stroke during their lifetime
[2]. Furthermore, the incidence of stroke is expected to increase in the coming decades
because of aging and population growth.

There are two main types of stroke: hemorrhagic and ischemic. Hemorrhagic stroke
patients represent 13%-15% of all stroke patients. Hemorrhagic stroke patients have a
bleeding in their brain usually due to the rupture of an aneurysm. The remaining 85%-
87% of the strokes are ischemic strokes. Ischemic strokes are caused by the obstruction
of a cerebral artery by a blood clot.

Stroke workflow
An important moment during the assessment of a suspected stroke patient is determining
if the patient suffers a hemorrhagic stroke or ischemic stroke. This is predominantly
done via non-contrast computed tomography (NCCT) scans. If hemorrhagic stroke
diagnosis is discarded then the patient should be immediately treated with intravenous
thrombolysis (IVT). Up until 2015, IVT was the only proven treatment for ischemic
stroke patients. Successful IVT treatment dissolves the blot clot and reestablishes the
cerebral blood flow. However, IVT is not likely to be effective in patients with large
vessel occlusions (LVOs). Fortunately, it has been shown in 2015 that combining IVT
with the mechanical removal of the blood clot is an effective treatment option for
ischemic stroke patients with LVOs. This mechanical removal of the blood clot, which
is also known as endovascular treatment or endovascular therapy (EVT), can only be
performed in specialized hospitals. To determine if the patient is eligible for EVT it is
necessary to know the location of the vessel occlusion. Determining the location of a
blood clot is typically done in computed tomography angiography (CTA) scans.

Originally, the time window available for EVT was 6h from the onset of the symptoms.
However, more recent studies have shown that EVT can be effective to some ischemic
stroke patients beyond these 6h window. Determining if a patient is eligible to EVT
outside this 6h window is primarily done by checking if the infarct core volume in
that patient is above a certain threshold. This infarct core volume is generally measured
via computed tomography perfusion (CTP) imaging. More recently, the status of

Introduction

Ch
ap

te
r

1

11

the collateral flow has been shown as an additional clinical decision-making tool for
determining the eligibility of ischemic stroke patients for EVT [3].

Quantitative imaging biomarkers
The assessment of stroke patients is heavily depended on computed tomography (CT)
imaging. Traditionally, CT scans are inspected by radiologists with little or no help
of image processing or computer vision algorithms. The time spent on interpreting
CT scans is a considerable part of the EVT workflow [4]. As can be seen in Figure 1,
the study by Ng et al. [4] reported that approximately one hour is needed from the
moment the CT scan is acquired to the moment a request is made to transfer the stroke
patient to a hospital where EVT can be performed. Furthermore, the evaluation of CT
scans by human experts suffers from high variability [5] and, in the case of inexpedient
radiologists, it is also prone to unsatisfactory accuracy.

Figure 1: Breakdown of thrombectomy treatment workflow time, adapted from Ng et al. [4].

Automated analysis of CT scans has the potential to improve the stroke workflow by
reducing variability, reducing the time spent on interpreting these scans, and also by
increasing accuracy. These automated methods used to support the clinical decision-
making in stroke are also referred to as quantitative imaging (QI) biomarkers [6]. In
a general way, a QI biomarker is an objective characteristic extracted from an in vivo
image which is used as an indicator of a normal biological process, a pathogenic process,
or response to a medical intervention. Designing and implementing QI biomarkers
for stroke often requires the use of advanced image processing and computer vision
techniques. Furthermore, it is not uncommon that CT scans have around 1500 slices
and each of these slices have 512x512 voxels. Image modalities such as multiphase CTA

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

14m
8%

19m
10.9%

15m
8.6%

59.5m
34.2%

10m
5.8%

17m
9.8%

19.5m
11.2%

20m
11.5%

Door-to-Door: 128 min (IQR=107-164)

Door-in-to-Door-out (PSC): 106 min (IQR=86-143)

Thrombectomy treatment workflow time continuum

Chapter 1

12

and CTP are composed of several CT acquisitions at different times which results in a
several gigabytes of image data. The combination of advanced processing techniques and
large input images often results in a trade-off between accuracy and speed. Unfortunately,
accurate QI biomarkers with slow processing time, or fast QI biomarkers with low
accuracy have little practical value in the clinical treatment decision of acute stroke
patients.

High performance computing
High performance computing (HPC) commonly refers to the set of techniques for
combining computing power to achieve much higher performance than what a typical
desktop computer or workstation can offer. HPC is the go-to solution for tackling the
computational challenges faced by medical research. HPC has been successfully used
for supporting biomarker discovery in cancer research [7]. In the context of medical
image analysis, HPC has been used in image registration, segmentation, reconstruction,
filtering, and classification [8]. HPC makes use of computing platforms such as cloud
computing, computer clusters, FPGAs, GPUs, massive parallel processors, multicore
CPUs, etc. Often, HPC is achieved via the combination of many of these computing
platforms.

Aim and outline
The aim of this thesis is to investigate the use HPC techniques for implementing QI
biomarkers which are suitable for clinical decision making in acute stroke care. That is,
we want to demonstrate that HPC allows the development of QI biomarkers with the
accuracy and speed that are required by the clinical stroke workflow.

In the first part of this thesis, we investigate different HPC techniques and its applicability
to image analysis in stroke. In Chapter 2, we evaluate the use heterogeneous platforms
for delivering the high-performance capabilities which are needed by some stroke image
processing applications. In Chapter 3, we propose a novel data compression technique
that allows the efficient processing of CTP images in GPUs. Subsequently, we compare
the effect of such data compression technique in a well stablished image processing CTP
algorithm in Chapter 4. In Chapter 5, we present a cloud-based platform that enables
fast medical image exchange and HPC image processing in the context of acute stroke
care.

The second part of this thesis focuses on developing or improving QI biomarkers for
stroke. These QI biomarkers are implemented by using the HPC practices discussed
in Part 1. In Chapter 6, we propose a new method for subarachnoid hemorrhage
segmentation based on convolutional neural networks. In Chapter 7, a new approach for
the segmentation of infarcted brain tissue in follow-up CT scans based on convolutional

Introduction

Ch
ap

te
r

1

13

neural networks is proposed. In both Chapter 6 and Chapter 7, the techniques used
for training and deploying convolutional neural networks are grounded on HPC
technologies such as general-purpose computing on GPUs. To conclude, we wrap up all
topics considered in this thesis in a general discussion in Chapter 8.

Chapter 1

14

References

1.	 Saver, Jeffrey L. “Time is brain—quantified.” Stroke 37.1 (2006): 263-266.
2.	 GBD 2016 Lifetime Risk of Stroke Collaborators. “Global, regional, and country-specific lifetime risks
	 of stroke, 1990 and 2016.” New England Journal of Medicine 379.25 (2018): 2429-2437.
3.	 Powers, William J., et al. “Guidelines for the early management of patients with acute ischemic stroke:
	 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for
	 healthcare professionals from the American Heart Association/American Stroke Association.” Stroke 50.12
	 (2019): e344-e418.
4.	 Ng, Felix C., et al. “Deconstruction of interhospital transfer workflow in large vessel occlusion: real-
	 world data in the thrombectomy era.” Stroke 48.7 (2017): 1976-1979.
5.	 Grotta, James C., et al. “Agreement and variability in the interpretation of early CT changes in stroke
	 patients qualifying for intravenous rtPA therapy.” Stroke 30.8 (1999): 1528-1533.
6.	 Abramson, Richard G., et al. “Methods and challenges in quantitative imaging biomarker
	 development.” Academic radiology 22.1 (2015): 25-32.
7.	 Blayney, Jaine, et al. “Biomarker discovery, high performance and cloud computing: a comprehensive
	 review.” 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015.
8.	 Gulo, Carlos ASJ, Antonio C. Sementille, and João Manuel RS Tavares. “Techniques of medical image
	 processing and analysis accelerated by high-performance computing: A systematic literature
	 review.” Journal of Real-Time Image Processing (2019): 1-18.

Introduction

Ch
ap

te
r

1

15

2

Renan Sales Barrosa, Sytse van Geldermalsenb, Anna M.M. Boersa,c,d, Adam S. Z.
Belloumb, Henk A. Marqueringa,c, and Silvia D. Olabarriagaa

a Biomedical Engineering & Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ,
Amsterdam, The Netherlands
b Department of Computational Science, University of Amsterdam, Science Park 107, 1098 XG, Amsterdam, The
Netherlands
c Department of Radiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The
Netherlands
d University of Twente, Postbus 217, 7500 AE, Enschede, The Netherlands

Chapter 2
Heterogeneous platform programming
for high performance medical imaging
processing

•	 Barros, Renan Sales, et al. “Heterogeneous platform programming for high performance medical imaging processing.”
	 European Conference on Parallel Processing. Springer, Berlin, Heidelberg, 2014.
•	 First author, workshop proceedings, https://link.springer.com/chapter/10.1007/978-3-642-54420-0_30

Chapter 2

18

Abstract

Medical imaging processing algorithms can be computationally very demanding.
Currently, computers with multiple computing devices, such as multi-core CPUs,
GPUs, and FPGAs, have emerged as powerful processing environments. These so called
heterogeneous platforms have potential to significantly accelerate medical imaging
applications. In this study, we evaluate the potential of heterogeneous platforms to
improve the processing speed of medical imaging applications by using a new framework
named FlowCL. This framework facilitates the development of parallel applications for
heterogeneous platforms. We compared an implementation of region growing based
method to automated cerebral infarct volume measurement with a new implementation
targeted for heterogeneous platforms. The results of this new implementation agree
well with the original implementation and they are obtained with significant speed-
up comparing to the sequential implementation. Keywords: dataflow, framework,
heterogeneous computing, heterogeneous platforms, medical imaging processing,
OpenCL, parallel programming.

Heterogeneous platform programming for high performance medical imaging processing

Ch
ap

te
r

2

19

1 Introduction

In medical imaging applications large amounts of data must be processed quickly and
accurately, which requires the usage of high performance computing systems. Commodity
computer architectures are rapidly developing into systems with multi-core CPUs and
with additional accelerated hardware devices such as graphics processing units (GPUs)
and field programmable gate arrays (FPGAs). These heterogeneous platforms provide
a new alternative to design and implement computationally demanding applications.
Consequently, the computation power provided by these heterogeneous platforms
should be explored for medical image processing.

Expertise of new programming constructs and concepts is however required for
application developers to effectively utilize these platforms. The OpenCL [5] technology
was developed with the aim of facilitating heterogeneous platforms usage. OpenCL
includes a language for writing functions, called kernels, that execute on diverse
computing devices. It also includes an application programming interface (API) that is
used to control the heterogeneous platforms. A benefit of OpenCL is that the kernels
that are coded according to this standard can run on different devices without any
modification. This makes it possible to take advantage of computationally powerful
devices that are well suited for different tasks. Nevertheless, OpenCL still requires
application developers to deal with low level concerns such as the overhead of the
code, memory management, and synchronization. In order to evaluate the potential
of heterogeneous platforms in medical imaging processing, we needed an easier
programming platform. A new framework named FlowCL was developed to provide an
intuitive way to create applications utilizing heterogeneous platforms. This framework
eliminates the OpenCL API usage, but maintains the OpenCL programming language
for writing kernels. A brief description of this framework is presented in Section 2.

We used the FlowCL framework to implement a modified version of a previously
developed method of automated measurement of cerebral infarct volume of patients after
acute ischemic stroke. This method, which was developed and validated by Boers et al.
[3], was modified for heterogeneous platforms. In Section 3, we explain the automated
cerebral infarct volume measurement method and the modification implemented in this
study. We compared the execution times of the original (sequential) implementation
with the new parallel implementation for heterogeneous platforms using FlowCL. We
also evaluated the differences between the results of both implementations in Section 4.
Finally, the conclusions regarding this work and future improvements are presented in
Section 5.

Chapter 2

20

2 FlowCL Framework

During the development of OpenCL applications, programmers have to deal with a
low level C library, which requires specialized expertise for effective and efficient code
development. There are various frameworks to mitigate this problem. For example, the
Many GPUs Package (MGP) [2] was built on top of the Virtual OpenCL Layer (VCL).
VCL is a transparent layer that accesses and manages OpenCL devices in clusters and
presents these devices as a single node. MGP is a layer that facilitates the programing
using clusters by hiding low level functions. A library named Maestro [10] also tries to
reduce the complexity of OpenCL applications development by providing functions for
automatic data transfer and task decomposition across OpenCL devices. However, MGP
and Maestro do not use extensive optimizations strategies. A more complete framework
is StarPU [1], which is a runtime system capable of scheduling tasks over heterogeneous
devices using several optimizations strategies. However, the framework API uses the C
programming language and this hampers the usage of high level programming concepts.

FlowCL is a new high level framework that supports rapid prototyping and development
with OpenCL, which makes it possible to closely control the execution across all OpenCL
devices on one computer system. More details about FlowCL are found in [4]. It hides
all low level calls to the OpenCL library API from the application developer. Only the
OpenCL kernel code that is designed to run on a selected device must be provided
to the framework. Also, FlowCL provides an object-oriented declarative API to easily
build applications with the concept of dataflow. The programmer simply declares a set
of memory objects and operations. Each operation runs each single kernel function on
any available device. This framework automatically applies optimization strategies such
as overlapping communication and computation, and asynchronous data transfers and
kernel executions.

To use the FlowCL framework, application developers just have to deal with four classes
of objects: memory, context, device, and operation. Figure 1 illustrates the relationships
between these classes. By having only four classes with limited relationships, FlowCL
provides a simpler approach that is easier to understand than OpenCL.

In short, FlowCL framework addresses the following key aspects: it facilitates application
development with OpenCL; it provides an object-oriented API to build applications
with the dataflow concept; it eliminates the OpenCL API, except for kernel code; it
automatically manages all devices on heterogeneous platforms; it supports concurrent
kernel execution and asynchronous data transfers; and it supports multiple operating
systems.

Heterogeneous platform programming for high performance medical imaging processing

Ch
ap

te
r

2

21

Figure 1: FlowCL cardinality diagram. A Context is instantiated with kernel codes; these codes are

usable on all available computing devices. Memory objects act as arguments for operations; they

are created by a context with a given size and become available to all devices in this context. Device

represents a computing device. Operation runs a specified kernel function on a selected device.

The framework is designed to run in the C++ language and only requires the FlowCL
header file inclusion. To illustrate FlowCL usage, the following source code is shown:

#include ”FlowCL . hpp”
using namespace FlowCL ;

int main ()
{

Context con;
con. CompileFile (”source. cl”) ;

Memory memcpu = con . CreateMemory (1e8* sizeof (int));
Memory memgpu = con . CreateMemory (1e8* sizeof (int));

Operation genrand = con. CreateOperation(con. GetCPUDevice (), ”GenRand”);
genrand. SetArg (0, memcpu); // CPU already has access to memory
genrand. SetArg (1, memgpu);
genrand. SetWorkSize (1e8); // Set finest granularity

Operation sortcpu = con. CreateOperation(con. GetCPUDevice (), ”SortCPU”);
sortcpu. SetArgDependency(genrand, 0, memcpu); // Wait for genrand
sortcpu. SetWorkSize (1e8);

Operation sortgpu = con. CreateOperation(con. GetGPUDevice (),”SortGPU”);
sortgpu. SetArgDependency(genrand, 0, memgpu); // Wait for genrand
sortgpu. SetArgOutput(0, memgpu);
sortgpu. SetWorkSize (1e8);
con. Run(); // Blocking run

}

This example is visualized in Figure 2. The first operation executes on the CPU and
generates random numbers that are sorted in the next two operations that execute in
parallel on the GPU and the CPU. There is no data transferred to the sort operation
that runs on the CPU because this data is readily available. Once the GPU operation is
completed, the data is transferred back and the execution is finished.

Chapter 2

22

Figure 2: Sample code visual representation.

3 Case Study

In this section we present a case study using heterogeneous computing for measurement
of cerebral infarct volume (CIV) of patients with acute ischemic stroke. The CIV has
been suggested as an important measure for the effective treatment of these patients [9].
This volume can be manually measured in early follow-up non-contrast CT scans by
the delineation of the whole infarct volume. An alternative is to estimate this volume
by using the ABC/2 formula, which was originally designed for the estimation of
hemorrhage volume [6]. The manual delineation is a tedious and time-intensive task,
and the CIV estimation based on the ABC/2 rule only approximates the total CIV.
Aiming to address these problems, Boers et al. [3] proposed a method to automatically
calculate the CIV in follow-up non-contrast CT scans. This method was validated by
comparing it with manual delineations performed by experienced radiologists.

The method proposed by Boers et al. was implemented using MATLAB [7] and took
a long time to run (in the order of 10 min). It uses an intensity-based region growing
(IRG) algorithm, which is responsible for more than 95% of the total processing time.
To evaluate the potential benefit of heterogeneous computing for this application, we
replaced this method with a new version of the IRG algorithm developed with the
FlowCL framework. The integration of the new IRG algorithm with the previous
MATLAB implementation was straightforward because MATLAB allows external code
calls.

In short, the objective of this case study is to understand how heterogeneous platforms
can be used and what is their potential value for medical imaging applications. To achieve
this objective, we run the method for automated CIV calculation with two different
implementations of the IRG algorithm, one based on the original MATLAB code and
the other using FlowCL. Below we provide an overview of the complete method for
automated CIV measurement used in this case study, and then we describe both the
sequential and the parallel IRG implementations.

Heterogeneous platform programming for high performance medical imaging processing

Ch
ap

te
r

2

23

3.1 Automated Cerebral Infarct Volume Measurement
The automated CIV measurement proposed by Boers et al. was designed to process
non-contrast CT scans of the whole brain of the patients. The volume measurements
are performed for a part of the brain that is segmented from the image using a region
growing algorithm (IRG). In this algorithm, a voxel is added to the segmented volume
if the difference between its intensity and the average intensity of the segmented volume
so far is smaller than a specific threshold. To compute the CIV, this algorithm was
repeated for 7 different values of threshold, going from 1.5 until 4.5 with steps of 0.5
Hounsfield units (HU). The algorithm requires a position as starting point (called seed
point) in the infarcted lesion. The seed position is set by an experienced radiologist and
this assures that the correct infarcted area was selected.

The brain midline is used to prevent the segmented region from leaking to into the
contralateral hemisphere, i.e., the region cannot grow into the other side of the brain.
This midline is detected based on the geometric center and the most extreme mid-
sagittal bone or nasal cartilage structures present on the scan. Also, to avoid leaking
into the hypo-attenuated ventricles, the hypo-attenuated region close to the geometric
center is segmented and excluded from the segmentation of the infarcted area. All the
steps of the segmentation process are illustrated in Figure 3. This process is repeated for
7 thresholds. In the end of this process, the observer must select the best result that most
agrees with the scans.

Figure 3: CIV segmentation steps. From the left to right: a CT scan showing an infarct in the right

hemisphere (left of the image); the seed position defined by a radiologist; the determined midline and

the ventricles segmentation; and the final segmentation representing the CIV.

3.2 Intensity-Based Region Growing Algorithm
Region growing is a segmentation technique to select an image area that is connected
according to a specific condition [8]. In intensity-based region growing (IRG), the
intensity of the voxel is used as criterion to include or not a voxel to the region. Starting
from a given seed point, the IRG algorithm iteratively adds voxels to the region such
that the following condition is satisfied: |I − A| ≤ T , where I is the intensity of the
processed voxel and A is the average intensity of the selected image area. The voxel I

Chapter 2

24

must be in the neighborhood of the selected area, and it is included in this area when its
intensity is smaller than or equal to the threshold T.

Different neighborhood definitions can be applied (e.g., for 3D images it can take 9
or 26 neighbors into account), and the order in which the voxels are considered for
inclusion may influence the final result. The IRG is also sensitive to the chosen threshold
T; for this reason, 7 different thresholds are used in the CIV method, and the user can
pick the best result.

The sequential implementation of IRG in the original CIV measurement method
updates the average of the selected image area immediately after the inclusion of each
voxel, and the updated average is used in the test to include the next neighboring
voxel. In the parallel implementation of IRG, computing devices in the heterogeneous
platform simultaneously process the voxels based on the same value of A. The average
intensity A is only updated after all the neighbors of a given voxel are considered for
inclusion. Therefore the sequential and the parallel algorithms perform inclusion tests
based on potentially different values of A, and can deliver different results.

4 Experimental Results and Comparisons

To evaluate the speed-up obtained with the heterogeneous platform, 53 CT scans
were processed in two different hardware configurations with the original and the
GPU implementations of the automated CIV measurement method. The complete
method was executed in both cases, however for timing purposes only the IRG part
was considered. Both hardware configurations have 12 CPU cores and 192 GPU cores,
however one is slower than the other – see Table 1.

Table 1: Hardware configuration.

Hardware Detail Configuration 1 Configuration 2

CPU Name Intel Core i7-3930K Intel Xeon E5-2620

CPU Clock 3.20 GHz 2.00 GHz

GPU Name NVIDIA GeForce GTX 550 Ti NVIDIA Quadro K600

GPU Clock 900 MHz 876 MHz

GPU Memory Clock 4104 MHz 1782 MHz

GPU Driver Version 9.18.13.1106 9.18.13.2000

The CT scans include the entire brain and were performed with thin-section acquisition
by using 8 different multi-section CT scanners with at least 16 sections, but mostly

Heterogeneous platform programming for high performance medical imaging processing

Ch
ap

te
r

2

25

with 64 or more sections. The 32-bit MATLAB version 8.0.0.783 (R2012b) was used
to run the MATLAB code. Microsoft Visual C++ 2010 was used to compile the region
growing algorithm for heterogeneous platforms. These software were executed on 64-bit
Microsoft Windows 7 Enterprise operating system on both hardware configurations.
Execution times were measure before and after calling the IRG function in the MATLAB
code. Note that this time includes overhead of internal function call for the sequential
implementation, as well as for the external call of the program for the heterogeneous
platform implementation.

All the CT scans were analyzed using exactly the same parameters for 7 threshold values
(1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5). Parameters that must be manually configured, such
as the region growing seed position, were defined only once and used in all runs of
the method. Because different threshold values have a great influence in the size of the
segmented volume and, consequently, also in the algorithm execution time, we compare
the execution time separately for each threshold value.

Figure 4 shows the speed-up factor for the parallel respectively to the original IRG
implementation. As we can see, speed-ups of 36 times were obtained. In general,
larger gains are obtained for higher threshold values. Higher thresholds produce bigger
segmented volumes, which require more computations and, consequently, result in
more expressive speed gains. For lower thresholds, the execution time varies among
different scans (larger standard deviation). Small thresholds generate smaller segmented
volumes, which are more sensitive to the inclusion of neighboring voxels.

Figure 4: Speed-up on heterogeneous platforms (vertical axis) for each threshold value (horizontal

axis). Bars indicate standard deviation from the mean speed-up calculated for 53 scans.

Also note that, due to this sensitivity regarding the small volumes, the implementation
for heterogeneous platforms can be slower than the original implementation. Note
however that only a minor performance reduction is noticed. In most situations the
performance of the new implementation is better as presented in figure 5. We must
highlight that the automated CIV measurement requires the region growing algorithm
to run with 7 different threshold values and, because of this, the performance gains

Chapter 2

26

obtained for higher thresholds values compensate for the loss for smaller thresholds in
the total processing time. In no case the new implementation had a total processing time
slower than the original implementation when all 7 thresholds are considered. The new
implementation was faster in 82% of the scans using the hardware configuration 1 and
in 75% of the scans using the hardware configuration 2.

Figure 5: Differences in execution time between both implementations (new - old). Left: Average

difference in seconds (vertical axis) for each threshold value (horizontal axis) calculated for 53 scans.

Right: Histogram of differences in execution times in seconds for all thresholds. The negative ranges

indicate the runs where the original implementation was faster than the new implementation.

To evaluate the differences in the quality of results obtained with both implementations
we calculate the Dice coefficient for each threshold value individually - see Table 2.
Similarly to what we found in the execution time analysis, the greater differences are
measured for smaller thresholds. However, this variation in the results does not have
a great impact in the method, because the final segmentation must be selected by a
human observer which will filter out the segmentations that are not consistent with the
images. Moreover, usually the selected segmentation is generated with one of the middle
threshold values. The extreme threshold values are used as a safe margin to assure that
the most adequate segmentation will be inside this interval.

As shown in Table 2, the Dice coefficients for the threshold between 2.5 and 4 are
higher than 0.9. These results indicate good agreement between segmentations when
compared to variations found in results obtained with manual segmentation by experts.
For example, during the validation of the original method, [3] found that the Dice
coefficient for segmentations manually defined by two experienced radiologists were
0.84 ± 0.08 ranged from 0.63 to 0.94 [3].

Heterogeneous platform programming for high performance medical imaging processing

Ch
ap

te
r

2

27

Table 2: Dice coefficients for each threshold.

Threshold Value: 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Maximum: 0.99994 1.00000 1.00000 1.00000 0.99247 0.99141 0.97592

Average: 0.85936 0.89620 0.94856 0.93499 0.91252 0.91199 0.89875

Minimum: 0.34349 0.25384 0.68682 0.84418 0.82026 0.76991 0.75164

Standard Deviation: 0.18170 0.16985 0.07482 0.05082 0.05052 0.06906 0.07345

5 Conclusions and Future Work

In this work we presented how the FlowCL framework, which was developed for intuitive
heterogeneous platform programing, was used in a medical imaging application. Part
of a previously developed and validated method for automated cerebral infarct volume
measurement was adapted for heterogeneous platforms using the FlowCL framework.
Only the code related with the intensity-based region growing algorithm was modified.
All other pieces of code and software used in the method were not modified. We compared
the two implementations of the automated CIV measurement method in order to
investigate the potential of heterogeneous platform in medical imaging applications.
The results of the implementation for heterogeneous platform were obtained faster and
were also consistent with the results of the original implementation. This study shows
that heterogeneous platforms can increase performance in medical imaging applications.
This indicates that other computationally demanding medical imaging algorithms could
also be adapted to run on heterogeneous platforms in a straightforward manner with the
FlowCL framework.

In the present study, only GPUs and multicore CPUs were used as computing devices.
However, there are other different computing devices, such as FPGAs, that were not
included in this study and which can be also used in a more comprehensive future study.

Chapter 2

28

References

1.	 Augonnet, Cédric, et al. “StarPU: a unified platform for task scheduling on heterogeneous multicore
	 architectures.” Concurrency and Computation: Practice and Experience 23.2 (2011): 187-198.
2.	 Barak, Amnon, et al. “A package for OpenCL based heterogeneous computing on clusters with many
	 GPU devices.” 2010 IEEE international conference on cluster computing workshops and posters (CLUSTER
	 WORKSHOPS). IEEE, 2010.
3.	 Boers, Anna M., et al. “Automated cerebral infarct volume measurement in follow-up noncontrast CT
	 scans of patients with acute ischemic stroke.” American Journal of Neuroradiology 34.8 (2013): 1522-
	 1527.
4.	 van Geldermalsen, Sytse. Flowcl-declarative dataflow api for heterogenous platform computing. Diss.
	 Master’s thesis, University of Amsterdam, 2013.
5.	 Khronos OpenCL Working Group: The opencl specification (2012).
6.	 Kothari, Rashmi U., et al. “The ABCs of measuring intracerebral hemorrhage volumes.” Stroke 27.8
	 (1996): 1304-1305.
7.	 MATLAB: version 8.0.0.783 (R2012b). The MathWorks, Inc., Natick, Massachusetts (2012).
8.	 Pham, Dzung L., Chenyang Xu, and Jerry L. Prince. “Current methods in medical image
	 segmentation.” Annual review of biomedical engineering 2.1 (2000): 315-337.
9.	 Saver, Jeffrey L., et al. “Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke
	 clinical trials.” Stroke 30.2 (1999): 293-298.
10.	Spafford, Kyle, Jeremy Meredith, and Jeffrey Vetter. “Maestro: data orchestration and tuning for opencl
	 devices.” European Conference on Parallel Processing. Springer, Berlin, Heidelberg, 2010.

Heterogeneous platform programming for high performance medical imaging processing

Ch
ap

te
r

2

29

3

Renan Sales Barrosa, b, Silvia Delgado Olabarriagab, Jordi Borstc, Marianne A.
A. van Walderveend,·Jorrit S. Posthumaa, Geert J. Streekstraa, c, Marcel van
Herka, e, Charles B. L. M. Majoiec, and Henk A. Marqueringa, c

a Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Location L0, Meibergdreef 15,
1105 AZ Amsterdam, The Netherlands
b Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of
Amsterdam, Location B0, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
c Department of Radiology, Academic Medical Center, University of Amsterdam, Location B0, Meibergdreef 9, 1105 AZ
Amsterdam, The Netherlands
d Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
e Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The
Netherlands

Chapter 3
Dynamic CT perfusion image data
compression for efficient parallel
processing

•	 Barros, Renan Sales, et al. “Dynamic CT perfusion image data compression for efficient parallel processing.” Medical &
	 biological engineering & computing 54.2 (2016): 463-473.
•	 First author, journal, https://link.springer.com/article/10.1007/s11517-015-1331-6

Chapter 3

32

Abstract

The increasing size of medical imaging data, in particular time series such as CT
perfusion (CTP), requires new and fast approaches to deliver timely results for acute
care. Cloud architectures based on graphics processing units (GPUs) can provide the
processing capacity required for delivering fast results. However, the size of CTP datasets
makes transfers to cloud infrastructures time-consuming and therefore not suitable in
acute situations. To reduce this transfer time, this work proposes a fast and lossless
compression algorithm for CTP data. The algorithm exploits redundancies in the
temporal dimension and keeps random read-only access to the image elements directly
from the compressed data on the GPU. To the best of our knowledge, this is the first
work to present a GPU-ready method for medical image compression with random
access to the image elements from the compressed data.

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

33

1 Introduction

CT perfusion (CTP) imaging is used as a diagnostic tool for initial evaluation of patients
suffering from acute stroke [1]. CTP images are acquired by dynamically tracking the
passage of a contrast agent through the cerebral blood vessels and tissue [2]. Analysis of
CTP data enables the assessment of the severity of the damages caused by stroke. This
information can be used to choose the most adequate treatment for the patient [3].
Currently, CTP datasets can be as large as 3.76 GB, and when dealing with this amount
of data, traditional processing methods are slow and delay the acute care. Also, these
traditional methods are expensive because of the costs of purchase and maintenance of
dedicated software and hardware for image processing.

Cloud architectures have emerged as a cost-effective alternative for medical image
processing. Cloud-based solutions make remote on-demand image processing services
available for wide use in medical practice. To provide high-performance processing, cloud
architectures can make use of graphics processing units (GPUs), which are designed for
very efficient parallel processing of large amounts of data. GPUs were demonstrated
being capable of considerably speeding up medical image processing applications [4].
Nowadays CPUs are also capable of parallel processing. However, CPUs are designed
for general purpose processing, and because of that, the processing power of a GPU
can be superior to the processing power of a CPU in several applications. GPUs are
used in several common image processing tasks such as filtering and rendering. Thus,
it is feasible to assume that the processing of CTP image data can also take advantage
of GPU-based architectures. However, to benefit from the GPU computational power,
algorithms need to be adapted or developed from scratch.

The size of CTP data poses challenges for their processing on GPU and on cloud
infrastructures. The transfer of CTP data to cloud architectures can be time-consuming,
which may limit the suitability of cloud applications for dealing with acute patients.
In addition, to perform GPU computation, a host application is required, and the
CTP data also need to be transferred from the host memory to the GPU memory. The
time spent on the transfers from host to GPU has a considerable impact on the overall
processing time. In short, due to the large size of CTP datasets, the time to transfer the
image data limits its application for remote processing in acute care scenarios.

Data compression techniques can be used to reduce the CTP dataset size and speed
up its transfer to the cloud and to the GPU memory. Since time is critical in acute
situations, the time required to compress, decompress, and transfer the compressed data
should not be larger than the time required to transfer the uncompressed data. Another
important constraint is that, in clinical care applications, the compression technique

Chapter 3

34

must be lossless because no information can be removed or modified due to regulations.

The time required to execute the complete CTP data pipeline depends on scanner
acquisition, data reconstruction, preprocessing, etc. Several aspects of this pipeline are
strictly determined by scanner manufacturers. Figure 1 illustrates which pipeline stages
(dark arrows) of the CTP processing in a GPU-based cloud infrastructure are affected
by our compression method. Initially, the CTP data are produced at the scanner (A).
After that, the CTP data must be compressed in a terminal (B) before the transfer to
the GPU-based cloud infrastructure (C). While the CTP data are processed in the cloud
infrastructure, several data transfers between host application memory (D) and GPU
memory (E) can be required.

Ideally, the compression must be done in a machine capable of GPU processing.
However, the compression can be executed in different computing devices such single-
core CPUs and many-core CPUs.

The main goal of our compression technique is to reduce the data size for faster transfer
and faster GPU processing on cloud architectures. To achieve this, we introduce a fast
and lossless compression technique that not only speeds up the transfer of dynamic CTP
data to cloud architectures, but also facilitates their parallel processing on GPUs. This
technique presents a compression time suitable for acute care situations and produces
compressed data that can be processed on a GPU requiring no decompression of the
entire CTP dataset. In our technique, intensities of an arbitrary voxel are retrieved from
the compressed data using a fixed amount of instructions independent of the input
value or size. This means that, in terms of computational complexity, determining the
intensity value of a voxel is a constant-time procedure (i.e., checking if a number is odd
or even, checking a constant size lookup table), which is the fastest class of algorithms
with computational complexity classified as O(1). To the best of our knowledge, this is
the first work to present a lossless method for medical image compression with direct
access to the image elements from the compressed data.

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

35

Figure 1: CTP data processing pipeline in a GPU-based cloud infrastructure: the CTP data are produced

at the scanner (A), compressed in a terminal (B), sent to the GPU-based cloud infrastructure (C).

While being processed, the CTP data can be transferred several times between host application

memory (D) and GPU memory (E).

2 Methods

This section describes the characteristics of the CTP data, presents our compression
technique, and discusses the relevant aspects that need to be considered during its
implementation according to the targeted platform. Subsequently, the configuration of
the experiments used to evaluate our compression technique is described.

2.1 Characteristics of CTP data
The datasets used in this study consist of 20 dynamic whole-brain volumes from
actual stroke patients. The scans have 320 slices of 512 × 512 voxels with 16 bits/
voxel, and each acquisition has 24 time steps. The patients were scanned as part of a
Dutch multicenter randomized trial [5]. Approval of the medical ethical committee was
obtained. All patients or legal representatives signed informed consent. The volumes are
acquired approximately every 2.5 s during the first 35 s, followed by a scan every 5 s
until 60 s. Subsequently, five volumes are scanned with a 30 s interval. The size of each
volume is 160 MB, and thus the complete dataset has 3840 MB of data that need to
be quickly processed for an initial evaluation of the patient condition. Sometimes, an
additional CTP dataset is produced to evaluate the treatment progress after around 24
h, resulting in up to 7.5 GB of data per patient. All the image data are saved according
to the digital imaging and communications in medicine (DICOM) standard.

Every dataset can be described as I(x, t), which represents the image intensity at position
x at time t. The inflow and outflow of contrast agent can be observed in all the brain

Chapter 3

36

tissue. However, the intensity values in the largest part of the brain tissue are expected
to vary little over time. To illustrate this characteristic of the data, Figure 2 shows the
intensities at xa and xb along time. The intensities at xa are not strongly affected by
the contrast agent. On the other hand, the intensities at xb are strongly affected by the
inflow and outflow of contrast agent.

Figure 2: Sample slice of CTP data at the time step 12, and the intensity values of the voxel at xa

and xb over time. The intensities values at xa are not strongly affected by the contrast agent, and the

intensities valuas at xb are strongly affected by contrast agent.

Voxel intensities in CT imaging are generally represented using 16 bits. However, the
range of voxel values over time is smaller than the range that can be represented by 16 bits.
Therefore, fewer bits can be used to represent exactly the same information by storing
the variation of these intensities instead of their absolute values. This characteristic is
illustrated by using the intensities at xb as an example. These intensities vary between
46 and 191 HU, so only eight bits are required to represent them (⌈log2(191 − 46 +
1)⌉ = 8). For the voxel at xa, a better compression can be obtained because only six bits
are required (⌈log2(72 − 22 + 1)⌉ = 6), which represents a compression ratio of 2.6
compared with the original representation using 16 bits.

As observed in Fig. 3, only 6 % of the voxels in that slice require more than eight bits to
represent their intensities variation over time, and a maximum of 11 bits is required to
represent this variation.

The effect of motion artifacts is apparent in Figure 3, and for this reason, a higher
amount of bits is required to encode the area around the skull. However, this higher
amount of bits (between 9 and 11 bits) is still considerably smaller than 16 bits, which
are required for the uncompressed image. Furthermore, the motion affects only a small

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

37

portion of the image. In general, when motion is present, there is mainly overlapping of
brain tissue with similar intensity values, which does not result in a higher amount of
bits for encoding the voxel intensities over time. In short, Figure 3 illustrates that, due
to the characteristics of the CTP data, the number of voxels that have a large intensities
variation over time is rather small. This indicates that the temporal dimension of the
CTP data is a substantial source of redundancies that can be exploited for compression
purposes.

Figure 3: Number of bits required to represent the variation of voxel intensities over time in the

selected slice. The effect of motion artifacts is visible, and for this reason, a higher amount of bits is

required to represent the area around the skull. Nevertheless, this higher amount of bits (9-11 bits) is

considerably smaller than the original 16 bits that are used by the uncompressed data. Furthermore,

the motion affects only a small portion of the image. Only 6 % of the voxels require more than eight

bits to represent their intensities variation over time.

2.2 Compression algorithm
Our compression technique exploits the time redundancy explained above. Let I(x, t)
represent the uncompressed image intensity, where x indicates a 3D coordinate and t
indicates a time step between 0 and n − 1. In compressed form, the image is represented
as I(x, t) = C(x) + ∆(x, t) with minVx ≤ C(x) ≤ maxVx and Vx = {I(x, t0), I(x, t1), ... ,
I(x, tn−1)}. For simplicity, we use C(x) = minVx.

The set of values Dx given by Dx = {∆(x, t0), ∆(x, t1), ... , ∆(x, tn−1)} do not present a
large variation, so fewer bits can be used to represent them. The exact number of bits
required to represent Dx is given by ⌈log2(maxVx − minVx + 1)⌉. Thus, Dx is stored by
using ⌈log2(maxVx − minVx + 1)⌉ × n bits.

In a sequential processing unit, the voxels are compressed one by one, and the time
required to compress a single voxel is proportional to n because n computations are
required to determine Dx, minVx, and maxVx. Thus, when executed sequentially, the

Chapter 3

38

computational complexity of our algorithm is m × n where m is the number of voxels in
the dataset. However, the compression of all the voxels is independent, and consequently,
it can be done in parallel. During the compression of a voxel, the computations to
calculate Dx are independent, and they can also be parallelized. Moreover, when using
parallel processing, minVx and maxVx can be calculated in a time proportional to log2
n through parallel reduction [6]. In a parallel implementation, the most expensive
computations required by our algorithm correspond to finding minVx and maxVx.
Consequently, in terms of computational complexity, our algorithm can compress a
CTP dataset in a time proportional to log2 n when running in parallel.

To retrieve the value of as I(x, t), a sum needs to be performed: C(x) + ∆(x, t). By
using fixed size arrays to store ∆(x, t) and C(x), I(x, t) can be retrieved in constant time.
The data stored using less bits, which is ∆(x, t), do not need to be modified. Thus, in
our method, I(x, t) is determined using a single sum of values that can be retrieved in
constant time.

2.3 Implementation
The efficiency of our compression method is strongly dependent on the efficiency of the
data structures used in its implementation, in particular for ∆(x, t) and C(x). ∆(x, t)
is an element of the set Dx. All the elements in a set Dx are represented using the same
number of bits. For instance, by considering the voxels at xa and xb in Figure 2, six
and eight bits are required to represent the elements in Dxa and Dxb respectively. Thus,
because n = 24 in our datasets, Dxa requires 24 × 6 = 144 bits, and Dxa requires 24 × 8
= 192 bits to be represented. Because the amount of bits required to represent each Dx
set varies, it is not possible to use a single fixed size array to store all the different Dx sets
in memory.

Current computers are not capable of addressing memory blocks of an arbitrary amount
of bits. Thus, all the Dx sets are contiguously stored in a fixed size array of 32 bits elements
named D. A maximum of two elements from D need to be accessed to store and retrieve
a particular ∆(x, t) using a fixed amount of bit shift operations. The computational cost
of these operations is constant, so they do not increase the computational complexity of
reading and storing the values in D.

An offset is provided to determine where a Dx begins in the array D. All the offsets
are stored in a fixed size array of 32 bits elements named O. Another fixed size array
of eight-bit elements, named B, is used to store how many bits are used to represent
the elements in Dx. In this way, different elements in Dx can be distinguished. The
offsets can be quickly calculated by traversing B. However, O is provided to keep
instant access to any Dx in D. Finally, an array of 16-bit elements, named C, is used to

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

39

store all the C(x) values. The elements of C have 16 bits because they contain original
intensity values from the 16-bit voxels. Figure 4 illustrates the data structures used in
our implementation. The size of the resulting compressed data is the sum of the sizes of
the arrays C, O, B, and D.

Three different implementations of our dynamic image compression for parallel
processing (DICOPP) were developed:

	 	DICOPP CPU—a parallel implementation compressing the voxels using
		 multiple threads in a many-core CPU and using a sequential method to calculate
		 minVx and maxVx;
	 	DICOPP CPU PR—another parallel implementation targeted for a many-
		 core CPU using multiple threads to calculate minVx, and maxVx through the
		 parallel reduction method; and
	 	DICOPP GPU—a parallel implementation running on the GPU and
		 calculating minVx and maxVx sequentially.

During the implementation, we observed that using parallel reduction to calculate minVx
and maxVx on the GPU requires a more complex organization of the data in the GPU
memory, which slows down the memory operations and results in an inefficient GPU
implementation. For this reason, this alternative was abandoned. Also, only 24 values
need to be evaluated to calculate minVx and maxVx, and at this scale, the benefits of
using parallel reduction are not noticed. Our implementations use the .NET framework
version 4.0 [7] and C# [8] as programming language. These technologies were chosen
because our implementations need to be integrated in an existing platform for medical
image processing based on .NET. Our implementations use Fellow Oak DICOM (FO-
DICOM) for .NET version 1.0.36 [9], which is a high-performance API for handling
DICOM files. For the GPU computations, OpenCL 1.1 [10] was used. OpenCL is a
framework for the development and execution of programs across platforms consisting
of different types of processors such as CPUs, GPUs, digital signal processors, field-
programmable gate arrays. OpenCL. NET version 2.2.9 [11] was used to integrate
OpenCL with .NET. OpenCL.NET is a library that wraps the original OpenCL 1.1
API for .NET.

Chapter 3

40

Figure 4: Data structures used in the implementation. B is a constant size array of 8-bit elements that

stores the amount of bits used to encode the intensity values of a voxel. C is a constant size array of

16-bit elements used to store all the C(x) values. D is a constant size array of 32-bit elements used to

store all the Dx sets. O is an offset to determine where a set Dx begins in the array D

2.4 Evaluation setup
All the compression techniques that are incorporated in the DICOM format were
selected for comparison with our method. However, according to the DICOM
specification, MPEG2 and MPEG-4 compressions are inherently lossy, and for this
reason, they were excluded of our comparison. JPEG 2000 lossless was also excluded
from our comparison because it is much slower than the other methods, without a
considerable better compression ratio. Consequently, only the following techniques
from the DICOM standard were used in our experiments:

	 	JPEG lossless, more precisely the JPEG process 14 (first-order horizontal
		 prediction [selection value 1], DPCM, non-hierarchical with Huffman coding);
	 	JPEG LS lossless; and
	 	Run-length encoding (RLE).

Very efficient low-level implementations of the techniques from the DICOM standard
were used in our comparison. For JPEG and JPEG 2000, an open-source C library
named FreeImage [12] was used. Regarding JPEG LS, an open-source and optimized
C++ library named CharLS [13] was used. Finally, for the RLE compression, the C++
implementation provided with the FO-DICOM library was used. Regarding our

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

41

method, the three implementations described in Sect. 2.3 were used in our comparison.
All the selected techniques from the DICOM standard were used only to perform 2D
compression, and as a result, they were used to independently compress all the slices in
a CTP dataset. These techniques are not designed to be executed in massively parallel
architectures. Thus, to provide a fair comparison of the compression time with our
implementations, which were designed for these architectures, the compression of all
slices were divided equally among the CPU threads available by a multithread application.
In this manner, the thread overhead was minimized, and the usage of the CPU for the
compression task was maximized. Regarding our method, the same approach was used
in our CPU implementations, i.e., use all the available CPU threads and distribute load
equally. In the GPU implementation, the compression time includes the time required
by the transfers between the host application and the GPU device.

Ideally, GPU implementations of the other compression techniques should be used for
the comparison. However, to the best of our knowledge, there is no GPU implementation
available for these methods. For JPEG, there are many GPU-based codecs, but none of
them presents the lossless compression mode.

To compare the time to access the decompressed data, intensities of all time steps of 320
voxels in 320 slices were retrieved sequentially in an application running on the CPU
and accessing the compressed data in the host application memory. Our method does
not require complete decompression of a CTP dataset, and in this manner, accessing
the decompressed value of a single voxel is a straightforward way to compare the
decompression performance of the evaluated methods. The compressed data produced
by the three different implementations of our method are identical; therefore, reading
time was computed only for one of the results.

To evaluate the impact of the number of processing units in the compression time of our
method, the DICOPP CPU implementation was executed using from 1 up to 6 threads.
The maximum of six threads was defined because this is the number of independent
processing units available in the hardware configuration used (see Table 1).

The main goal of our compression technique is to enable faster transfer to cloud
architectures. To evaluate this, the total transfer time of each compression method used
in our comparison was computed. This time is calculated by adding: the compression
time, the time to transfer the compressed data, and the time to read the compressed data.
The time to transfer the compressed data was calculated by considering the theoretical
transfer rate of the following network standards: OC-3/STM-1 [14], OC-12/STM-
4 [14], 1000BASE-T [15], and OC-48/STM-16 [14], or 155, 622, 1000, and 2400
Mbps, respectively. 1000BASE-T is a standard for gigabit Ethernet networks. The other

Chapter 3

42

standards specify the transmission bandwidth for digital signals that can be carried on
fiber-optic networks.

Our compression technique enables GPU processing directly from the compressed
data. By processing the compressed CTP data, less data need to be transferred between
host and GPU. This feature can speed up the total GPU processing time considerably
because, in some applications, most of the time in a GPU computation is spent on
data transfers. In order to evaluate the GPU processing time improvement, a GPU
application that creates a mask from the CTP data was developed. The mask, which
is defined by the double threshold 0–15 HU, is part of a noise reduction filter for
dynamic CTP data described in [16]. In our evaluation, the developed GPU application
computes this mask in two different ways: using the uncompressed data and using the
compressed data generated by our method. In both ways, the time to compute the mask
is measured including the time spent by the transfers between host and GPU.

All the evaluations described in this section were performed in the same hardware
configuration (see Table 1) using Windows 7 Enterprise 64 bits as operating system. For
all the time measurements, the high-resolution timing counters provided by the Win32
API were used.

Table 1: Hardware configuration used to execute the compression methods evaluated in our

experiments.

CPU name Intel Xeon E5-2620

CPU clock 2.00 GHz
CPU cores 6
CPU threads 12

RAM memory 64 GB

GPU name GeForce GTX TITAN

GPU driver version 331.65

GPU cores 2688

GPU clock 836 MHz

Dedicated video memory 6 GB GDDR5

3 Results

Table 2 shows the performance results of the evaluated compression techniques applied
to 20 CTP datasets described in Sect. 2.1. The DICOPP CPU PR implementation
achieved a better compression time than the DICOPP CPU implementation in 85 %

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

43

of the executions. As mentioned in Sect. 2.3, the CTP datasets time dimension is too
short to substantially benefit from parallel reduction for computing minVx and maxVx.

In our evaluation setup, all the data are transferred to CPU memory before being accessed
or decompressed. Thus, all the reading and decompression operations are executed only
in the host application. The reported time corresponds to the reading time of only
320 × 24 voxels, and not to the entire CTP dataset. Our method does not require full
decompression of a dataset, and because of this, it achieved a read time many times
lower than the best result from the other methods.

JPEG 2000 lossless took 132 and 470 s to compress and read the compressed data of a
single CTP dataset. This is more than six times slower than the results in Table 2.

Table 2: Compression time, reading time, and compression ratio for 20 datasets (mean ± SD [min.,

max.]) using different compression methods. The best results are underlined.

Compression method Compression time (ms) Reading time (ms) Compression ratio

JPEG LS 09911 ± 0398 [08879, 10806] 58267 ± 2546 [49924, 62052] 4.64 ± 0.29 [4.14, 5.55]

JPEG 14552 ± 0742 [12234, 16095] 43443 ± 1791 [37033, 44997] 2.09 ± 0.16 [2.74, 3.55]

RLE 09679 ± 0947 [08286, 11110] 15554 ± 0634 [13468, 16669] 2.31 ± 0.10 [2.12, 2.66]

DICOPP CPU 20350 ± 2602 [14157, 24239] 0.15 ± 0.36 [0, 1] 2.20 ± 0.17 [1.95, 2.75]

DICOPP CPU PR 17718 ± 1413 [14934, 20712]

DICOPP GPU 05944 ± 0711 [04826, 07873]

The number of processing units used to execute our compression method has a major
impact in its compression time. To illustrate this, Figure 5 shows the compression time
obtained by using different number of threads for compressing 20 CTP datasets using
the DICOPP CPU implementation. The standard deviations of the compression time
of the executions using from 1 to 6 threads are, respectively, 14.27, 7.30, 5.76, 4.32,
3.83, and 2.86 s.

Table 3 shows the total transfer time (compression time + time to transfer compressed
data + decompression time) for the 20 CTP datasets using the maximum transfer rate of
four different types of network. As a reference, the first row of Table 3 shows the only the
transfer time of an uncompressed dataset. DICOPP GPU achieved the lowest transfer
time in all the network types listed in Table 3. However, in networks slower than the
ones listed in Table 3, JPEG LS achieves a better transfer time because it has a better
compression ratio. In faster networks, it takes longer to compress and transfer the data
than to transfer the original data without compression.

Chapter 3

44

Regarding the GPU processing time, the GPU processing of the mask using the original
and the compressed data took 2818 ± 382 [2664, 4392] and 1903 ± 186 [1712, 2668]
milliseconds, respectively. Accordingly to these results, the GPU processing using the
compressed data was, on average, more than 30 % faster than the processing of the
original data.

Figure 5: Maximum, mean, and minimum times (vertical axis) spent to compress 20 CTP datasets by

using different number of threads (horizontal axis).

Table 3: Total transfer time (in s) for 20 datasets compressed by different methods and using different

network speeds (mean ± SD [min.,max.])

OC-3/STM-1 (s) OC-12/STM-4 (s) 1000BASE-T (s) OC-48/STM-16 (s)

Original Data 207.82 51.79 32.21 13.42

JPEG LS 113 ± 5.3 [096, 122] 79 ± 3.2 [68, 84] 75 ± 3.2 [64, 79] 71 ± 3.0 [61, 75]

JPEG 127 ± 5.4 [107, 134] 75 ± 3.0 [63, 78] 68 ± 2.7 [58, 71] 62 ± 2.5 [53, 64]

RLE 115 ± 4.7 [100, 123] 47 ± 1.9 [41, 50] 39 ± 1.6 [34, 41] 31 ± 1.4 [27, 33]

DICOPP CPU 115 ± 7.9 [089, 127] 44 ± 3.5 [32, 48] 35 ± 3.0 [25, 38] 26 ± 2.7 [19, 30]

DICOPP CPU PR 112 ± 7.4 [090, 123] 41 ± 2.5 [33, 45] 45] 32 ± 2.0 [26, 36] 36] 23 ± 1.6 [19, 27]

DICOPP GPU 100 ± 6.9 [080. 111] 29 ± 1.9 [23, 32] 20 ± 1.3 [16, 22] 12 ± 0.8 [09, 14]

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

45

4 Discussion

The compression time of the DICOPP GPU implementation is notably faster than the
other methods. Even simple algorithms, such as RLE running in parallel, are around 1.6
times slower than the DICOPP GPU implementation. Note that the implementations
of our method used more abstraction layers than the other implementations used in the
comparison. For instance, memory management in .NET applications is different from
low-level applications, and this can result in a slower execution time when compared
with C or C++ applications, which is the case of the other methods. However, despite
the higher level of abstraction, the compression time of our CPU implementations is
approximately only 5 to 10 s slower than the other methods.

As expected, our method presents negligible times to read the voxel intensities from the
compressed data, as illustrated in Table 2. This is possible because our method is the
only to provide direct access to the voxel intensities. The random access to voxel values
has many advantages, and it enables the application of several imaging operations to
the entire image data in the compressed form. Because of this direct access, operations
such as local filtering and threshold-based segmentations can be performed without
decompression. By doing this, our method saves memory (the compressed data are
processed) and processing time (the decompression step is skipped). The direct access
to voxel values provided only by our method also speeds up the GPU processing. This
is possible because our method reduces the amount of data that need to be transferred
between host application and GPU, which is also a common bottleneck in GPU-based
computing. As presented in Sect. 3, the GPU computation of a mask from the CTP
data was speeded up more than 30 % by using the compressed data produced by our
method. We must highlight that exactly the same instructions were executed in the
compressed and uncompressed representations of the CTP data. This speedup is only
possible because of the direct access to the voxel values from the compressed data on the
GPU.

As previously stated, the main goal in acute care is to provide fast results, and as
observed in Table 3, the implementations of our method achieve better transfer times
than all the others. In networks slower than 100 Mbps, our method was overcome by
other compression methods. However, it is reasonable to assume that current cloud
infrastructures provide connections with speeds that are higher than 100 Mbps. In
fact, most of the current cloud providers offer direct connections up to 10 Gbps. For
instance, Microsoft Azure [17] offers connections from 200 Mbps up to 10 Gbps, and
Amazon Web Services [18] offers connections from 50 Mbps up to 10 Gbps. In these
very fast connections, transferring the uncompressed data is faster than transferring
the compressed data. However, these very fast connections are expensive and priced

Chapter 3

46

according to the offered speed. This means that our method enables a cost-effective
usage of these connections. Our method can also reduce the GPU processing time of the
CTP data. Because of this feature, our method not only contributes for a faster analysis
of CTP data, which is crucial in acute stroke cases, but also to cheaper analysis on pay-
per-use infrastructures.

Thus, regarding the processing pipeline of CTP data on GPU-based cloud
infrastructures, our compression method enables fast transfers and fast GPU processing,
which consequently results in reducing costs and providing the faster image processing
required when dealing with acute stroke patients.

Our compression technique was developed to be executed in massively parallel
architectures. Thus, it is possible to achieve faster results when using more parallel
processing units (see Figure 5). Also, as observed in Table 3, our compression technique
is the only one that enables reducing transfer times in fast data connections because
of its fast compression and because it does not require a decompression step prior to
processing. Because of these characteristics, our compression technique is better suited for
future computational infrastructures than the other compression techniques evaluated,
since it can benefit from massively parallel processing and fast data connections. We
must emphasize that, if ignoring the cost aspect, there are connections speeds currently
available that are fast enough to be used for transferring uncompressed CTP data.
However, with more powerful parallel processing devices, our method can become
beneficial even with these connection speeds. Thus, because of these trends, we believe
that our method is beneficial not only in current cloud infrastructures but also in the
upcoming cloud infrastructures.

The compression ratio of our method is inferior to the compression ratio of the other
methods. To improve our compression ratio, different preprocessing operations could
be applied. However, this preprocessing can make the execution of our compression
technique considerable longer. To avoid that, the CTP processing pipeline has to be
carefully analyzed to identify whether the adoption of preprocessing steps will effectively
result in a faster data transfer, which is the main goal of our work. For instance, usually
the CTP analysis requires the application of a noise reduction filter. In a new pipeline
configuration, this noise reduction can be done before the compression in order to
achieve a better compression ratio. Noise reduction may also improve the compression
ratio of our method because noise strongly influences the variation of the voxel values
over time. It is expected that thick slices have less noise, and it may result in better
compression ratios. A detailed study to assess the effects of different noise levels in the
performance of our compression method can be performed. However, in this paper,
we focused on the evaluation of our compression method in the image data that are

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

47

generated in clinical practice.

Apart from noise, motion artifacts can also affect the compression ratio of our method.
Again, a possible solution is a preprocessing step for motion correction before the
compression step [19]. However, this will result in increasing processing time. We
evaluated our method in actual patient data, which included motion artifacts, and as
shown in Figure 3, the effects of motion do not have a strong impact on our compression
ratio. Motion does not affect the compression ratio of our method considerably because,
in different time frames, different types of tissue rarely overlap, and thus constant
geometrical locations still have similar intensity values. The only exceptions are the areas
around the skull, which are a small portion of the image data. However, even in these
areas, the amount of bits required to represent the compressed data are still considerably
smaller than the original amount of bits used in the uncompressed data.

Perhaps, the most effective preprocessing step that could be applied is a simple threshold
segmentation and removal of useless data (i.e., the air around the patient). Nevertheless,
we focused in evaluating our method in original patient data. An extensive analysis
of the different techniques that can be combined with our compression method was
beyond the scope of this study.

Our goal was to provide a compression technique to be used in a specific clinical
practice rather than to be used as a general compression technique. In clinical practice,
we are dealing with large datasets that are very precisely defined (±24 time steps of
approximately 320 slices of 512 × 512 pixels of 16 bits) and that are well accepted
worldwide. Since CTP acquisitions are performed tens of thousands times per year, we
believe that a specific and applied compression technique is worth studying. Although
our technique is applied to and focused on CTP data, we believe that any other medical
image time series could be potentially suited for compression by our algorithm. For
example, all the medical images used in the experiments described in [2] have the
necessary characteristics to be exploited by our compression algorithm, which is a small
variation of voxel values over time.

4.1 Related work
Previous works also explored the redundancies in the temporal dimension of medical
image data for compression purposes. The work presented in [20] calculates the
differences between two contiguous images from a medical image time series and store
these differences using eight bits when this is possible. When this difference cannot be
expressed using eight bits, the original 16 bits are used. Because of this approach, the
theoretical maximum compression ratio achieved by this method is 2. In this method,
to retrieve the intensities from a particular time step, it is necessary to decompress

Chapter 3

48

all intensities from the previous time steps. The main differences between this and
our method are: our method achieves compression ratios greater than 2, and in our
technique, any arbitrary image intensity in the four-dimensional space can be retrieved
independently with a constant computational complexity.

Other compression techniques explore the effect of motion in 4D medical images.
Motion is a feature especially present in 4D cardiac images. In the context of exploring
motion for compression purposes, [21] proposed a technique based on the combination
of a predictive image compression and a motion compensation technique. The work
presented in [22] evaluates the motion in 4D medical images for compression purposes
using motion fields that produce input parameters for a neural network used for motion
estimation. [22] combines motion analysis with segmentation, block matching, and
expert knowledge, to develop a framework for 4D medical compression. The authors
of [23] apply recursively a multiframe motion compensation process that employs
4D search, variable blocksizes, and bidirectional prediction for reducing redundancies
in spatial and temporal dimensions. All these three techniques were developed for
achieving high compression ratios, and because of their complexity of compression
and decompression, they are not well suited for the fast processing as required in acute
care situations. Also, differently from our technique, they require a decompression step
before processing.

Another common approach is to adapt or use existing sound, image, or video compression
techniques for 4D medical image data. However, most of these compression techniques,
like MPEG-2 and MPEG-4, are lossy and, for this reason, cannot be used in the same
context as the proposed technique. Regarding lossless compression, the authors of [24]
proposed a technique for 4D medical images based on the H.264/AVC standard for
video compression. Again, this compression technique was designed to achieve high
compression ratios, being too complex for producing fast response.

In CTP data, any particular voxel can be considered as an independent time series. Time
series compression techniques can be applied independently for each voxel. However,
most time series compression techniques are fundamentally lossy [25] and consequently
cannot be used for the purposes of this study.

Regarding the lossless compression of time series, current techniques focus on the
compression of long time series and are based on very complex models [26–29] that
may even require the usage of a database for prediction purposes [28]. Because these
techniques are developed for compressing long time series, it is not feasible to use
them in CTP datasets, which present only 24 time steps. To illustrate this problem, the
smaller model mentioned in [29] requires 192 bits only to store the initial conditions

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

49

of themodel equations describing a time series. This represents half of the size of entire
time series of a particular voxel in CTP datasets (24 × 16 bits). The lossless time series
compression can be also based on features that are not available in CTP datasets, such
as multichannel [30] or multispectral information [31]. In short, the usage of state-of-
the-art lossless time series compression in the time series from CTP datasets would not
be effective because of the short length of these time series.

5 Conclusion

In this paper, we presented a new method to compress CTP data that take advantage of
data redundancy in the time dimension. The proposed algorithm reduces the image size
by using fewer bits to represent data that do not vary much through time. This method
focuses on providing faster transfer of CTP data to GPU-based cloud infrastructures;
therefore, a balance between compression ratio and compression time has been pursued,
which is different from many compression methods which pursue good compression
ratios. Our algorithm was designed for massively parallel architectures, and it is well
suited for many-core CPU or GPU execution.

The proposed method was applied to 20 datasets and obtained the faster results compared
to the lossless compression techniques adopted in the DICOM standard, despite its
inferior compression ratio.

The resulting data representation offers direct random access for subsequent GPU
processing, which is a feature not found in the other compression methods. Because of
this, our time for retrieving information from the compressed data is negligible. This
feature also makes it possible to reduce the time to transfer CTP data between host
application and GPU because only the compressed form of the CTP data needs to be
used in these transfers. Consequently, the GPU processing of CTP data can be speeded
up when using the data in compressed form.

Currently, different ways to improve the compression ratio of our method are being
investigated. This investigation focuses on the usage of fast techniques for noise
reduction, motion identification, and segmentation of meaningless image elements. All
these techniques need to be compatible with current clinical practices adopted when
analyzing CTP data.

Chapter 3

50

References

1.	 Fahmi, Fahmi, et al. “The effect of head movement on CT perfusion summary maps: simulations with
	 CT hybrid phantom data.” Medical & biological engineering & computing 52.2 (2014): 141-147.
2.	 Wintermark, Max, et al. “Perfusion-CT assessment of infarct core and penumbra: receiver operating
	 characteristic curve analysis in 130 patients suspected of acute hemispheric stroke.” Stroke 37.4 (2006):
	 979-985.
3.	 Allmendinger, Andrew Mark, et al. “Imaging of stroke: Part 1, perfusion CT — overview of imaging
	 technique, interpretation pearls, and common pitfalls.” American Journal of Roentgenology 198.1 (2012):
	 52-62.
4.	 Eklund, Anders, et al. “Medical image processing on the GPU–Past, present and future.” Medical image
	 analysis 17.8 (2013): 1073-1094.
5.	 Berkhemer, Olvert A., et al. “A randomized trial of intraarterial treatment for acute ischemic stroke.” n
	 Engl J Med 372 (2015): 11-20.
6.	 Harris, Mark, Shubhabrata Sengupta, and John D. Owens. “Parallel prefix sum (scan) with
	 CUDA.” GPU gems 3.39 (2007): 851-876.
7.	 .NET Framework 4. http://msdn.microsoft.com/en-us/library/ vstudio/w0x726c2(v=vs.100).aspx.
	 Accessed 13 Apr 2015
8.	 C# Reference. http://msdn.microsoft.com/en-us/library/618ayhy6 (v=vs.100).aspx. Accessed 13 Apr
	 2015
9.	 Dillion C (2013) Fellow Oak DICOM for .NET. https://github. com/rcd/fo-dicom. Accessed 13 Apr
	 2015
10.	Munshi A (2011) The OpenCL Specification. http://www.khronos. org/registry/cl/specs/opencl-
	 1.1.pdf. Accessed 13 Apr 2015
11.	(2013) OpenCL.NET. http://openclnet.codeplex.com/. Accessed 13 Apr 2015
12.	Drolon H (2013) FreeImage. http://freeimage.sourceforge.net/. Accessed 13 Apr 2015
13.	Vaan J de (2010) CharLS, a JPEG-LS library. http://charls.codeplex.com/. Accessed 13 Apr 2015
14.	Robertazzi, Thomas. “SONET and WDM.” Basics of Computer Networking. Springer, New York, NY,
	 2012. 59-64.
15.	(2012) IEEE Standard for Ethernet. http://standards.ieee.org/ about/get/802/802.3.html. Accessed 13
	 Apr 2015
16.	Mendrik, Adriënne M., et al. “TIPS bilateral noise reduction in 4D CT perfusion scans produces high-
	 quality cerebral blood flow maps.” Physics in Medicine & Biology 56.13 (2011): 3857.
17.	Pricing Details—ExpressRoute | Microsoft Azure. http://azure. microsoft.com/en-us/pricing/details/
	 expressroute/. Accessed 21 Oct 2014
18.	AWS Direct Connect | Pricing. http://aws.amazon.com/directconnect/pricing/. Accessed 21 Oct 2014
19.	Fahmi, Fahmi, et al. “3D movement correction of CT brain perfusion image data of patients with acute
	 ischemic stroke.” Neuroradiology 56.6 (2014): 445-452.
20.	Cohen, Mark S. “A data compression method for image time series.” Human brain mapping 12.1
	 (2001): 20-24.

Dynamic CT perfusion image data compression for efficient parallel processing

Ch
ap

te
r

3

51

21.	Yan, Pingkun, and Ashraf Kassim. “Lossless and near-lossless motion-compensated 4D medical image
	 compression.” IEEE International Workshop on Biomedical Circuits and Systems, 2004.. ieee, 2004.
22.	Žagar, Martin, Mario Kovač, and Daniel Hofman. “Framework for 4D medical data compression.” Teh
	 Vjesn 19 (2012): 99-105.
23.	Sanchez, Victor, Panos Nasiopoulos, and Rafeef Abugharbieh. “Efficient 4D motion compensated
	 lossless compression of dynamic volumetric medical image data.” 2008 IEEE International Conference
	 on Acoustics, Speech and Signal Processing. IEEE, 2008.
24.	Sanchez, Victor, Panos Nasiopoulos, and Rafeef Abugharbieh. “Lossless compression of 4D medical
	 images using H. 264/AVC.” 2006 IEEE International Conference on Acoustics Speech and Signal Processing
	 Proceedings. Vol. 2. IEEE, 2006.
25.	Oinam, S. B., and Patil SB HK P. “Compression of time series signal using wavelet decomposition,
	 wavelet packet and decimated discrete wavelet compression transforms techniques and their
	 comparison.” Int J Adv Res Comput Commun Eng 2 (2013): 1540-1544.
26.	Takezawa, Tetsuya, Koichi Asakura, and Toyohide Watanabe. “Lossless compression of time-series data
	 based on increasing average of neighboring signals.” Electronics and Communications in Japan 93.8
	 (2010): 47-56.
27.	Lang, Willis, Michael Morse, and Jignesh M. Patel. “Dictionary-based compression for long time-series
	 similarity.” IEEE transactions on knowledge and data engineering 22.11 (2009): 1609-1622.
28.	Izumi, Tetsuya, and Youji Iiguni. “Data compression of nonlinear time series using a hybrid linear/
	 nonlinear predictor.” Signal processing 86.9 (2006): 2439-2446.
29.	Ogorzalek, Macilej J. “Approximation and compression of arbitrary time-series based on nonlinear
	 dynamics.” ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.
	 01CH37196). Vol. 3. IEEE, 2001.
30.	Kamamoto, Yutaka, et al. “An efficient lossless compression of multichannel time-series signals by
	 MPEG-4 ALS.” 2009 IEEE 13th International Symposium on Consumer Electronics. IEEE, 2009.
31.	Spring, James M., and G. G. Langdon. “Experiments in the lossless compression of time series satellite
	 images using multispectral image compression techniques.” Conference Record of the Thirty-First Asilomar
	 Conference on Signals, Systems and Computers (Cat. No. 97CB36136). Vol. 2. IEEE, 1997.

4

Renan Sales Barrosa,b* , Edwin Benninkc , Jorrit Posthumaa , Jaap Oosterbroekc
, Charles Majoied , Hugo de Jongc , Silvia Delgado Olabarriagab and Henk
Marqueringa,d

a Biomedical Engineering and Physics; Academic Medical Center; University of Amsterdam; Meibergdreef 9, 1105 AZ,
Amsterdam, The Netherlands.
b Department of Clinical Epidemiology, Biostatistics and Bioinformatics; Academic Medical Center; University of
Amsterdam; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
c Image Sciences Institute; University Medical Center Utrecht; Utrecht University; Heidelberglaan 100, 3584 CX, Utrecht,
The Netherlands
d Department of Radiology; Academic Medical Center; University of Amsterdam; Meibergdreef 9, 1105 AZ, Amsterdam, The
Netherlands.

Chapter 4
High performance analysis of
compressed dynamic CT perfusion
image data for acute care of ischemic
stroke

•	 Barros, Renan Sales, et al. “ High performance analysis of compressed dynamic CT perfusion image data for acute care
	 of ischemic stroke.” The 8th International Workshop on High Performance Computing for Biomedical Image Analysis
	 (HPC-MICCAI). 2015.
•	 first author, workshop, https://web.archive.org/web/20151106234137/http://www.bme.ufl.edu/hpcmiccai2015/program.
	 html

Chapter 4

54

Abstract

Background: Patients suspected of acute ischemic stroke benefit from fast diagnosis and
treatment decisions. Automated analysis of computed tomography perfusion (CTP)
images allows assessing the severity of stroke and supports optimal treatment selection.
However, CTP imaging can result in more than 3.5 GB of image data per patient.
Automated analysis of this large amount of data can be rather slow, which hinders its
application in acute clinical practice.

Methods: To enable fast CTP analysis, we introduce a novel approach for processing
compressed CTP image data. This approach does not require the processing algorithms
to be altered for handling the compressed data, facilitating its application to existing
methods. By processing compressed image data, the analyses are performed faster
and memory usage and data transfer time are reduced. This approach also supports
massive parallel processing of compressed data on Graphic Processing Units (GPUs). To
validate the compressed data analysis, we developed GPU implementations of a double
threshold segmentation and a well-established bilateral filter for processing compressed
and uncompressed CTP image data.

Results: Our results show that the analysis of compressed data uses between 2 and 2.8
times less memory and improves GPU execution time between 1.2 and 1.7 times with
identical analysis results compared to the uncompressed version.

Conclusion: This study shows that GPU processing of compressed CTP data can be
used for speeding up diagnosis and treatment selection based on CTP image analysis,
potentially improving outcome of patients with acute ischemic stroke.

Keywords: acute care; brain imaging; computed tomography perfusion; data
compression; GPU processing; high performance computing; stroke

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

55

Background

Patients suspected of acute ischemic stroke benefit from fast diagnosis and fast treatment
decisions. CT perfusion (CTP) imaging is a diagnostic tool for initial evaluation of
patients suspected of acute ischemic stroke and it can be useful for predicting functional
patient outcome [1]. Analysis of CTP data allows assessment of the severity of stroke
damage and supports in choosing the most adequate treatment [2]. CTP images are
acquired by dynamically tracing the flow of contrast agent through the cerebral blood
vessels and cerebral tissues [3]. The combination of accurate postprocessing methods and
CTP data analysis may eventually provide a powerful diagnostic tool in acute ischemic
stroke management [4]. However, the processing of CTP data can be time consuming
because CTP datasets can be larger than 3.5 GB, which causes image transfer and
traditional processing methods to become slow and unsuitable for acute care.

Data compression techniques can be used to reduce the size of CTP datasets and speed up
transfers. Moreover, the analysis of compressed CTP data has the potential to considerably
reduce the amount of data to be processed, which may result in a reduction of execution
time and memory usage. Previous non-medical imaging studies [5–7], which are mainly
based on lossy compression, have shown the potential of compressed-domain processing.
However, in clinical applications, the applied compression techniques are required to
be lossless because of legal regulations. Moreover, processing of compressed data using
the techniques provided by [5–7], requires large modifications to the original processing
algorithms or they only allow the usage of a very limited set of image processing operations.

To provide high-performance data processing, graphic processing units (GPUs) can
be used. GPUs are designed for very efficient parallel processing of large amounts of
data. GPUs were demonstrated capable of considerably speeding up medical imaging
processing in many different applications [8]. Nevertheless, the size of CTP datasets
poses challenges for processing on GPUs. To perform a GPU computation, a host
application is required to run on the CPU, and the CTP data need to be transferred
from the host memory to the GPU memory. The time required in these transfers has a
considerable impact on the overall GPU processing time, being a well-known bottleneck
on GPU processing applications [9].

In this study, we introduce and validate a novel approach for parallel processing of
compressed CTP data that supports GPU computing. The CTP data is compressed by
using a fast lossless algorithm [10] that enables direct access to any image element from
the compressed data. To evaluate the GPU processing of compressed CTP fata we used
a well-established filter for noise reduction in dynamic CTP data [11] and a double
threshold segmentation that operates on the 4 dimensions of the dynamic CTP data.

Chapter 4

56

Methods

We evaluated the performance and accuracy of compressed CTP data processing using
datasets from the recently completed MR CLEAN multi-center trial [12]. To compress
the CTP datasets, we used a GPU-based compression algorithm specifically designed
for CTP datasets. To process compressed and uncompressed CTP data on GPUs, we
implemented a noise reduction filter and a double threshold segmentation. To validate
our method, we compared the differences in execution time, memory usage, and filtering
results of the different implementations of the filter and of the segmentation.

CTP image data
We used dynamic whole-brain volume datasets of 29 patients with acute ischemic
stroke. Twenty of these scans have 320 slices with pixel spacing of 0.4mm×0.4mm
and slice thickness of 0.5mm. The other 9 scans have only 6 slices with pixel spacing
of 0.5mm×0.5mm and slice thickness of 4.8mm. Each slice has 512×512 voxels with
16 bits/voxel and 24 time frames. The patients were scanned as part of a multi-center
randomized trial [12]. Approval of the medical ethical committee was obtained. All
patients or legal representatives signed informed consent. The volumes were acquired
approximately every 2.5 seconds during the first 35 seconds followed by a scan every 5
seconds until 60 seconds. Subsequently, a few additional volumes were scanned with a
30 seconds interval. The size of each volume with 320 slices is 160 MB. Thus, a single
CTP series for one patient can have up to 3840 MB of data.

Compression algorithm
The compression algorithm used in this study is described in detail in [10]. Nevertheless,
the main characteristics of this compression method are presented here for providing a
better understanding of how the CTP data is stored in the compressed form.

Each CTP dataset can be represented as I(x, t), which denotes the image intensity at
position x at time t. Intensities in a CTP dataset are encoded by using 16 bits. However,
at a given position, the range of intensities of the voxels over time is considerably smaller
than the range of values that can be encoded by 16 bits. Consequently, fewer bits can
be used to encode the same information when considering the range of these intensities,
instead of their absolute values. This concept is illustrated in Figure 1, which shows that
the intensities over time at positions xa and xb can be represented by using only 6 and 8
bits respectively (dlog2 (72 − 22 + 1)e = 6 and dlog2 (191 − 46 + 1)e = 8). This allows a
compression ratio respectively of 2.6 and 2 for xa and xb compared to the original pixel
representation in 16 bits. In the sample slice shown Figure 2, a compression ratio of at
least 2.6 is possible in 79% of the voxels.

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

57

Figure 1: Intensities over time at positions xa and xb in Hounsfield units (HU).

By taking advantage of these smaller ranges of CTP data, we can represent the compressed
image as I(x, t) = C(x) + ∆(x, t) with min Vx ≤ C(x) ≤ max Vx and Vx = {I(x, t0), I(x, t1),
. . . , I(x, tn−1)}. For simplicity, we use C(x) = min Vx. The set of values Dx given by Dx =
{∆(x, t0), ∆(x, t1), . . . , ∆(x, tn−1)} may present a small variation. In this case, fewer bits
can be used to encode their elements. The exact number of bits required to represent a
single element in Dx is given by ⌈log2 (max Vx − min Vx + 1) ⌉. Thus, Dx is stored by using
⌈log2 (max Vx − min Vx + 1)⌉ × n bits.

Figure 2: Number of bits requires to encode the variation of the intensities of a voxel over time.

Because the number of bits required to represent each Dx set varies for each x, all the Dx
values are contiguously stored in an array D. A maximum of two elements from D need
to be accessed to store and retrieve a particular ∆(x, t) using a fixed amount of bit shift
operations. As we can see in Figure 5, when two elements from D need to be accessed,
two bit shift operations are needed (lines 16-17 in Figure 5). Otherwise, a single bit shift

Chapter 4

58

operation is required (line 14 in Figure 5)

Figure 3 illustrates the data structures used in the implementation of this compression
technique. An offset is provided to determine where a particular Dx begins in the array
D. All the offsets are stored in an array O. Another array, named B, is used to store how
many bits are required to represent the elements in Dx. In this way, different elements in
Dx can be distinguished. The offsets can be quickly calculated by traversing B. However,
O is provided to keep instant access to any Dx in D. Finally, an array C is used to store
all the C(x) values.

Figure 3: Illustration of the data structures to store the compressed CTP data. The input is a series of

volume images in different time steps. B is an array of 8 bits elements. D and O are arrays of 32 bits

elements. C is an array of 16 bits elements because its elements contain original intensity values from

the 16-bit voxels. All these arrays are fixed-size.

The time required to compress a CTP dataset must be considered in our proposed
strategy for processing CTP data. Since the compression method is processed on the
GPU, a very low execution time is achieved. Figure 4 shows the compression time for
20 datasets of 3.75GB, which are the biggest datasets and, therefore, the slowest to
compress. The size of the compressed files produced by this compression algorithm is
larger than other lossless compression methods (Figure 4). However, as detailed in [10],
other compression algorithms have a very long compression or decompression time and,
for this reason, they are not suitable for speeding up the analysis of dynamic CTP data.

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

59

Figure 4: Compression time and compressed file size of the adopted compression algorithm. Data

retrieved from the compression of the 20 CTP datasets of 3840MB. Left: compression time when using

different number of CPU threads and when using GPU (for hardware configuration details see Table

1). Right: uncompressed dataset size and average compressed dataset size produced, respectively, by

the method proposed by [10], run-length encoding (RLE), the lossless mode of JPEG, and JPEG LS.

Thresholding and filtering
In CTP images, the level of noise is commonly high due to the limited amount of
radiation used during acquisition. Algorithms to determine perfusion parameters based
on dynamic CTP data are sensitive to noise. Thus, noise reduction is an important goal
in the processing of CTP image data. A time-intensity profile similarity (TIPS) bilateral
filter [11] was demonstrated to produce high quality images by reducing noise in CTP
datasets. Because of the importance of this method for CTP analysis, this filter was used
here to demonstrate the potential of the analysis of compressed CTP image data. The
TIPS filter is defined as a regular 3D bilateral filter in which the pixel similarity function
was replaced by a TIPS function. The TIPS function considers the temporal similarity to
determine the agreement of 2 voxels and is defined as

ρ(𝜉𝜉𝜉𝜉, 𝑥𝑥𝑥𝑥) = exp�−
1
2

 �
𝜍𝜍𝜍𝜍(𝜉𝜉𝜉𝜉, 𝑥𝑥𝑥𝑥)
𝜎𝜎𝜎𝜎𝜍𝜍𝜍𝜍

�
2

�,

where ρ(𝜉𝜉𝜉𝜉, 𝑥𝑥𝑥𝑥) is the sum of the squared differences (SSD) between the intensities of a
voxel at x and a voxel at 𝜉𝜉𝜉𝜉 in time. Thus, the SSD is defined as:

𝜍𝜍𝜍𝜍(𝜉𝜉𝜉𝜉, x) = �(𝐼𝐼𝐼𝐼 (ξ, 𝑡𝑡𝑡𝑡) − 𝐼𝐼𝐼𝐼 (x, 𝑡𝑡𝑡𝑡))2
𝑇𝑇𝑇𝑇−1

𝑡𝑡𝑡𝑡=0

,

Chapter 4

60

where T is the number of time steps. In this way, we calculate a new (filtered) intensity
value h(x, t) for each intensity value I(x, t) in the CTP dataset. h(x, t) is defined as:

1
𝑟𝑟𝑟𝑟(𝑥𝑥𝑥𝑥)

�
𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖=−𝑚𝑚𝑚𝑚

�
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=−𝑛𝑛𝑛𝑛

� 𝐼𝐼𝐼𝐼 (𝜉𝜉𝜉𝜉(𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖, 𝑦𝑦𝑦𝑦 + 𝑗𝑗𝑗𝑗, 𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘), 𝑡𝑡𝑡𝑡)𝑐𝑐𝑐𝑐(𝜉𝜉𝜉𝜉, x)𝜌𝜌𝜌𝜌(𝜉𝜉𝜉𝜉, x),
𝑜𝑜𝑜𝑜

𝑖𝑖𝑖𝑖=−𝑜𝑜𝑜𝑜

 where m, n, and o are, respectively, the half kernel sizes in the x, y, and z directions

c(𝜉𝜉𝜉𝜉, x) = exp�−
1
2

 �
𝑑𝑑𝑑𝑑(𝜉𝜉𝜉𝜉, x)
𝜎𝜎𝜎𝜎𝑑𝑑𝑑𝑑

�
2

�,

𝑟𝑟𝑟𝑟(𝑥𝑥𝑥𝑥) = �
𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖=−𝑚𝑚𝑚𝑚

�
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=−𝑛𝑛𝑛𝑛

� 𝑐𝑐𝑐𝑐 (𝜉𝜉𝜉𝜉, x)𝜌𝜌𝜌𝜌(𝜉𝜉𝜉𝜉, x),
𝑜𝑜𝑜𝑜

𝑖𝑖𝑖𝑖=−𝑜𝑜𝑜𝑜

and d (𝜉𝜉𝜉𝜉, x) is the Euclidean distance between the voxel at x and the voxel at 𝜉𝜉𝜉𝜉 .

Besides the TIPS filtering, we also performed a double threshold segmentation on the
CTP data. This segmentation can be used, for instance, to create a binary mask of
the cerebral spinal fluid (0-15 HU). This mask is useful for the automatic calculation
of parameters such as the noise level in a CTP image [11]. The double threshold
segmentation of dynamic CTP datasets evaluates all the voxels in the 4 dimensions and
produces a mask with the same dimension as the input image data.

Implementation details
Regarding the TIPS filter, we used the original CPU-based implementation (CPUFIL)
from [11] and two additional GPU implementations: one processing uncompressed
data (FIL) and another processing compressed data (FIL-COM). Regarding the
thresholding segmentation, we only used two GPU implementations: one of them
handles compressed CTP data (SEG-COM) and the other does not (SEG).

The host applications of all GPU implementations were developed in the .NET
Framework version 4.0 [13]. The library Fellow Oak DICOM version 1.0.36 [14] was
used for handling DICOM files. For the GPU computations, OpenCL 1.1 [15] was
used and OpenCL.NET version 2.2.9 [16] was used to integrate OpenCL with .NET.

CPU-FIL was implemented in C++, being accessed and executed through MATLAB.

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

61

This implementation only uses CPU computations and it was optimized for minimizing
cache misses. In FIL and FIL-COM, the filtered intensities over time of a voxel are stored
in a single OpenCL data structure (see lines 1-4 in Figure 6). In these implementations,
the function p(ξ, x) was implemented as an OpenCL function (see lines 44-45 in Figure
6); h(x, t) was implemented as an OpenCL kernel; c(ξ, x) was implemented as a lookup
table with the same size of the kernel (2m×2n×2o) (see lines 27-28 in Figure 6); and r(x)
is computed together with the calculations of h(x, t) in an OpenCL kernel (see lines 59-
64 in Figure 6). Similarly to FIL and FIL-COM, the segmentation results of SEG and
SEG-COM of a single voxel over time are grouped in the same OpenCL data structure.
Each binary segmentation result is represented in a byte (0 = false, other values = true).

Since the compression method allows direct access to the individual voxels, the main
difference between FIL and FIL-COM, and also between SEG and SEG-COM, is the
way in which the data is transferred to the GPU and how the input data is accessed.
These differences are highlighted in Figure 6 and in Figure 7. In FIL and SEG, the
data is sent to the GPU in an array of OpenCL data structures (see lines 6-7 in Figure
6). Each data structure contains all the intensity values of one voxel over time in its
original 16 bits integer representation. In FIL-COM and SEG-COM, the input data is
sent in the arrays C, O, B, and D using the compressed representation (see lines 1-5 in
Figure 7). A few extra operations (bit shift, add) need to be performed to reconstruct
the original intensity value of a voxel. The OpenCL code used for these recostructions is
shown in Figure 5. In both GPU implementations, all the data stored in global memory
used in the kernel computations is copied to local memory prior to processing.

Figure 5: Code for accessing the a specific ∆(x; t) from a set Dx stored in the array D, which is referred

in the code as vector. Note that only operations with constant computational complexity are used.

Therefore, the computational complexity for accessing the intensity value of a single voxel is also

constant. One bit shift operation is required when accessing a single element of D (line 14). When

two elements are accessed, two bit shifts are needed (lines 16-17).

Chapter 4

62

Validation
We performed four experiments to validate the analysis of compressed CTP image data.
Two of these experiments verify the differences between the results produced by the
processing of compressed and uncompressed data. The other two experiments quantify
the differences in the usage of computational resources while processing compressed
and uncompressed CTP data on GPUs. We performed a voxel-wise comparison of
the results of CPU-FIL, FIL, and FIL-COM to establish whether the outputs of all
implementations are equivalent. In this experiment, we used 20 datasets with 320 slices
because they have more noise than the datasets with 6 slices, which could intensify the
differences in the results from the different implementations. These 20 datasets were
corrected for motion using rigid 3D registration [17] prior to filtering and compression.
We used the following values for the parameters of the filter: kernel size = 41 × 41 × 35
voxels, σζ = 150, σd = 2.5, and clamping the voxels at the border of the image.

To evaluate the usage of computational resources in FIL and FIL-COM we measured
the memory usage (size of the GPU memory buffers with the input data), the GPU
processing time (excluding the time for data transfers), the time to transfer data to and
from the GPU, and the total GPU time (processing + transfers). In this experiment
we used all the 29 datasets without motion correction. Also, we used different filter
parameters, since some datasets only have 6 slices: kernel size = 5 × 5 × 5 voxels, σζ =
150, σd = 0.5, and clamping the voxels at the border of the image.

The total GPU processing time spent by SEG-COM and SEG was measured to evaluate
their differences in the usage of computational resources. The same parameters used for
the voxel-wise comparison were used in this experiment. All the GPU computations
were performed in the same hardware configuration (see Table 1) using Windows 7
Professional 64 bits as operating system. For time measurements, high-resolution timing
counters provided by the Win32 API were used.

Table 1: Hardware configuration on which the validation experiments were performed.

CPU Name: Intel Xeon E5-2620
CPU Clock: 2.00 GHz
CPU Cores: 6
CPU Threads: 12
RAM Memory: 64 GB
GPU Name: GeForce GTX TITAN
GPU Driver Version: 331.65
GPU Cores: 2688
GPU Clock: 836 MHz
Dedicated Video Memory: 6 GB GDDR5

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

63

Results and discussion

The filtering results obtained from FIL and FIL-COM are exactly the same.
However, a few differences were observed when comparing the results from the GPU
implementations with the results from the CPU implementation. In Figure 8 we can
observe the differences between these results for one dataset. In Figure 9 we show a
histogram of the differences in Hounsfield units between the filter results from the
original and the GPU implementations for all datasets.

The original TIPS filter implementation is targeted to CPU computing and it takes around
30 minutes to process a complete CTP dataset. To prevent the original implementation
to take even longer, some kernel computations are truncated on purpose. This is the
main reason for the differences between the results from CPUFIL and the results from
FIL and FIL-COM. Since the GPU implementations are much faster, we do not need
to truncate the kernel computations. Nevertheless, even if the original implementation
would perform all the computations, some differences are still expected due to rounding-
off operations and different ways that different APIs implement basic operations like
square root, power, etc.

Table 2 summarizes the gain in the usage of computational resources by FILCOM and
FIL. The values in Table 2 are calculated by dividing a measurement of computational
resource usage (time, memory) collected from FIL by that collected from FIL-COM
(uncompressed/compressed).

When comparing the computational resources used by FIL and FIL-COM we opted for
not using motion correction because it interferes with the final compression ratio, which
consequently interferes with the memory usage. The motion correction may reduce
the range of values of a voxel over time. Since the compression algorithm explores this
characteristic, a higher compression ration can be achieved.

Table 2: Gains from running the TIPS filter on GPU with compressed CTP data relative to uncom-

pressed data.

minimum average maximum
speed up in time to send input data 1.9 2.2 2.6
speed up in processing time 1.2 1.3 1.4
speed up in time to get output data 0.8 1.0 1.5
compression ratio of input data 2.0 2.2 2.8
speed up in total time (transfers + processing) 1.2 1.3 1.6

Chapter 4

64

As can be observed in Table 2, the processing of compressed CTP data has several
advantages over processing of uncompressed CTP data. By performing direct processing
of compressed CTP data, it is possible to reduce not only data transfer time and memory
usage, but also GPU processing time. One of the main advantages of our approach is
that it enables fitting more data into the GPU memory, and consequently also doing
more computations before transferring new input data from the CPU to the GPU.
This can reduce the overhead caused by the communication between GPU and host
application.

The only aspect that was not improved when comparing FIL and FIL-COM data was
the transfer of the results from the GPU memory. This happened because the filter results
were not compressed after processing, even though this is possible. By compressing the
filter results, the time to retrieve the output data from the GPU memory should be
reduced in a similar way as the time to send the input data. However, the time required
to perform the compression will be added to the total GPU processing time. Moreover,
no delay or overhead was introduced in the time to get the output data of FIL-COM
compared to FIL. Figure 10 shows in detail the time spent in each step of the execution
of FIL and FIL-COM when processing the CTP datasets of 320 slices, which are bigger
and consequently have slower execution time compared to the datasets of 6 slices.

Regarding SEG-COM to SEG, the segmentation results of these implementations were
identical. When considering all 29 CTP datasets, the total GPU usage of SEGCOM was
between 1.2 and 1.7 times faster than SEG, with an average speedup of 1.5 times. Also,
no differences were observed in the time to transfer the results from the GPU memory
to host application memory. However, in this case the segmentation results cannot be
compressed because they are binary masks and the compression algorithm used can only
compress grey scale time series images. Figure 11 shows the total GPU processing time
of SEG and SEG-COM implementations. As we can observe in Figure 11, the total
GPU processing time of the segmentation was reduced in the same proportion as the
total processing time of the filter.

As observed in Figure 10 and Figure 11, a few seconds were reduced in the total execution
time when processing compressed CTP data. However, by using this approach in all steps
of an entire CTP analysis pipeline, more considerable gains are expected. Furthermore,
segmentation of infarct core, generation of arterial input function, and calculation of
many other parameters from CTP data can benefit from postprocessing techniques as
the TIPS filter [4, 11]. Thus, a processing time 1.3 times faster and an input data 2
times smaller would be very beneficial in a CTP analysis pipeline with extensive use of
postprocessing techniques, thin slices CTP scans, and multimodal data.

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

65

Conclusions

We have presented a novel approach for processing compressed dynamic CTP data.
This approach takes advantage of the data structures used to store the compressed
data to enable massively parallel data processing on GPUs, without requiring major
modifications to the CTP processing algorithms. We have shown that this approach was
able execute the GPU implementations of a well-established TIPS filter and a generic bi-
threshold segmentation 1.3 times faster. This speedup was achieved with no modification
in the source code implementing the filter or the segmentation calculations. The only
modification required is related to the access to a voxel intensity, which is represented as
C(x)+∆(x, t) instead of the original value I(x, t).

Our strategy does not add costly computational operations for data decompression,
and it reduces memory usage and processing time considerably. Because of that, it is
expected that any other GPU-based processing of CTP data could also benefit from our
approach. Consequently, our method may contribute to achieving faster treatment and
diagnosis based on GPU processing of CTP image analysis, which is relevant for optimal
treatment selection of patients suspected of acute ischemic stroke.

Chapter 4

66

References

1.	 Borst, Jordi, et al. “Value of computed tomographic perfusion–based patient selection for intra-arterial
	 acute ischemic stroke treatment.” Stroke 46.12 (2015): 3375-3382.
2.	 Allmendinger, Andrew Mark, et al. “Imaging of stroke: Part 1, perfusion ct??? Overview of imaging
	 technique, interpretation pearls, and common pitfalls.” American Journal of Roentgenology 198.1 (2012):
	 52-62.
3.	 Wintermark, Max, et al. “Perfusion-CT assessment of infarct core and penumbra: receiver operating
	 characteristic curve analysis in 130 patients suspected of acute hemispheric stroke.” Stroke 37.4 (2006):
	 979-985.
4.	 Geuskens, Ralph REG, et al. “Characteristics of misclassified CT perfusion ischemic core in patients
	 with acute ischemic stroke.” PLoS One 10.11 (2015): e0141571.
5.	 Mukhopadhyay, J.: Image and Video Processing in the Compressed Domain. CRC Press, ??? (2011)
6.	 Hu, Qinrui, and Guoqiang Xiao. “Image Segmentation Based on Kernel Clustering in Compressed
	 Domain.” 2014 International Conference on Information Science & Applications (ICISA). IEEE, 2014.
7.	 Thies, William, Steven Hall, and Saman Amarasinghe. “Manipulating lossless video in the compressed
	 domain.” Proceedings of the 17th ACM international conference on Multimedia. 2009.
8.	 Eklund, Anders, et al. “Medical image processing on the GPU–Past, present and future.” Medical image
	 analysis 17.8 (2013): 1073-1094.
9.	 Brodtkorb, André R., Trond R. Hagen, and Martin L. Sætra. “Graphics processing unit (GPU)
	 programming strategies and trends in GPU computing.” Journal of Parallel and Distributed
	 Computing 73.1 (2013): 4-13.
10.	Barros, Renan Sales, et al. “Dynamic CT perfusion image data compression for efficient parallel
	 processing.” Medical & biological engineering & computing 54.2-3 (2015): 463-473.
11.	Mendrik, Adriënne M., et al. “TIPS bilateral noise reduction in 4D CT perfusion scans produces high-
	 quality cerebral blood flow maps.” Physics in Medicine & Biology 56.13 (2011): 3857.
12.	Berkhemer, Olvert A., et al. “A randomized trial of intraarterial treatment for acute ischemic stroke.” n
	 Engl J Med 372 (2015): 11-20.
13.	NET Framework (2015). http://www.microsoft.com/net
14.	Fellow Oak Dicom for .NET (2015). https://github.com/rcd/fo-dicom
15.	The OpenCL Specification (2011). https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
16.	OpenCL.NET (2013). https://openclnet.codeplex.com/
17.	Fahmi, Fahmi, et al. “3D movement correction of CT brain perfusion image data of patients with acute
	 ischemic stroke.” Neuroradiology 56.6 (2014): 445-452.

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

67

Figure 6: Code snippet of the OpenCL kernel that implements the noise reduction filter on uncompressed

CTP data. The lines of code highlighted in light gray are the only lines that need to be changed to

adapt this code for processing compressed CTP data. These lines need to be changed because they are

related to the way the input data is stored in the GPU memory.

Chapter 4

68

Figure 7: Code snippet of the OpenCL kernel that implements the noise reduction filter on compressed

CTP data. Only the lines of code that need to be changed from the source code presented in Figure

6 are shown. These lines are: the kernel signature (1-5), which needs to be changed to receive the

compressed data as input; the code to access all the intensity values of the current voxel over time

(7-15), in this case each of these values need to be retrieved from the array D; and the code to access

the intensity values over time of the voxels in the kernel (17-25).

Figure 8: CTP filtering results. From left to right, the top row shows: a sample slice from the

input data, the result produced by the original CPU implementation, and the result from the GPU

implementations. The bottom row shows in detail: input data, CPU result, GPU result, and absolute

differences in Hounsfield units (HU).

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

69

Figure 9: Histogram of differences in voxel intensities between the results of the original CPU

implementation and the GPU implementations of the TIPS filter. All voxels from all datasets were

evaluated and in more than 99% of them the difference is ±5 Hounsfield units (HU) or less.

Figure 10: Time measurements of the TIPS filter (in milliseconds) when processing compressed and

uncompressed CTP data.

Chapter 4

70

Figure 11: Total GPU usage time (data transfers + processing) in milliseconds for the double threshold

segmentation when processing uncompressed (left) and compressed (right) CTP data for 20 datasets

with 320 slices.

High performance analysis of compressed dynamic CT perfusion image data for acute
care of ischemic stroke

Ch
ap

te
r

4

71

5

Renan Sales Barrosa(*) , Jordi Borsta , Steven Kleynenbergb , Céline Badrc ,
Rama-Rao Ganjid , Hubrecht de Blieke , Landry-Stéphane Zeng-Eyindangaf ,
Henk van den Brinkg , Charles Majoiea , Henk Marqueringa , and Sílvia Delgado
Olabarriagaa

a Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
b Sopheon, Maastricht, The Netherlands
c Prologue, Les Ulis, France
d ARTEMIS Department, Telecom SudParis, Evry, France
e Philips Healthcare, Eindhoven, The Netherlands
f Bull, Grenoble, France
g Technolution, Gouda, The Netherlands

Chapter 5
Remote collaboration, decision support,
and on-demand medical image analysis
for acute stroke care

•	 Barros, Renan Sales, et al. “Remote collaboration, decision support, and on-demand medical image analysis for acute
	 stroke care.” European Conference on Service-Oriented and Cloud Computing. Springer, Cham, 2015.
•	 First author, conference proceedings, https://link.springer.com/chapter/10.1007/978-3-319-24072-5_15

Chapter 5

74

Abstract

Acute stroke is the leading cause of disabilities and the fourth cause of death worldwide.
The treatment of stroke patients often requires fast collaboration between medical
experts and fast analysis and sharing of large amounts of medical data, especially image
data. In this situation, cloud technologies provide a potentially cost-effective way to
optimize management of stroke patients and, consequently, improve patient outcome.
This paper presents a cloud-based platform for Medical Distributed Utilization of
Services & Applications (MEDUSA). This platform aims at improving current acute
care settings by allowing fast medical data exchange, advanced processing of medical
image data, automated decision support, and remote collaboration between physicians
in a secure and responsive virtual space. We describe a prototype implemented in the
MEDUSA platform for supporting the treatment of acute stroke patients. As the initial
evaluation illustrates, this prototype improves several aspects of current stroke care and
has the potential to play an important role in the care management of acute stroke
patients.

Keywords: Acute care · Cloud computing · Decision support · High performance
computing · Medical image analysis · Remote collaboration · Stroke · Telemedicine

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

75

1 Introduction

Acute ischemic stroke is the leading cause of disability and fourth cause of death [1].
In acute ischemic stroke, a blood clot obstructs blood flow in the brain causing part of
the brain to die due to the lack of blood supply. The amount of brain damage and the
patient outcome is highly related to the duration of the lack of blood flow (“time is
brain”). Therefore, fast diagnosis, decision making, and treatment are crucial in acute
stroke management.

Medical data of a stroke patient is collected during the transport by ambulance to the
hospital (e.g. vital signs, patient history, and medication). At arrival, various types of
image data are acquired following protocols that involve opinions and decisions from
various medical experts. Sometimes, a patient needs to be transferred to a specialized
hospital and, in this case, it is important that all the data collected in the ambulance and
at the referring hospital is available to the caregivers that will continue the treatment.
Often, various medical specialists need to collaborate based on available information
for determining the correct diagnosis and choosing the best treatment. Usually, this
collaboration is based on tools that are not connected to each other and, because of that,
they may not deliver the necessary information rapidly enough.

In addition to these challenges, the amount of patient medical data is growing fast
[2]. This fast increase is especially observed in radiological image data, which is also a
consequence of new medical imaging technologies [3, 4]. The management, sharing,
and processing of medical image data is a great challenge for healthcare providers [3,
4] and they can be greatly improved by the usage of cloud technologies [5]. Cloud
technologies also enable collaboration and data exchange between medical experts in a
scalable, fast, and cost-effective way [5]. Mobile devices, remote collaboration tools, and
on-demand computing models and data analysis tools supported by cloud technologies
may play an important role to help in optimizing stroke treatment and, consequently,
improve outcome of patients suffering from stroke.

In this paper, we present a cloud-based platform for Medical Distributed Utilization of
Services & Applications (MEDUSA). This platform aims at improving current acute
care settings by allowing fast medical data exchange, advanced processing of medical
image data, automated decision support, and remote collaboration between physicians
through a secure responsive virtual space. We discuss a case study implemented using the
MEDUSA platform for supporting the treatment of acute stroke patients, presenting
the technical details of the prototype implementation and commenting on its initial
evaluation.

Chapter 5

76

2 Related Work

The development of cloud-based platforms for collaboration and processing of medical
data is a challenging task. Many authors [4, 5, 6, 7] put forward that these platforms
hold the potential to define the future of healthcare services. Also, the analysis of medical
data can be an important way to improve quality and efficiency in healthcare [8, 9].

The work presented in [10, 11] focuses on the development of a cloud-based solution
aimed at only the storage and sharing of medical data. In other words, they propose
solutions based on cloud infrastructures to facilitate medical image data exchange
between hospitals, imaging centers, and physicians. A similar solution is presented
in [12], however focusing on medical data sharing during emergency situations. A
cloud-based system is presented in [13] for storage of medical data with an additional
functionality that enables content-based retrieval of medical images. Still focusing on
cloud-based data storage and sharing, [14] presents a solution to help managing medical
resources for the prevention and treatment of chronic stroke patients.

In addition to storage and sharing, some studies also include the possibility of using the
cloud infrastructure for processing of medical data. A simple cloud-based application is
presented in [15] to monitor oxygenated hemoglobin and deoxygenated hemoglobin
concentration changes in different tissues. Cloud computing is also used in [16] not
only to support data storage and sharing, but also to visualize and render medical
image data. In [17] the authors also propose a cloud application for rendering of 3D
medical imaging data. This application additionally manages the cloud deployment by
considering scalability, operational cost, and network quality.

Complete cloud-based systems for medical image analysis are presented in [18, 19, 20].
However, in these systems, image upload and download is manually performed by the
user, while the system focuses on the remote processing, storage, and sharing of medical
image data. The MEDUSA platform not only provides cloud-based storage, sharing, and
processing of medical image data, but also real-time communication between medical
experts, real-time collaborative interaction of the medical experts with the medical data,
and a real-time decision support system that continuously processes patient data and
displays relevant notifications about the patient condition.

The MEDUSA platform also includes a cloud management layer that coordinates the
use of resources in the cloud infrastructure. Other studies also present some cloud
management features. In [21] the authors propose a cloud architecture that reserves
network and computing resources to avoid problems regarding load-balancing
mechanisms of cloud infrastructures and to reduce the processing delays for the medical

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

77

applications. Also, [2] proposes an algorithm to optimize the organization of medical
image data and associated processing algorithms in cloud computing nodes to increase
the computing performance. Finally, [3] presents a cloud-based multi-agent system for
scalable management of large collections of medical image data.

The project presented in [22] tries to speed up current stroke care by integrating and
sharing data from stroke patients using mobile networks. In this scenario, a hospital can,
for instance, be prepared with the right resources before the arrival of the patient. This
project also includes decision support, which suggests a predefined path through the
emergency procedures according to the structure of mandatory and other supplementary
healthcare protocols. However, differently from MEDUSA, this project does not include
any image processing based feature.

3 Acute Stroke Care

Currently, treatment decision of stroke patients is increasingly driven by advanced
imaging techniques. These imaging techniques consist of non-contrast computed
tomography (ncCT), computed tomography angiography (CTA), and computed
tomography perfusion (CTP). Because of the extensive usage of imaging techniques, it
is common to produce gigabytes of image data per patient.

The primary treatment for patients with acute ischemic stroke is intravenous
administration of alteplase (thrombolysis). Patients who are not eligible for treatment
with alteplase or do not respond to the treatment can be treated by mechanical removal
of the blood clot via the artery (thrombectomy). Thrombectomy is only available in
specialized hospitals and often a patient must be transferred for treatment.

This transfer is arranged via telephone and imaging data created in the initial hospital is not
available for the caregivers in the specialized hospital until the patient and imaging data
arrive via the ambulance. On a regular basis it happens that the imaging data was wrongly
interpreted in the initial hospital and that the patient is not eligible for thrombectomy.
Also, often new imaging acquisitions have to be redone due to broken DVDs, wrong data,
or insufficient quality. These problems result in futile transfers and loss of valuable time.

4 MEDUSA Platform

The MEDUSA platform was designed to support remote collaboration and high
performance processing of medical data for multiple healthcare scenarios. The platform

Chapter 5

78

is accessible to final users through the MEDUSA Collaboration Framework (MCF),
which is a web application that is compatible with any web browser that supports
HTML5. The MCF is a special type of MEDUSA application that provides to the
users an entry point to access other MEDUSA applications. A cloud management layer
controls the deployment and execution of all MEDUSA applications in one or more
cloud providers. Figure 1 illustrates the architectural design of the MEDUSA platform.

Figure 1: The MEDUSA platform architecture.

4.1 MEDUSA Cloud Applications
The MEDUSA platform has a number of cloud applications that are available in all
healthcare scenarios: Audit Trail, which reports the events generated by the other
MEDUSA applications; User Manager, which allows assigning roles to users and
defining which MEDUSA applications they can use; and Video Call, which allows
communication between users of the MEDUSA platform.

The MEDUSA applications are started as part of a MEDUSA session. Multiple users
in a session can interact with these applications, and these interactions are visible
to all the users in the session. The handling of multiple user interactions is done by
each MEDUSA application. The applications in the MEDUSA platform can be web
applications or regular desktop applications. The desktop applications are integrated
in the MEDUSA platform through a virtualization server that uses the technologies
described in [23] and [24]. The multi-user interaction of the desktop applications is
handled by the virtualization server.

4.2 Cloud Provider
The MEDUSA applications can be deployed in different cloud providers. Currently,
these applications are being deployed in the High Performance Real-time Cloud for

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

79

Computing (HiPeRT-Cloud) of Bull. The HiPeRT-Cloud is mainly designed for
realtime computationally-intensive workloads. This solution is fully compatible with
the Cloud Computing Reference Architecture of the National Institute of Standards
and Technology (NIST) and provides infrastructure services under any cloud broker
solution. The HiPeRT-Cloud is used in the MEDUSA platform because it provides
solutions for handling complex applications in the field of real-time computational and
data-intensive tasks in the cloud.

4.3 Cloud Management Layer
In order to take advantage of the on-demand, flexible, high-performance, and
costeffective options that cloud providers can offer, the cloud management layer,
implemented by Prologue, manages the cloud deployment in the MEDUSA platform.
This layer orchestrates the allocation and release of resources on the cloud provider’s
infrastructure. It also oversees the lifecycle of the deployed resources, ensures their
availability and scalability, and links the desktop applications from the virtualization
server back to the MCF. The cloud management layer is designed according to the
Service-Oriented Architecture model and its functionalities are accessible through
a Representational State Transfer Application Programming Interface (REST API).
The cloud management layer also incorporates a monitoring service that operates by
accessing directly the deployed virtual machines (VMs). The technology behind the
cloud management layer is aligned with the NIST architecture and based on the Open
Cloud Computing Interface specifications.

In the MEDUSA context, technical requirements for computing, storage, network, and
security resources have been identified for each MEDUSA application to be deployed.
All requirements are then translated into machine-readable code that is used to provision
the cloud resources.

The components of the MEDUSA platform are hosted on the cloud through a security-
aware, need-based provisioning process. By supporting on-demand hybrid and multi-
cloud deployments, as well as monitoring, load balancing, and auto-scaling services
through an agent embedded in each VM, the cloud management layer thus ensures a
high resilience of the MEDUSA platform.

4.4 Security
The security of the MEDUSA platform is currently mainly based in the use of digital
certificates, which are used to authenticate MEDUSA applications (VMs), to secure the
data exchanges through the network, and to provide strong authentication of MEDUSA
users.

Chapter 5

80

The VMs containing the applications are deployed dynamically, and thus server
certificates need to be created dynamically, during the deployment. A web service was
developed to provide dynamic generation of server certificates for the different VMs in
the MEDUSA platform. These server certificates must be created during the deployment
of the VMs and there must be one certificate per application and VM (identified by the
IP address).

Regarding the user authentication, an authentication module is called when a user
opens a MEDUSA session. This module authenticates a user by checking the provided
credentials against the user management component, which has access to a special
internal directory containing the certificates used for strong authentication of MEDUSA
users.

The MEDUSA platform also uses robust image watermarking and fingerprinting
methods to prevent and detect unauthorized modification and leaking of medical images
by authorized users by. However, due to legal regulations, an important requirement
when dealing with medical images is the capability reconstructing the original image
data. Because of this, reversible or semantic-sensitive techniques for watermarking
and fingerprinting can be used in the MEDUSA platform. These techniques enable to
completely recover the original image data or at least the recovery of the regions of these
images that are relevant for the user or application.

5 MEDUSA Stroke Prototype

The MEDUSA platform was designed to support various medical scenarios. Here, we
focus on a prototype for supporting acute stroke care. The MEDUSA Stroke Prototype
(MSP) is built by combining the default MEDUSA applications with three applications
specifically configured to support the treatment of stroke patients: Advanced Medical
Image Processing, Decision Support System, and 3D Segmentation Renderer. All the
applications of the MSP are executed in VMs running on the HiPeRT-Cloud. The cloud
management layer is in charge of the deployment of these VMs.

5.1 Advanced Medical Image Processing
For supporting the assessment of the severity of a stroke, several medical image processing
algorithms (MIPAs) have been developed. These algorithms perform quantitative
analysis of the medical image data and the result of these analyses can be used to
support the treatment decisions. The output of these algorithms are, for example, the
segmentation of a hemorrhage in the brain [25], the segmentation of a blood clot [26],
and the segmentation of the infarcted brain tissue [27]. The MIPAs are linked together

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

81

into processing pipelines with well-defined input, output, and policies that control their
execution. The execution of these pipelines is automatically orchestrated to deliver the
lowest execution time based on a set of optimization strategies (e.g. task parallelism, data
parallelism, and GPU computing).

The MIPAs are implemented as plugins for the IntelliSpace Discovery (ISD) platform,
an enterprise solution for research, developed by Philips Healthcare. Figure 2 shows the
output of the plugin for infarct volume calculation in the ISD. The collection of MIPAs
specially developed to support acute stroke care that are included in the ISD constitutes
the Advanced Medical Image Processing application of the MSP.

Figure 2: Plugin for automated measurement of the cerebral infarct volume in the ISD.

The ISD is a Windows desktop application developed by using the .NET Framework.
The development of the MIPAs is also based in the .NET Framework. For GPU-based
computations, OpenCL 1.1 was used. OpenCL is a framework for the development
and execution of programs across platforms consisting of different types of processors
such as CPUs, GPUs, etc. OpenCL.NET was used to integrate OpenCL with the .NET.
Framework.

The data generated by the MIPAs are exported to the DSS by using JavaScript Object
Notation (JSON) files through WebSockets. (Anonymized) Patient information is sent
to the MIPAs by using the tags of the medical image data used as input. The information
about the current session is directly sent to the ISD and forwarded to the MIPAs.

Chapter 5

82

5.2 Decision Support System
The Decision Support System (DSS) by Sopheon provides real-time process support to
medical professionals collaborating on the stroke case. The DSS is rule-based: the rules
specify the conditions under which actions are to be advised (delivered as notifications).
The Decision Support rules are part of a medical protocol and thus defined and approved
by medical professionals.

In the MSP, the DSS runs a set of rules specifically designed for dealing with stroke
patients. It gathers real-time input from vital sign sensors and MIPAs. For instance,
a rule could state that an infarct volume larger than 70 milliliters is associated with a
poor outcome for the patient. When the DSS detects an infarct volume value of e.g. 80
milliliters, it will display the notification associated with this condition. The DSS also
selects relevant information from the data generated by the MIPAs and forwards it to
the audit trail and to the 3D Segmentation Renderer.

The DSS runs on Node.js, which is a platform built on Google Chrome’s JavaScript
runtime. The DSS is deployed on Fedora, which is an operating system based on the
Linux kernel.

5.3 3D Segmentation Renderer
The 3D Segmentation Renderer by Sopheon is responsible for displaying 3D segmentations
generated by the MIPAs. This application was developed by using the WebGL library,
which enables to render 3D graphics in the browser without installing additional software.
Figure 3 shows the GUI of this application rendering the segmentation of brain tissue (in
green and blue) and the segmentation of the infarcted region (in red).

Figure 3: 3D segmentation renderer showing the segmentation of brain tissue (green and blue) and

the infarction in the brain (red).

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

83

6 Initial Evaluation

As this is an on-going project, the discussion presented below is based upon an evaluation
of the first fully-integrated prototype.

The MSP integrates very heterogeneous applications, which run on different operational
systems (Windows, Linux) and use different development technologies (Java, OpenCL,
C#, C++). These applications are seamlessly available for the user from a single interface.
Also, the deployment of the applications is transparently handled by the platform. This
solution is provided in a smooth and transparent manner, hiding the complex details
from the user.

In the MEDUSA platform, the data and user input need to cross several software layers,
which might introduce overheads and decrease performance. However, such poor
performance was not noticed in the initial MSP prototype. For instance, the Advanced
Medical Image Processing application, which requires data exchange between different
architectural components, was almost instantaneously ready for use without noticeable
interaction delays.

The MSP implements a complete acute stroke use case, which has been demonstrated live
in various occasions. Impressions have been collected informally to assess the potential
value of this prototype system. Table 1 compares the current stroke care situation in the
Netherlands versus the stroke care that could be supported by the MEDUSA platform
based on the functionalities currently present in the MSP.

Because of its complexity, a detailed and quantitative evaluation of the MEDUSA
platform involves several software components and requires a careful planning. The
design of this evaluation was already defined in the first year of the project. It is scheduled
to take place during the last 6 months of the MEDUSA project (end of 2015).

Table 1: Current stroke care vs. stroke care with MEDUSA.

current with MEDUSA
Data availability images are not available images are available online

Time to access data transport by car of physical media
(minutes to hours) online data transfer (few seconds)

Potential value for decision automated quantitative analysis not
used yet for clinical decision

results of MIPAs readily available as
decision parameters

Infrastructure static, proprietary, fixed scale pay-per-use, scalable, and portable
to different cloud providers

Remote collaboration by phone by video-conference with access to
the patient data

Chapter 5

84

Concerning the image processing functionality, most of the MIPAs included in the
MSP are too computationally expensive to be executed on a local machine according
to the time constraints of an acute stroke patient. HPC capabilities delivered by cloud
computing were crucial to improve the processing of these algorithms from hours to
minutes, making them suitable for acute stroke care. For instance, the time to run the
method used to reduce noise in CTP data was reduced from more than half an hour to
less than 2 minutes [28].

7 Discussion and Conclusion

The development of the MEDUSA platform started in 2013. Back then, this kind of
cloud-based solutions was not common. Today, however, there is a clear trend in the
healthcare industry towards the usage of cloud computing, collaboration, and automated
analyses of medical data. In addition, when dealing with processing of medical data
constrained by the requirements of acute care situations, a lot of benefits can be derived
from the use of cloud computing: scalability, pay-per-use model, high performance
computing capabilities, remote access, etc.

There are innumerous technical challenges for enabling the execution and communication
of software components in a platform like MEDUSA. Regarding stroke care, the software
components execute in different computing devices (CPUs, GPUs, etc.) and based on
different software platforms (web, Linux, Windows, etc.). In the MEDUSA platform
these challenges are tackled using SOA approach and a virtualized infrastructure. Because
of the variety of application types, a uniform way of establishing communication
between the MEDUSA applications has not been developed yet. Nevertheless, the direct
communication between applications based on the exchange of well-defined file formats
through WebSockets was demonstrated to be effective, without a negative impact in the
development and integration of these applications. The current functionalities present
in the MSP have the potential to improve several aspects of current stroke care.

The MEDUSA platform is still under development. Thus, most of the components to
implement security are still not completely integrated in the platform yet. Defining and
developing the security aspects of a platform like MEDUSA is also a very challenging task,
since it is necessary to cope with different legal constraints, in particular across countries.
The development process of the MEDUSA platform includes the implementation and
validation of the platform in three different hospitals. This validation is currently being
carried out in one hospital. Preliminary evaluation of the platform indicates that the
solution is promising and has potential large value for improving treatment of these
patients.

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

85

References

1.	 Go, Alan S., et al. “Heart disease and stroke statistics—2013 update: a report from the American Heart
	 Association.” circulation 127.1 (2013): e6-e245.
2.	 Hallett, Shane, et al. “Cloud-based healthcare: towards a SLA compliant network aware solution for
	 medical image processing.” (2012).
3.	 Alonso-Calvo, Raúl, et al. “Cloud computing service for managing large medical image data-sets using
	 balanced collaborative agents.” Advances on Practical Applications of Agents and Multiagent Systems.
	 Springer, Berlin, Heidelberg, 2011. 265-270.
4.	 Shini, S. G., Tony Thomas, and K. Chithraranjan. “Cloud based medical image exchange-security
	 challenges.” Procedia Engineering 38 (2012): 3454-3461.
5.	 Kagadis, George C., et al. “Cloud computing in medical imaging.” Medical physics 40.7 (2013): 070901.
6.	 Jeyabalaraja, V., and M. S. Josephine. “Cloud computing in medical diagnosis for improving health care
	 environment.” International Journal of Computing Algorithm 2 (2013): 458-462.
7.	 Pino, Carmelo, and Roberto Di Salvo. “A survey of cloud computing architecture and applications in
	 health.” International conference on computer science and electronics engineering. 2013.
8.	 Jee, Kyoungyoung, and Gang-Hoon Kim. “Potentiality of big data in the medical sector: focus on how
	 to reshape the healthcare system.” Healthcare informatics research 19.2 (2013): 79-85.
9.	 Murdoch, Travis B., and Allan S. Detsky. “The inevitable application of big data to health
	 care.” Jama 309.13 (2013): 1351-1352.
10.	Kanagaraj, G., and A. C. Sumathi. “Proposal of an open-source cloud computing system for exchanging
	 medical images of a hospital information system.” 3rd International Conference on Trendz in Information
	 Sciences & Computing (TISC2011). IEEE, 2011.
11.	Yang, Chao-Tung, et al. “Implementation of a medical image file accessing system on cloud
	 computing.” 2010 13th IEEE International Conference on Computational Science and Engineering. IEEE,
	 2010.
12.	Koufi, Vassiliki, Flora Malamateniou, and George Vassilacopoulos. “Ubiquitous access to cloud
	 emergency medical services.” Proceedings of the 10th IEEE International Conference on Information
	 Technology and Applications in Biomedicine. IEEE, 2010.
13.	Zhuang, Yi, et al. “Efficient and robust large medical image retrieval in mobile cloud computing
	 environment.” Information Sciences 263 (2014): 60-86.
14.	Gu, Hua, Lei Huang, and Bei Xi. “A cloud computing based collaborative service pattern of medical
	 association for stroke prevention and treatment.” Management & Engineering 21 (2015): 3.
15.	Sharieh, Salah, Franya Franek, and Alexander Ferworn. “Using cloud computing for medical
	 applications.” Proceedings of the 15th Communications and Networking Simulation Symposium. 2012.
16.	Parsonson, Louis, et al. “A cloud computing medical image analysis and collaboration
	 platform.” International Conference on Cloud Computing and Services Science. Springer, New York, NY,
	 2011.

Chapter 5

86

17.	Dorn, Karlheinz, Vladyslav Ukis, and Thomas Friese. “A cloud-deployed 3D medical imaging system
	 with dynamically optimized scalability and cloud costs.” 2011 37th EUROMICRO Conference on
	 Software Engineering and Advanced Applications. IEEE, 2011.
18.	Chiang, Wen-Chung, et al. “Bulding a cloud service for medical image processing based on service-
	 orient archtecture.” 2011 4th International Conference on Biomedical Engineering and Informatics
	 (BMEI). Vol. 3. IEEE, 2011.
19.	Huang, QingZang, et al. “Medical information integration based cloud computing.” 2011 International
	 Conference on Network Computing and Information Security. Vol. 1. IEEE, 2011.
20.	Ojog, Iuliana, et al. “A cloud scalable platform for DICOM image analysis as a tool for remote medical
	 support.” The Fifth International Conference on eHealth, Telemedicine, and Social Medicine. France. 2013.
21.	Ahn, Yong Woon, and Albert Mo Kim Cheng. “Autonomic computing architecture for real-time
	 medical application running on virtual private cloud infrastructures.” ACM SIGBED Review 10.2
	 (2013): 15-15.
22.	Holtmann, Carsten, et al. “Medical opportunities by mobile IT usage–a case study in the stroke chain
	 of survival.” European Conference on eHealth 2007. Gesellschaft für Informatik e. V., 2007.
23.	Joveski, Bojan, et al. “Semantic multimedia remote display for mobile thin clients.” Multimedia
	 systems 19.5 (2013): 455-474.
24.	Joveski, Bojan, Mihai Mitrea, and Rama-Rao Ganji. “MPEG-4 solutions for virtualizing RDP-based
	 applications.” Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2014.
	 Vol. 9030. International Society for Optics and Photonics, 2014.
25.	Boers, A. M., et al. “Automatic quantification of subarachnoid hemorrhage on noncontrast
	 CT.” American journal of neuroradiology 35.12 (2014): 2279-2286.
26.	Santos, Emilie MM, et al. “Development and validation of intracranial thrombus segmentation on CT
	 angiography in patients with acute ischemic stroke.” PLoS One 9.7 (2014): e101985.
27.	Boers, Anna M., et al. “Automated cerebral infarct volume measurement in follow-up noncontrast CT
	 scans of patients with acute ischemic stroke.” American Journal of Neuroradiology 34.8 (2013): 1522-
	 1527.
28.	Barros, R.S., et al.: High Performance Image Analysis of Compressed Dynamic CT Perfusion Data of
	 Patients with Acute Ischemic Stroke. Submitted to MICCAI HPC Workshop (2015)

Remote collaboration, decision support, and on-demand medical image analysis for acute
stroke care

Ch
ap

te
r

5

87

6

Renan Sales Barros a , Wessel E. van der Steen a , Anna M.M. Boers a , IJsbrand
Zijlstra a , Rene van den Berg a , Wassim El Youssoufi b , Alexandre Urwald
c , Dagmar Verbaan a , Peter Vandertop a , Charles Majoie a , Silvia Delgado
Olabarriaga a , Henk A. Marquering a,*

a Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
b Artemis Department of the Telecom SudParis, Evry, France
c Telecom Physique Strasbourg, Illkirch-Graffenstaden, France

Chapter 6
Automated segmentation of
subarachnoid hemorrhages with
convolutional neural networks

•	 Barros, Renan Sales, et al. “Automated segmentation of subarachnoid hemorrhages with convolutional neural networks.”
	 Informatics in Medicine Unlocked 19 (2020): 100321.
•	 First author, journal, https://www.sciencedirect.com/science/article/pii/S2352914820300769

Chapter 6

90

Abstract

Purpose: To investigate the viability of convolutional neural networks (CNNs) for the
detection and volumetric segmentation of subarachnoid hemorrhage (SAH) in non-
contrast computed tomography (NCCT).

Materials and methods: We developed and trained a CNN for the SAH segmentation
by splitting a set of 302 baseline NCCTs into a training (268) and a validation set
(34). Segmentation accuracy was assessed on an additional 473 baseline NCCTs of
SAH patients by calculating the intraclass correlation coefficient of the SAH volume
and the Dice coefficient of the segmentations. We subsequently evaluated whether the
developed SAH segmentation network can be used to discriminate SAH from acute
ischemic stroke using 280 scans to optimize the discrimination and 70 scans for testing.
Additionally, we tested whether the CNN-based volumetric SAH segmentation can also
be used for hemorrhage segmentation in 396 NCCTs of rebleed patients.

Results: The SAH volume agreement was high with an intraclass correlation coefficient
of 0.966. The average Dice coefficient of the volumetric SAH segmentation was 0.63
± 0.16, which is similar to expert interobserver agreement. The differentiation of SAH
from ischemic stroke patients achieved an accuracy of 0.96. Despite the common
presence of severe metal artifacts in scans of rebleed patients due to coiling, the CNN-
based segmentation appears to be suitable for segmentation of rebleeds as well with
comparable accuracy. The average CNN detection and segmentation processing time
was 30 s.

Conclusion: The proposed CNN is fast and accurate in detecting and segmenting SAH
in NCCT scans

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

91

1 Introduction

Subarachnoid hemorrhage (SAH) accounts for approximately 5% of all strokes. With
a fatality rate of 30% [1] and half of the patients being younger than 55 years, the
number of productive life years lost due to SAH is equivalent to ischemic stroke [2,3].
Several scales for assessing the severity of SAH on computed tomography (CT) images
have been developed [4]. Currently, the most commonly used scales are the Fisher scale
[5], modified Fisher scale [6], and Hijdra sum score [7]. It has been shown that these
scores are associated with complications such as vasospasm, delayed cerebral ischemia
(DCI), and poor outcome. Nevertheless, these scores have a considerable interobserver
variability, which may limit their predictive value [8,9].

Accurate volumetric segmentation and quantitative assessment of SAH in CT scans are
a valuable alternative to these radiological scales and provides valuable information for
monitoring and predicting the outcome of SAH patients. Previous studies have shown
that quantitative segmentation of SAH is possible using image processing techniques
[10]. The segmentation of SAH is considered complex compared to other causes of
intracranial hemorrhages since the hyperdensity due to the presence of blood is in the
hypodensity parts of the brain (e.g. the fissures). Zijlstra et al. [11] showed that indeed
the quantified blood as resulted from the method by Boers et al. [10] is significantly
associated with DCI. Since the method by Boers et al. is based on the relative increase
of Hounsfield units (HU) due to the presence of blood, other image features that may
be relevant for accurate SAH segmentation, such as spatial bleeding patterns, may
have been ignored. In another approach in which the CT images were analyzed using
an autoencoder, it was shown that DCI prediction can strongly be improved using
additional image features [12]. However, these image features cannot be interpreted by
clinicians, and this approach is therefore not suitable for clinical practice. To overcome
these limitations, we propose a novel approach for SAH detection and segmentation in
CT scans based on convolutional neural networks (CNNs).

CNNs require high-quality ground truth samples for training. The generation of this
ground truth is a demanding task to because the effects of SAH in CT images can be
very subtle. The SAH may spread around the subarachnoid space [13] and gets diluted
in the cerebral spinal fluid (CSF). When the basal cisterns are filled with blood, the
distinction between intravascular and extravascular blood is challenging. Moreover,
even when the effects of SAH are visible, only a tiny portion of voxels in the CT scans
are affected (see Figure. 1). Next to this, the agreement of manual segmentations
by experienced radiologists is moderate with an average Dice coefficient of 0.64.
Considering the relatively imprecise training data, the primary goal of this study is to
investigate the feasibility and performance of CNNs for fully automated SAH detection

Chapter 6

92

and its volumetric segmentation.

Figure 1: Histogram of Hounsfield unit values in the baseline non-contrast CT scans in the training

set (268) and testing set (473). Only voxels inside the intracranial region were considered (that is,

voxels representing air, skull, etc., were excluded in these histograms). The first row shows a zoomed

version of the histograms in the second row.

2. Materials and Methods

In this section, we describe the used image data, the development of the CNN-based
volumetric SAH segmentation, two alternative SAH segmentation approaches which
are used for comparison with the CNNbased results, the approach to differentiate

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

93

hemorrhagic stroke from ischemic stroke patients, and an additional experiment
to evaluate whether the proposed CNN-based approach is also suitable to segment
hemorrhages in patients with a rebleed. All CNN-based methods consist of two steps:
[1]: the generation of hemorrhage probability maps and [2] the determination of
thresholds to transform the probability maps into binary segmentations. The first step
is generic, and the latter is application specific. Moreover, the generation of hemorrhage
probability maps makes use of “training sets”, whereas the latter utilizes “validation sets”.

2.1. Image data
In this retrospective study, we used image data from a SAH registry and from an ischemic
stroke clinical trial. The SAH registry is composed of prospective consecutive patients
with aneurysmal SAH admitted in the Amsterdam UMC between December 2011 and
December 2016. The inclusion criteria were (1) SAH visible on baseline non-contrast
CT (NCCT) or confirmed after lumbar puncture and (2) confirmation of ruptured
aneurysm by angiography imaging. We excluded patients with significant movement or
metal artifacts on baseline NCCT or who were included in ongoing trials. We also used
baseline NCCTs from ischemic stroke patients included in the in the MR CLEAN trial
[14]. A subset of 317 patients from this SAH registry was used in a prior study [12]. The
acute ischemic trial patients have been included in many published studies.

A total of 775 baseline NCCT scans from the SAH registry were used for developing the
CNN-based SAH segmentation. The training set comprised 268 scans, the validation
set consisted of 34 scans, and the test set included 473 scans. The ground truth
segmentation of these 775 images was produced as follows: (1) The method by Boers et
al. was used to produce an initial segmentation; (2) this segmentation was corrected by
a trained observer; and (3) subsequently, this segmentation was validated by an expert
radiologist and, when applicable, additional corrections were made. Table 1 shows the
properties of CT scans used in this study.

The proposed differentiation of SAH from ischemic stroke patients make use of
the hemorrhage probability maps generated by the CNN that was trained for SAH
segmentation. Therefore, no training step is required in the SAH ischemic stroke
differentiation. For developing the automated SAH differentiation, we used 350
baseline NCCT images of evenly distributed acute ischemic stroke (175) and SAH
(175) patients. These 350 scans were used as follows: the validation set consisted of 280
scans with 140 ischemic stroke and 140 SAH patients. The test set included 70 scans
from both ischemic stroke (35) and SAH (35) patients.

The medical ethics committee of the Amsterdam UMC exempted this study of an
official approval for the usage of the anonymized NCCT scans included in this SAH

Chapter 6

94

registry and informed consent was waived.

Table 1: Properties of the images used in this study. When applicable, the data is shown is average ±

standard deviation.

Number
of scans

Slices per
scan

Voxel
spacing
(mm)

Spacing
between
slices (mm)

Baseline NCCTs included in the training and
validation sets of the CNN for SAH volumetric
segmentation.

302 32 ± 6.6 0.45 ± 0.05 4.86 ± 0.57

Baseline NCCTs used to test the CNN-based
SAH volumetric segmentation. 473 39 ± 9.9 0.45 ± 0.06 4.23 ± 1.01

Follow-up NCCTs used to test the CNN
for segmentation of hemorrhages in rebleed
patients.

396 32 ± 3.2 0.47 ± 0.05 4.95 ± 0.57

Baseline NCCTs from ischemic stroke patients
used to optimize and evaluate the automated
SAH detection.

175 30 ± 9.7 0.45 ± 0.07 4.49 ± 1.11

2.2. CNN for volumetric SAH segmentation
The proposed CNN outputs a probability map, which indicates the likelihood of a voxel
belonging to the class hemorrhage. Since probability values range from 0 to 1, after
training we optimized a threshold value for the binary voxel-wise classification for SAH
segmentation and another cut-off value for the SAH – ischemic stroke differentiation
using validation data.

The proposed CNN for SAH segmentation was designed to classify a single voxel based
on an image patch around that voxel. We performed a grid search to select the optimal
CNN architecture for this classification task. We used the average Dice coefficient to
select the best CNN architecture. Table 2 shows the hyperparameter values evaluated in
this grid search.

To tackle the problem of the unbalanced representation of hemorrhage versus background
voxel classes, we used the same number of hemorrhage and background patches during
training. We automatically determined the most relevant background patches while
training. Figure. 2 lists the steps used during training. Figure. 3 illustrates the result of
this automatic selection of training samples of the background class.

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

95

Table 2: Evaluated values of hyperparameters during optimization of the proposed convolutional

neural network architecture via a grid search.

Hyperparameter Evaluated values
Number of convolutional layers 2, 3, or 4
Number of fully connected layers 2 or 3 positioned at the end of the network
Nodes of a fully connected layer 64, 128, 256

Max-pooling layers All permutations of max-pooling layers after
convolutional layers

Feature maps of a convolutional layer 64 or 128
Sizes of the convolution kernel of a convolutional
layer

3 x 3 x 1, 5 x 5 x 1, 7 x 7 x 1, 9 x 9 x 1, 3 x 3
x 3, 5 x 5 x 3, 7 x 7 x 3, or 9 x 9 x 3

Size of input patch 7 x 7, 15 x 15, 19 x 19, 23 x 23, or 31 x 31
Number of slices in a patch 1, 3, or 5

Processing patches with multiple slices As different channels with 2D convolutions or
as 3D images with 3D convolutions

Dropout Used or not used

Postprocessing final probability map Dense conditional random field, 3D Gaussian
smoothing, or no postprocessing

2.3. Image pre-processing
We segmentated the intracranial region and used a threshold-based segmentation to
exclude voxels that can be trivially classified as background, such as air. Subsequently,
random background patches were selected for the first training step. In all subsequent
training steps, the background patches with lowest accuracy were used for training. This
step was repeated until no improvement was observed in the average Dice coefficient of
the validation set.

The segmentation
 of the intracranial region is based on the size range of the foramina of the skull, as
reported by Ref. [15] and on typical intensity values of the voxels. This segmentation is
performed according to the following steps: (1) Thresholding is used to segment bone.
We considered all voxels with an intensity above 160 HU as bone. (2) A morphological
dilation with 7 mm radius is used to close all foramina of the skull, except the foramen
magnum. (3) The centroid of the segmented bone is used as a seed for region growing
inside the skull. (4) A morphological dilation with 7 mm radius was applied to the
region growing result to bring the segmented intracranial region closer to the skull
border. (5) The foramen magnum is detected by evaluating the segmented area in each
individual slice from top to bottom. The foramen magnum slice was determined as the
highest slice with a segmented area below 900 mm2 below the slice with the maximum
segmented area. All segmented voxels below the foramen magnum slice were excluded
from the segmentation.

Chapter 6

96

Figure 2: Steps of the training process of the convolutional neural network (CNN) for voxelwise

classification of based on image patches.

2.4. SAH segmentations
We used two alternative methods for SAH segmentation to compare with our CNN-
based volumetric SAH segmentation: a refined threshold segmentation and the U-Net
[16].

We developed the refined threshold segmentation based on three key observations:
(1) hemorrhage voxels usually have similar intensity values (see Figure. 1). (2) Most
background voxels with intensities similar to hemorrhage voxels are located close to

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

97

the skull (see the area highlighted in blue in Figure. 3). (3) A region with SAH voxels is
usually larger than just a few voxels.

The refined threshold segmentation was optimized with a grid search that determined the
upper and lower limits for a threshold-based hemorrhage segmentation, the parameters
for a morphological erosion of the brain mask to exclude the voxels close to skull, and
the parameters of a morphological opening to exclude small groups of voxels selected
in the threshold-based hemorrhage segmentation. This grid search was performed by
evaluating all images in the training and validation sets of CNN-based segmentation.
Subsequently, the refined threshold segmentation was evaluated on the test set of the
CNN-based segmentation.

The evaluated U-Net architecture had three layers with 32, 64, and 128 feature maps
in the first, second, and third layers respectively. The size of the convolution kernels
of the U-Net was 3 x 3. The U-Net was trained and evaluated with the same training,
validation, and test sets of the proposed CNN.

Figure 3: Example of training patches extracted from a CT scan. The background patches are

highlighted in blue. The hemorrhage patches that are generated for all voxels in the area highlighted

in red. Note that the background patches selected for training are very similar to the hemorrhage

patches. The background pixels were selected as the voxels with highest classification error during

the training process. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

Chapter 6

98

2.5. SAH detection
We assumed that a scan belongs to a patient with a SAH instead of ischemic stroke when
the volume of the SAH segmentation in a NCCT image is above a certain threshold.
Since the CNN outputs a probability map with values ranging from 0 to 1, we optimized
a specific cut-off value for the binary voxel-wise classification used for SAH detection.
Subsequently, we optimized the minimum SAH volume for the differentiation.

2.6. Statistics
The agreement of the automated generation of SAH volumes with the ground truth was
assessed by the calculation of the intraclass correlation coefficient and Bland-Altman
analysis in the validation set. The accuracy of the SAH segmentations was determined
by the calculation of the Dice coefficient in the validation set. The accuracy of the SAH
– ischemic stroke differentiation was determined as the percentage of accurate classified
patients.

2.7. Volumetric rebleed SAH segmentation
As a proof of concept and to determine whether this approach deems robust for image
artifacts, we evaluated the applicability of the SAH segmentation also in patients with a
rebleed. The segmentation of rebleeds are expected to be more difficult because commonly
these patients have been coiled to treat the initial SAH. These coils commonly result in
severe artifacts in NCCT images.

From the SAH registry, 396 follow-up NCCTs of rebleed patients were used. Ground
truth SAH segmentations of these rebleed scans were created as follows: (1) These scans
were processed by the proposed CNN to generate SAH probability maps. (2) These
probability maps were checked by two experts, and an optimal threshold was selected
to generate binary maps representing the rebleed region. (3) Subsequently, these two
experts corrected the segmentations if needed. It should be noted that no baseline
NCCTs from these rebleed patients were included in the training and validation set. Of
these 396 rebleed patients, 127 scans had significant metal artifacts.

3. Results

The best CNN architecture is composed of two convolutional layers followed by two
fully connected dense layers with 256 nodes each. The size of the input patch of this
CNN is 19 x 19 x 3 and each slice is considered as a different image channel. Max-
polling layers with kernel 2 x 2 are present after each convolutional layer. The first
convolutional layer has 64 features maps and the second has 128 features maps. Both
convolutional layers have 5 x 5 kernels. No dropout nor postprocessing of the final

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

99

probability map was used.

The SAH volume agreement was excellent with an intraclass correlation coefficient of
0.966 in the validation set. The Bland-Altman analysis showed a bias of 0.0 ml and
a relative large spread with the 95% limits of agreement between 20 and 20 ml (see
Figure. 4.)

Figure 4: Scatterplot of the subarachnoid hemorrhage volumes as determined by the CNN and by the

manual delineation (left) and Bland Altman plot of the differences and averages of these volumes.

The scatter plot shows a high agreement (intraclass correlation coefficient of 0.966), the Bland

Altman plot show an ignorable bias (0.0 ml) and large spread (95% limits of agreement between 20

and 20 ml).

An average Dice coefficient of 0.63 ± 0.16 ranging between 0.19 and 0.92, was obtained
for the test set. Figure. 5 shows images from the test together with the ground truth
segmentations, probability maps generated by the CNN, and final binary segmentation.
After intracranial region segmentation and threshold segmentation to exclude trivial
background voxels, the method achieved a voxelwise classification with accuracy = 0.93,
sensitivity = 0.94, specificity = 0.95, and area under the receiver operating characteristic
curve = 0.99. The proposed SAH segmentation outperformed the baseline segmentation
methods, which achieved an average Dice of 0.42 and 0.40 for the refined threshold
segmentation and U-Net segmentation, respectively.

Chapter 6

100

Figure 5: Sample segmentation from the proposed convolutional neural network. From top to bottom,

the Dice coefficient is 0.30, 0.45, 0.60, and 0.75. From left to right, the columns show a slice of

the input CT scan, the reference segmentation, the output probability map, and the final binary

segmentation. The probability value threshold of 0.84 was optimal for the dichotomization into

hemorrhage and background. The color scale indicates the different probability values ranging from

0.8 (blue) to 1.0 (red). (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article.)

The average Dice coefficient achieved by the CNNs with different hyperparameters
ranged from 0.40 to 0.63. The hyperparameter with most impact in the accuracy
was the patch size. The only difference in hyperparameter values between the CNNs
with highest and lowest average Dice coefficient was the size of the input patch. The
input patch size of the CNN with lowest average Dice coefficient was 7 x 7 x 1. Using
dropout or any of the evaluated post processing techniques resulted in differences in
average Dice coefficients 3% or lower. The remaining hyper parameters had very small
impact in the average Dice coefficient. CNNs with 3 and 4 layers had an average Dice

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

101

coefficient 1% and 2% inferior respectively. The different values for number of nodes in
the fully connected layers resulted in a variation of 1% in the average Dice coefficient.
The different values for all remaining hyper parameters resulted in a maximum variation
of 2% in the average Dice coefficient.

Regarding the SAH - ischemic stroke differentiation, the optimized cut-off probability
value for generating the binary segmentations is 0.9, and the minimum hemorrhage
volume for having a positive SAH prediction is 6.6 ml. The SAH detection achieved an
accuracy of 0.96, with a sensitivity of 1.00 and a specificity of 0.91.

The average Dice coefficient was 0.66 ± 0.19 for SAH segmentation in the rebleed
patients. Figure. 6 shows a sample segmentation from a rebleed patient and illustrates
that good segmentation results can be achieved despite the metal artifacts.

Figure 6: Sample results from a rebleed patient (first row) and an ischemic stroke patient (second

row). From left to right we have the original CT scan, the probability map generated by the

convolutional neural network, and the automatically generated binary segmentation. In the first

row, the final binary segmentation is not affected by the metal artifacts. In the second row, a blood

clot is misclassified as hemorrhage. The proposed method for subarachnoid hemorrhage (SAH)

detection correctly detected this ischemic stroke patient as not a SAH patient. This happened because

the volume of the segmented blood clot does not surpass the minimum required volume for a positive

SAH prediction.

Chapter 6

102

4. Discussion

The proposed CNN architecture achieved a high accuracy in SAH volume, segmentation,
and differentiation from acute ischemic stroke patients. The accuracy of volumetric
SAH segmentation was similar to expert agreement. Moreover, we have shown that this
approach is also suitable for SAH detection in patients with rebleeds, for whom the CT
images may have severe artifacts.

Supervised automated segmentation methods require accurate reference standards
during learning and accuracy assessments. Limited interobserver agreement hampers
the generation of high-quality training data and makes it difficult to use CNNs or
other supervised learning methods. The study by Boers et al. compared the manual
SAH segmentations produced by two experienced radiologists and reported an average
Dice coefficient of 0.64 ranging from 0.00 to 0.86. Thus, the average Dice coefficient
achieved by the proposed CNN in both the SAH and rebleed patients is comparable
with the agreement of expert radiologists.

SAH is a type of intracranial hemorrhage. Various approaches for automated
segmentation of intracranial hemorrhages in CT scans have been proposed such as
thresholding [17–19], region growing [17], clustering [17,18,20–22], active contour
[17], graph cut [23], random-forest [24], level-set [21,22,25,26], and others [27–30].
None of these approaches were thoroughly tested with images from SAH patients. The
only available method for automatic SAH segmentation was proposed by Boers et al.
and reported an average Dice coefficient of 0.55. Moreover, our proposed method also
outperforms refined threshold segmentations and the U-Net based approach.

Another advantage of the proposed CNN over the method by Boers et al. is the
processing time. While the proposed CNN only needs around 30 s to segment or detect
SAH in a CT scan, the method by Boers et al. required several minutes.

Differently from other CNN-based classifications, the proposed method always
generates a SAH probability map that can be visually inspected by human experts
or automatically postprocessed for SAH detection. When this probability map was
postprocessed for SAH detection instead of segmentation, a high detection accuracy
was achieved. However, since the SAH segmentation was trained with only SAH
images, we hypothesize that this leads to an overestimation of SAH volume due to false
positive predictions. This effect can be visualized in Figure. 6, where a thrombus was
misclassified as a hemorrhage. To compensate for these false positive predictions, we
opted for defining a minimum segmented SAH volume for a positive SAH detection.
We validated and tested the differentiation of SAH and ischemic stroke patients only.

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

103

Thus, this detection is not yet suited for clinical use. For example, venous thrombosis
could be misclassified as SAH since both conditions are presented with similar image
features. On the other hand, these probability maps can help human experts to perform
faster NCCT assessments because they highlight the regions of the NCCT scan that are
more likely to be SAH. This was the approach used for the generation of the hemorrhage
segmentations of the rebleed patients.

Fast and accurate SAH segmentation can lead to more precise prediction of patient
outcome. The work by Zijlstra et al. [31] already demonstrated that the SAH volume is
associated with DCI. In addition, accurately and quickly eliminating SAH as the type
of stroke may have a major impact in patient outcome, since this can lead to a fast start
of the ischemic stroke treatment and a safer administration of clot dissolving agent.
However, additional research is still needed to demonstrate the value of the proposed
CNN in clinical practice.

To conclude, we demonstrated that the proposed CNN can be used for fast detection
and volumetric SAH segmentation with similar accuracy as expert radiologists. This was
achieved despite the difficulties in producing accurate ground truths and despite the
large difference between the number of hemorrhage and background voxels.

Chapter 6

104

References

1.	 Vergouwen, Mervyn DI, et al. “Time trends in causes of death after aneurysmal subarachnoid
	 hemorrhage: a hospital-based study.” Neurology 86.1 (2016): 59-63.
2.	 Van Gijn, Jan, Richard S. Kerr, and Gabriel JE Rinkel. “Subarachnoid haemorrhage.” The
	 Lancet 369.9558 (2007): 306-318.
3.	 van Donkelaar, Carlina E., et al. “Predictive factors for rebleeding after aneurysmal subarachnoid
	 hemorrhage: rebleeding aneurysmal subarachnoid hemorrhage study.” Stroke 46.8 (2015): 2100-2106.
4.	 van der Steen, Wessel E., et al. “Radiological scales predicting delayed cerebral ischemia in subarachnoid
	 hemorrhage: systematic review and meta-analysis.” Neuroradiology 61.3 (2019): 247-256.
5.	 Fisher, C. M., J. P. Kistler, and J. M. Davis. “Relation of cerebral vasospasm to subarachnoid hemorrhage
	 visualized by computerized tomographic scanning.” Neurosurgery 6.1 (1980): 1-9.
6.	 Frontera, Jennifer A., et al. “Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the
	 modified fisher scale.” Neurosurgery 59.1 (2006): 21-27.
7.	 Hijdra, A., et al. “Grading the amount of blood on computed tomograms after subarachnoid
	 hemorrhage.” Stroke 21.8 (1990): 1156-1161.
8.	 Kramer, Andreas H., et al. “A comparison of 3 radiographic scales for the prediction of delayed ischemia
	 and prognosis following subarachnoid hemorrhage.” Journal of neurosurgery109.2 (2008): 199-207.
9.	 Van der Jagt, M., et al. “Interobserver variability of cisternal blood on CT after aneurysmal subarachnoid
	 hemorrhage.” Neurology 54.11 (2000): 2156-2158.
10.	Boers, A. M., et al. “Automatic quantification of subarachnoid hemorrhage on noncontrast
	 CT.” American journal of neuroradiology 35.12 (2014): 2279-2286.
11.	Zijlstra, I. A., et al. “Association of automatically quantified total blood volume after aneurysmal
	 subarachnoid hemorrhage with delayed cerebral ischemia.” American Journal of Neuroradiology 37.9
	 (2016): 1588-1593.
12.	Ramos, Lucas Alexandre, et al. “Machine learning improves prediction of delayed cerebral ischemia in
	 patients with subarachnoid hemorrhage.” Journal of neurointerventional surgery 11.5 (2019): 497-502.
13.	Li, Yonghong, et al. “Automatic detection of the existence of subarachnoid hemorrhage from clinical
	 CT images.” Journal of medical systems 36.3 (2012): 1259-1270.
14.	Berkhemer, Olvert A., et al. “A randomized trial of intraarterial treatment for acute ischemic stroke.” n
	 Engl J Med 372 (2015): 11-20.
15.	Berge, Jennifer K., and Ronald A. Bergman. “Variations in size and in symmetry of foramina of the
	 human skull.” Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists
	 and the British Association of Clinical Anatomists 14.6 (2001): 406-413.
16.	Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for biomedical
	 image segmentation.” International Conference on Medical image computing and computer-assisted
	 intervention. Springer, Cham, 2015.
17.	Bhadauria, N. S., et al. “Performance evaluation of segmentation methods for brain CT images based
	 hemorrhage detection.” 2015 2nd International Conference on Computing for Sustainable Global
	 Development (INDIACom). IEEE, 2015.

Automated segmentation of subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r

6

105

18.	Gautam, Anjali, and Balasubramanian Raman. “Automatic segmentation of intracerebral hemorrhage
	 from brain CT images.” Machine intelligence and signal analysis. Springer, Singapore, 2019. 753-764.
19.	Zhang, Yuanxiu, et al. “Detection and quantification of intracerebral and intraventricular hemorrhage
	 from computed tomography images with adaptive thresholding and case-based reasoning.” International
	 journal of computer assisted radiology and surgery 8.6 (2013): 917-927.
20.	Sharma, Bhavna, and K. Venugopalan. “Automatic segmentation of brain ct scan image to identify
	 hemorrhages.” International Journal of Computer Applications 40.10 (2012): 1-5.
21.	Prakash, KN Bhanu, et al. “Segmentation and quantification of intra-ventricular/cerebral hemorrhage
	 in CT scans by modified distance regularized level set evolution technique.” International journal of
	 computer assisted radiology and surgery 7.5 (2012): 785-798.
22.	Singh, Pankaj, Vandana Khanna, and Meenu Kamal. “Hemorrhage segmentation by fuzzy c-mean with
	 Modified Level Set on CT imaging.” 2018 5th International Conference on Signal Processing and
	 Integrated Networks (SPIN). IEEE, 2018.
23.	Sun, Mingjie, et al. “Intracranial hemorrhage detection by 3D voxel segmentation on brain CT
	 images.” 2015 International Conference on Wireless Communications & Signal Processing (WCSP). IEEE,
	 2015.
24.	Scherer, Moritz, et al. “Development and validation of an automatic segmentation algorithm for
	 quantification of intracerebral hemorrhage.” Stroke 47.11 (2016): 2776-2782.
25.	Liao, Chun-Chih, et al. “A multiresolution binary level set method and its application to intracranial
	 hematoma segmentation.” Computerized Medical Imaging and Graphics33.6 (2009): 423-430.
26.	Shahangian, Bahareh, and Hossein Pourghassem. “Automatic brain hemorrhage segmentation and
	 classification algorithm based on weighted grayscale histogram feature in a hierarchical classification
	 structure.” Biocybernetics and Biomedical Engineering 36.1 (2016): 217-232.
27.	Roy, Snehashis, et al. “Intraparenchymal hemorrhage segmentation from clinical head CT of patients
	 with traumatic brain injury.” Medical Imaging 2015: Image Processing. Vol. 9413. International Society
	 for Optics and Photonics, 2015.
28.	Shahangian, Bahare, and Hossein Pourghassem. “Automatic brain hemorrhage segmentation and
	 classification in CT scan images.” 2013 8th Iranian Conference on Machine Vision and Image Processing
	 (MVIP). IEEE, 2013.
29.	Ray, Soumi, et al. “Intensity population based unsupervised hemorrhage segmentation from brain CT
	 images.” Expert Systems with Applications 97 (2018): 325-335.
30.	Soltaninejad, Mohammadreza, et al. “A Hybrid Method for Haemorrhage Segmentation in Trauma
	 Brain CT.” MIUA. 2014.
31.	Zijlstra, I. A., et al. “Ruptured middle cerebral artery aneurysms with a concomitant intraparenchymal
	 hematoma: the role of hematoma volume.” Neuroradiology 60.3 (2018): 335-342.

7

Renan Sales Barros,a Manon L Tolhuisen,a,b Anna MM Boers,a,c Ivo Jansen,b
Elena Ponomareva,c Diederik W J Dippel,d Aad van der Lugt,e Robert J van
Oostenbrugge,f Wim H van Zwam ,g,h Olvert A Berkhemer,b,e Mayank Goyal ,i

Andrew M Demchuk,j Bijoy K Menon,k Peter Mitchell,l Michael D Hill ,j Tudor
G Jovin,m Antoni Davalos,n Bruce C V Campbell,o,p Jeffrey L Saver,q Yvo B W
E M Roos,r Keith W. Muir,s Phil White,t,u Serge Bracard,v Francis Guillemin,v
Silvia Delgado Olabarriaga,b Charles B L M Majoie,w Henk A Marquering a,b

a Department of Biomedical Engineering and Physics, Amsterdam UMC. location AMC, Amsterdam, the Netherlands
b Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
c Nico-lab, Amsterdam, Netherlands
d Department of Neurology, Erasmus MC - University Medical Center, Rotterdam, Netherlands
e Department of Radiology and Nuclear Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
f Department of Neurology, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, 	
the Netherlands
g Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
h CArduivascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
i Department of Diagnostic Imaging, University of Calgary, Calgary, Alberta, Canada
j Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
k Calgary Stroke Program, University of Calgary, Calgary, Alberta, Canada
l Department of Radiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
m Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, US
n Department of Neurology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain, Badalona, Spain
o Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
p Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
q Department of Neurology, UCLA, Los Angeles, California, US
r Department of Neurology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
s 9Institute of Neuroscience & Psychology, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, Scotland, UK
t 20Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
u 1Department of Neuroradiology, Newcastle upon Tyne Hospitals, Newcastle upon Tyne, UK
v CIC1433-¬Epidémiologie Clinique, Inserm, Centre Hospitalier Régional et Universitaire de Nancy, Université de Lorraine,
Nancy, France
w Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, Amsterdam, the Netherlands

Chapter 7
Automatic segmentation of cerebral
infarcts in follow-up computed
tomography images with convolutional
neural networks

•	 Barros, Renan Sales, et al. “Automatic segmentation of cerebral infarcts in follow-up computed tomography images with
	 convolutional neural networks.” Journal of NeuroInterventional Surgery 12.9 (2020): 848-852.
•	 First author, journal, https://jnis.bmj.com/content/12/9/848

Chapter 7

108

Abstract

Background and purpose: Infarct volume is a valuable outcome measure in treatment
trials of acute ischemic stroke and is strongly associated with functional outcome. Its
manual volumetric assessment is, however, too demanding to be implemented in clinical
practice.

Objective: To assess the value of convolutional neural networks (CNNs) in the automatic
segmentation of infarct volume in follow-up CT images in a large population of patients
with acute ischemic stroke.

Materials and methods: We included CT images of 1026 patients from a large pooling
of patients with acute ischemic stroke. A reference standard for the infarct segmentation
was generated by manual delineation. We introduce three CNN models for the
segmentation of subtle, intermediate, and severe hypodense lesions. The fully automated
infarct segmentation was defined as the combination of the results of these three CNNs.
The results of the three-CNNs approach were compared with the results from a single
CNN approach and with the reference standard segmentations.

Results: The median infarct volume was 48mL (IQR 15–125mL). Comparison between
the volumes of the three-CNNs approach and manually delineated infarct volumes
showed excellent agreement, with an intraclass correlation coefficient (ICC) of 0.88.
Even better agreement was found for severe and intermediate hypodense infarcts, with
ICCs of 0.98 and 0.93, respectively. Although the number of patients used for training
in the single CNN approach was much larger, the accuracy of the three-CNNs approach
strongly outperformed the single CNN approach, which had an ICC of 0.34.

Conclusion: Convolutional neural networks are valuable and accurate in the quantitative
assessment of infarct volumes, for both subtle and severe hypodense infarcts in follow-
up CT images. Our proposed three-CNNs approach strongly outperforms a more
straightforward single CNN approach.

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

109

Introduction

Measuring the volume of infarcts on non-contrast computed tomography (NCCT)
scans provides a quantitative assessment of infarcted brain tissue resulting from ischemic
stroke. Follow-up infarct volume measured after 24hours from onset [1] is a valuable
predictor of functional outcome. Infarct volume has been suggested as a surrogate
endpoint for classic patient outcome scales in multiple randomized controlled trials [2].
By combining infarct volume with infarct location, a more precise prediction of patient
outcome can be achieved [3].

The reference standard for infarct segmentation is manual delineation by medical
experts. However, manual delineation has several disadvantages as it is time-demanding,
subjective, prone to errors, and costly [4]. Accordingly, manual delineation does not
work well in large cohort studies.

Convolutional neural networks (CNNs) have outperformed many existing image analysis
methods for image classification and image segmentation. CNNs have produced good
segmentation results in multiple medical imaging domains, including segmentation of
ischemic stroke lesions in magnetic resonance images of the brain [5-7]. In this study, we
evaluated the usefulness of CNNs for automatic segmentation of infarcted brain tissue
in follow-up NCCT scans from patients with an acute ischemic stroke.

Materials and methods

Image data
We used anonymized image data from the HERMES collaboration [8]. This collaboration
combined clinical and image data from seven clinical trials that investigated the efficacy
of endovascular therapy in patients with acute ischemic stroke. Central medical ethics
committees and research boards of each participating hospital approved each trial and
the use of anonymized image data in this retrospective study. All patients, or their legal
representatives, provided written informed consent.

We used image data only from patients with follow-up NCCT acquired between
12hours and 2 weeks after stroke onset and for whom a reference infarct segmentation
was available. A total of 1026 patients had follow-up NCCT imaging acquired within
the selected time window and with an available reference segmentation. Thin-slice image
data were reconstructed into scans with 5mm slice thickness.

Chapter 7

110

Reference segmentations
The reference infarct segmentation on the follow-up NCCT scans was manually
delineated by one of two experienced observers, as described by Boers et al [9]. In short,
infarcts were identified as hypodense areas. Infarcted tissue in the ipsilateral hemisphere
with characteristics of an old infarct were excluded from the reference segmentation.
NCCT scans of patients who underwent decompressive hemicraniectomy were excluded.
Parenchymal hemorrhages within or adjacent to the infarcted area were included in the
reference segmentation. A standard window width of 30 Hounsfield units (HU) and
center level of 35 HU were used to limit variation between observers. If multiple follow-
up images were available, reference segmentation was performed in the latest acquired
scan. The manual segmentations were checked by one of three expert radiologists and,
when necessary, corrections were made.

Preprocessing
To exclude trivial voxels that were of no interest, such as air or skull, we used automatic
methods for intracranial region and cerebrospinal fluid (CSF) segmentation. First,
we excluded all voxels outside the brain using an intracranial region segmentation.
Subsequently, we also discarded all voxels selected by the CSF segmentation. All
discarded voxels were neither used to train the CNN nor used for accuracy testing of
the CNN.

The intracranial region segmentation uses the size range of the foramina of the skull, as
reported by Berge et al, [10] and typical HU values of the skull. This segmentation was
performed according to the following steps:

	 	A threshold-based segmentation was performed to segment bones. We
		 considered everything with intensity >160 HU as bone.
	 	A morphological dilatation with a 7mm radius was used to close all foramina of
		 the skull except the foramen magnum.
	 	The center of gravity of the segmented bone was used as a seed for a region
		 growing inside the skull.
	 	A morphological dilatation with a 7mm radius was applied to the region
		 growing result to bring the segmented intracranial region close to the skull
		 border.
	 	The foramen magnum was detected by evaluation of the segmented area in each
		 individual slice from top to bottom. The foramen magnum slice was determined
		 as the first slice with a segmented area < 900 mm2 after the slice with the
		 maximum segmented area. All voxels below the foramen magnum slice were
		 excluded from the segmentation.

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

111

The CSF segmentation was performed by selecting the voxels around the centroid of the
segmented intracranial region as seeds for region growing. All voxels within a maximum
distance of 15mm from this centroid and with density values between −5 and 13 HU
were used as seeds. The lower and upper thresholds of this region growing were also −5
and 13 HU.

We used a previously presented method for automated intracranial hemorrhage
segmentation11 to exclude the parenchymal hemorrhages of the CNN-based infarct
segmentation. These hemorrhage voxels were not used to train the CNN. However, for
infarct volume accuracy testing, any area that was classified as hemorrhage was added to
the infarct segmentation.

CNN-based infarct segmentation
The CNN architecture used in this study was developed in-house. Its hyperparameters
were optimized for segmentation of a single foreground structure in head NCCT scans,
which in this case was the infarcted brain tissue. Previously, the same CNN architecture
was successfully used for intracranial hemorrhage segmentation [11]. This CNN
architecture determines the probability of the voxel at the center of an image patch
being foreground (infarcted tissue) or background (any other tissue). This probability
was subsequently dichotomized using a cut-off value, which was optimized with the
data in the validation set.

The CNN architecture has two convolutional layers followed by two fully connected
dense layers. Each dense layer has 256 nodes. The size of the input patch was 19×19×3
voxels; 19×19 voxels in the axial plane and three slices high. Each slice of the input
patch was processed as a different image channel. After each convolutional layer, there is
a max-polling layer with a 2×2 kernel and a 2×2 stride. The first convolutional layer has
64 feature maps and the second has 128 feature maps. Both convolutional layers have
kernels with size 5×5.

The hypodensity of the infarcted tissue in NCCT scans is related to breakdown of cells
and its fluid content. As shown in figure 1, the infarcted areas in the three NCCT scans
have different HU values. In figure 1, we also show the distribution of the average
HU values of the infarct reference segmentations. In our population, the HU value
distribution depicted three peaks, which we named subtle, intermediate, and severe
hypodense infarcts. Because of this observation, we trained three CNNs. Each of
these CNNs was trained to classify a different hypodensity distribution of infarcted
brain tissue. We grouped all patients according to the hypodensity of the delineated
infarct. We used the average HU value of the infarction for this grouping. The average
infarct intensity was computed after excluding the hemorrhage voxels of the reference

Chapter 7

112

segmentation. The thresholds that define each infarction class were (14, 22) HU for
severe, (22, 32) HU for intermediate, and (32, 44) HU for subtle.

Figure 1: Histogram of average infarct intensities of the manually delineated infarcts. The left

CT image at the top displays a relatively old infarct with a severe hypodensity; in the middle, an

intermediate old infarct is shown; and the image on the right shows a relatively young infarct with a

subtle hypodensity.

We used 570 randomly selected scans to train the three CNNs. We augmented the
number of training infarct patches by flipping along the sagittal plane and by rotation.
No data augmentation was applied to the non-infarct patches. We used an additional 60
scans to optimize the cut-off value for generating binary segmentations, 20 scans for each
CNN. The union of the results of these three CNNs and the result of the intracranial
hemorrhage segmentation was considered to be the automated generated infarct
segmentation. The remaining 396 scans were used to test segmentation performance.

For comparison, we also trained a single CNN architecture for the segmentation of all
types of infarction. The same methodology and data were used for this single CNN
approach and the three-CNNs approach.

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

113

We used the Dice coefficient as an accuracy measure of the infarct segmentation
performance in the test set. We calculated the intraclass correlation coefficients (ICCs)
to compare the reference and the automatically generated infarct volumes. ICCs were
interpreted according to the American Psychological Association et al [12]: < 0.4 is poor;
≥0.4 to < 0.6 is fair, ≥0.6 to <0.75 is good, and ≥0.75 is excellent. We opted not to compare
our approach with U-Net or Mask R-CNN architectures. Both these architectures are
more extensive than the proposed architecture and, in a straightforward approach, their
input would be an entire NCCT slice. Since we used 5mm reconstructions, and not all
slices from a NCCT scan have infarction, we did not expect a satisfactory segmentation
given the limited number of NCCT slices with infarcted brain tissue that would be used
as training samples.

Result

The median infarct volume was 48 (IQR 15–125)mL overall, with 29 (IQR 11–86), 46
(IQR 18–101), and 89 (IQR 35–210)mL for patients with a subtle, intermediate, and
severe hypodense infarct, respectively.

The comparison between manually delineated infarct volumes and the volumes from
the three-CNNs approach showed an excellent agreement with an ICC of 0.88. Even
better agreement was observed for severe and intermediate hypodense infarcts with
ICCs of 0.98 and 0.93, respectively. Agreement was good for subtle hypodense infarcts,
with an ICC of 0.66. In figure 2, the agreement between the infarct volumes is shown.
Agreement of the single CNN approach was poor, with an ICC of 0.34.

The average Dice coefficient achieved by the three-CNNs approach was 0.57±0.26. The
average Dice coefficients for each category were 0.78±0.09, 0.61±0.21, and 0.37±0.26,
for the severe, intermediate, and subtle hypodense infarcts, respectively. The method
based on a single CNN achieved an average Dice coefficient of 0.18±0.23. Table 1
shows a summary of the segmentation performance measures. In figure 3, we show some
sample results from the three-CNNs approach.

Chapter 7

114

Figure 2: Top: Comparison of the infarct volume of the results from the three-CNNs approach (y

axis) with the reference to infarct volume (X axis). Bottom: Bland-Altman plots of the infarct

volumes. The difference in the volume determination is given along the Y axis, and the average of

the automated and reference infarct volume is depicted along the x axis. The different columns show

separate severe, intermediate, and subtle hypodensity infarcts.

Table 1: Results of automated infarct segmentation for severe, intermediate, and subtle hypodense

infarcts and the average over the whole test dataset for the three-CNNs approach. for comparison with

the accuracy of the single CNN approach.

ICC Dice Test set size
Three-CNNs approach Severe 0.98 0.78±0.09 67

Intermediate 0.93 0.61±0.21 204
Subtle 0.66 0.37±0.26 125
All infarctions 0.88 0.57±0.26 396

Single CNN approach All infarctions 0.34 0.18±0.23 396

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

115

Figure 3: Sample results. from left to right we have input image, union of the segmentation results,

and reference segmentation. For simplicity, in the center column we rendered the hemorrhages (blue)

over the subtle infarcts (yellow), subtle infarcts over standard infarcts (orange), and standard infarcts

over severe infarcts (red). The Dice coefficients from top to bottom were 0.10, 0.26, 0.40, 0.55, and

0.70. In the left colum the original images are shown. The right shows the merged segmentations.

Chapter 7

116

Discussion

We have shown that CNNs are valuable in the automated cerebral infarct segmentation
in follow-up CT images of patients with acute ischemic stroke, with excellent agreement
with volumetric assessments of expert observers. Owing to the wide variety of the
severity of hypodensities, we proposed using the combination of three CNNs, which
strongly outperformed a single CNN approach.

Infarct location and infarct volume have been strongly associated with outcome of
patients with ischemic stroke in several studies [3, 13]. Reliably segmenting cerebral
infarcts is challenging because of pathophysiological heterogeneity, presence of
preexisting pathologies such as old infarcts, leukoaraiosis, atrophy, intrinsic differences in
attenuation of grey and white matter, and hemorrhagic transformation. Thus, to be able
to develop robust automated methods for cerebral infarct segmentation, heterogeneous
image data are required. The proposed method was evaluated in a large cohort of patients
from seven multicenter randomized trials enrolling in multiple countries. The follow-
up NCCT scans used in our study also had a (pragmatically) wide range of follow-up
time after stroke onset, ranging from 12hours to 2 weeks. Despite these variations, the
proposed approach based on three different CNNs produced accurate cerebral infarct
segmentations. The volume of these segmentations had good or excellent correlation with
the reference infarct volume. We have shown that accuracy for old, severe hypodense
infarcts was higher than for subtle hypodense infarcts. Note that, although we presented
the results in a selective manner, exactly the same procedure was applied for the infarct
segmentations in all the three different infarct categories

A number of previous studies on automatic infarct core segmentation in various image
modalities have been presented. Multiple CNN-based techniques have been introduced
recently. On baseline CT perfusion, state-of-the-art infarct segmentation was obtained
by a CNN architecture proposed by Liu et al, [14] achieving an average Dice coefficient
of 0.51±0.31. On MRI the CNN architecture proposed by Kamnitsas et al [6] reported
an average Dice coefficient of 0.66±0.24. Maier et al [7] tested several methods with
different types of MR images. Their best reported result was achieved by a CNN with
an average Dice coefficient of 0.73±0.18. The current state-of-the-art method for
infarct segmentation on MR images is the CNN proposed by Zhang et al, [5] which
achieved an average Dice coefficient of 0.79 in a test set with 90 images. Although
good segmentation results were achieved in CT perfusion and MR images, NCCT
scans are still the predominant method for assessment of follow-up infarct in patients
with ischemic stroke. Therefore, we focused on using NCCT as input for the proposed
cerebral infarct segmentation method.

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

117

On NCCT scans, two semiautomated methods are available for infarct segmentation.
The semiautomated method by Bardera et al [15] was evaluated with 18 patients and
reported a Pearson’s correlation coefficient of 0.98 and 0.97 compared with the manual
segmentations from two different observers. The semiautomated method by Kuang
et al [16] was evaluated with 16 patients and reported an average Dice coefficient of
0.76±0.10. By contrast, our method is both fully automated, which avoids the variability
introduced by the user inputs, and has been tested on a far larger number of patients.

Other fully automated methods for infarct segmentation on NCCT are available. The
method by Boers et al [17] reported an average Dice coefficient of 0.74±0.13 in a test set
with 34 images. The average onset to follow-up scanning time in the study by Boers et
al was 4.1±2.3 days. The average Dice coefficient between human observers in the study
by Boers et al was 0.84 ranging from 0.63 to 0.94, which was somewhat higher than the
agreement we achieved. However, it should be noted that the manual delineation was
performed for old, hypodense infarcts only. The method by Vos et al [18] reported an
average Dice coefficient of 0.74±0.09 in a test set with 30 images. In the study by Vos
et al, the average time between onset and scan acquisition was 3 days ranging between
2 and 5 days. More recently, the method by Gillebert et al [19] was evaluated with 12
patients with ischemic stroke and reported Dice coefficients ranging from 0.27 to 0.71.
The scans used to evaluate the method by Gillebert et al had an average acquisition time
after onset of 40hours. Their method was evaluated in a limited set of selected images
to illustrate different types of ischemic stroke lesions. In contrast with the methods of
Boers et al, Vos et al, and Gillebert et al, our method has been thoroughly evaluated with
a large and diverse test set.

The data used in our study included follow-up scans as early as 12hours after stroke
onset. Infarcts in these early follow-up scans might be subtle and harder to segment.
Thus, it was expected that our method would achieve a lower accuracy in such scans.
Moreover, the manual delineation in these scans is more difficult, resulting in more
variation among experts. This may also strongly contribute to the lower agreement of
the automated method with the reference standard. It some cases (also in figure 3),
the network in charge of segmenting subtle infarcts overestimates the infarct region by
including subtle hypodense areas which are not part of the infarction. Another common
source of misclassifications by our proposed method is the inclusion of cerebral sulci in
the results of the network trained to segment severe infarctions (figure 3).

A major limitation is the highly selective nature of the HERMES population. All patients
had anterior circulation stroke confirmed by CT angiography, mostly within 6 hours of
onset. Patients were excluded from most studies if they had prior disability or low Alberta
Stroke Program Early CT scores. As a result, many of the background abnormalities

Chapter 7

118

typical in populations with acute stroke were less prevalent in our population. Moreover,
average age was around 69, and very elderly patients were under-represented. Despite
variation among study populations, these still represent a much more homogeneous
group than patients with stroke as a whole.

Overall, the proposed method achieved an excellent correlation with the reference
infarct volume. This suggests that our method can be used in clinical trials, replacing
tedious manual delineations. Its value in functional outcome prediction for patients
with ischemic stroke and its value as a secondary outcome measure in treatment trials
still has to be established.

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

119

References

1.	 Berkhemer, Olvert A., et al. “Imaging biomarkers for intra-arterial stroke therapy.” Cardiovascular
	 engineering and technology 4.4 (2013): 339-351.
2.	 Warach, Steven J., et al. “Acute stroke imaging research roadmap III imaging selection and
	 outcomes in acute stroke reperfusion clinical trials: consensus recommendations and further research
	 priorities.” Stroke 47.5 (2016): 1389-1398.
3.	 Ernst, Marielle, et al. “Association of computed tomography ischemic lesion location with functional
	 outcome in acute large vessel occlusion ischemic stroke.” Stroke 48.9 (2017): 2426-2433.
4.	 Doyle S, Forbes F, Jaillard A. Sub-acute and Chronic Ischemic Stroke Lesion MRI Segmentation. In:
	 Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer International
	 Publishing, (2018): 111–22.
5.	 Zhang, Rongzhao, et al. “Automatic segmentation of acute ischemic stroke from DWI using 3-D fully
	 convolutional DenseNets.” IEEE transactions on medical imaging 37.9 (2018): 2149-2160.
6.	 Kamnitsas, Konstantinos, et al. “Efficient multi-scale 3D CNN with fully connected CRF for accurate
	 brain lesion segmentation.” Medical image analysis 36 (2017): 61-78.
7.	 Maier, Oskar, et al. “Classifiers for ischemic stroke lesion segmentation: a comparison study.” PloS
	 one 10.12 (2015): e0145118.
8.	 Goyal, Mayank, et al. “Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis
	 of individual patient data from five randomised trials.” The Lancet387.10029 (2016): 1723-1731.
9.	 Boers, Anna MM, et al. “Mediation of the relationship between endovascular therapy and functional
	 outcome by follow-up infarct volume in patients with acute ischemic stroke.” JAMA neurology 76.2
	 (2019): 194-202.
10.	Berge, Jennifer K., and Ronald A. Bergman. “Variations in size and in symmetry of foramina of the
	 human skull.” Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists
	 and the British Association of Clinical Anatomists 14.6 (2001): 406-413.
11.	Barros RS, der SWEvan, Boers AMM, et al. (Submmited) automated detection and segmentation of
	 subarachnoid hemorrhages with Convolutional neural networks. Radiol Artif Intell (2019);In press.
12.	Cicchetti, Domenic V. “Guidelines, criteria, and rules of thumb for evaluating normed and standardized
	 assessment instruments in psychology.” Psychological assessment 6.4 (1994): 284.
13.	Bivard, Andrew, et al. “Validating a predictive model of acute advanced imaging biomarkers in ischemic
	 stroke.” Stroke 48.3 (2017): 645-650.
14.	Liu, Liangliang, et al. “Multi-scale deep convolutional neural network for stroke lesions segmentation
	 on CT images.” International MICCAI Brainlesion Workshop. Springer, Cham, 2018.
15.	Bardera, Anton, et al. “Semi-automated method for brain hematoma and edema quantification using
	 computed tomography.” Computerized medical imaging and graphics33.4 (2009): 304-311.
16.	Kuang, Hulin, et al. “Joint segmentation of intracerebral hemorrhage and infarct from non-contrast
	 CT images of post-treatment acute ischemic stroke patients.” International Conference on Medical Image
	 Computing and Computer-Assisted Intervention. Springer, Cham, 2018.

Chapter 7

120

17.	Boers, Anna M., et al. “Automated cerebral infarct volume measurement in follow-up noncontrast CT
	 scans of patients with acute ischemic stroke.” American Journal of Neuroradiology 34.8 (2013): 1522-
	 1527.
18.	Vos, Pieter C., et al. “Automatic detection and segmentation of ischemic lesions in computed tomography
	 images of stroke patients.” Medical imaging 2013: computer-aided diagnosis. Vol. 8670. International
	 Society for Optics and Photonics, 2013.
19.	Gillebert, Celine R., Glyn W. Humphreys, and Dante Mantini. “Automated delineation of stroke
	 lesions using brain CT images.” NeuroImage: Clinical 4 (2014): 540-548.

 Automatic segmentation of cerebral infarcts in follow-up computed tomography images
with convolutional neural networks

Ch
ap

te
r

7

121

8

Chapter 8
Discussion

Chapter 8

124

Discussion

Processing time is brain
Treatment decisions in stroke are heavily dependent on imaging. The same way that
newer generations of digital cameras have higher image resolutions and bigger image
files, a comparable trend is observed with CT imaging for stroke patients. Early scans
had poor resolution, thick slices, and covered only a small portion of the patient head.
Nowadays, is not uncommon to find CT perfusion acquisitions with 30 volumes
covering the entire patient head with tens of slices containing 512x512 voxels. It is
unrealistic to expect that all these gigabytes of information are visually inspected by a
radiologist without any help of a computer. It is also not reasonable to expect that all
stroke centers around the world have dedicated supercomputers to analyze all these
image data as fast as required for the work up of stroke patients.

In other words, there is an increasing demand for processing power to analyze
increasingly larger CT scans. The infrastructure to deliver this processing power needs
to be scalable, cost effective, and easily accessible. In this context, the goal of this thesis
was to investigate if high performance computing (HPC) can contribute for fast and
accurate analysis of medical images of acute stroke patients. On top of that, all HPC
technologies used throughout this thesis are easily available to any regular consumer.
All experiments in this thesis were performed using consumer hardware or public cloud
infrastructures. The ambition was also to demonstrate that such HPC infrastructures
can enable advanced image analysis in a fast enough manner to be used in the real-world
workflow of stroke patients. Fast treatment decision in stroke increases the changes of
good patient outcome. Therefore, also processing time is brain.

Amdahl’s law
In the first part of this thesis, we investigated how HPC techniques can be used to speed
up image processing algorithms that analyze CT scans from stroke patients. Initially,
HPC techniques were directly applied to an existing algorithm for cerebral infarct
segmentation in follow-up non-contrast CT (NCCT) scans. This process is described in
Chapter 2. Since the original cerebral infarct segmentation algorithm was fundamentally
sequential, only a limited gain in performance gains was achieved, and the average speed
up was only 30 seconds in the best configuration evaluated. The results presented in
Chapter 2 suggested that to fully benefit from HPC existing image processing algorithms
needed to be modified or entirely redesigned to take advantage of what HPC can offer.
In short, one cannot simply throw 10 times more computing power to an existing
image processing algorithm and expect it to run 10 times faster. If the algorithm is not
suited for taking advantage of the architecture where it is being executed, the obtained
performance gains is limited. Amdahl’s law already stated that there is a limit to speed up

Discussion

Ch
ap

te
r

8

125

of an algorithm regardless of the amount of parallel processing that is available.

Stroke is not a game
The most common architecture used to deliver HPC is based on graphical processing
units (GPUs). GPUs were originally designed for performing the computations needed
to create 30-60 images per second in a video game. In this context, data needed to be
loaded one time into GPU memory and after that, the GPU needed to generate these
30-60 images per second through the game session without minimal additional loading
of data into the GPU memory. This is what GPUs were made for: load data once, do a
lot of computations after using that same data over and over again. The situation is quite
different when processing a CT scan. The data that needs to be loaded often does not fit
into GPU memory, meaning that the data needs to be split into multiple chunks that
are loaded multiple times to be processed only once.

To reduce the impact of this bottleneck, we proposed a compression technique to
address the limitations in memory access when processing a CT scan (Chapter 3). To
have a better measure of the impact of HPC techniques, we adapted an existing image
processing algorithm for running in massive parallel architectures (Chapter 4).

The results presented in Chapter 4 show that the processing of CT perfusion (CTP) scans
can be reduced from around 30 minutes to 8 seconds when using HPC techniques. When
combining HPC and the compression method proposed in Chapter 3, that number was
reduced even further to only 6 seconds. The proposed compression technique achieves
a compression ratio of 2 and, when comparing it with commonly available compression
algorithms, it was able to compress and decompress data 4 times faster than the fastest
available method, which is Run-length encoding (RLE). Although JPEG achieves better
compression ratios (around 4.5), the time needed to compress and decompress required
by JPEG is 11 times longer than the proposed method.

CTP scans are the largest scans acquired during the stroke workflow, with size ranging
between 2.5 GB and 5 GB. Following the results of multiple studies [1 - 3], the
processing of CTP scans became part of the clinical guidelines for stroke management.
Thus, we can conclude that the methods presented in chapters 3 and 4 are relevant for
speeding up the assessment of ischemic stroke patients.

High performing clouds
The analyses presented in chapters 3 and 4 were performed using local workstations.
Given the incidence of stroke worldwide, it is important that a more scalable approach
for delivering HPC techniques is available. In chapter 5, we investigated the use high
performance computing based on cloud infrastructures for improving the stroke

Chapter 8

126

workflow. This investigation concluded that, compared with the traditional workflow,
the usage of cloud-based infrastructures presents several advantages:

	 	It enables sharing of data between hospitals in only a few minutes. Traditionally,
		 several minutes are required to burn a disk with the patient data and much time
		 was required to send such a disk with a cab or ambulance to another hospital.
	 	It enables the use of large-scale cloud computing resources and advanced
		 algorithms for processing the image data. In the traditional setting, the
		 computing power is limited by the infrastructure that is available in the hospital
		 premises.
	 	It allows a Pay-per-use model instead of the large upfront costs for acquiring the
		 necessary infrastructure.
	 	It supports remote collaboration sessions with patient data directly available to
		 all participants.

Jump into the deep
Deep learning emerged as a technique that leverages HPC and large datasets. As the
next step on applying HPC to stroke management, part 2 of this thesis focused on the
development of new deep learning algorithms for the segmentation of subarachnoid
hemorrhages (SAH) and final cerebral infarct volume (FIV). By designing algorithms from
the ground up to be implemented in HPC architectures, the expectation was to achieve
substantially better performance in terms of execution time as well as in terms of accuracy.
In the case of SAH segmentation, the processing time is around 30 seconds with an
average Dice coefficient of 0.63. For comparison, the heuristic-based method proposed by
Boers et al. [4] takes around 5 minutes with an average Dice coefficient of 0.55. The
same approach used was adapted for FIV segmentations. In this case, the same processing
time of around 30 seconds was achieved. For comparison, the FIV segmentation method
described in chapter 2 took around 10 minutes to compute.

The original implementations of the methods in chapters 2, 4, 6, and 7 use some
sort of transformation to reduce the computation load (see summary in Table 1).
Those transformations are required because these methods were implemented to run
sequentially. The counterpart methods proposed in this thesis do not suffer from such a
limitation. Furthermore, the proposed methods have the potential to achieve even faster
processing times if more parallel processing is used.

Discussion

Ch
ap

te
r

8

127

Table 1. Impact image processing algorithms running on HPC platforms.

Task Time of
proposed
method

Time of
reference
method

Transformation used
by reference method

Reference method

Chapter 2 FIV
segmentation

10 minutes 2 hours Thick slice images Boers et al. [5]

Chapter 4 CTP noise
reduction

6 seconds 30 minutes Truncation of kernel
operations

Mendrik et al. [6]

Chapter 6 SAH
segmentation

30 seconds 5 minutes Thick slice images Boers et al. [4]

Chapter 7 FIV
segmentation

30 seconds 10 minutes Thick slice images Chapter 2

You only have to look at the Medusa straight on to see her…
It should be noted that when the results of the chapters in Part 1 were made publicly
available, there was a strong resistance in the medical field against using cloud computing
for processing patient data. This resistance came primarily from concerns regarding
security and patient privacy. The work done in this thesis was part of a larger research
project called Medical Distributed Utilization of Services & Applications (MEDUSA).
This research project pioneered the development of the required technologies for
processing medical data in cloud platforms. Nowadays, most of the concepts that
were initially evaluated during the MEDUSA project are currently implemented in
commercial solutions of companies such as NICO.LAB, Viz, Brainomix, and RapidAI.
All these companies have cloud-based solutions that aim at improving the stroke care
workflow by using advanced image analysis and cloud-based data sharing.

There were also doubts towards the practical aspects of the deep learning techniques
in real clinical workflows. The adoption of deep learning models for radiology-related
tasks were seen with skepticism by most medical professionals because of the lack
of interpretability and explainability offered by these so called “black box” models.
However, as shown in both chapters of Part 2 of this thesis, deep learning models can go
beyond producing simple classification based on an input image. The method used in
chapter 6, for instance, can highlight the visual features that lead to a positive detection
of a SAH. This way, the medical professional can more easily interpret and evaluate
the output of the deep learning model. In addition to the technical developments to
address these interpretability and explainability concerns, there were also advances in
the medical regulations. For instance, the FDA has proposed a regulatory framework for
artificial intelligence and machine learning-based medical software (https://www.fda.
gov/media/122535/download).

Chapter 8

128

The introduction of more inclusion and exclusion criteria for different stroke treatment
options has been a main factor forcing the adoption of deep learning-based methods
for supporting stroke treatment decisions. For example, deep learning models can be
used for measuring differences in clot characteristics to support treatment selection for
mechanical removal of that clot. Alternatively, deep learning models can be used to
determine the eligibility for thrombectomy outside the 6h standard treatment window
in locations where CTP imaging is not available.

Despite the advancements in the field of deep learning in general, when it comes to
application in the medical domain, there is still a need for improvements in terms of
generalization. Unfortunately, the largest datasets available for training deep learning
models for stroke are still around a few thousand images. This way, rare conditions that
happen in, for example, only 5% of cases are poorly represented in such datasets, which
limits the applicability of the trained models in these rare cases. Unfortunately, having
a deep learning model that only works in the easy cases is less useful for the medical
experts. Another common limitation of these models is the need for high quality
ground truth labels. Such labels are difficult, expensive, and time consuming to acquire.
Fortunately, there is an extensive body of research done about unsupervised learning
techniques. Unfortunately, the use of unsupervised learning techniques to support the
stroke workflow is still extremely limited.

Conclusion
This thesis addressed various aspects of the combination of HPC-enabled machine
learning in combination with cloud infrastructures. It has been shown that this
combination has an enormous potential to achieve fast and accurate analysis of large
amounts of radiological images of patients suspected of stroke. These addressed
technologies can democratize the usage of high-quality diagnostic tools which, in turn,
can lead to a significant impact in the stroke care as this thesis shows demonstrations of
benefits of HPC techniques in diagnosis of both ischemic and hemorrhagic stroke. We
have also demonstrated that the clinical stroke workflow can potentially benefit from
cloud-based solutions, and that we can use image analysis algorithms for supporting the
assessment of stroke patients.

Discussion

Ch
ap

te
r

8

129

References

1.	 Albers, Gregory W., et al. “Thrombectomy for stroke at 6 to 16 hours with selection by perfusion
	 imaging.” New England Journal of Medicine 378.8 (2018): 708-718.
2.	 Nogueira, Raul G., et al. “Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit
	 and infarct.” New England Journal of Medicine 378.1 (2018): 11-21.
3.	 Brott, Thomas, et al. “Measurements of acute cerebral infarction: a clinical examination scale.” Stroke 20.7
	 (1989): 864-870.
4.	 Boers, A. M., et al. “Automatic quantification of subarachnoid hemorrhage on noncontrast
	 CT.” American journal of neuroradiology 35.12 (2014): 2279-2286.
5.	 Boers, Anna M., et al. “Automated cerebral infarct volume measurement in follow-up noncontrast CT
	 scans of patients with acute ischemic stroke.” American Journal of Neuroradiology 34.8 (2013): 1522-
	 1527.
6.	 Mendrik, Adriënne M., et al. “TIPS bilateral noise reduction in 4D CT perfusion scans produces high-
	 quality cerebral blood flow maps.” Physics in Medicine & Biology 56.13 (2011): 3857.

Summary

Summary

132

Summary

The aim of this thesis is to investigate the use of high-performance computing (HPC)
techniques in the development of methods for the detection and quantification imaging
biomarkers for supporting the clinical workflow of acute stroke patients. In the first
part of this thesis, we evaluate various HPC technologies and how these technologies
can be leveraged by different image analysis applications used in the context of acute
stroke care. The second part of this thesis focuses on developing and improving methods
to quantitatively assess imaging biomarkers in computer tomography (CT) scans from
stroke patients. In Chapter 2, we evaluated how computers with multiple computing
devices can be used to accelerate medical imaging applications. These computers with
different computing devices, such as multi-core CPUs (central processing units), GPUs
(graphical processing units), and FPGAs (field-programmable gate arrays), are referred
to as heterogeneous platforms. For the evaluation presented in Chapter 2, we used a
new framework named FlowCL. We designed FlowCL for the development of parallel
medical imaging applications running heterogeneous platforms. We compared an
implementation of a region-growing method for cerebral infarct volume measurement
with a new implementation targeted for heterogeneous platforms. The results of this
new implementation are generated with significant speed-up compared to the original
implementation.

Chapter 3 proposes a novel data compression technique that allows the efficient
processing of CT perfusion (CTP) images in GPUs. The size of CTP datasets makes
data transfers to computing devices time-consuming and therefore not suitable in acute
situations. Chapter 3 introduces a fast and lossless compression algorithm for CTP data
to reduce the time spent in such data transfers. The algorithm exploits redundancies
in the temporal dimension of the CTP data and keeps random read-only access to the
image elements directly from the compressed data on the GPU.

Chapter 4 goes a step further and evaluates the algorithm’s usefulness proposed in
Chapter 3 with two different applications: a double threshold segmentation and a
time-intensity profile similarity (TIPS) bilateral filter to reduce noise in CTP scans.
The results show that the processing of compressed data uses between 2 and 2.8 times
less memory and the execution times are between 1.2 and 1.7 times faster than when
processing the original data. The outputs when processing compressed data are identical
to the outputs when processing the original uncompressed data.

Chapter 5 presents a cloud platform for deploying medical applications. The goal of
this platform is to improve acute care workflows by enabling fast medical data exchange,
advanced processing of medical image data, automated decision support, and remote

Summary

133

collaboration between physicians in a secure and responsive virtual space. Chapter 5
describes a prototype implemented in this cloud platform that supports the treatment
of acute stroke patients. As a result, this prototype improves several aspects of the acute
stroke clinical workflow and has the potential to play an essential role in the management
of acute stroke patients.

In Part 2 of this thesis, Chapter 6 presents a convolutional neural network (CNN)
for the detection and volumetric segmentation of subarachnoid hemorrhages (SAH)
in non-contrast CT scans of patients with subarachnoid hemorrhagic stroke. The
CNN was trained with 302 baseline non-contrast CT scans. The final segmentation
performance was evaluated on an additional dataset with 473 baseline scans, and the
SAH volume agreement was high with an intraclass correlation coefficient (ICC) of
0.966. The average Dice coefficient of the volumetric SAH segmentation was 0.63 ±
0.16, which is similar to the interobserver agreement between experts. The CNN was
also evaluated for differentiating between ischemic and hemorrhagic stroke patients and
achieved an accuracy of 0.96. The average CNN detection and segmentation time was
around 30 seconds. In Chapter 7, another method based on CNNs was proposed for
the quantification of the final infarct volumes in follow-up non-contrast CT scans from
ischemic stroke patients. We developed three CNNs for the segmentation of subtle,
intermediate, and severe hypodense lesions. The fully automated infarct segmentation
was generated by merging the results of these three CNNs. The comparison between
the results of the proposed method and the reference segmentations showed an excellent
agreement with an ICC of 0.88.

Samenvatting

Samenvatting

136

Samenvatting

Het doel van dit proefschrift is om het gebruik van high-performance computing
(HPC) technieken te onderzoeken bij de detectie en segmentatie ontwikkeling van
beeldvormende biomarkers ter ondersteuning van de klinische workflow van patiënten
met een acute beroerte. In Deel 1 van dit proefschrift evalueren we verschillende HPC-
technieken en hoe dergelijke technieken kunnen worden ingezet bij verschillende
beeldanalysetoepassingen in de context van zorg voor een acute beroerte. Deel 2 van dit
proefschrift richt zich op het ontwikkelen en verbeteren van de kwantitatieve bepaling
van beeldvormende biomarkers in computertomografie (CT) scans van patiënten met
een beroerte.

In Hoofdstuk 2 hebben we geëvalueerd hoe computers met meerdere computerplatformen
kunnen worden gebruikt om medische beeldvormingstoepassingen te versnellen.
Deze computers met meerdere computerplatformen, zoals multi-core CPU’s (centrale
verwerkingseenheden), GPU’s (grafische verwerkingseenheden) en FPGA’s (field-
programmable gate arrays) worden heterogene platformen genoemd. Voor de evaluatie
die in Hoofdstuk 2 wordt gepresenteerd, hebben we een nieuw raamwerk gebruikt
met de naam FlowCL. We hebben FlowCL ontworpen voor de ontwikkeling van
parallelle medische beeldvormingstoepassingen die op heterogene platformen draaien.
We vergeleken een implementatie van een regio groeiende methode voor het meten van
herseninfarctvolume met een nieuwe implementatie gericht op heterogene platformen.
De resultaten van deze nieuwe implementatie worden aanzienlijk sneller gegenereerd
dan bij de oorspronkelijke implementatie.

Hoofdstuk 3 stelt een nieuwe datacompressie-techniek voor die de efficiënte verwerking
van CT-perfusie (CTP)-beelden in GPU’s mogelijk maakt. De omvang van CTP-
datasets maakt de gegevensoverdracht naar computerapparatuur tijdrovend en daarom
niet geschikt in acute situaties. Hoofdstuk 3 introduceert een snel en lossless compressie-
algoritme voor CTP-gegevens om de tijd die aan dergelijke gegevensoverdrachten wordt
besteed te verminderen. Het algoritme maakt gebruik van redundanties in de temporele
dimensie van de CTP-gegevens en houdt willekeurige alleen-lezen toegang tot de
afbeeldingselementen rechtstreeks vanuit de gecomprimeerde gegevens op de GPU.

Hoofdstuk 4 gaat een stap verder en evalueert het nut van het algoritme dat in
Hoofdstuk 3 is voorgesteld met twee verschillende toepassingen: een segmentatie met
dubbele drempelwaarden en een bilateraal filter voor time-intensity profile similarity
(TIPS) om ruis in CTP-scans te verminderen. De resultaten laten zien dat de verwerking
van gecomprimeerde gegevens tussen de 2 en 2,8 keer minder geheugen gebruikt en
dat de uitvoeringstijden tussen 1,2 en 1,7 keer sneller zijn dan het verwerken van de

Samenvatting

137

originele data. De resultaten bij het verwerken van gecomprimeerde data zijn identiek
aan de resultaten bij het verwerken van de originele ongecomprimeerde data.

Hoofdstuk 5 presenteert een Cloud platform voor het inzetten van medische
applicaties. Het doel van dit platform is het verbeteren van workflows voor acute zorg
door snelle uitwisseling van medische gegevens, geavanceerde verwerking van medische
beeldgegevens, geautomatiseerde beslissingsondersteuning en samenwerking op afstand
tussen artsen in een veilige en responsieve virtuele ruimte mogelijk te maken. Hoofdstuk
5 beschrijft een prototype geïmplementeerd in dit Cloud platform dat de behandeling
van patiënten met een acute beroerte ondersteunt. Als gevolg hiervan verbetert dit
prototype verschillende aspecten van de klinische workflow voor acute beroerte en heeft
het de potentie om een ​​essentiële rol te spelen bij de behandeling van patiënten met een
acute beroerte.

In Deel 2 van dit proefschrift presenteert Hoofdstuk 6 een convolutioneel neuraal
netwerk (CNN) voor de detectie en volumetrische segmentatie van subarachnoïdale
bloedingen (SAH) in niet-contrast CT-scans. Het CNN werd getraind met 302 baseline
non-contrast CT-scans. De uiteindelijke segmentatieprestaties werden geëvalueerd op
een aanvullende dataset met 473 baseline-scans en de SAH-volumeovereenkomst was
hoog met een intraclass correlatiecoëfficiënt (ICC) van 0,966. De gemiddelde Dice-
coëfficiënt van de volumetrische SAH-segmentatie was 0,63 ± 0,16, wat vergelijkbaar is
met de overeenkomst tussen experts. De CNN werd ook geëvalueerd om onderscheid
te maken tussen ischemische en hemorragische beroertepatiënten en bereikte een
nauwkeurigheid van 0,96. De gemiddelde CNN-detectie- en segmentatietijd was
ongeveer 30 seconden. In Hoofdstuk 7 werd een andere methode, gebaseerd op
CNNs, voorgesteld voor de kwantificering van de uiteindelijke infarctvolumes in non-
contrast CT-scans van patiënten met een ischemische beroerte. We hebben drie CNN’s
ontwikkeld voor de segmentatie van subtiele, intermediaire en ernstige hypodense laesies.
De volledig geautomatiseerde infarctsegmentatie werd gegenereerd door de resultaten
van deze drie CNN’s samen te voegen. De vergelijking tussen de resultaten van de
voorgestelde methode en de referentiesegmentaties toonde een excellente overeenkomst
met een ICC van 0,88.

Acknowledgements

Acknowledgements

140

Acknowledgements

What a life-changing journey a PhD can be! I am glad I could count on the support of
my promoters and co-promoters throughout this journey. Antoine, thanks for always
making sure that we had no obstacles with all our Ph.D. plans. Henk, thank you for
all the patience, help, and fantastic fun moments during our MEDUSA-related trips. It
almost feels likes this Ph.D. is more your accomplishment than mine. I honestly think
that another person would not be so patient with this long, long, and let me add an extra
long, nine years waiting time. Silvia, I still remember the first time we met and that you
mentioned that there was a Ph.D. position in Amsterdam that could be suitable for me.
You were always so helpful from the beginning. You even helped me find a flatmate so I
could afford the expensive rent here in Amsterdam. Seriously, this is more than anyone
can ask from a supervisor. I will always be grateful to you both for being part of this
unforgettable journey. I arrived here in the Netherlands with just a suitcase. Now I have
a wife, a daughter, a house, a company, and lots of new friends. It was the opportunity
that you both gave me that led to so many amazing things. And on top of that, a Ph.D.
title.

The good thing about a Ph.D. is that it brings many people with similar interests
together. Thus, most people with whom I shared this nine years journey are also close
friends. And as good friends, they will forgive me for making a short acknowledgment
to them because they know more than anyone how much I need to finish this book. So
here we go!

I want to thank my friends from the department of Biomedical Engineering and Physics:
Mustafa, Emilie, Merel, Bart, Wessel, Haryadi, Lucas, Jorrit, and Marit. Thanks also to
my Brazilian friends that moved to Europe: Rosalia, Vinicius, Carol, Roger, Rafa, PL,
Fred, Dizzy, and João. I also want to thank my Amsterdam friends Juan, Maria, Heather,
and Nicky. And my Nicolab friends: Elena, Kate, Aashish, Marco, Mart, Henry, Ivo, and
Razmara. Thank you all for our trips together, the deep conversations, the silly jokes,
etc. I learned a lot from each one of you. Thank you all for the multiple cherishable
memories that make me smile whenever I think of each one of you. I love you all.

A special thank you to my paranymphs Roeland and Raquel. You two always remind
me that I can find amazing friends no matter where I am in the world. Thanks for being
there for me every time I needed it. But more importantly, thank you for being there
when I did not need it because I love being around you two at any time. And, obviously,
I also love you both.

I also want to thank my parents Elza and Renato; my siblings Nayara, Ellton, and

Acknowledgements

141

Clarice; and my wife Elsemiek. Without your support, I surely would not be able to be
here. Ellton, you even gave me my first euros to pay my first rent in Amsterdam. Clarice,
you helped me organize my agenda so I could free up some time to finish my thesis.
Nayara, you are always doing so many things for everyone in the family. I cannot even
comprehend how you manage that. Mieka, thanks for helping me organize all figures
in the chapters of this thesis. Thank you all for all the love. I love each one of you a lot
more than you think. Finally, I also want to say thank you to my baby girl Vesper. Just
today, as I came home tired and without the energy to write this, you welcomed me with
a loud laugh that gave me all the energy I needed.

P.S. I am a bit sleep-deprived and in a hurry. Thus, if I forgot you, you are entitled to
an acknowledgment written by hand in your copy of my thesis as a consolation prize.

About the author

About the author

144

About the author

Renan Sales Barros was born on 29 February 1988
in Santana do Ipanema, State of Alagoas, Brazil. He
started coding at age 14 and has been doing formal
software engineering education since 2003. He got his
bachelor’s degree in computer science in 2011 from
the Federal University of the State of Pará. In that year,
he was awarded the best computer science student
graduating. While pursuing his bachelor’s degree, Renan
was a research assistant in developing automated tools
for learning process evaluation and software process
modeling, evaluation, and improvement. He also
researched software process improvement and quality
assurance for over two years. In 2013, Renan got his master’s degree in computer science
with a thesis about mathematical models for the simulation of human pigmentation
disorders and some forms of skin cancer. Renan obtained his master’s degree at the
Federal University of the State of Rio Grande do Sul, one of Brazil’s top 5 computer
science master’s programs. Since 2013, Renan has been developing high-performance
image processing algorithms to enhance the quality of diagnosis and decision-making
when dealing with acute stroke patients. This high performance is achieved using
parallel computing, GPU processing, super-computers, and cloud-based architectures.
Renan has a solid background in software engineering and algorithm design. With
a strong experience in software testing and quality assurance, Renan can design and
implement robust and fast software solutions for medical image processing. In 2015,
Renan co-founded Nicolab. Nicolab is a health-tech company that develops solutions
for streamlining emergency workflows by providing physicians with all the necessary
information to diagnose patients more accurately and to make faster treatment decisions.
Renan is currently the CTO of Nicolab.

About the author

145

Portfolio

Portfolio

148

Portfolio

Name of PhD student		 Renan Sales Barros
PhD Period			 April 2013 – November 2022
Name PhD supervisors:		 Prof. Dr. H.A. Marquering and Dr. S.D. Olabarriaga

General courses Year ECTS
The AMC World of Science 2013 0.7
Systematic Reviews 2013 0.7
Practical Biostatistics 2013 1.4
E-Science 2014 0.7
Entrepreneurship in Health and Life Sciences 2014 1.5
Specific courses Year ECTS
Biomedical Image Analysis Summer School (Institut Henri
Poincaré, Paris) 2013 1.5

Medical Imaging Summer School (Favignana, Sicily, Italy) 2014 1.5
Supervising
Master’s Internship – Malo Louvigne 2015 1.5
Master’s Internship – Alexandre Urwald 2016 1.5
Master’s Internship – Wassim El Youssoufi 2016 1.5
Master’s Thesis – Jorrit Posthuma 2017 1.5
Master’s Internship – Nil Stolt 2019 1.5
Master’s Internship – Maximilian Schlögel 2020 1.5
Master’s Internship – Mahsa Mojtahed 2020 1.5
Master’s Internship – Marek Oerlemans 2021 1.5
Conferences, workshop, and symposiums
European Conference on Parallel Processing 2013 1.0
Medical Imaging Symposium for PhD Students 2013 0.2
Medical Imaging Symposium for PhD Students 2014 0.2
Medical Imaging Symposium for PhD Students 2015 0.2
European Conference on Service-Oriented and Cloud
Computing 2015 0.6

International Conference on Medical Image Computing and
Computer Assisted Intervention 2015 1.0

European Stroke Conference 2018 0.9
International Stroke Conference 2019 0.9

Portfolio

149

Other
Medical Distributed Utilization of Services & Applications
(MEDUSA) Progress Workshops 2013-2015 4.5

Weekly Cardiovascular Engineering Meeting 2013-2017 7.4
Monthly Ischemic Stroke Meeting 2013-2017 1.7

NEEDFOR
SPEED

Achieving fast image processing

in acute stroke care

Renan Sales Barros

NEED FOR SPEED Achieving fast im
age processing in acute stroke care Renan Sales Barros

