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Introduction

Stroke
A stroke patient loses around 22 days of life for every minute without treatment [1]. 
This is equivalent to losing more than 4 years of life for every hour of delayed treatment. 
Therefore, fast treatment in stroke is crucial to increase the chances of good outcome. 
These numbers are even more impressive when we consider how frequent stroke affects 
people globally. Stroke is the second leading cause of death and the leading cause of 
morbidity. One in every 4 people older than 25 will have a stroke during their lifetime 
[2]. Furthermore, the incidence of stroke is expected to increase in the coming decades 
because of aging and population growth.

There are two main types of stroke: hemorrhagic and ischemic. Hemorrhagic stroke 
patients represent 13%-15% of all stroke patients. Hemorrhagic stroke patients have a 
bleeding in their brain usually due to the rupture of an aneurysm. The remaining 85%-
87% of the strokes are ischemic strokes. Ischemic strokes are caused by the obstruction 
of a cerebral artery by a blood clot.

Stroke workflow
An important moment during the assessment of a suspected stroke patient is determining 
if the patient suffers a hemorrhagic stroke or ischemic stroke. This is predominantly 
done via non-contrast computed tomography (NCCT) scans. If hemorrhagic stroke 
diagnosis is discarded then the patient should be immediately treated with intravenous 
thrombolysis (IVT). Up until 2015, IVT was the only proven treatment for ischemic 
stroke patients. Successful IVT treatment dissolves the blot clot and reestablishes the 
cerebral blood flow. However, IVT is not likely to be effective in patients with large 
vessel occlusions (LVOs). Fortunately, it has been shown in 2015 that combining IVT 
with the mechanical removal of the blood clot is an effective treatment option for 
ischemic stroke patients with LVOs. This mechanical removal of the blood clot, which 
is also known as endovascular treatment or endovascular therapy (EVT), can only be 
performed in specialized hospitals. To determine if the patient is eligible for EVT it is 
necessary to know the location of the vessel occlusion. Determining the location of a 
blood clot is typically done in computed tomography angiography (CTA) scans.

Originally, the time window available for EVT was 6h from the onset of the symptoms. 
However, more recent studies have shown that EVT can be effective to some ischemic 
stroke patients beyond these 6h window. Determining if a patient is eligible to EVT 
outside this 6h window is primarily done by checking if the infarct core volume in 
that patient is above a certain threshold. This infarct core volume is generally measured 
via computed tomography perfusion (CTP) imaging. More recently, the status of 
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the collateral flow has been shown as an additional clinical decision-making tool for 
determining the eligibility of ischemic stroke patients for EVT [3].

Quantitative imaging biomarkers
The assessment of stroke patients is heavily depended on computed tomography (CT) 
imaging. Traditionally, CT scans are inspected by radiologists with little or no help 
of image processing or computer vision algorithms. The time spent on interpreting 
CT scans is a considerable part of the EVT workflow [4]. As can be seen in Figure 1, 
the study by Ng et al. [4] reported that approximately one hour is needed from the 
moment the CT scan is acquired to the moment a request is made to transfer the stroke 
patient to a hospital where EVT can be performed. Furthermore, the evaluation of CT 
scans by human experts suffers from high variability [5] and, in the case of inexpedient 
radiologists, it is also prone to unsatisfactory accuracy.

Figure 1: Breakdown of  thrombectomy treatment workflow time, adapted from Ng et al. [4].

Automated analysis of CT scans has the potential to improve the stroke workflow by 
reducing variability, reducing the time spent on interpreting these scans, and also by 
increasing accuracy. These automated methods used to support the clinical decision-
making in stroke are also referred to as quantitative imaging (QI) biomarkers [6]. In 
a general way, a QI biomarker is an objective characteristic extracted from an in vivo 
image which is used as an indicator of a normal biological process, a pathogenic process, 
or response to a medical intervention. Designing and implementing QI biomarkers 
for stroke often requires the use of advanced image processing and computer vision 
techniques. Furthermore, it is not uncommon that CT scans have around 1500 slices 
and each of these slices have 512x512 voxels. Image modalities such as multiphase CTA 
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and CTP are composed of several CT acquisitions at different times which results in a 
several gigabytes of image data. The combination of advanced processing techniques and 
large input images often results in a trade-off between accuracy and speed. Unfortunately, 
accurate QI biomarkers with slow processing time, or fast QI biomarkers with low 
accuracy have little practical value in the clinical treatment decision of acute stroke 
patients.

High performance computing
High performance computing (HPC) commonly refers to the set of techniques for 
combining computing power to achieve much higher performance than what a typical 
desktop computer or workstation can offer. HPC is the go-to solution for tackling the 
computational challenges faced by medical research. HPC has been successfully used 
for supporting biomarker discovery in cancer research [7]. In the context of medical 
image analysis, HPC has been used in image registration, segmentation, reconstruction, 
filtering, and classification [8]. HPC makes use of computing platforms such as cloud 
computing, computer clusters, FPGAs, GPUs, massive parallel processors, multicore 
CPUs, etc. Often, HPC is achieved via the combination of many of these computing 
platforms.

Aim and outline
The aim of this thesis is to investigate the use HPC techniques for implementing QI 
biomarkers which are suitable for clinical decision making in acute stroke care. That is, 
we want to demonstrate that HPC allows the development of QI biomarkers with the 
accuracy and speed that are required by the clinical stroke workflow.

In the first part of this thesis, we investigate different HPC techniques and its applicability 
to image analysis in stroke. In Chapter 2, we evaluate the use heterogeneous platforms 
for delivering the high-performance capabilities which are needed by some stroke image 
processing applications. In Chapter 3, we propose a novel data compression technique 
that allows the efficient processing of CTP images in GPUs. Subsequently, we compare 
the effect of such data compression technique in a well stablished image processing CTP 
algorithm in Chapter 4. In Chapter 5, we present a cloud-based platform that enables 
fast medical image exchange and HPC image processing in the context of acute stroke 
care.

The second part of this thesis focuses on developing or improving QI biomarkers for 
stroke. These QI biomarkers are implemented by using the HPC practices discussed 
in Part 1. In Chapter 6, we propose a new method for subarachnoid hemorrhage 
segmentation based on convolutional neural networks. In Chapter 7, a new approach for 
the segmentation of infarcted brain tissue in follow-up CT scans based on convolutional 
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neural networks is proposed. In both Chapter 6 and Chapter 7, the techniques used 
for training and deploying convolutional neural networks are grounded on HPC 
technologies such as general-purpose computing on GPUs. To conclude, we wrap up all 
topics considered in this thesis in a general discussion in Chapter 8.
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Abstract

Medical imaging processing algorithms can be computationally very demanding. 
Currently, computers with multiple computing devices, such as multi-core CPUs, 
GPUs, and FPGAs, have emerged as powerful processing environments. These so called 
heterogeneous platforms have potential to significantly accelerate medical imaging 
applications. In this study, we evaluate the potential of heterogeneous platforms to 
improve the processing speed of medical imaging applications by using a new framework 
named FlowCL. This framework facilitates the development of parallel applications for 
heterogeneous platforms. We compared an implementation of region growing based 
method to automated cerebral infarct volume measurement with a new implementation 
targeted for heterogeneous platforms. The results of this new implementation agree 
well with the original implementation and they are obtained with significant speed-
up comparing to the sequential implementation. Keywords: dataflow, framework, 
heterogeneous computing, heterogeneous platforms, medical imaging processing, 
OpenCL, parallel programming.
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1 Introduction

In medical imaging applications large amounts of data must be processed quickly and 
accurately, which requires the usage of high performance computing systems. Commodity 
computer architectures are rapidly developing into systems with multi-core CPUs and 
with additional accelerated hardware devices such as graphics processing units (GPUs) 
and field programmable gate arrays (FPGAs). These heterogeneous platforms provide 
a new alternative to design and implement computationally demanding applications. 
Consequently, the computation power provided by these heterogeneous platforms 
should be explored for medical image processing.

Expertise of new programming constructs and concepts is however required for 
application developers to effectively utilize these platforms. The OpenCL [5] technology 
was developed with the aim of facilitating heterogeneous platforms usage. OpenCL 
includes a language for writing functions, called kernels, that execute on diverse 
computing devices. It also includes an application programming interface (API) that is 
used to control the heterogeneous platforms. A benefit of OpenCL is that the kernels 
that are coded according to this standard can run on different devices without any 
modification. This makes it possible to take advantage of computationally powerful 
devices that are well suited for different tasks. Nevertheless, OpenCL still requires 
application developers to deal with low level concerns such as the overhead of the 
code, memory management, and synchronization. In order to evaluate the potential 
of heterogeneous platforms in medical imaging processing, we needed an easier 
programming platform. A new framework named FlowCL was developed to provide an 
intuitive way to create applications utilizing heterogeneous platforms. This framework 
eliminates the OpenCL API usage, but maintains the OpenCL programming language 
for writing kernels. A brief description of this framework is presented in Section 2.

We used the FlowCL framework to implement a modified version of a previously 
developed method of automated measurement of cerebral infarct volume of patients after 
acute ischemic stroke. This method, which was developed and validated by Boers et al. 
[3], was modified for heterogeneous platforms. In Section 3, we explain the automated 
cerebral infarct volume measurement method and the modification implemented in this 
study. We compared the execution times of the original (sequential) implementation 
with the new parallel implementation for heterogeneous platforms using FlowCL. We 
also evaluated the differences between the results of both implementations in Section 4. 
Finally, the conclusions regarding this work and future improvements are presented in 
Section 5.
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2 FlowCL Framework

During the development of OpenCL applications, programmers have to deal with a 
low level C library, which requires specialized expertise for effective and efficient code 
development. There are various frameworks to mitigate this problem. For example, the 
Many GPUs Package (MGP) [2] was built on top of the Virtual OpenCL Layer (VCL). 
VCL is a transparent layer that accesses and manages OpenCL devices in clusters and 
presents these devices as a single node. MGP is a layer that facilitates the programing 
using clusters by hiding low level functions. A library named Maestro [10] also tries to 
reduce the complexity of OpenCL applications development by providing functions for 
automatic data transfer and task decomposition across OpenCL devices. However, MGP 
and Maestro do not use extensive optimizations strategies. A more complete framework 
is StarPU [1], which is a runtime system capable of scheduling tasks over heterogeneous 
devices using several optimizations strategies. However, the framework API uses the C 
programming language and this hampers the usage of high level programming concepts.

FlowCL is a new high level framework that supports rapid prototyping and development 
with OpenCL, which makes it possible to closely control the execution across all OpenCL 
devices on one computer system. More details about FlowCL are found in [4]. It hides 
all low level calls to the OpenCL library API from the application developer. Only the 
OpenCL kernel code that is designed to run on a selected device must be provided 
to the framework. Also, FlowCL provides an object-oriented declarative API to easily 
build applications with the concept of dataflow. The programmer simply declares a set 
of memory objects and operations. Each operation runs each single kernel function on 
any available device. This framework automatically applies optimization strategies such 
as overlapping communication and computation, and asynchronous data transfers and 
kernel executions.

To use the FlowCL framework, application developers just have to deal with four classes 
of objects: memory, context, device, and operation. Figure 1 illustrates the relationships 
between these classes. By having only four classes with limited relationships, FlowCL 
provides a simpler approach that is easier to understand than OpenCL.

In short, FlowCL framework addresses the following key aspects: it facilitates application 
development with OpenCL; it provides an object-oriented API to build applications 
with the dataflow concept; it eliminates the OpenCL API, except for kernel code; it 
automatically manages all devices on heterogeneous platforms; it supports concurrent 
kernel execution and asynchronous data transfers; and it supports multiple operating 
systems.
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Figure 1: FlowCL cardinality diagram. A Context is instantiated with kernel codes; these codes are 

usable on all available computing devices. Memory objects act as arguments for operations; they 

are created by a context with a given size and become available to all devices in this context. Device 

represents a computing device. Operation runs a specified kernel function on a selected device.

The framework is designed to run in the C++ language and only requires the FlowCL 
header file inclusion. To illustrate FlowCL usage, the following source code is shown:

#include ”FlowCL . hpp”
using namespace FlowCL ;

int main ( )
{

Context con;
con. CompileFile (”source. cl” ) ;

Memory memcpu = con . CreateMemory (1e8* sizeof (int));
Memory memgpu = con . CreateMemory (1e8* sizeof (int));

Operation genrand = con. CreateOperation(con. GetCPUDevice ( ), ”GenRand” );
genrand. SetArg (0, memcpu); // CPU already has access to memory
genrand. SetArg (1, memgpu);
genrand. SetWorkSize (1e8); // Set finest granularity

Operation sortcpu = con. CreateOperation(con. GetCPUDevice ( ), ”SortCPU” );
sortcpu. SetArgDependency(genrand, 0, memcpu); // Wait for genrand
sortcpu. SetWorkSize (1e8 );

Operation sortgpu = con. CreateOperation(con. GetGPUDevice ( ),”SortGPU”);
sortgpu. SetArgDependency(genrand, 0, memgpu); // Wait for genrand
sortgpu. SetArgOutput(0, memgpu);
sortgpu. SetWorkSize (1e8);
con. Run( ); // Blocking run

}

This example is visualized in Figure 2. The first operation executes on the CPU and 
generates random numbers that are sorted in the next two operations that execute in 
parallel on the GPU and the CPU. There is no data transferred to the sort operation 
that runs on the CPU because this data is readily available. Once the GPU operation is 
completed, the data is transferred back and the execution is finished.
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Figure 2: Sample code visual representation.

3 Case Study

In this section we present a case study using heterogeneous computing for measurement 
of cerebral infarct volume (CIV) of patients with acute ischemic stroke. The CIV has 
been suggested as an important measure for the effective treatment of these patients [9]. 
This volume can be manually measured in early follow-up non-contrast CT scans by 
the delineation of the whole infarct volume. An alternative is to estimate this volume 
by using the ABC/2 formula, which was originally designed for the estimation of 
hemorrhage volume [6]. The manual delineation is a tedious and time-intensive task, 
and the CIV estimation based on the ABC/2 rule only approximates the total CIV. 
Aiming to address these problems, Boers et al. [3] proposed a method to automatically 
calculate the CIV in follow-up non-contrast CT scans. This method was validated by 
comparing it with manual delineations performed by experienced radiologists.

The method proposed by Boers et al. was implemented using MATLAB [7] and took 
a long time to run (in the order of 10 min). It uses an intensity-based region growing 
(IRG) algorithm, which is responsible for more than 95% of the total processing time. 
To evaluate the potential benefit of heterogeneous computing for this application, we 
replaced this method with a new version of the IRG algorithm developed with the 
FlowCL framework. The integration of the new IRG algorithm with the previous 
MATLAB implementation was straightforward because MATLAB allows external code 
calls.

In short, the objective of this case study is to understand how heterogeneous platforms 
can be used and what is their potential value for medical imaging applications. To achieve 
this objective, we run the method for automated CIV calculation with two different 
implementations of the IRG algorithm, one based on the original MATLAB code and 
the other using FlowCL. Below we provide an overview of the complete method for 
automated CIV measurement used in this case study, and then we describe both the 
sequential and the parallel IRG implementations.
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3.1 Automated Cerebral Infarct Volume Measurement
The automated CIV measurement proposed by Boers et al. was designed to process 
non-contrast CT scans of the whole brain of the patients. The volume measurements 
are performed for a part of the brain that is segmented from the image using a region 
growing algorithm (IRG). In this algorithm, a voxel is added to the segmented volume 
if the difference between its intensity and the average intensity of the segmented volume 
so far is smaller than a specific threshold. To compute the CIV, this algorithm was 
repeated for 7 different values of threshold, going from 1.5 until 4.5 with steps of 0.5 
Hounsfield units (HU). The algorithm requires a position as starting point (called seed 
point) in the infarcted lesion. The seed position is set by an experienced radiologist and 
this assures that the correct infarcted area was selected.

The brain midline is used to prevent the segmented region from leaking to into the 
contralateral hemisphere, i.e., the region cannot grow into the other side of the brain. 
This midline is detected based on the geometric center and the most extreme mid-
sagittal bone or nasal cartilage structures present on the scan. Also, to avoid leaking 
into the hypo-attenuated ventricles, the hypo-attenuated region close to the geometric 
center is segmented and excluded from the segmentation of the infarcted area. All the 
steps of the segmentation process are illustrated in Figure 3. This process is repeated for 
7 thresholds. In the end of this process, the observer must select the best result that most 
agrees with the scans.

Figure 3: CIV segmentation steps. From the left to right: a CT scan showing an infarct in the right 

hemisphere (left of  the image); the seed position defined by a radiologist; the determined midline and 

the ventricles segmentation; and the final segmentation representing the CIV.

3.2 Intensity-Based Region Growing Algorithm
Region growing is a segmentation technique to select an image area that is connected 
according to a specific condition [8]. In intensity-based region growing (IRG), the 
intensity of the voxel is used as criterion to include or not a voxel to the region. Starting 
from a given seed point, the IRG algorithm iteratively adds voxels to the region such 
that the following condition is satisfied: |I − A| ≤ T , where I is the intensity of the 
processed voxel and A is the average intensity of the selected image area. The voxel I 
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must be in the neighborhood of the selected area, and it is included in this area when its 
intensity is smaller than or equal to the threshold T.

Different neighborhood definitions can be applied (e.g., for 3D images it can take 9 
or 26 neighbors into account), and the order in which the voxels are considered for 
inclusion may influence the final result. The IRG is also sensitive to the chosen threshold 
T; for this reason, 7 different thresholds are used in the CIV method, and the user can 
pick the best result.

The sequential implementation of IRG in the original CIV measurement method 
updates the average of the selected image area immediately after the inclusion of each 
voxel, and the updated average is used in the test to include the next neighboring 
voxel. In the parallel implementation of IRG, computing devices in the heterogeneous 
platform simultaneously process the voxels based on the same value of A. The average 
intensity A is only updated after all the neighbors of a given voxel are considered for 
inclusion. Therefore the sequential and the parallel algorithms perform inclusion tests 
based on potentially different values of A, and can deliver different results.

4 Experimental Results and Comparisons

To evaluate the speed-up obtained with the heterogeneous platform, 53 CT scans 
were processed in two different hardware configurations with the original and the 
GPU implementations of the automated CIV measurement method. The complete 
method was executed in both cases, however for timing purposes only the IRG part 
was considered. Both hardware configurations have 12 CPU cores and 192 GPU cores, 
however one is slower than the other – see Table 1.

Table 1: Hardware configuration.

Hardware Detail Configuration 1 Configuration 2

CPU Name Intel Core i7-3930K Intel Xeon E5-2620

CPU Clock 3.20 GHz 2.00 GHz

GPU Name NVIDIA GeForce GTX 550 Ti NVIDIA Quadro K600

GPU Clock 900 MHz 876 MHz

GPU Memory Clock 4104 MHz 1782 MHz

GPU Driver Version 9.18.13.1106 9.18.13.2000

The CT scans include the entire brain and were performed with thin-section acquisition 
by using 8 different multi-section CT scanners with at least 16 sections, but mostly 
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with 64 or more sections. The 32-bit MATLAB version 8.0.0.783 (R2012b) was used 
to run the MATLAB code. Microsoft Visual C++ 2010 was used to compile the region 
growing algorithm for heterogeneous platforms. These software were executed on 64-bit 
Microsoft Windows 7 Enterprise operating system on both hardware configurations. 
Execution times were measure before and after calling the IRG function in the MATLAB 
code. Note that this time includes overhead of internal function call for the sequential 
implementation, as well as for the external call of the program for the heterogeneous 
platform implementation.

All the CT scans were analyzed using exactly the same parameters for 7 threshold values 
(1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5). Parameters that must be manually configured, such 
as the region growing seed position, were defined only once and used in all runs of 
the method. Because different threshold values have a great influence in the size of the 
segmented volume and, consequently, also in the algorithm execution time, we compare 
the execution time separately for each threshold value.

Figure 4 shows the speed-up factor for the parallel respectively to the original IRG 
implementation. As we can see, speed-ups of 36 times were obtained. In general, 
larger gains are obtained for higher threshold values. Higher thresholds produce bigger 
segmented volumes, which require more computations and, consequently, result in 
more expressive speed gains. For lower thresholds, the execution time varies among 
different scans (larger standard deviation). Small thresholds generate smaller segmented 
volumes, which are more sensitive to the inclusion of neighboring voxels.

Figure 4: Speed-up on heterogeneous platforms (vertical axis) for each threshold value (horizontal 

axis). Bars indicate standard deviation from the mean speed-up calculated for 53 scans.

Also note that, due to this sensitivity regarding the small volumes, the implementation 
for heterogeneous platforms can be slower than the original implementation. Note 
however that only a minor performance reduction is noticed. In most situations the 
performance of the new implementation is better as presented in figure 5. We must 
highlight that the automated CIV measurement requires the region growing algorithm 
to run with 7 different threshold values and, because of this, the performance gains 
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obtained for higher thresholds values compensate for the loss for smaller thresholds in 
the total processing time. In no case the new implementation had a total processing time 
slower than the original implementation when all 7 thresholds are considered. The new 
implementation was faster in 82% of the scans using the hardware configuration 1 and 
in 75% of the scans using the hardware configuration 2.

Figure 5: Differences in execution time between both implementations (new - old). Left: Average 

difference in seconds (vertical axis) for each threshold value (horizontal axis) calculated for 53 scans. 

Right: Histogram of  differences in execution times in seconds for all thresholds. The negative ranges 

indicate the runs where the original implementation was faster than the new implementation.

To evaluate the differences in the quality of results obtained with both implementations 
we calculate the Dice coefficient for each threshold value individually - see Table 2. 
Similarly to what we found in the execution time analysis, the greater differences are 
measured for smaller thresholds. However, this variation in the results does not have 
a great impact in the method, because the final segmentation must be selected by a 
human observer which will filter out the segmentations that are not consistent with the 
images. Moreover, usually the selected segmentation is generated with one of the middle 
threshold values. The extreme threshold values are used as a safe margin to assure that 
the most adequate segmentation will be inside this interval.

As shown in Table 2, the Dice coefficients for the threshold between 2.5 and 4 are 
higher than 0.9. These results indicate good agreement between segmentations when 
compared to variations found in results obtained with manual segmentation by experts. 
For example, during the validation of the original method, [3] found that the Dice 
coefficient for segmentations manually defined by two experienced radiologists were 
0.84 ± 0.08 ranged from 0.63 to 0.94 [3].
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Table 2: Dice coefficients for each threshold.

Threshold Value: 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Maximum: 0.99994 1.00000 1.00000 1.00000 0.99247 0.99141 0.97592

Average: 0.85936 0.89620 0.94856 0.93499 0.91252 0.91199 0.89875

Minimum: 0.34349 0.25384 0.68682 0.84418 0.82026 0.76991 0.75164

Standard Deviation: 0.18170 0.16985 0.07482 0.05082 0.05052 0.06906 0.07345

5 Conclusions and Future Work

In this work we presented how the FlowCL framework, which was developed for intuitive 
heterogeneous platform programing, was used in a medical imaging application. Part 
of a previously developed and validated method for automated cerebral infarct volume 
measurement was adapted for heterogeneous platforms using the FlowCL framework. 
Only the code related with the intensity-based region growing algorithm was modified. 
All other pieces of code and software used in the method were not modified. We compared 
the two implementations of the automated CIV measurement method in order to 
investigate the potential of heterogeneous platform in medical imaging applications. 
The results of the implementation for heterogeneous platform were obtained faster and 
were also consistent with the results of the original implementation. This study shows 
that heterogeneous platforms can increase performance in medical imaging applications. 
This indicates that other computationally demanding medical imaging algorithms could 
also be adapted to run on heterogeneous platforms in a straightforward manner with the 
FlowCL framework.

In the present study, only GPUs and multicore CPUs were used as computing devices. 
However, there are other different computing devices, such as FPGAs, that were not 
included in this study and which can be also used in a more comprehensive future study.
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Abstract

The increasing size of medical imaging data, in particular time series such as CT 
perfusion (CTP), requires new and fast approaches to deliver timely results for acute 
care. Cloud architectures based on graphics processing units (GPUs) can provide the 
processing capacity required for delivering fast results. However, the size of CTP datasets 
makes transfers to cloud infrastructures time-consuming and therefore not suitable in 
acute situations. To reduce this transfer time, this work proposes a fast and lossless 
compression algorithm for CTP data. The algorithm exploits redundancies in the 
temporal dimension and keeps random read-only access to the image elements directly 
from the compressed data on the GPU. To the best of our knowledge, this is the first 
work to present a GPU-ready method for medical image compression with random 
access to the image elements from the compressed data.
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1 Introduction

CT perfusion (CTP) imaging is used as a diagnostic tool for initial evaluation of patients 
suffering from acute stroke [1]. CTP images are acquired by dynamically tracking the 
passage of a contrast agent through the cerebral blood vessels and tissue [2]. Analysis of 
CTP data enables the assessment of the severity of the damages caused by stroke. This 
information can be used to choose the most adequate treatment for the patient [3]. 
Currently, CTP datasets can be as large as 3.76 GB, and when dealing with this amount 
of data, traditional processing methods are slow and delay the acute care. Also, these 
traditional methods are expensive because of the costs of purchase and maintenance of 
dedicated software and hardware for image processing.

Cloud architectures have emerged as a cost-effective alternative for medical image 
processing. Cloud-based solutions make remote on-demand image processing services 
available for wide use in medical practice. To provide high-performance processing, cloud 
architectures can make use of graphics processing units (GPUs), which are designed for 
very efficient parallel processing of large amounts of data. GPUs were demonstrated 
being capable of considerably speeding up medical image processing applications [4]. 
Nowadays CPUs are also capable of parallel processing. However, CPUs are designed 
for general purpose processing, and because of that, the processing power of a GPU 
can be superior to the processing power of a CPU in several applications. GPUs are 
used in several common image processing tasks such as filtering and rendering. Thus, 
it is feasible to assume that the processing of CTP image data can also take advantage 
of GPU-based architectures. However, to benefit from the GPU computational power, 
algorithms need to be adapted or developed from scratch.

The size of CTP data poses challenges for their processing on GPU and on cloud 
infrastructures. The transfer of CTP data to cloud architectures can be time-consuming, 
which may limit the suitability of cloud applications for dealing with acute patients. 
In addition, to perform GPU computation, a host application is required, and the 
CTP data also need to be transferred from the host memory to the GPU memory. The 
time spent on the transfers from host to GPU has a considerable impact on the overall 
processing time. In short, due to the large size of CTP datasets, the time to transfer the 
image data limits its application for remote processing in acute care scenarios.

Data compression techniques can be used to reduce the CTP dataset size and speed 
up its transfer to the cloud and to the GPU memory. Since time is critical in acute 
situations, the time required to compress, decompress, and transfer the compressed data 
should not be larger than the time required to transfer the uncompressed data. Another 
important constraint is that, in clinical care applications, the compression technique 
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must be lossless because no information can be removed or modified due to regulations.

The time required to execute the complete CTP data pipeline depends on scanner 
acquisition, data reconstruction, preprocessing, etc. Several aspects of this pipeline are 
strictly determined by scanner manufacturers. Figure 1 illustrates which pipeline stages 
(dark arrows) of the CTP processing in a GPU-based cloud infrastructure are affected 
by our compression method. Initially, the CTP data are produced at the scanner (A). 
After that, the CTP data must be compressed in a terminal (B) before the transfer to 
the GPU-based cloud infrastructure (C). While the CTP data are processed in the cloud 
infrastructure, several data transfers between host application memory (D) and GPU 
memory (E) can be required.

Ideally, the compression must be done in a machine capable of GPU processing. 
However, the compression can be executed in different computing devices such single-
core CPUs and many-core CPUs.

The main goal of our compression technique is to reduce the data size for faster transfer 
and faster GPU processing on cloud architectures. To achieve this, we introduce a fast 
and lossless compression technique that not only speeds up the transfer of dynamic CTP 
data to cloud architectures, but also facilitates their parallel processing on GPUs. This 
technique presents a compression time suitable for acute care situations and produces 
compressed data that can be processed on a GPU requiring no decompression of the 
entire CTP dataset. In our technique, intensities of an arbitrary voxel are retrieved from 
the compressed data using a fixed amount of instructions independent of the input 
value or size. This means that, in terms of computational complexity, determining the 
intensity value of a voxel is a constant-time procedure (i.e., checking if a number is odd 
or even, checking a constant size lookup table), which is the fastest class of algorithms 
with computational complexity classified as O(1). To the best of our knowledge, this is 
the first work to present a lossless method for medical image compression with direct 
access to the image elements from the compressed data.
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Figure 1: CTP data processing pipeline in a GPU-based cloud infrastructure: the CTP data are produced 

at the scanner (A), compressed in a terminal (B), sent to the GPU-based cloud infrastructure (C). 

While being processed, the CTP data can be transferred several times between host application 

memory (D) and GPU memory (E).

2 Methods

This section describes the characteristics of the CTP data, presents our compression 
technique, and discusses the relevant aspects that need to be considered during its 
implementation according to the targeted platform. Subsequently, the configuration of 
the experiments used to evaluate our compression technique is described.

2.1 Characteristics of  CTP data
The datasets used in this study consist of 20 dynamic whole-brain volumes from 
actual stroke patients. The scans have 320 slices of 512 × 512 voxels with 16 bits/
voxel, and each acquisition has 24 time steps. The patients were scanned as part of a 
Dutch multicenter randomized trial [5]. Approval of the medical ethical committee was 
obtained. All patients or legal representatives signed informed consent. The volumes are 
acquired approximately every 2.5 s during the first 35 s, followed by a scan every 5 s 
until 60 s. Subsequently, five volumes are scanned with a 30 s interval. The size of each 
volume is 160 MB, and thus the complete dataset has 3840 MB of data that need to 
be quickly processed for an initial evaluation of the patient condition. Sometimes, an 
additional CTP dataset is produced to evaluate the treatment progress after around 24 
h, resulting in up to 7.5 GB of data per patient. All the image data are saved according 
to the digital imaging and communications in medicine (DICOM) standard.

Every dataset can be described as I(x, t), which represents the image intensity at position 
x at time t. The inflow and outflow of contrast agent can be observed in all the brain 
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tissue. However, the intensity values in the largest part of the brain tissue are expected 
to vary little over time. To illustrate this characteristic of the data, Figure 2 shows the 
intensities at xa and xb along time. The intensities at xa are not strongly affected by 
the contrast agent. On the other hand, the intensities at xb are strongly affected by the 
inflow and outflow of contrast agent.

Figure 2: Sample slice of  CTP data at the time step 12, and the intensity values of  the voxel at xa 

and xb over time. The intensities values at xa are not strongly affected by the contrast agent, and the 

intensities valuas at xb are strongly affected by contrast agent.

Voxel intensities in CT imaging are generally represented using 16 bits. However, the 
range of voxel values over time is smaller than the range that can be represented by 16 bits. 
Therefore, fewer bits can be used to represent exactly the same information by storing 
the variation of these intensities instead of their absolute values. This characteristic is 
illustrated by using the intensities at xb as an example. These intensities vary between 
46 and 191 HU, so only eight bits are required to represent them (⌈log2(191 − 46 + 
1)⌉ = 8). For the voxel at xa, a better compression can be obtained because only six bits 
are required (⌈log2(72 − 22 + 1)⌉ = 6), which represents a compression ratio of 2.6 
compared with the original representation using 16 bits.

As observed in Fig. 3, only 6 % of the voxels in that slice require more than eight bits to 
represent their intensities variation over time, and a maximum of 11 bits is required to 
represent this variation.

The effect of motion artifacts is apparent in Figure 3, and for this reason, a higher 
amount of bits is required to encode the area around the skull. However, this higher 
amount of bits (between 9 and 11 bits) is still considerably smaller than 16 bits, which 
are required for the uncompressed image. Furthermore, the motion affects only a small 
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portion of the image. In general, when motion is present, there is mainly overlapping of 
brain tissue with similar intensity values, which does not result in a higher amount of 
bits for encoding the voxel intensities over time. In short, Figure 3 illustrates that, due 
to the characteristics of the CTP data, the number of voxels that have a large intensities 
variation over time is rather small. This indicates that the temporal dimension of the 
CTP data is a substantial source of redundancies that can be exploited for compression 
purposes.

Figure 3: Number of  bits required to represent the variation of  voxel intensities over time in the 

selected slice. The effect of  motion artifacts is visible, and for this reason, a higher amount of  bits is 

required to represent the area around the skull. Nevertheless, this higher amount of  bits (9-11 bits) is 

considerably smaller than the original 16 bits that are used by the uncompressed data. Furthermore, 

the motion affects only a small portion of  the image. Only 6 % of  the voxels require more than eight 

bits to represent their intensities variation over time.

2.2 Compression algorithm
Our compression technique exploits the time redundancy explained above. Let I(x, t) 
represent the uncompressed image intensity, where x indicates a 3D coordinate and t 
indicates a time step between 0 and n − 1. In compressed form, the image is represented 
as I(x, t) = C(x) + ∆(x, t) with minVx ≤ C(x) ≤ maxVx and Vx = {I(x, t0), I(x, t1), ... , 
I(x, tn−1)}. For simplicity, we use C(x) = minVx.

The set of values Dx given by Dx = {∆(x, t0), ∆(x, t1), ... , ∆(x, tn−1)} do not present a 
large variation, so fewer bits can be used to represent them. The exact number of bits 
required to represent Dx is given by ⌈log2(maxVx − minVx + 1)⌉. Thus, Dx is stored by 
using ⌈log2(maxVx − minVx + 1)⌉ × n bits.

In a sequential processing unit, the voxels are compressed one by one, and the time 
required to compress a single voxel is proportional to n because n computations are 
required to determine Dx, minVx, and maxVx. Thus, when executed sequentially, the 
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computational complexity of our algorithm is m × n where m is the number of voxels in 
the dataset. However, the compression of all the voxels is independent, and consequently, 
it can be done in parallel. During the compression of a voxel, the computations to 
calculate Dx are independent, and they can also be parallelized. Moreover, when using 
parallel processing, minVx and maxVx can be calculated in a time proportional to log2 
n through parallel reduction [6]. In a parallel implementation, the most expensive 
computations required by our algorithm correspond to finding minVx and maxVx. 
Consequently, in terms of computational complexity, our algorithm can compress a 
CTP dataset in a time proportional to log2 n when running in parallel. 

To retrieve the value of as I(x, t), a sum needs to be performed: C(x) + ∆(x, t). By 
using fixed size arrays to store ∆(x, t) and C(x), I(x, t) can be retrieved in constant time. 
The data stored using less bits, which is ∆(x, t), do not need to be modified. Thus, in 
our method, I(x, t) is determined using a single sum of values that can be retrieved in 
constant time.

2.3 Implementation
The efficiency of our compression method is strongly dependent on the efficiency of the 
data structures used in its implementation, in particular for ∆(x, t) and C(x). ∆(x, t) 
is an element of the set Dx. All the elements in a set Dx are represented using the same 
number of bits. For instance, by considering the voxels at xa and xb in Figure 2, six 
and eight bits are required to represent the elements in Dxa and Dxb respectively. Thus, 
because n = 24 in our datasets, Dxa requires 24 × 6 = 144 bits, and Dxa requires 24 × 8 
= 192 bits to be represented. Because the amount of bits required to represent each Dx 
set varies, it is not possible to use a single fixed size array to store all the different Dx sets 
in memory.

Current computers are not capable of addressing memory blocks of an arbitrary amount 
of bits. Thus, all the Dx sets are contiguously stored in a fixed size array of 32 bits elements 
named D. A maximum of two elements from D need to be accessed to store and retrieve 
a particular ∆(x, t) using a fixed amount of bit shift operations. The computational cost 
of these operations is constant, so they do not increase the computational complexity of 
reading and storing the values in D. 

An offset is provided to determine where a Dx begins in the array D. All the offsets 
are stored in a fixed size array of 32 bits elements named O. Another fixed size array 
of eight-bit elements, named B, is used to store how many bits are used to represent 
the elements in Dx. In this way, different elements in Dx can be distinguished. The 
offsets can be quickly calculated by traversing B. However, O is provided to keep 
instant access to any Dx in D. Finally, an array of 16-bit elements, named C, is used to 
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store all the C(x) values. The elements of C have 16 bits because they contain original 
intensity values from the 16-bit voxels. Figure 4 illustrates the data structures used in 
our implementation. The size of the resulting compressed data is the sum of the sizes of 
the arrays C, O, B, and D.

Three different implementations of our dynamic image compression for parallel 
processing (DICOPP) were developed:

	 	DICOPP CPU—a parallel implementation compressing the voxels using  
		  multiple threads in a many-core CPU and using a sequential method to calculate  
		  minVx and maxVx; 
	 	DICOPP CPU PR—another parallel implementation targeted for a many- 
		  core CPU using multiple threads to calculate minVx, and maxVx through the  
		  parallel reduction method; and 
	 	DICOPP GPU—a parallel implementation running on the GPU and  
		  calculating minVx and maxVx sequentially. 

During the implementation, we observed that using parallel reduction to calculate minVx 
and maxVx on the GPU requires a more complex organization of the data in the GPU 
memory, which slows down the memory operations and results in an inefficient GPU 
implementation. For this reason, this alternative was abandoned. Also, only 24 values 
need to be evaluated to calculate minVx and maxVx, and at this scale, the benefits of 
using parallel reduction are not noticed. Our implementations use the .NET framework 
version 4.0 [7] and C# [8] as programming language. These technologies were chosen 
because our implementations need to be integrated in an existing platform for medical 
image processing based on .NET. Our implementations use Fellow Oak DICOM (FO-
DICOM) for .NET version 1.0.36 [9], which is a high-performance API for handling 
DICOM files. For the GPU computations, OpenCL 1.1 [10] was used. OpenCL is a 
framework for the development and execution of programs across platforms consisting 
of different types of processors such as CPUs, GPUs, digital signal processors, field-
programmable gate arrays. OpenCL. NET version 2.2.9 [11] was used to integrate 
OpenCL with .NET. OpenCL.NET is a library that wraps the original OpenCL 1.1 
API for .NET.
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Figure 4: Data structures used in the implementation. B is a constant size array of  8-bit elements that 

stores the amount of  bits used to encode the intensity values of  a voxel. C is a constant size array of  

16-bit elements used to store all the C(x) values. D is a constant size array of  32-bit elements used to 

store all the Dx sets. O is an offset to determine where a set Dx begins in the array D

2.4 Evaluation setup
All the compression techniques that are incorporated in the DICOM format were 
selected for comparison with our method. However, according to the DICOM 
specification, MPEG2 and MPEG-4 compressions are inherently lossy, and for this 
reason, they were excluded of our comparison. JPEG 2000 lossless was also excluded 
from our comparison because it is much slower than the other methods, without a 
considerable better compression ratio. Consequently, only the following techniques 
from the DICOM standard were used in our experiments:

	 	JPEG lossless, more precisely the JPEG process 14 (first-order horizontal  
		  prediction [selection value 1], DPCM, non-hierarchical with Huffman coding);
	 	JPEG LS lossless; and 
	 	Run-length encoding (RLE).

Very efficient low-level implementations of the techniques from the DICOM standard 
were used in our comparison. For JPEG and JPEG 2000, an open-source C library 
named FreeImage [12] was used. Regarding JPEG LS, an open-source and optimized 
C++ library named CharLS [13] was used. Finally, for the RLE compression, the C++ 
implementation provided with the FO-DICOM library was used. Regarding our 
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method, the three implementations described in Sect. 2.3 were used in our comparison. 
All the selected techniques from the DICOM standard were used only to perform 2D 
compression, and as a result, they were used to independently compress all the slices in 
a CTP dataset. These techniques are not designed to be executed in massively parallel 
architectures. Thus, to provide a fair comparison of the compression time with our 
implementations, which were designed for these architectures, the compression of all 
slices were divided equally among the CPU threads available by a multithread application. 
In this manner, the thread overhead was minimized, and the usage of the CPU for the 
compression task was maximized. Regarding our method, the same approach was used 
in our CPU implementations, i.e., use all the available CPU threads and distribute load 
equally. In the GPU implementation, the compression time includes the time required 
by the transfers between the host application and the GPU device.

Ideally, GPU implementations of the other compression techniques should be used for 
the comparison. However, to the best of our knowledge, there is no GPU implementation 
available for these methods. For JPEG, there are many GPU-based codecs, but none of 
them presents the lossless compression mode.

To compare the time to access the decompressed data, intensities of all time steps of 320 
voxels in 320 slices were retrieved sequentially in an application running on the CPU 
and accessing the compressed data in the host application memory. Our method does 
not require complete decompression of a CTP dataset, and in this manner, accessing 
the decompressed value of a single voxel is a straightforward way to compare the 
decompression performance of the evaluated methods. The compressed data produced 
by the three different implementations of our method are identical; therefore, reading 
time was computed only for one of the results.

To evaluate the impact of the number of processing units in the compression time of our 
method, the DICOPP CPU implementation was executed using from 1 up to 6 threads. 
The maximum of six threads was defined because this is the number of independent 
processing units available in the hardware configuration used (see Table 1).

The main goal of our compression technique is to enable faster transfer to cloud 
architectures. To evaluate this, the total transfer time of each compression method used 
in our comparison was computed. This time is calculated by adding: the compression 
time, the time to transfer the compressed data, and the time to read the compressed data. 
The time to transfer the compressed data was calculated by considering the theoretical 
transfer rate of the following network standards: OC-3/STM-1 [14], OC-12/STM-
4 [14], 1000BASE-T [15], and OC-48/STM-16 [14], or 155, 622, 1000, and 2400 
Mbps, respectively. 1000BASE-T is a standard for gigabit Ethernet networks. The other 
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standards specify the transmission bandwidth for digital signals that can be carried on 
fiber-optic networks.

Our compression technique enables GPU processing directly from the compressed 
data. By processing the compressed CTP data, less data need to be transferred between 
host and GPU. This feature can speed up the total GPU processing time considerably 
because, in some applications, most of the time in a GPU computation is spent on 
data transfers. In order to evaluate the GPU processing time improvement, a GPU 
application that creates a mask from the CTP data was developed. The mask, which 
is defined by the double threshold 0–15 HU, is part of a noise reduction filter for 
dynamic CTP data described in [16]. In our evaluation, the developed GPU application 
computes this mask in two different ways: using the uncompressed data and using the 
compressed data generated by our method. In both ways, the time to compute the mask 
is measured including the time spent by the transfers between host and GPU.

All the evaluations described in this section were performed in the same hardware 
configuration (see Table 1) using Windows 7 Enterprise 64 bits as operating system. For 
all the time measurements, the high-resolution timing counters provided by the Win32 
API were used.

Table 1: Hardware configuration used to execute the compression methods evaluated in our 

experiments.

CPU name Intel Xeon E5-2620

CPU clock 2.00 GHz
CPU cores 6
CPU threads 12

RAM memory 64 GB

GPU name GeForce GTX TITAN

GPU driver version 331.65

GPU cores 2688

GPU clock 836 MHz

Dedicated video memory 6 GB GDDR5

3 Results

Table 2 shows the performance results of the evaluated compression techniques applied 
to 20 CTP datasets described in Sect. 2.1. The DICOPP CPU PR implementation 
achieved a better compression time than the DICOPP CPU implementation in 85 % 
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of the executions. As mentioned in Sect. 2.3, the CTP datasets time dimension is too 
short to substantially benefit from parallel reduction for computing minVx and maxVx.

In our evaluation setup, all the data are transferred to CPU memory before being accessed 
or decompressed. Thus, all the reading and decompression operations are executed only 
in the host application. The reported time corresponds to the reading time of only 
320 × 24 voxels, and not to the entire CTP dataset. Our method does not require full 
decompression of a dataset, and because of this, it achieved a read time many times 
lower than the best result from the other methods.

JPEG 2000 lossless took 132 and 470 s to compress and read the compressed data of a 
single CTP dataset. This is more than six times slower than the results in Table 2. 

Table 2: Compression time, reading time, and compression ratio for 20 datasets (mean ± SD [min., 

max.]) using different compression methods. The best results are underlined.

Compression method Compression time (ms) Reading time (ms) Compression ratio

JPEG LS 09911 ± 0398 [08879, 10806] 58267 ± 2546 [49924, 62052] 4.64 ± 0.29 [4.14, 5.55]

JPEG 14552 ± 0742 [12234, 16095] 43443 ± 1791 [37033, 44997] 2.09 ± 0.16 [2.74, 3.55]

RLE 09679 ± 0947 [08286, 11110] 15554 ± 0634 [13468, 16669] 2.31 ± 0.10 [2.12, 2.66]

DICOPP CPU 20350 ± 2602 [14157, 24239] 0.15 ± 0.36 [0, 1] 2.20 ± 0.17 [1.95, 2.75]

DICOPP CPU PR 17718 ± 1413 [14934, 20712]

DICOPP GPU 05944 ± 0711 [04826, 07873]

The number of processing units used to execute our compression method has a major 
impact in its compression time. To illustrate this, Figure 5 shows the compression time 
obtained by using different number of threads for compressing 20 CTP datasets using 
the DICOPP CPU implementation. The standard deviations of the compression time 
of the executions using from 1 to 6 threads are, respectively, 14.27, 7.30, 5.76, 4.32, 
3.83, and 2.86 s.

Table 3 shows the total transfer time (compression time + time to transfer compressed 
data + decompression time) for the 20 CTP datasets using the maximum transfer rate of 
four different types of network. As a reference, the first row of Table 3 shows the only the 
transfer time of an uncompressed dataset. DICOPP GPU achieved the lowest transfer 
time in all the network types listed in Table 3. However, in networks slower than the 
ones listed in Table 3, JPEG LS achieves a better transfer time because it has a better 
compression ratio. In faster networks, it takes longer to compress and transfer the data 
than to transfer the original data without compression. 
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Regarding the GPU processing time, the GPU processing of the mask using the original 
and the compressed data took 2818 ± 382 [2664, 4392] and 1903 ± 186 [1712, 2668] 
milliseconds, respectively. Accordingly to these results, the GPU processing using the 
compressed data was, on average, more than 30 % faster than the processing of the 
original data.

Figure 5: Maximum, mean, and minimum times (vertical axis) spent to compress 20 CTP datasets by 

using different number of  threads (horizontal axis).

Table 3: Total transfer time (in s) for 20 datasets compressed by different methods and using different 

network speeds (mean ± SD [min.,max.])

OC-3/STM-1 (s) OC-12/STM-4 (s) 1000BASE-T (s) OC-48/STM-16 (s)

Original Data 207.82 51.79 32.21 13.42

JPEG LS 113 ± 5.3 [096, 122] 79 ± 3.2 [68, 84] 75 ± 3.2 [64, 79] 71 ± 3.0 [61, 75]

JPEG 127 ± 5.4 [107, 134] 75 ± 3.0 [63, 78] 68 ± 2.7 [58, 71] 62 ± 2.5 [53, 64]

RLE 115 ± 4.7 [100, 123] 47 ± 1.9 [41, 50] 39 ± 1.6 [34, 41] 31 ± 1.4 [27, 33]

DICOPP CPU 115 ± 7.9 [089, 127] 44 ± 3.5 [32, 48] 35 ± 3.0 [25, 38] 26 ± 2.7 [19, 30]

DICOPP CPU PR 112 ± 7.4 [090, 123] 41 ± 2.5 [33, 45] 45] 32 ± 2.0 [26, 36] 36] 23 ± 1.6 [19, 27]

DICOPP GPU 100 ± 6.9 [080. 111] 29 ± 1.9 [23, 32] 20 ± 1.3 [16, 22] 12 ± 0.8 [09, 14]
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4 Discussion

The compression time of the DICOPP GPU implementation is notably faster than the 
other methods. Even simple algorithms, such as RLE running in parallel, are around 1.6 
times slower than the DICOPP GPU implementation. Note that the implementations 
of our method used more abstraction layers than the other implementations used in the 
comparison. For instance, memory management in .NET applications is different from 
low-level applications, and this can result in a slower execution time when compared 
with C or C++ applications, which is the case of the other methods. However, despite 
the higher level of abstraction, the compression time of our CPU implementations is 
approximately only 5 to 10 s slower than the other methods.

As expected, our method presents negligible times to read the voxel intensities from the 
compressed data, as illustrated in Table 2. This is possible because our method is the 
only to provide direct access to the voxel intensities. The random access to voxel values 
has many advantages, and it enables the application of several imaging operations to 
the entire image data in the compressed form. Because of this direct access, operations 
such as local filtering and threshold-based segmentations can be performed without 
decompression. By doing this, our method saves memory (the compressed data are 
processed) and processing time (the decompression step is skipped). The direct access 
to voxel values provided only by our method also speeds up the GPU processing. This 
is possible because our method reduces the amount of data that need to be transferred 
between host application and GPU, which is also a common bottleneck in GPU-based 
computing. As presented in Sect. 3, the GPU computation of a mask from the CTP 
data was speeded up more than 30 % by using the compressed data produced by our 
method. We must highlight that exactly the same instructions were executed in the 
compressed and uncompressed representations of the CTP data. This speedup is only 
possible because of the direct access to the voxel values from the compressed data on the 
GPU. 

As previously stated, the main goal in acute care is to provide fast results, and as 
observed in Table 3, the implementations of our method achieve better transfer times 
than all the others. In networks slower than 100 Mbps, our method was overcome by 
other compression methods. However, it is reasonable to assume that current cloud 
infrastructures provide connections with speeds that are higher than 100 Mbps. In 
fact, most of the current cloud providers offer direct connections up to 10 Gbps. For 
instance, Microsoft Azure [17] offers connections from 200 Mbps up to 10 Gbps, and 
Amazon Web Services [18] offers connections from 50 Mbps up to 10 Gbps. In these 
very fast connections, transferring the uncompressed data is faster than transferring 
the compressed data. However, these very fast connections are expensive and priced 
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according to the offered speed. This means that our method enables a cost-effective 
usage of these connections. Our method can also reduce the GPU processing time of the 
CTP data. Because of this feature, our method not only contributes for a faster analysis 
of CTP data, which is crucial in acute stroke cases, but also to cheaper analysis on pay-
per-use infrastructures.

Thus, regarding the processing pipeline of CTP data on GPU-based cloud 
infrastructures, our compression method enables fast transfers and fast GPU processing, 
which consequently results in reducing costs and providing the faster image processing 
required when dealing with acute stroke patients. 

Our compression technique was developed to be executed in massively parallel 
architectures. Thus, it is possible to achieve faster results when using more parallel 
processing units (see Figure 5). Also, as observed in Table 3, our compression technique 
is the only one that enables reducing transfer times in fast data connections because 
of its fast compression and because it does not require a decompression step prior to 
processing. Because of these characteristics, our compression technique is better suited for 
future computational infrastructures than the other compression techniques evaluated, 
since it can benefit from massively parallel processing and fast data connections. We 
must emphasize that, if ignoring the cost aspect, there are connections speeds currently 
available that are fast enough to be used for transferring uncompressed CTP data. 
However, with more powerful parallel processing devices, our method can become 
beneficial even with these connection speeds. Thus, because of these trends, we believe 
that our method is beneficial not only in current cloud infrastructures but also in the 
upcoming cloud infrastructures.

The compression ratio of our method is inferior to the compression ratio of the other 
methods. To improve our compression ratio, different preprocessing operations could 
be applied. However, this preprocessing can make the execution of our compression 
technique considerable longer. To avoid that, the CTP processing pipeline has to be 
carefully analyzed to identify whether the adoption of preprocessing steps will effectively 
result in a faster data transfer, which is the main goal of our work. For instance, usually 
the CTP analysis requires the application of a noise reduction filter. In a new pipeline 
configuration, this noise reduction can be done before the compression in order to 
achieve a better compression ratio. Noise reduction may also improve the compression 
ratio of our method because noise strongly influences the variation of the voxel values 
over time. It is expected that thick slices have less noise, and it may result in better 
compression ratios. A detailed study to assess the effects of different noise levels in the 
performance of our compression method can be performed. However, in this paper, 
we focused on the evaluation of our compression method in the image data that are 
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generated in clinical practice. 

Apart from noise, motion artifacts can also affect the compression ratio of our method. 
Again, a possible solution is a preprocessing step for motion correction before the 
compression step [19]. However, this will result in increasing processing time. We 
evaluated our method in actual patient data, which included motion artifacts, and as 
shown in Figure 3, the effects of motion do not have a strong impact on our compression 
ratio. Motion does not affect the compression ratio of our method considerably because, 
in different time frames, different types of tissue rarely overlap, and thus constant 
geometrical locations still have similar intensity values. The only exceptions are the areas 
around the skull, which are a small portion of the image data. However, even in these 
areas, the amount of bits required to represent the compressed data are still considerably 
smaller than the original amount of bits used in the uncompressed data.

Perhaps, the most effective preprocessing step that could be applied is a simple threshold 
segmentation and removal of useless data (i.e., the air around the patient). Nevertheless, 
we focused in evaluating our method in original patient data. An extensive analysis 
of the different techniques that can be combined with our compression method was 
beyond the scope of this study. 

Our goal was to provide a compression technique to be used in a specific clinical 
practice rather than to be used as a general compression technique. In clinical practice, 
we are dealing with large datasets that are very precisely defined (±24 time steps of 
approximately 320 slices of 512 × 512 pixels of 16 bits) and that are well accepted 
worldwide. Since CTP acquisitions are performed tens of thousands times per year, we 
believe that a specific and applied compression technique is worth studying. Although 
our technique is applied to and focused on CTP data, we believe that any other medical 
image time series could be potentially suited for compression by our algorithm. For 
example, all the medical images used in the experiments described in [2] have the 
necessary characteristics to be exploited by our compression algorithm, which is a small 
variation of voxel values over time.

4.1 Related work
Previous works also explored the redundancies in the temporal dimension of medical 
image data for compression purposes. The work presented in [20] calculates the 
differences between two contiguous images from a medical image time series and store 
these differences using eight bits when this is possible. When this difference cannot be 
expressed using eight bits, the original 16 bits are used. Because of this approach, the 
theoretical maximum compression ratio achieved by this method is 2. In this method, 
to retrieve the intensities from a particular time step, it is necessary to decompress 
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all intensities from the previous time steps. The main differences between this and 
our method are: our method achieves compression ratios greater than 2, and in our 
technique, any arbitrary image intensity in the four-dimensional space can be retrieved 
independently with a constant computational complexity.

Other compression techniques explore the effect of motion in 4D medical images. 
Motion is a feature especially present in 4D cardiac images. In the context of exploring 
motion for compression purposes, [21] proposed a technique based on the combination 
of a predictive image compression and a motion compensation technique. The work 
presented in [22] evaluates the motion in 4D medical images for compression purposes 
using motion fields that produce input parameters for a neural network used for motion 
estimation. [22] combines motion analysis with segmentation, block matching, and 
expert knowledge, to develop a framework for 4D medical compression. The authors 
of [23] apply recursively a multiframe motion compensation process that employs 
4D search, variable blocksizes, and bidirectional prediction for reducing redundancies 
in spatial and temporal dimensions. All these three techniques were developed for 
achieving high compression ratios, and because of their complexity of compression 
and decompression, they are not well suited for the fast processing as required in acute 
care situations. Also, differently from our technique, they require a decompression step 
before processing.

Another common approach is to adapt or use existing sound, image, or video compression 
techniques for 4D medical image data. However, most of these compression techniques, 
like MPEG-2 and MPEG-4, are lossy and, for this reason, cannot be used in the same 
context as the proposed technique. Regarding lossless compression, the authors of [24] 
proposed a technique for 4D medical images based on the H.264/AVC standard for 
video compression. Again, this compression technique was designed to achieve high 
compression ratios, being too complex for producing fast response.

In CTP data, any particular voxel can be considered as an independent time series. Time 
series compression techniques can be applied independently for each voxel. However, 
most time series compression techniques are fundamentally lossy [25] and consequently 
cannot be used for the purposes of this study. 

Regarding the lossless compression of time series, current techniques focus on the 
compression of long time series and are based on very complex models [26–29] that 
may even require the usage of a database for prediction purposes [28]. Because these 
techniques are developed for compressing long time series, it is not feasible to use 
them in CTP datasets, which present only 24 time steps. To illustrate this problem, the 
smaller model mentioned in [29] requires 192 bits only to store the initial conditions 
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of themodel equations describing a time series. This represents half of the size of entire 
time series of a particular voxel in CTP datasets (24 × 16 bits). The lossless time series 
compression can be also based on features that are not available in CTP datasets, such 
as multichannel [30] or multispectral information [31]. In short, the usage of state-of-
the-art lossless time series compression in the time series from CTP datasets would not 
be effective because of the short length of these time series.

5 Conclusion

In this paper, we presented a new method to compress CTP data that take advantage of 
data redundancy in the time dimension. The proposed algorithm reduces the image size 
by using fewer bits to represent data that do not vary much through time. This method 
focuses on providing faster transfer of CTP data to GPU-based cloud infrastructures; 
therefore, a balance between compression ratio and compression time has been pursued, 
which is different from many compression methods which pursue good compression 
ratios. Our algorithm was designed for massively parallel architectures, and it is well 
suited for many-core CPU or GPU execution.

The proposed method was applied to 20 datasets and obtained the faster results compared 
to the lossless compression techniques adopted in the DICOM standard, despite its 
inferior compression ratio.

The resulting data representation offers direct random access for subsequent GPU 
processing, which is a feature not found in the other compression methods. Because of 
this, our time for retrieving information from the compressed data is negligible. This 
feature also makes it possible to reduce the time to transfer CTP data between host 
application and GPU because only the compressed form of the CTP data needs to be 
used in these transfers. Consequently, the GPU processing of CTP data can be speeded 
up when using the data in compressed form.

Currently, different ways to improve the compression ratio of our method are being 
investigated. This investigation focuses on the usage of fast techniques for noise 
reduction, motion identification, and segmentation of meaningless image elements. All 
these techniques need to be compatible with current clinical practices adopted when 
analyzing CTP data.
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Abstract

Background: Patients suspected of acute ischemic stroke benefit from fast diagnosis and 
treatment decisions. Automated analysis of computed tomography perfusion (CTP) 
images allows assessing the severity of stroke and supports optimal treatment selection. 
However, CTP imaging can result in more than 3.5 GB of image data per patient. 
Automated analysis of this large amount of data can be rather slow, which hinders its 
application in acute clinical practice. 

Methods: To enable fast CTP analysis, we introduce a novel approach for processing 
compressed CTP image data. This approach does not require the processing algorithms 
to be altered for handling the compressed data, facilitating its application to existing 
methods. By processing compressed image data, the analyses are performed faster 
and memory usage and data transfer time are reduced. This approach also supports 
massive parallel processing of compressed data on Graphic Processing Units (GPUs). To 
validate the compressed data analysis, we developed GPU implementations of a double 
threshold segmentation and a well-established bilateral filter for processing compressed 
and uncompressed CTP image data.

Results: Our results show that the analysis of compressed data uses between 2 and 2.8 
times less memory and improves GPU execution time between 1.2 and 1.7 times with 
identical analysis results compared to the uncompressed version.

Conclusion: This study shows that GPU processing of compressed CTP data can be 
used for speeding up diagnosis and treatment selection based on CTP image analysis, 
potentially improving outcome of patients with acute ischemic stroke.

Keywords: acute care; brain imaging; computed tomography perfusion; data 
compression; GPU processing; high performance computing; stroke
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Background

Patients suspected of acute ischemic stroke benefit from fast diagnosis and fast treatment 
decisions. CT perfusion (CTP) imaging is a diagnostic tool for initial evaluation of 
patients suspected of acute ischemic stroke and it can be useful for predicting functional 
patient outcome [1]. Analysis of CTP data allows assessment of the severity of stroke 
damage and supports in choosing the most adequate treatment [2]. CTP images are 
acquired by dynamically tracing the flow of contrast agent through the cerebral blood 
vessels and cerebral tissues [3]. The combination of accurate postprocessing methods and 
CTP data analysis may eventually provide a powerful diagnostic tool in acute ischemic 
stroke management [4]. However, the processing of CTP data can be time consuming 
because CTP datasets can be larger than 3.5 GB, which causes image transfer and 
traditional processing methods to become slow and unsuitable for acute care.

Data compression techniques can be used to reduce the size of CTP datasets and speed up 
transfers. Moreover, the analysis of compressed CTP data has the potential to considerably 
reduce the amount of data to be processed, which may result in a reduction of execution 
time and memory usage. Previous non-medical imaging studies [5–7], which are mainly 
based on lossy compression, have shown the potential of compressed-domain processing. 
However, in clinical applications, the applied compression techniques are required to 
be lossless because of legal regulations. Moreover, processing of compressed data using 
the techniques provided by [5–7], requires large modifications to the original processing 
algorithms or they only allow the usage of a very limited set of image processing operations.

To provide high-performance data processing, graphic processing units (GPUs) can 
be used. GPUs are designed for very efficient parallel processing of large amounts of 
data. GPUs were demonstrated capable of considerably speeding up medical imaging 
processing in many different applications [8]. Nevertheless, the size of CTP datasets 
poses challenges for processing on GPUs. To perform a GPU computation, a host 
application is required to run on the CPU, and the CTP data need to be transferred 
from the host memory to the GPU memory. The time required in these transfers has a 
considerable impact on the overall GPU processing time, being a well-known bottleneck 
on GPU processing applications [9].

In this study, we introduce and validate a novel approach for parallel processing of 
compressed CTP data that supports GPU computing. The CTP data is compressed by 
using a fast lossless algorithm [10] that enables direct access to any image element from 
the compressed data. To evaluate the GPU processing of compressed CTP fata we used 
a well-established filter for noise reduction in dynamic CTP data [11] and a double 
threshold segmentation that operates on the 4 dimensions of the dynamic CTP data.
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Methods

We evaluated the performance and accuracy of compressed CTP data processing using 
datasets from the recently completed MR CLEAN multi-center trial [12]. To compress 
the CTP datasets, we used a GPU-based compression algorithm specifically designed 
for CTP datasets. To process compressed and uncompressed CTP data on GPUs, we 
implemented a noise reduction filter and a double threshold segmentation. To validate 
our method, we compared the differences in execution time, memory usage, and filtering 
results of the different implementations of the filter and of the segmentation.

CTP image data
We used dynamic whole-brain volume datasets of 29 patients with acute ischemic 
stroke. Twenty of these scans have 320 slices with pixel spacing of 0.4mm×0.4mm 
and slice thickness of 0.5mm. The other 9 scans have only 6 slices with pixel spacing 
of 0.5mm×0.5mm and slice thickness of 4.8mm. Each slice has 512×512 voxels with 
16 bits/voxel and 24 time frames. The patients were scanned as part of a multi-center 
randomized trial [12]. Approval of the medical ethical committee was obtained. All 
patients or legal representatives signed informed consent. The volumes were acquired 
approximately every 2.5 seconds during the first 35 seconds followed by a scan every 5 
seconds until 60 seconds. Subsequently, a few additional volumes were scanned with a 
30 seconds interval. The size of each volume with 320 slices is 160 MB. Thus, a single 
CTP series for one patient can have up to 3840 MB of data.

Compression algorithm
The compression algorithm used in this study is described in detail in [10]. Nevertheless, 
the main characteristics of this compression method are presented here for providing a 
better understanding of how the CTP data is stored in the compressed form. 

Each CTP dataset can be represented as I(x, t), which denotes the image intensity at 
position x at time t. Intensities in a CTP dataset are encoded by using 16 bits. However, 
at a given position, the range of intensities of the voxels over time is considerably smaller 
than the range of values that can be encoded by 16 bits. Consequently, fewer bits can 
be used to encode the same information when considering the range of these intensities, 
instead of their absolute values. This concept is illustrated in Figure 1, which shows that 
the intensities over time at positions xa and xb can be represented by using only 6 and 8 
bits respectively (dlog2 (72 − 22 + 1)e = 6 and dlog2 (191 − 46 + 1)e = 8). This allows a 
compression ratio respectively of 2.6 and 2 for xa and xb compared to the original pixel 
representation in 16 bits. In the sample slice shown Figure 2, a compression ratio of at 
least 2.6 is possible in 79% of the voxels.
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Figure 1: Intensities over time at positions xa and xb in Hounsfield units (HU).

By taking advantage of these smaller ranges of CTP data, we can represent the compressed 
image as I(x, t) = C(x) + ∆(x, t) with min Vx ≤ C(x) ≤ max Vx and Vx = {I(x, t0), I(x, t1), 
. . . , I(x, tn−1)}. For simplicity, we use C(x) = min Vx. The set of values Dx given by Dx = 
{∆(x, t0), ∆(x, t1), . . . , ∆(x, tn−1)} may present a small variation. In this case, fewer bits 
can be used to encode their elements. The exact number of bits required to represent a 
single element in Dx is given by ⌈log2 (max Vx − min Vx + 1) ⌉. Thus, Dx is stored by using 
⌈log2 (max Vx − min Vx + 1)⌉ × n bits.

Figure 2: Number of  bits requires to encode the variation of  the intensities of  a voxel over time.

 
Because the number of bits required to represent each Dx set varies for each x, all the Dx 
values are contiguously stored in an array D. A maximum of two elements from D need 
to be accessed to store and retrieve a particular ∆(x, t) using a fixed amount of bit shift 
operations. As we can see in Figure 5, when two elements from D need to be accessed, 
two bit shift operations are needed (lines 16-17 in Figure 5). Otherwise, a single bit shift 
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operation is required (line 14 in Figure 5)

Figure 3 illustrates the data structures used in the implementation of this compression 
technique. An offset is provided to determine where a particular Dx begins in the array 
D. All the offsets are stored in an array O. Another array, named B, is used to store how 
many bits are required to represent the elements in Dx. In this way, different elements in 
Dx can be distinguished. The offsets can be quickly calculated by traversing B. However, 
O is provided to keep instant access to any Dx in D. Finally, an array C is used to store 
all the C(x) values.

Figure 3: Illustration of  the data structures to store the compressed CTP data. The input is a series of  

volume images in different time steps. B is an array of  8 bits elements. D and O are arrays of  32 bits 

elements. C is an array of  16 bits elements because its elements contain original intensity values from 

the 16-bit voxels. All these arrays are fixed-size.

The time required to compress a CTP dataset must be considered in our proposed 
strategy for processing CTP data. Since the compression method is processed on the 
GPU, a very low execution time is achieved. Figure 4 shows the compression time for 
20 datasets of 3.75GB, which are the biggest datasets and, therefore, the slowest to 
compress. The size of the compressed files produced by this compression algorithm is 
larger than other lossless compression methods (Figure 4). However, as detailed in [10], 
other compression algorithms have a very long compression or decompression time and, 
for this reason, they are not suitable for speeding up the analysis of dynamic CTP data.
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Figure 4: Compression time and compressed file size of  the adopted compression algorithm. Data 

retrieved from the compression of  the 20 CTP datasets of  3840MB. Left: compression time when using 

different number of  CPU threads and when using GPU (for hardware configuration details see Table 

1). Right: uncompressed dataset size and average compressed dataset size produced, respectively, by 

the method proposed by [10], run-length encoding (RLE), the lossless mode of  JPEG, and JPEG LS.

Thresholding and filtering
In CTP images, the level of noise is commonly high due to the limited amount of 
radiation used during acquisition. Algorithms to determine perfusion parameters based 
on dynamic CTP data are sensitive to noise. Thus, noise reduction is an important goal 
in the processing of CTP image data. A time-intensity profile similarity (TIPS) bilateral 
filter [11] was demonstrated to produce high quality images by reducing noise in CTP 
datasets. Because of the importance of this method for CTP analysis, this filter was used 
here to demonstrate the potential of the analysis of compressed CTP image data. The 
TIPS filter is defined as a regular 3D bilateral filter in which the pixel similarity function 
was replaced by a TIPS function. The TIPS function considers the temporal similarity to 
determine the agreement of 2 voxels and is defined as

ρ(𝜉𝜉𝜉𝜉, 𝑥𝑥𝑥𝑥) = exp�−
1
2

 �
𝜍𝜍𝜍𝜍(𝜉𝜉𝜉𝜉, 𝑥𝑥𝑥𝑥)
𝜎𝜎𝜎𝜎𝜍𝜍𝜍𝜍

�
2

�, 

where ρ(𝜉𝜉𝜉𝜉, 𝑥𝑥𝑥𝑥)   is the sum of the squared differences (SSD) between the intensities of a 
voxel at x and a voxel at 𝜉𝜉𝜉𝜉  in time. Thus, the SSD is defined as:

𝜍𝜍𝜍𝜍(𝜉𝜉𝜉𝜉, x) = �(𝐼𝐼𝐼𝐼 (ξ, 𝑡𝑡𝑡𝑡) −  𝐼𝐼𝐼𝐼 (x, 𝑡𝑡𝑡𝑡))2
𝑇𝑇𝑇𝑇−1

𝑡𝑡𝑡𝑡=0

, 
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where T is the number of time steps. In this way, we calculate a new (filtered) intensity 
value h(x, t) for each intensity value I(x, t) in the CTP dataset. h(x, t) is defined as:

1
𝑟𝑟𝑟𝑟(𝑥𝑥𝑥𝑥)

�
𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖=−𝑚𝑚𝑚𝑚

�
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=−𝑛𝑛𝑛𝑛

� 𝐼𝐼𝐼𝐼 (𝜉𝜉𝜉𝜉(𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖, 𝑦𝑦𝑦𝑦 + 𝑗𝑗𝑗𝑗, 𝑧𝑧𝑧𝑧 + 𝑘𝑘𝑘𝑘), 𝑡𝑡𝑡𝑡)𝑐𝑐𝑐𝑐(𝜉𝜉𝜉𝜉, x)𝜌𝜌𝜌𝜌(𝜉𝜉𝜉𝜉, x),
𝑜𝑜𝑜𝑜

𝑖𝑖𝑖𝑖=−𝑜𝑜𝑜𝑜

 

 where m, n, and o are, respectively, the half kernel sizes in the x, y, and z directions
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and d (𝜉𝜉𝜉𝜉, x)  is the Euclidean distance between the voxel at x and the voxel at 𝜉𝜉𝜉𝜉 .

Besides the TIPS filtering, we also performed a double threshold segmentation on the 
CTP data. This segmentation can be used, for instance, to create a binary mask of 
the cerebral spinal fluid (0-15 HU). This mask is useful for the automatic calculation 
of parameters such as the noise level in a CTP image [11]. The double threshold 
segmentation of dynamic CTP datasets evaluates all the voxels in the 4 dimensions and 
produces a mask with the same dimension as the input image data.

Implementation details
Regarding the TIPS filter, we used the original CPU-based implementation (CPUFIL) 
from [11] and two additional GPU implementations: one processing uncompressed 
data (FIL) and another processing compressed data (FIL-COM). Regarding the 
thresholding segmentation, we only used two GPU implementations: one of them 
handles compressed CTP data (SEG-COM) and the other does not (SEG).

The host applications of all GPU implementations were developed in the .NET 
Framework version 4.0 [13]. The library Fellow Oak DICOM version 1.0.36 [14] was 
used for handling DICOM files. For the GPU computations, OpenCL 1.1 [15] was 
used and OpenCL.NET version 2.2.9 [16] was used to integrate OpenCL with .NET.

CPU-FIL was implemented in C++, being accessed and executed through MATLAB. 
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This implementation only uses CPU computations and it was optimized for minimizing 
cache misses. In FIL and FIL-COM, the filtered intensities over time of a voxel are stored 
in a single OpenCL data structure (see lines 1-4 in Figure 6). In these implementations, 
the function p(ξ, x) was implemented as an OpenCL function (see lines 44-45 in Figure 
6); h(x, t) was implemented as an OpenCL kernel; c(ξ, x) was implemented as a lookup 
table with the same size of the kernel (2m×2n×2o) (see lines 27-28 in Figure 6); and r(x) 
is computed together with the calculations of h(x, t) in an OpenCL kernel (see lines 59-
64 in Figure 6). Similarly to FIL and FIL-COM, the segmentation results of SEG and 
SEG-COM of a single voxel over time are grouped in the same OpenCL data structure. 
Each binary segmentation result is represented in a byte (0 = false, other values = true).

Since the compression method allows direct access to the individual voxels, the main 
difference between FIL and FIL-COM, and also between SEG and SEG-COM, is the 
way in which the data is transferred to the GPU and how the input data is accessed. 
These differences are highlighted in Figure 6 and in Figure 7. In FIL and SEG, the 
data is sent to the GPU in an array of OpenCL data structures (see lines 6-7 in Figure 
6). Each data structure contains all the intensity values of one voxel over time in its 
original 16 bits integer representation. In FIL-COM and SEG-COM, the input data is 
sent in the arrays C, O, B, and D using the compressed representation (see lines 1-5 in 
Figure 7). A few extra operations (bit shift, add) need to be performed to reconstruct 
the original intensity value of a voxel. The OpenCL code used for these recostructions is 
shown in Figure 5. In both GPU implementations, all the data stored in global memory 
used in the kernel computations is copied to local memory prior to processing.

Figure 5: Code for accessing the a specific ∆(x; t) from a set Dx stored in the array D, which is referred 

in the code as vector. Note that only operations with constant computational complexity are used. 

Therefore, the computational complexity for accessing the intensity value of  a single voxel is also 

constant. One bit shift operation is required when accessing a single element of  D (line 14). When 

two elements are accessed, two bit shifts are needed (lines 16-17).



Chapter 4

62

Validation
We performed four experiments to validate the analysis of compressed CTP image data. 
Two of these experiments verify the differences between the results produced by the 
processing of compressed and uncompressed data. The other two experiments quantify 
the differences in the usage of computational resources while processing compressed 
and uncompressed CTP data on GPUs. We performed a voxel-wise comparison of 
the results of CPU-FIL, FIL, and FIL-COM to establish whether the outputs of all 
implementations are equivalent. In this experiment, we used 20 datasets with 320 slices 
because they have more noise than the datasets with 6 slices, which could intensify the 
differences in the results from the different implementations. These 20 datasets were 
corrected for motion using rigid 3D registration [17] prior to filtering and compression. 
We used the following values for the parameters of the filter: kernel size = 41 × 41 × 35 
voxels, σζ = 150, σd = 2.5, and clamping the voxels at the border of the image.

To evaluate the usage of computational resources in FIL and FIL-COM we measured 
the memory usage (size of the GPU memory buffers with the input data), the GPU 
processing time (excluding the time for data transfers), the time to transfer data to and 
from the GPU, and the total GPU time (processing + transfers). In this experiment 
we used all the 29 datasets without motion correction. Also, we used different filter 
parameters, since some datasets only have 6 slices: kernel size = 5 × 5 × 5 voxels, σζ = 
150, σd = 0.5, and clamping the voxels at the border of the image.

The total GPU processing time spent by SEG-COM and SEG was measured to evaluate 
their differences in the usage of computational resources. The same parameters used for 
the voxel-wise comparison were used in this experiment. All the GPU computations 
were performed in the same hardware configuration (see Table 1) using Windows 7 
Professional 64 bits as operating system. For time measurements, high-resolution timing 
counters provided by the Win32 API were used.

Table 1: Hardware configuration on which the validation experiments were performed.

CPU Name: Intel Xeon E5-2620
CPU Clock: 2.00 GHz
CPU Cores: 6
CPU Threads: 12
RAM Memory: 64 GB
GPU Name: GeForce GTX TITAN
GPU Driver Version: 331.65
GPU Cores: 2688
GPU Clock: 836 MHz
Dedicated Video Memory: 6 GB GDDR5
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Results and discussion

The filtering results obtained from FIL and FIL-COM are exactly the same. 
However, a few differences were observed when comparing the results from the GPU 
implementations with the results from the CPU implementation. In Figure 8 we can 
observe the differences between these results for one dataset. In Figure 9 we show a 
histogram of the differences in Hounsfield units between the filter results from the 
original and the GPU implementations for all datasets.

The original TIPS filter implementation is targeted to CPU computing and it takes around 
30 minutes to process a complete CTP dataset. To prevent the original implementation 
to take even longer, some kernel computations are truncated on purpose. This is the 
main reason for the differences between the results from CPUFIL and the results from 
FIL and FIL-COM. Since the GPU implementations are much faster, we do not need 
to truncate the kernel computations. Nevertheless, even if the original implementation 
would perform all the computations, some differences are still expected due to rounding-
off operations and different ways that different APIs implement basic operations like 
square root, power, etc. 

Table 2 summarizes the gain in the usage of computational resources by FILCOM and 
FIL. The values in Table 2 are calculated by dividing a measurement of computational 
resource usage (time, memory) collected from FIL by that collected from FIL-COM 
(uncompressed/compressed).

When comparing the computational resources used by FIL and FIL-COM we opted for 
not using motion correction because it interferes with the final compression ratio, which 
consequently interferes with the memory usage. The motion correction may reduce 
the range of values of a voxel over time. Since the compression algorithm explores this 
characteristic, a higher compression ration can be achieved.

Table 2: Gains from running the TIPS filter on GPU with compressed CTP data relative to uncom-

pressed data.

minimum average maximum
speed up in time to send input data 1.9 2.2 2.6
speed up in processing time 1.2 1.3 1.4
speed up in time to get output data 0.8 1.0 1.5
compression ratio of input data 2.0 2.2 2.8
speed up in total time (transfers + processing) 1.2 1.3 1.6
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As can be observed in Table 2, the processing of compressed CTP data has several 
advantages over processing of uncompressed CTP data. By performing direct processing 
of compressed CTP data, it is possible to reduce not only data transfer time and memory 
usage, but also GPU processing time. One of the main advantages of our approach is 
that it enables fitting more data into the GPU memory, and consequently also doing 
more computations before transferring new input data from the CPU to the GPU. 
This can reduce the overhead caused by the communication between GPU and host 
application.

The only aspect that was not improved when comparing FIL and FIL-COM data was 
the transfer of the results from the GPU memory. This happened because the filter results 
were not compressed after processing, even though this is possible. By compressing the 
filter results, the time to retrieve the output data from the GPU memory should be 
reduced in a similar way as the time to send the input data. However, the time required 
to perform the compression will be added to the total GPU processing time. Moreover, 
no delay or overhead was introduced in the time to get the output data of FIL-COM 
compared to FIL. Figure 10 shows in detail the time spent in each step of the execution 
of FIL and FIL-COM when processing the CTP datasets of 320 slices, which are bigger 
and consequently have slower execution time compared to the datasets of 6 slices.

Regarding SEG-COM to SEG, the segmentation results of these implementations were 
identical. When considering all 29 CTP datasets, the total GPU usage of SEGCOM was 
between 1.2 and 1.7 times faster than SEG, with an average speedup of 1.5 times. Also, 
no differences were observed in the time to transfer the results from the GPU memory 
to host application memory. However, in this case the segmentation results cannot be 
compressed because they are binary masks and the compression algorithm used can only 
compress grey scale time series images. Figure 11 shows the total GPU processing time 
of SEG and SEG-COM implementations. As we can observe in Figure 11, the total 
GPU processing time of the segmentation was reduced in the same proportion as the 
total processing time of the filter.

As observed in Figure 10 and Figure 11, a few seconds were reduced in the total execution 
time when processing compressed CTP data. However, by using this approach in all steps 
of an entire CTP analysis pipeline, more considerable gains are expected. Furthermore, 
segmentation of infarct core, generation of arterial input function, and calculation of 
many other parameters from CTP data can benefit from postprocessing techniques as 
the TIPS filter [4, 11]. Thus, a processing time 1.3 times faster and an input data 2 
times smaller would be very beneficial in a CTP analysis pipeline with extensive use of 
postprocessing techniques, thin slices CTP scans, and multimodal data.
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Conclusions

We have presented a novel approach for processing compressed dynamic CTP data. 
This approach takes advantage of the data structures used to store the compressed 
data to enable massively parallel data processing on GPUs, without requiring major 
modifications to the CTP processing algorithms. We have shown that this approach was 
able execute the GPU implementations of a well-established TIPS filter and a generic bi-
threshold segmentation 1.3 times faster. This speedup was achieved with no modification 
in the source code implementing the filter or the segmentation calculations. The only 
modification required is related to the access to a voxel intensity, which is represented as 
C(x)+∆(x, t) instead of the original value I(x, t).

Our strategy does not add costly computational operations for data decompression, 
and it reduces memory usage and processing time considerably. Because of that, it is 
expected that any other GPU-based processing of CTP data could also benefit from our 
approach. Consequently, our method may contribute to achieving faster treatment and 
diagnosis based on GPU processing of CTP image analysis, which is relevant for optimal 
treatment selection of patients suspected of acute ischemic stroke.
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Figure 6: Code snippet of  the OpenCL kernel that implements the noise reduction filter on uncompressed 

CTP data. The lines of  code highlighted in light gray are the only lines that need to be changed to 

adapt this code for processing compressed CTP data. These lines need to be changed because they are 

related to the way the input data is stored in the GPU memory.
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Figure 7: Code snippet of  the OpenCL kernel that implements the noise reduction filter on compressed 

CTP data. Only the lines of  code that need to be changed from the source code presented in Figure 

6 are shown. These lines are: the kernel signature (1-5), which needs to be changed to receive the 

compressed data as input; the code to access all the intensity values of  the current voxel over time 

(7-15), in this case each of  these values need to be retrieved from the array D; and the code to access 

the intensity values over time of  the voxels in the kernel (17-25).

Figure 8: CTP filtering results. From left to right, the top row shows: a sample slice from the 

input data, the result produced by the original CPU implementation, and the result from the GPU 

implementations. The bottom row shows in detail: input data, CPU result, GPU result, and absolute 

differences in Hounsfield units (HU).
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Figure 9: Histogram of  differences in voxel intensities between the results of  the original CPU 

implementation and the GPU implementations of  the TIPS filter. All voxels from all datasets were 

evaluated and in more than 99% of  them the difference is ±5 Hounsfield units (HU) or less.

Figure 10: Time measurements of  the TIPS filter (in milliseconds) when processing compressed and 

uncompressed CTP data.
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Figure 11: Total GPU usage time (data transfers + processing) in milliseconds for the double threshold 

segmentation when processing uncompressed (left) and compressed (right) CTP data for 20 datasets 

with 320 slices.
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Abstract

Acute stroke is the leading cause of disabilities and the fourth cause of death worldwide. 
The treatment of stroke patients often requires fast collaboration between medical 
experts and fast analysis and sharing of large amounts of medical data, especially image 
data. In this situation, cloud technologies provide a potentially cost-effective way to 
optimize management of stroke patients and, consequently, improve patient outcome. 
This paper presents a cloud-based platform for Medical Distributed Utilization of 
Services & Applications (MEDUSA). This platform aims at improving current acute 
care settings by allowing fast medical data exchange, advanced processing of medical 
image data, automated decision support, and remote collaboration between physicians 
in a secure and responsive virtual space. We describe a prototype implemented in the 
MEDUSA platform for supporting the treatment of acute stroke patients. As the initial 
evaluation illustrates, this prototype improves several aspects of current stroke care and 
has the potential to play an important role in the care management of acute stroke 
patients.

Keywords: Acute care · Cloud computing · Decision support · High performance 
computing · Medical image analysis · Remote collaboration · Stroke · Telemedicine
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1 Introduction

Acute ischemic stroke is the leading cause of disability and fourth cause of death [1]. 
In acute ischemic stroke, a blood clot obstructs blood flow in the brain causing part of 
the brain to die due to the lack of blood supply. The amount of brain damage and the 
patient outcome is highly related to the duration of the lack of blood flow (“time is 
brain”). Therefore, fast diagnosis, decision making, and treatment are crucial in acute 
stroke management.

Medical data of a stroke patient is collected during the transport by ambulance to the 
hospital (e.g. vital signs, patient history, and medication). At arrival, various types of 
image data are acquired following protocols that involve opinions and decisions from 
various medical experts. Sometimes, a patient needs to be transferred to a specialized 
hospital and, in this case, it is important that all the data collected in the ambulance and 
at the referring hospital is available to the caregivers that will continue the treatment. 
Often, various medical specialists need to collaborate based on available information 
for determining the correct diagnosis and choosing the best treatment. Usually, this 
collaboration is based on tools that are not connected to each other and, because of that, 
they may not deliver the necessary information rapidly enough.

In addition to these challenges, the amount of patient medical data is growing fast 
[2]. This fast increase is especially observed in radiological image data, which is also a 
consequence of new medical imaging technologies [3, 4]. The management, sharing, 
and processing of medical image data is a great challenge for healthcare providers [3, 
4] and they can be greatly improved by the usage of cloud technologies [5]. Cloud 
technologies also enable collaboration and data exchange between medical experts in a 
scalable, fast, and cost-effective way [5]. Mobile devices, remote collaboration tools, and 
on-demand computing models and data analysis tools supported by cloud technologies 
may play an important role to help in optimizing stroke treatment and, consequently, 
improve outcome of patients suffering from stroke.

In this paper, we present a cloud-based platform for Medical Distributed Utilization of 
Services & Applications (MEDUSA). This platform aims at improving current acute 
care settings by allowing fast medical data exchange, advanced processing of medical 
image data, automated decision support, and remote collaboration between physicians 
through a secure responsive virtual space. We discuss a case study implemented using the 
MEDUSA platform for supporting the treatment of acute stroke patients, presenting 
the technical details of the prototype implementation and commenting on its initial 
evaluation.
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2 Related Work

The development of cloud-based platforms for collaboration and processing of medical 
data is a challenging task. Many authors [4, 5, 6, 7] put forward that these platforms 
hold the potential to define the future of healthcare services. Also, the analysis of medical 
data can be an important way to improve quality and efficiency in healthcare [8, 9].

The work presented in [10, 11] focuses on the development of a cloud-based solution 
aimed at only the storage and sharing of medical data. In other words, they propose 
solutions based on cloud infrastructures to facilitate medical image data exchange 
between hospitals, imaging centers, and physicians. A similar solution is presented 
in [12], however focusing on medical data sharing during emergency situations. A 
cloud-based system is presented in [13] for storage of medical data with an additional 
functionality that enables content-based retrieval of medical images. Still focusing on 
cloud-based data storage and sharing, [14] presents a solution to help managing medical 
resources for the prevention and treatment of chronic stroke patients.

In addition to storage and sharing, some studies also include the possibility of using the 
cloud infrastructure for processing of medical data. A simple cloud-based application is 
presented in [15] to monitor oxygenated hemoglobin and deoxygenated hemoglobin 
concentration changes in different tissues. Cloud computing is also used in [16] not 
only to support data storage and sharing, but also to visualize and render medical 
image data. In [17] the authors also propose a cloud application for rendering of 3D 
medical imaging data. This application additionally manages the cloud deployment by 
considering scalability, operational cost, and network quality.

Complete cloud-based systems for medical image analysis are presented in [18, 19, 20]. 
However, in these systems, image upload and download is manually performed by the 
user, while the system focuses on the remote processing, storage, and sharing of medical 
image data. The MEDUSA platform not only provides cloud-based storage, sharing, and 
processing of medical image data, but also real-time communication between medical 
experts, real-time collaborative interaction of the medical experts with the medical data, 
and a real-time decision support system that continuously processes patient data and 
displays relevant notifications about the patient condition.

The MEDUSA platform also includes a cloud management layer that coordinates the 
use of resources in the cloud infrastructure. Other studies also present some cloud 
management features. In [21] the authors propose a cloud architecture that reserves 
network and computing resources to avoid problems regarding load-balancing 
mechanisms of cloud infrastructures and to reduce the processing delays for the medical 
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applications. Also, [2] proposes an algorithm to optimize the organization of medical 
image data and associated processing algorithms in cloud computing nodes to increase 
the computing performance. Finally, [3] presents a cloud-based multi-agent system for 
scalable management of large collections of medical image data.

The project presented in [22] tries to speed up current stroke care by integrating and 
sharing data from stroke patients using mobile networks. In this scenario, a hospital can, 
for instance, be prepared with the right resources before the arrival of the patient. This 
project also includes decision support, which suggests a predefined path through the 
emergency procedures according to the structure of mandatory and other supplementary 
healthcare protocols. However, differently from MEDUSA, this project does not include 
any image processing based feature.

3 Acute Stroke Care

Currently, treatment decision of stroke patients is increasingly driven by advanced 
imaging techniques. These imaging techniques consist of non-contrast computed 
tomography (ncCT), computed tomography angiography (CTA), and computed 
tomography perfusion (CTP). Because of the extensive usage of imaging techniques, it 
is common to produce gigabytes of image data per patient.

The primary treatment for patients with acute ischemic stroke is intravenous 
administration of alteplase (thrombolysis). Patients who are not eligible for treatment 
with alteplase or do not respond to the treatment can be treated by mechanical removal 
of the blood clot via the artery (thrombectomy). Thrombectomy is only available in 
specialized hospitals and often a patient must be transferred for treatment.

This transfer is arranged via telephone and imaging data created in the initial hospital is not 
available for the caregivers in the specialized hospital until the patient and imaging data 
arrive via the ambulance. On a regular basis it happens that the imaging data was wrongly 
interpreted in the initial hospital and that the patient is not eligible for thrombectomy. 
Also, often new imaging acquisitions have to be redone due to broken DVDs, wrong data, 
or insufficient quality. These problems result in futile transfers and loss of valuable time.

4 MEDUSA Platform

The MEDUSA platform was designed to support remote collaboration and high 
performance processing of medical data for multiple healthcare scenarios. The platform 
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is accessible to final users through the MEDUSA Collaboration Framework (MCF), 
which is a web application that is compatible with any web browser that supports 
HTML5. The MCF is a special type of MEDUSA application that provides to the 
users an entry point to access other MEDUSA applications. A cloud management layer 
controls the deployment and execution of all MEDUSA applications in one or more 
cloud providers. Figure 1 illustrates the architectural design of the MEDUSA platform.

Figure 1: The MEDUSA platform architecture.

4.1 MEDUSA Cloud Applications
The MEDUSA platform has a number of cloud applications that are available in all 
healthcare scenarios: Audit Trail, which reports the events generated by the other 
MEDUSA applications; User Manager, which allows assigning roles to users and 
defining which MEDUSA applications they can use; and Video Call, which allows 
communication between users of the MEDUSA platform.

The MEDUSA applications are started as part of a MEDUSA session. Multiple users 
in a session can interact with these applications, and these interactions are visible 
to all the users in the session. The handling of multiple user interactions is done by 
each MEDUSA application. The applications in the MEDUSA platform can be web 
applications or regular desktop applications. The desktop applications are integrated 
in the MEDUSA platform through a virtualization server that uses the technologies 
described in [23] and [24]. The multi-user interaction of the desktop applications is 
handled by the virtualization server.

4.2 Cloud Provider
The MEDUSA applications can be deployed in different cloud providers. Currently, 
these applications are being deployed in the High Performance Real-time Cloud for 
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Computing (HiPeRT-Cloud) of Bull. The HiPeRT-Cloud is mainly designed for 
realtime computationally-intensive workloads. This solution is fully compatible with 
the Cloud Computing Reference Architecture of the National Institute of Standards 
and Technology (NIST) and provides infrastructure services under any cloud broker 
solution. The HiPeRT-Cloud is used in the MEDUSA platform because it provides 
solutions for handling complex applications in the field of real-time computational and 
data-intensive tasks in the cloud.

4.3 Cloud Management Layer
In order to take advantage of the on-demand, flexible, high-performance, and 
costeffective options that cloud providers can offer, the cloud management layer, 
implemented by Prologue, manages the cloud deployment in the MEDUSA platform. 
This layer orchestrates the allocation and release of resources on the cloud provider’s 
infrastructure. It also oversees the lifecycle of the deployed resources, ensures their 
availability and scalability, and links the desktop applications from the virtualization 
server back to the MCF. The cloud management layer is designed according to the 
Service-Oriented Architecture model and its functionalities are accessible through 
a Representational State Transfer Application Programming Interface (REST API). 
The cloud management layer also incorporates a monitoring service that operates by 
accessing directly the deployed virtual machines (VMs). The technology behind the 
cloud management layer is aligned with the NIST architecture and based on the Open 
Cloud Computing Interface specifications.

In the MEDUSA context, technical requirements for computing, storage, network, and 
security resources have been identified for each MEDUSA application to be deployed. 
All requirements are then translated into machine-readable code that is used to provision 
the cloud resources.

The components of the MEDUSA platform are hosted on the cloud through a security-
aware, need-based provisioning process. By supporting on-demand hybrid and multi-
cloud deployments, as well as monitoring, load balancing, and auto-scaling services 
through an agent embedded in each VM, the cloud management layer thus ensures a 
high resilience of the MEDUSA platform.

4.4 Security
The security of the MEDUSA platform is currently mainly based in the use of digital 
certificates, which are used to authenticate MEDUSA applications (VMs), to secure the 
data exchanges through the network, and to provide strong authentication of MEDUSA 
users.
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The VMs containing the applications are deployed dynamically, and thus server 
certificates need to be created dynamically, during the deployment. A web service was 
developed to provide dynamic generation of server certificates for the different VMs in 
the MEDUSA platform. These server certificates must be created during the deployment 
of the VMs and there must be one certificate per application and VM (identified by the 
IP address).

Regarding the user authentication, an authentication module is called when a user 
opens a MEDUSA session. This module authenticates a user by checking the provided 
credentials against the user management component, which has access to a special 
internal directory containing the certificates used for strong authentication of MEDUSA 
users.

The MEDUSA platform also uses robust image watermarking and fingerprinting 
methods to prevent and detect unauthorized modification and leaking of medical images 
by authorized users by. However, due to legal regulations, an important requirement 
when dealing with medical images is the capability reconstructing the original image 
data. Because of this, reversible or semantic-sensitive techniques for watermarking 
and fingerprinting can be used in the MEDUSA platform. These techniques enable to 
completely recover the original image data or at least the recovery of the regions of these 
images that are relevant for the user or application.

5 MEDUSA Stroke Prototype

The MEDUSA platform was designed to support various medical scenarios. Here, we 
focus on a prototype for supporting acute stroke care. The MEDUSA Stroke Prototype 
(MSP) is built by combining the default MEDUSA applications with three applications 
specifically configured to support the treatment of stroke patients: Advanced Medical 
Image Processing, Decision Support System, and 3D Segmentation Renderer. All the 
applications of the MSP are executed in VMs running on the HiPeRT-Cloud. The cloud 
management layer is in charge of the deployment of these VMs.

5.1 Advanced Medical Image Processing
For supporting the assessment of the severity of a stroke, several medical image processing 
algorithms (MIPAs) have been developed. These algorithms perform quantitative 
analysis of the medical image data and the result of these analyses can be used to 
support the treatment decisions. The output of these algorithms are, for example, the 
segmentation of a hemorrhage in the brain [25], the segmentation of a blood clot [26], 
and the segmentation of the infarcted brain tissue [27]. The MIPAs are linked together 
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into processing pipelines with well-defined input, output, and policies that control their 
execution. The execution of these pipelines is automatically orchestrated to deliver the 
lowest execution time based on a set of optimization strategies (e.g. task parallelism, data 
parallelism, and GPU computing).

The MIPAs are implemented as plugins for the IntelliSpace Discovery (ISD) platform, 
an enterprise solution for research, developed by Philips Healthcare. Figure 2 shows the 
output of the plugin for infarct volume calculation in the ISD. The collection of MIPAs 
specially developed to support acute stroke care that are included in the ISD constitutes 
the Advanced Medical Image Processing application of the MSP.

Figure 2: Plugin for automated measurement of  the cerebral infarct volume in the ISD.

The ISD is a Windows desktop application developed by using the .NET Framework. 
The development of the MIPAs is also based in the .NET Framework. For GPU-based 
computations, OpenCL 1.1 was used. OpenCL is a framework for the development 
and execution of programs across platforms consisting of different types of processors 
such as CPUs, GPUs, etc. OpenCL.NET was used to integrate OpenCL with the .NET. 
Framework.

The data generated by the MIPAs are exported to the DSS by using JavaScript Object 
Notation (JSON) files through WebSockets. (Anonymized) Patient information is sent 
to the MIPAs by using the tags of the medical image data used as input. The information 
about the current session is directly sent to the ISD and forwarded to the MIPAs. 
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5.2 Decision Support System
The Decision Support System (DSS) by Sopheon provides real-time process support to 
medical professionals collaborating on the stroke case. The DSS is rule-based: the rules 
specify the conditions under which actions are to be advised (delivered as notifications). 
The Decision Support rules are part of a medical protocol and thus defined and approved 
by medical professionals.

In the MSP, the DSS runs a set of rules specifically designed for dealing with stroke 
patients. It gathers real-time input from vital sign sensors and MIPAs. For instance, 
a rule could state that an infarct volume larger than 70 milliliters is associated with a 
poor outcome for the patient. When the DSS detects an infarct volume value of e.g. 80 
milliliters, it will display the notification associated with this condition. The DSS also 
selects relevant information from the data generated by the MIPAs and forwards it to 
the audit trail and to the 3D Segmentation Renderer.

The DSS runs on Node.js, which is a platform built on Google Chrome’s JavaScript 
runtime. The DSS is deployed on Fedora, which is an operating system based on the 
Linux kernel.

5.3 3D Segmentation Renderer
The 3D Segmentation Renderer by Sopheon is responsible for displaying 3D segmentations 
generated by the MIPAs. This application was developed by using the WebGL library, 
which enables to render 3D graphics in the browser without installing additional software. 
Figure 3 shows the GUI of this application rendering the segmentation of brain tissue (in 
green and blue) and the segmentation of the infarcted region (in red).

Figure 3: 3D segmentation renderer showing the segmentation of  brain tissue (green and blue) and 

the infarction in the brain (red).
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6 Initial Evaluation

As this is an on-going project, the discussion presented below is based upon an evaluation 
of the first fully-integrated prototype.

The MSP integrates very heterogeneous applications, which run on different operational 
systems (Windows, Linux) and use different development technologies (Java, OpenCL, 
C#, C++). These applications are seamlessly available for the user from a single interface. 
Also, the deployment of the applications is transparently handled by the platform. This 
solution is provided in a smooth and transparent manner, hiding the complex details 
from the user.

In the MEDUSA platform, the data and user input need to cross several software layers, 
which might introduce overheads and decrease performance. However, such poor 
performance was not noticed in the initial MSP prototype. For instance, the Advanced 
Medical Image Processing application, which requires data exchange between different 
architectural components, was almost instantaneously ready for use without noticeable 
interaction delays.

The MSP implements a complete acute stroke use case, which has been demonstrated live 
in various occasions. Impressions have been collected informally to assess the potential 
value of this prototype system. Table 1 compares the current stroke care situation in the 
Netherlands versus the stroke care that could be supported by the MEDUSA platform 
based on the functionalities currently present in the MSP. 

Because of its complexity, a detailed and quantitative evaluation of the MEDUSA 
platform involves several software components and requires a careful planning. The 
design of this evaluation was already defined in the first year of the project. It is scheduled 
to take place during the last 6 months of the MEDUSA project (end of 2015).

Table 1: Current stroke care vs. stroke care with MEDUSA. 

current with MEDUSA
Data availability images are not available images are available online

Time to access data transport by car of physical media 
(minutes to hours) online data transfer (few seconds)

Potential value for decision automated quantitative analysis not 
used yet for clinical decision

results of MIPAs readily available as
decision parameters

Infrastructure static, proprietary, fixed scale pay-per-use, scalable, and portable 
to different cloud providers

Remote collaboration by phone by video-conference with access to 
the patient data
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Concerning the image processing functionality, most of the MIPAs included in the 
MSP are too computationally expensive to be executed on a local machine according 
to the time constraints of an acute stroke patient. HPC capabilities delivered by cloud 
computing were crucial to improve the processing of these algorithms from hours to 
minutes, making them suitable for acute stroke care. For instance, the time to run the 
method used to reduce noise in CTP data was reduced from more than half an hour to 
less than 2 minutes [28].

7 Discussion and Conclusion

The development of the MEDUSA platform started in 2013. Back then, this kind of 
cloud-based solutions was not common. Today, however, there is a clear trend in the 
healthcare industry towards the usage of cloud computing, collaboration, and automated 
analyses of medical data. In addition, when dealing with processing of medical data 
constrained by the requirements of acute care situations, a lot of benefits can be derived 
from the use of cloud computing: scalability, pay-per-use model, high performance 
computing capabilities, remote access, etc.

There are innumerous technical challenges for enabling the execution and communication 
of software components in a platform like MEDUSA. Regarding stroke care, the software 
components execute in different computing devices (CPUs, GPUs, etc.) and based on 
different software platforms (web, Linux, Windows, etc.). In the MEDUSA platform 
these challenges are tackled using SOA approach and a virtualized infrastructure. Because 
of the variety of application types, a uniform way of establishing communication 
between the MEDUSA applications has not been developed yet. Nevertheless, the direct 
communication between applications based on the exchange of well-defined file formats 
through WebSockets was demonstrated to be effective, without a negative impact in the 
development and integration of these applications. The current functionalities present 
in the MSP have the potential to improve several aspects of current stroke care.

The MEDUSA platform is still under development. Thus, most of the components to 
implement security are still not completely integrated in the platform yet. Defining and 
developing the security aspects of a platform like MEDUSA is also a very challenging task, 
since it is necessary to cope with different legal constraints, in particular across countries. 
The development process of the MEDUSA platform includes the implementation and 
validation of the platform in three different hospitals. This validation is currently being 
carried out in one hospital. Preliminary evaluation of the platform indicates that the 
solution is promising and has potential large value for improving treatment of these 
patients.
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Abstract

Purpose: To investigate the viability of convolutional neural networks (CNNs) for the 
detection and volumetric segmentation of subarachnoid hemorrhage (SAH) in non-
contrast computed tomography (NCCT).

Materials and methods: We developed and trained a CNN for the SAH segmentation 
by splitting a set of 302 baseline NCCTs into a training (268) and a validation set 
(34). Segmentation accuracy was assessed on an additional 473 baseline NCCTs of 
SAH patients by calculating the intraclass correlation coefficient of the SAH volume 
and the Dice coefficient of the segmentations. We subsequently evaluated whether the 
developed SAH segmentation network can be used to discriminate SAH from acute 
ischemic stroke using 280 scans to optimize the discrimination and 70 scans for testing. 
Additionally, we tested whether the CNN-based volumetric SAH segmentation can also 
be used for hemorrhage segmentation in 396 NCCTs of rebleed patients.

Results: The SAH volume agreement was high with an intraclass correlation coefficient 
of 0.966. The average Dice coefficient of the volumetric SAH segmentation was 0.63 
± 0.16, which is similar to expert interobserver agreement. The differentiation of SAH 
from ischemic stroke patients achieved an accuracy of 0.96. Despite the common 
presence of severe metal artifacts in scans of rebleed patients due to coiling, the CNN-
based segmentation appears to be suitable for segmentation of rebleeds as well with 
comparable accuracy. The average CNN detection and segmentation processing time 
was 30 s.

Conclusion: The proposed CNN is fast and accurate in detecting and segmenting SAH 
in NCCT scans
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1 Introduction

Subarachnoid hemorrhage (SAH) accounts for approximately 5% of all strokes. With 
a fatality rate of 30% [1] and half of the patients being younger than 55 years, the 
number of productive life years lost due to SAH is equivalent to ischemic stroke [2,3]. 
Several scales for assessing the severity of SAH on computed tomography (CT) images 
have been developed [4]. Currently, the most commonly used scales are the Fisher scale 
[5], modified Fisher scale [6], and Hijdra sum score [7]. It has been shown that these 
scores are associated with complications such as vasospasm, delayed cerebral ischemia 
(DCI), and poor outcome. Nevertheless, these scores have a considerable interobserver 
variability, which may limit their predictive value [8,9].

Accurate volumetric segmentation and quantitative assessment of SAH in CT scans are 
a valuable alternative to these radiological scales and provides valuable information for 
monitoring and predicting the outcome of SAH patients. Previous studies have shown 
that quantitative segmentation of SAH is possible using image processing techniques 
[10]. The segmentation of SAH is considered complex compared to other causes of 
intracranial hemorrhages since the hyperdensity due to the presence of blood is in the 
hypodensity parts of the brain (e.g. the fissures). Zijlstra et al. [11] showed that indeed 
the quantified blood as resulted from the method by Boers et al. [10] is significantly 
associated with DCI. Since the method by Boers et al. is based on the relative increase 
of Hounsfield units (HU) due to the presence of blood, other image features that may 
be relevant for accurate SAH segmentation, such as spatial bleeding patterns, may 
have been ignored. In another approach in which the CT images were analyzed using 
an autoencoder, it was shown that DCI prediction can strongly be improved using 
additional image features [12]. However, these image features cannot be interpreted by 
clinicians, and this approach is therefore not suitable for clinical practice. To overcome 
these limitations, we propose a novel approach for SAH detection and segmentation in 
CT scans based on convolutional neural networks (CNNs).

CNNs require high-quality ground truth samples for training. The generation of this 
ground truth is a demanding task to because the effects of SAH in CT images can be 
very subtle. The SAH may spread around the subarachnoid space [13] and gets diluted 
in the cerebral spinal fluid (CSF). When the basal cisterns are filled with blood, the 
distinction between intravascular and extravascular blood is challenging. Moreover, 
even when the effects of SAH are visible, only a tiny portion of voxels in the CT scans 
are affected (see Figure. 1). Next to this, the agreement of manual segmentations 
by experienced radiologists is moderate with an average Dice coefficient of 0.64. 
Considering the relatively imprecise training data, the primary goal of this study is to 
investigate the feasibility and performance of CNNs for fully automated SAH detection 
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and its volumetric segmentation.

Figure 1: Histogram of  Hounsfield unit values in the baseline non-contrast CT scans in the training 

set (268) and testing set (473). Only voxels inside the intracranial region were considered (that is, 

voxels representing air, skull, etc., were excluded in these histograms). The first row shows a zoomed 

version of  the histograms in the second row.

2. Materials and Methods

In this section, we describe the used image data, the development of the CNN-based 
volumetric SAH segmentation, two alternative SAH segmentation approaches which 
are used for comparison with the CNNbased results, the approach to differentiate 
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hemorrhagic stroke from ischemic stroke patients, and an additional experiment 
to evaluate whether the proposed CNN-based approach is also suitable to segment 
hemorrhages in patients with a rebleed. All CNN-based methods consist of two steps: 
[1]: the generation of hemorrhage probability maps and [2] the determination of 
thresholds to transform the probability maps into binary segmentations. The first step 
is generic, and the latter is application specific. Moreover, the generation of hemorrhage 
probability maps makes use of “training sets”, whereas the latter utilizes “validation sets”. 

2.1. Image data
In this retrospective study, we used image data from a SAH registry and from an ischemic 
stroke clinical trial. The SAH registry is composed of prospective consecutive patients 
with aneurysmal SAH admitted in the Amsterdam UMC between December 2011 and 
December 2016. The inclusion criteria were (1) SAH visible on baseline non-contrast 
CT (NCCT) or confirmed after lumbar puncture and (2) confirmation of ruptured 
aneurysm by angiography imaging. We excluded patients with significant movement or 
metal artifacts on baseline NCCT or who were included in ongoing trials. We also used 
baseline NCCTs from ischemic stroke patients included in the in the MR CLEAN trial 
[14]. A subset of 317 patients from this SAH registry was used in a prior study [12]. The 
acute ischemic trial patients have been included in many published studies.

A total of 775 baseline NCCT scans from the SAH registry were used for developing the 
CNN-based SAH segmentation. The training set comprised 268 scans, the validation 
set consisted of 34 scans, and the test set included 473 scans. The ground truth 
segmentation of these 775 images was produced as follows: (1) The method by Boers et 
al. was used to produce an initial segmentation; (2) this segmentation was corrected by 
a trained observer; and (3) subsequently, this segmentation was validated by an expert 
radiologist and, when applicable, additional corrections were made. Table 1 shows the 
properties of CT scans used in this study. 

The proposed differentiation of SAH from ischemic stroke patients make use of 
the hemorrhage probability maps generated by the CNN that was trained for SAH 
segmentation. Therefore, no training step is required in the SAH ischemic stroke 
differentiation. For developing the automated SAH differentiation, we used 350 
baseline NCCT images of evenly distributed acute ischemic stroke (175) and SAH 
(175) patients. These 350 scans were used as follows: the validation set consisted of 280 
scans with 140 ischemic stroke and 140 SAH patients. The test set included 70 scans 
from both ischemic stroke (35) and SAH (35) patients.

The medical ethics committee of the Amsterdam UMC exempted this study of an 
official approval for the usage of the anonymized NCCT scans included in this SAH 
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registry and informed consent was waived. 

Table 1: Properties of  the images used in this study. When applicable, the data is shown is average ± 

standard deviation.

Number
of scans

Slices per
scan

Voxel
spacing 
(mm)

Spacing 
between
slices (mm)

Baseline NCCTs included in the training and 
validation sets of the CNN for SAH volumetric 
segmentation.

302 32 ± 6.6 0.45 ± 0.05 4.86 ± 0.57

Baseline NCCTs used to test the CNN-based 
SAH volumetric segmentation. 473 39 ± 9.9 0.45 ± 0.06 4.23 ± 1.01

Follow-up NCCTs used to test the CNN 
for segmentation of hemorrhages in rebleed 
patients.

396 32 ± 3.2 0.47 ± 0.05 4.95 ± 0.57

Baseline NCCTs from ischemic stroke patients 
used to optimize and evaluate the automated 
SAH detection.

175 30 ± 9.7 0.45 ± 0.07 4.49 ± 1.11

2.2. CNN for volumetric SAH segmentation
The proposed CNN outputs a probability map, which indicates the likelihood of a voxel 
belonging to the class hemorrhage. Since probability values range from 0 to 1, after 
training we optimized a threshold value for the binary voxel-wise classification for SAH 
segmentation and another cut-off value for the SAH – ischemic stroke differentiation 
using validation data. 

The proposed CNN for SAH segmentation was designed to classify a single voxel based 
on an image patch around that voxel. We performed a grid search to select the optimal 
CNN architecture for this classification task. We used the average Dice coefficient to 
select the best CNN architecture. Table 2 shows the hyperparameter values evaluated in 
this grid search.

To tackle the problem of the unbalanced representation of hemorrhage versus background 
voxel classes, we used the same number of hemorrhage and background patches during 
training. We automatically determined the most relevant background patches while 
training. Figure. 2 lists the steps used during training. Figure. 3 illustrates the result of 
this automatic selection of training samples of the background class.
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Table 2: Evaluated values of  hyperparameters during optimization of  the proposed convolutional 

neural network architecture via a grid search.

Hyperparameter Evaluated values
Number of convolutional layers 2, 3, or 4
Number of fully connected layers 2 or 3 positioned at the end of the network
Nodes of a fully connected layer 64, 128, 256

Max-pooling layers All permutations of max-pooling layers after
convolutional layers

Feature maps of a convolutional layer 64 or 128
Sizes of the convolution kernel of a convolutional 
layer

3 x 3 x 1, 5 x 5 x 1, 7 x 7 x 1, 9 x 9 x 1, 3 x 3
x 3, 5 x 5 x 3, 7 x 7 x 3, or 9 x 9 x 3

Size of input patch 7 x 7, 15 x 15, 19 x 19, 23 x 23, or 31 x 31
Number of slices in a patch 1, 3, or 5

Processing patches with multiple slices As different channels with 2D convolutions or
as 3D images with 3D convolutions

Dropout Used or not used

Postprocessing final probability map Dense conditional random field, 3D Gaussian
smoothing, or no postprocessing

 
2.3. Image pre-processing
We segmentated the intracranial region and used a threshold-based segmentation to 
exclude voxels that can be trivially classified as background, such as air. Subsequently, 
random background patches were selected for the first training step. In all subsequent 
training steps, the background patches with lowest accuracy were used for training. This 
step was repeated until no improvement was observed in the average Dice coefficient of 
the validation set.

The segmentation
 of the intracranial region is based on the size range of the foramina of the skull, as 
reported by Ref. [15] and on typical intensity values of the voxels. This segmentation is 
performed according to the following steps: (1) Thresholding is used to segment bone. 
We considered all voxels with an intensity above 160 HU as bone. (2) A morphological 
dilation with 7 mm radius is used to close all foramina of the skull, except the foramen 
magnum. (3) The centroid of the segmented bone is used as a seed for region growing 
inside the skull. (4) A morphological dilation with 7 mm radius was applied to the 
region growing result to bring the segmented intracranial region closer to the skull 
border. (5) The foramen magnum is detected by evaluating the segmented area in each 
individual slice from top to bottom. The foramen magnum slice was determined as the 
highest slice with a segmented area below 900 mm2 below the slice with the maximum 
segmented area. All segmented voxels below the foramen magnum slice were excluded 
from the segmentation.
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Figure 2: Steps of  the training process of  the convolutional neural network (CNN) for voxelwise 

classification of  based on image patches.

2.4. SAH segmentations
We used two alternative methods for SAH segmentation to compare with our CNN-
based volumetric SAH segmentation: a refined threshold segmentation and the U-Net 
[16].

We developed the refined threshold segmentation based on three key observations: 
(1) hemorrhage voxels usually have similar intensity values (see Figure. 1). (2) Most 
background voxels with intensities similar to hemorrhage voxels are located close to 
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the skull (see the area highlighted in blue in Figure. 3). (3) A region with SAH voxels is 
usually larger than just a few voxels.

The refined threshold segmentation was optimized with a grid search that determined the 
upper and lower limits for a threshold-based hemorrhage segmentation, the parameters 
for a morphological erosion of the brain mask to exclude the voxels close to skull, and 
the parameters of a morphological opening to exclude small groups of voxels selected 
in the threshold-based hemorrhage segmentation. This grid search was performed by 
evaluating all images in the training and validation sets of CNN-based segmentation. 
Subsequently, the refined threshold segmentation was evaluated on the test set of the 
CNN-based segmentation.

The evaluated U-Net architecture had three layers with 32, 64, and 128 feature maps 
in the first, second, and third layers respectively. The size of the convolution kernels 
of the U-Net was 3 x 3. The U-Net was trained and evaluated with the same training, 
validation, and test sets of the proposed CNN.

Figure 3: Example of  training patches extracted from a CT scan. The background patches are 

highlighted in blue. The hemorrhage patches that are generated for all voxels in the area highlighted 

in red. Note that the background patches selected for training are very similar to the hemorrhage 

patches. The background pixels were selected as the voxels with highest classification error during 

the training process. (For interpretation of  the references to color in this figure legend, the reader is 

referred to the Web version of  this article.)
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2.5. SAH detection
We assumed that a scan belongs to a patient with a SAH instead of ischemic stroke when 
the volume of the SAH segmentation in a NCCT image is above a certain threshold. 
Since the CNN outputs a probability map with values ranging from 0 to 1, we optimized 
a specific cut-off value for the binary voxel-wise classification used for SAH detection. 
Subsequently, we optimized the minimum SAH volume for the differentiation.

2.6. Statistics
The agreement of the automated generation of SAH volumes with the ground truth was 
assessed by the calculation of the intraclass correlation coefficient and Bland-Altman 
analysis in the validation set. The accuracy of the SAH segmentations was determined 
by the calculation of the Dice coefficient in the validation set. The accuracy of the SAH 
– ischemic stroke differentiation was determined as the percentage of accurate classified 
patients.

2.7. Volumetric rebleed SAH segmentation
As a proof of concept and to determine whether this approach deems robust for image 
artifacts, we evaluated the applicability of the SAH segmentation also in patients with a 
rebleed. The segmentation of rebleeds are expected to be more difficult because commonly 
these patients have been coiled to treat the initial SAH. These coils commonly result in 
severe artifacts in NCCT images.

From the SAH registry, 396 follow-up NCCTs of rebleed patients were used. Ground 
truth SAH segmentations of these rebleed scans were created as follows: (1) These scans 
were processed by the proposed CNN to generate SAH probability maps. (2) These 
probability maps were checked by two experts, and an optimal threshold was selected 
to generate binary maps representing the rebleed region. (3) Subsequently, these two 
experts corrected the segmentations if needed. It should be noted that no baseline 
NCCTs from these rebleed patients were included in the training and validation set. Of 
these 396 rebleed patients, 127 scans had significant metal artifacts. 

3. Results

The best CNN architecture is composed of two convolutional layers followed by two 
fully connected dense layers with 256 nodes each. The size of the input patch of this 
CNN is 19 x 19 x 3 and each slice is considered as a different image channel. Max-
polling layers with kernel 2 x 2 are present after each convolutional layer. The first 
convolutional layer has 64 features maps and the second has 128 features maps. Both 
convolutional layers have 5 x 5 kernels. No dropout nor postprocessing of the final 



Automated segmentation of  subarachnoid hemorrhages with convolutional neural networks

Ch
ap

te
r 

6

99

probability map was used.

The SAH volume agreement was excellent with an intraclass correlation coefficient of 
0.966 in the validation set. The Bland-Altman analysis showed a bias of 0.0 ml and 
a relative large spread with the 95% limits of agreement between 20 and 20 ml (see 
Figure. 4.) 

Figure 4: Scatterplot of  the subarachnoid hemorrhage volumes as determined by the CNN and by the 

manual delineation (left) and Bland Altman plot of  the differences and averages of  these volumes. 

The scatter plot shows a high agreement (intraclass correlation coefficient of  0.966), the Bland 

Altman plot show an ignorable bias (0.0 ml) and large spread (95% limits of  agreement between 20 

and 20 ml).

An average Dice coefficient of 0.63 ± 0.16 ranging between 0.19 and 0.92, was obtained 
for the test set. Figure. 5 shows images from the test together with the ground truth 
segmentations, probability maps generated by the CNN, and final binary segmentation. 
After intracranial region segmentation and threshold segmentation to exclude trivial 
background voxels, the method achieved a voxelwise classification with accuracy = 0.93, 
sensitivity = 0.94, specificity = 0.95, and area under the receiver operating characteristic 
curve = 0.99. The proposed SAH segmentation outperformed the baseline segmentation 
methods, which achieved an average Dice of 0.42 and 0.40 for the refined threshold 
segmentation and U-Net segmentation, respectively.
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Figure 5: Sample segmentation from the proposed convolutional neural network. From top to bottom, 

the Dice coefficient is 0.30, 0.45, 0.60, and 0.75. From left to right, the columns show a slice of  

the input CT scan, the reference segmentation, the output probability map, and the final binary 

segmentation. The probability value threshold of  0.84 was optimal for the dichotomization into 

hemorrhage and background. The color scale indicates the different probability values ranging from 

0.8 (blue) to 1.0 (red). (For interpretation of  the references to color in this figure legend, the reader 

is referred to the Web version of  this article.)

The average Dice coefficient achieved by the CNNs with different hyperparameters 
ranged from 0.40 to 0.63. The hyperparameter with most impact in the accuracy 
was the patch size. The only difference in hyperparameter values between the CNNs 
with highest and lowest average Dice coefficient was the size of the input patch. The 
input patch size of the CNN with lowest average Dice coefficient was 7 x 7 x 1. Using 
dropout or any of the evaluated post processing techniques resulted in differences in 
average Dice coefficients 3% or lower. The remaining hyper parameters had very small 
impact in the average Dice coefficient. CNNs with 3 and 4 layers had an average Dice 
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coefficient 1% and 2% inferior respectively. The different values for number of nodes in 
the fully connected layers resulted in a variation of 1% in the average Dice coefficient. 
The different values for all remaining hyper parameters resulted in a maximum variation 
of 2% in the average Dice coefficient.

Regarding the SAH - ischemic stroke differentiation, the optimized cut-off probability 
value for generating the binary segmentations is 0.9, and the minimum hemorrhage 
volume for having a positive SAH prediction is 6.6 ml. The SAH detection achieved an 
accuracy of 0.96, with a sensitivity of 1.00 and a specificity of 0.91.

The average Dice coefficient was 0.66 ± 0.19 for SAH segmentation in the rebleed 
patients. Figure. 6 shows a sample segmentation from a rebleed patient and illustrates 
that good segmentation results can be achieved despite the metal artifacts.

Figure 6: Sample results from a rebleed patient (first row) and an ischemic stroke patient (second 

row). From left to right we have the original CT scan, the probability map generated by the 

convolutional neural network, and the automatically generated binary segmentation. In the first 

row, the final binary segmentation is not affected by the metal artifacts. In the second row, a blood 

clot is misclassified as hemorrhage. The proposed method for subarachnoid hemorrhage (SAH) 

detection correctly detected this ischemic stroke patient as not a SAH patient. This happened because 

the volume of  the segmented blood clot does not surpass the minimum required volume for a positive 

SAH prediction.
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4. Discussion

The proposed CNN architecture achieved a high accuracy in SAH volume, segmentation, 
and differentiation from acute ischemic stroke patients. The accuracy of volumetric 
SAH segmentation was similar to expert agreement. Moreover, we have shown that this 
approach is also suitable for SAH detection in patients with rebleeds, for whom the CT 
images may have severe artifacts.

Supervised automated segmentation methods require accurate reference standards 
during learning and accuracy assessments. Limited interobserver agreement hampers 
the generation of high-quality training data and makes it difficult to use CNNs or 
other supervised learning methods. The study by Boers et al. compared the manual 
SAH segmentations produced by two experienced radiologists and reported an average 
Dice coefficient of 0.64 ranging from 0.00 to 0.86. Thus, the average Dice coefficient 
achieved by the proposed CNN in both the SAH and rebleed patients is comparable 
with the agreement of expert radiologists.

SAH is a type of intracranial hemorrhage. Various approaches for automated 
segmentation of intracranial hemorrhages in CT scans have been proposed such as 
thresholding [17–19], region growing [17], clustering [17,18,20–22], active contour 
[17], graph cut [23], random-forest [24], level-set [21,22,25,26], and others [27–30]. 
None of these approaches were thoroughly tested with images from SAH patients. The 
only available method for automatic SAH segmentation was proposed by Boers et al. 
and reported an average Dice coefficient of 0.55. Moreover, our proposed method also 
outperforms refined threshold segmentations and the U-Net based approach.

Another advantage of the proposed CNN over the method by Boers et al. is the 
processing time. While the proposed CNN only needs around 30 s to segment or detect 
SAH in a CT scan, the method by Boers et al. required several minutes.

Differently from other CNN-based classifications, the proposed method always 
generates a SAH probability map that can be visually inspected by human experts 
or automatically postprocessed for SAH detection. When this probability map was 
postprocessed for SAH detection instead of segmentation, a high detection accuracy 
was achieved. However, since the SAH segmentation was trained with only SAH 
images, we hypothesize that this leads to an overestimation of SAH volume due to false 
positive predictions. This effect can be visualized in Figure. 6, where a thrombus was 
misclassified as a hemorrhage. To compensate for these false positive predictions, we 
opted for defining a minimum segmented SAH volume for a positive SAH detection. 
We validated and tested the differentiation of SAH and ischemic stroke patients only. 
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Thus, this detection is not yet suited for clinical use. For example, venous thrombosis 
could be misclassified as SAH since both conditions are presented with similar image 
features. On the other hand, these probability maps can help human experts to perform 
faster NCCT assessments because they highlight the regions of the NCCT scan that are 
more likely to be SAH. This was the approach used for the generation of the hemorrhage 
segmentations of the rebleed patients.

Fast and accurate SAH segmentation can lead to more precise prediction of patient 
outcome. The work by Zijlstra et al. [31] already demonstrated that the SAH volume is 
associated with DCI. In addition, accurately and quickly eliminating SAH as the type 
of stroke may have a major impact in patient outcome, since this can lead to a fast start 
of the ischemic stroke treatment and a safer administration of clot dissolving agent. 
However, additional research is still needed to demonstrate the value of the proposed 
CNN in clinical practice. 

To conclude, we demonstrated that the proposed CNN can be used for fast detection 
and volumetric SAH segmentation with similar accuracy as expert radiologists. This was 
achieved despite the difficulties in producing accurate ground truths and despite the 
large difference between the number of hemorrhage and background voxels.
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Abstract

Background and purpose: Infarct volume is a valuable outcome measure in treatment 
trials of acute ischemic stroke and is strongly associated with functional outcome. Its 
manual volumetric assessment is, however, too demanding to be implemented in clinical 
practice. 

Objective: To assess the value of convolutional neural networks (CNNs) in the automatic 
segmentation of infarct volume in follow-up CT images in a large population of patients 
with acute ischemic stroke.

Materials and methods: We included CT images of 1026 patients from a large pooling 
of patients with acute ischemic stroke. A reference standard for the infarct segmentation 
was generated by manual delineation. We introduce three CNN models for the 
segmentation of subtle, intermediate, and severe hypodense lesions. The fully automated 
infarct segmentation was defined as the combination of the results of these three CNNs. 
The results of the three-CNNs approach were compared with the results from a single 
CNN approach and with the reference standard segmentations.

Results: The median infarct volume was 48mL (IQR 15–125mL). Comparison between 
the volumes of the three-CNNs approach and manually delineated infarct volumes 
showed excellent agreement, with an intraclass correlation coefficient (ICC) of 0.88. 
Even better agreement was found for severe and intermediate hypodense infarcts, with 
ICCs of 0.98 and 0.93, respectively. Although the number of patients used for training 
in the single CNN approach was much larger, the accuracy of the three-CNNs approach 
strongly outperformed the single CNN approach, which had an ICC of 0.34.

Conclusion: Convolutional neural networks are valuable and accurate in the quantitative 
assessment of infarct volumes, for both subtle and severe hypodense infarcts in follow-
up CT images. Our proposed three-CNNs approach strongly outperforms a more 
straightforward single CNN approach.



 Automatic segmentation of  cerebral infarcts in follow-up computed tomography images 
with convolutional neural networks

Ch
ap

te
r 

7

109

Introduction

Measuring the volume of infarcts on non-contrast computed tomography (NCCT) 
scans provides a quantitative assessment of infarcted brain tissue resulting from ischemic 
stroke. Follow-up infarct volume measured after 24hours from onset [1] is a valuable 
predictor of functional outcome. Infarct volume has been suggested as a surrogate 
endpoint for classic patient outcome scales in multiple randomized controlled trials [2]. 
By combining infarct volume with infarct location, a more precise prediction of patient 
outcome can be achieved [3].

The reference standard for infarct segmentation is manual delineation by medical 
experts. However, manual delineation has several disadvantages as it is time-demanding, 
subjective, prone to errors, and costly [4]. Accordingly, manual delineation does not 
work well in large cohort studies.

Convolutional neural networks (CNNs) have outperformed many existing image analysis 
methods for image classification and image segmentation. CNNs have produced good 
segmentation results in multiple medical imaging domains, including segmentation of 
ischemic stroke lesions in magnetic resonance images of the brain [5-7]. In this study, we 
evaluated the usefulness of CNNs for automatic segmentation of infarcted brain tissue 
in follow-up NCCT scans from patients with an acute ischemic stroke.

Materials and methods

Image data
We used anonymized image data from the HERMES collaboration [8]. This collaboration 
combined clinical and image data from seven clinical trials that investigated the efficacy 
of endovascular therapy in patients with acute ischemic stroke. Central medical ethics 
committees and research boards of each participating hospital approved each trial and 
the use of anonymized image data in this retrospective study. All patients, or their legal 
representatives, provided written informed consent.

We used image data only from patients with follow-up NCCT acquired between 
12hours and 2 weeks after stroke onset and for whom a reference infarct segmentation 
was available. A total of 1026 patients had follow-up NCCT imaging acquired within 
the selected time window and with an available reference segmentation. Thin-slice image 
data were reconstructed into scans with 5mm slice thickness.
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Reference segmentations
The reference infarct segmentation on the follow-up NCCT scans was manually 
delineated by one of two experienced observers, as described by Boers et al [9]. In short, 
infarcts were identified as hypodense areas. Infarcted tissue in the ipsilateral hemisphere 
with characteristics of an old infarct were excluded from the reference segmentation. 
NCCT scans of patients who underwent decompressive hemicraniectomy were excluded. 
Parenchymal hemorrhages within or adjacent to the infarcted area were included in the 
reference segmentation. A standard window width of 30 Hounsfield units (HU) and 
center level of 35 HU were used to limit variation between observers. If multiple follow-
up images were available, reference segmentation was performed in the latest acquired 
scan. The manual segmentations were checked by one of three expert radiologists and, 
when necessary, corrections were made.

Preprocessing
To exclude trivial voxels that were of no interest, such as air or skull, we used automatic 
methods for intracranial region and cerebrospinal fluid (CSF) segmentation. First, 
we excluded all voxels outside the brain using an intracranial region segmentation. 
Subsequently, we also discarded all voxels selected by the CSF segmentation. All 
discarded voxels were neither used to train the CNN nor used for accuracy testing of 
the CNN. 

The intracranial region segmentation uses the size range of the foramina of the skull, as 
reported by Berge et al, [10] and typical HU values of the skull. This segmentation was 
performed according to the following steps:

	 	A threshold-based segmentation was performed to segment bones. We  
		  considered everything with intensity >160 HU as bone.
	 	A morphological dilatation with a 7mm radius was used to close all foramina of  
		  the skull except the foramen magnum.
	 	The center of gravity of the segmented bone was used as a seed for a region  
		  growing inside the skull.
	 	A morphological dilatation with a 7mm radius was applied to the region  
		  growing result to bring the segmented intracranial region close to the skull  
		  border.
	 	The foramen magnum was detected by evaluation of the segmented area in each  
		  individual slice from top to bottom. The foramen magnum slice was determined  
		  as the first slice with a segmented area < 900 mm2 after the slice with the  
		  maximum segmented area. All voxels below the foramen magnum slice were  
		  excluded from the segmentation.
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The CSF segmentation was performed by selecting the voxels around the centroid of the 
segmented intracranial region as seeds for region growing. All voxels within a maximum 
distance of 15mm from this centroid and with density values between −5 and 13 HU 
were used as seeds. The lower and upper thresholds of this region growing were also −5 
and 13 HU.

We used a previously presented method for automated intracranial hemorrhage 
segmentation11 to exclude the parenchymal hemorrhages of the CNN-based infarct 
segmentation. These hemorrhage voxels were not used to train the CNN. However, for 
infarct volume accuracy testing, any area that was classified as hemorrhage was added to 
the infarct segmentation.

CNN-based infarct segmentation
The CNN architecture used in this study was developed in-house. Its hyperparameters 
were optimized for segmentation of a single foreground structure in head NCCT scans, 
which in this case was the infarcted brain tissue. Previously, the same CNN architecture 
was successfully used for intracranial hemorrhage segmentation [11]. This CNN 
architecture determines the probability of the voxel at the center of an image patch 
being foreground (infarcted tissue) or background (any other tissue). This probability 
was subsequently dichotomized using a cut-off value, which was optimized with the 
data in the validation set. 

The CNN architecture has two convolutional layers followed by two fully connected 
dense layers. Each dense layer has 256 nodes. The size of the input patch was 19×19×3 
voxels; 19×19 voxels in the axial plane and three slices high. Each slice of the input 
patch was processed as a different image channel. After each convolutional layer, there is 
a max-polling layer with a 2×2 kernel and a 2×2 stride. The first convolutional layer has 
64 feature maps and the second has 128 feature maps. Both convolutional layers have 
kernels with size 5×5.

The hypodensity of the infarcted tissue in NCCT scans is related to breakdown of cells 
and its fluid content. As shown in figure 1, the infarcted areas in the three NCCT scans 
have different HU values. In figure 1, we also show the distribution of the average 
HU values of the infarct reference segmentations. In our population, the HU value 
distribution depicted three peaks, which we named subtle, intermediate, and severe 
hypodense infarcts. Because of this observation, we trained three CNNs. Each of 
these CNNs was trained to classify a different hypodensity distribution of infarcted 
brain tissue. We grouped all patients according to the hypodensity of the delineated 
infarct. We used the average HU value of the infarction for this grouping. The average 
infarct intensity was computed after excluding the hemorrhage voxels of the reference 



Chapter 7

112

segmentation. The thresholds that define each infarction class were (14, 22) HU for 
severe, (22, 32) HU for intermediate, and (32, 44) HU for subtle.

Figure 1: Histogram of  average infarct intensities of  the manually delineated infarcts. The left 

CT image at the top displays a relatively old infarct with a severe hypodensity; in the middle, an 

intermediate old infarct is shown; and the image on the right shows a relatively young infarct with a 

subtle hypodensity.

We used 570 randomly selected scans to train the three CNNs. We augmented the 
number of training infarct patches by flipping along the sagittal plane and by rotation. 
No data augmentation was applied to the non-infarct patches. We used an additional 60 
scans to optimize the cut-off value for generating binary segmentations, 20 scans for each 
CNN. The union of the results of these three CNNs and the result of the intracranial 
hemorrhage segmentation was considered to be the automated generated infarct 
segmentation. The remaining 396 scans were used to test segmentation performance.

For comparison, we also trained a single CNN architecture for the segmentation of all 
types of infarction. The same methodology and data were used for this single CNN 
approach and the three-CNNs approach.
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We used the Dice coefficient as an accuracy measure of the infarct segmentation 
performance in the test set. We calculated the intraclass correlation coefficients (ICCs) 
to compare the reference and the automatically generated infarct volumes. ICCs were 
interpreted according to the American Psychological Association et al [12]: < 0.4 is poor; 
≥0.4 to < 0.6 is fair, ≥0.6 to <0.75 is good, and ≥0.75 is excellent. We opted not to compare 
our approach with U-Net or Mask R-CNN architectures. Both these architectures are 
more extensive than the proposed architecture and, in a straightforward approach, their 
input would be an entire NCCT slice. Since we used 5mm reconstructions, and not all 
slices from a NCCT scan have infarction, we did not expect a satisfactory segmentation 
given the limited number of NCCT slices with infarcted brain tissue that would be used 
as training samples.

Result

The median infarct volume was 48 (IQR 15–125)mL overall, with 29 (IQR 11–86), 46 
(IQR 18–101), and 89 (IQR 35–210)mL for patients with a subtle, intermediate, and 
severe hypodense infarct, respectively.

The comparison between manually delineated infarct volumes and the volumes from 
the three-CNNs approach showed an excellent agreement with an ICC of 0.88. Even 
better agreement was observed for severe and intermediate hypodense infarcts with 
ICCs of 0.98 and 0.93, respectively. Agreement was good for subtle hypodense infarcts, 
with an ICC of 0.66. In figure 2, the agreement between the infarct volumes is shown. 
Agreement of the single CNN approach was poor, with an ICC of 0.34.

The average Dice coefficient achieved by the three-CNNs approach was 0.57±0.26. The 
average Dice coefficients for each category were 0.78±0.09, 0.61±0.21, and 0.37±0.26, 
for the severe, intermediate, and subtle hypodense infarcts, respectively. The method 
based on a single CNN achieved an average Dice coefficient of 0.18±0.23. Table 1 
shows a summary of the segmentation performance measures. In figure 3, we show some 
sample results from the three-CNNs approach.
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Figure 2: Top: Comparison of  the infarct volume of  the results from the three-CNNs approach (y 

axis) with the reference to infarct volume (X axis). Bottom: Bland-Altman plots of  the infarct 

volumes. The difference in the volume determination is given along the Y axis, and the average of  

the automated and reference infarct volume is depicted along the x axis. The different columns show 

separate severe, intermediate, and subtle hypodensity infarcts.

Table 1: Results of  automated infarct segmentation for severe, intermediate, and subtle hypodense 

infarcts and the average over the whole test dataset for the three-CNNs approach. for comparison with 

the accuracy of  the single CNN approach.

ICC Dice Test set size
Three-CNNs approach Severe 0.98 0.78±0.09 67

Intermediate 0.93 0.61±0.21 204
Subtle 0.66 0.37±0.26 125
All infarctions 0.88 0.57±0.26 396

Single CNN approach All infarctions 0.34 0.18±0.23 396
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Figure 3: Sample results. from left to right we have input image, union of  the segmentation results, 

and reference segmentation. For simplicity, in the center column we rendered the hemorrhages (blue) 

over the subtle infarcts (yellow), subtle infarcts over standard infarcts (orange), and standard infarcts 

over severe infarcts (red). The Dice coefficients from top to bottom were 0.10, 0.26, 0.40, 0.55, and 

0.70. In the left colum the original images are shown. The right shows the merged segmentations.
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Discussion

We have shown that CNNs are valuable in the automated cerebral infarct segmentation 
in follow-up CT images of patients with acute ischemic stroke, with excellent agreement 
with volumetric assessments of expert observers. Owing to the wide variety of the 
severity of hypodensities, we proposed using the combination of three CNNs, which 
strongly outperformed a single CNN approach.

Infarct location and infarct volume have been strongly associated with outcome of 
patients with ischemic stroke in several studies [3, 13]. Reliably segmenting cerebral 
infarcts is challenging because of pathophysiological heterogeneity, presence of 
preexisting pathologies such as old infarcts, leukoaraiosis, atrophy, intrinsic differences in 
attenuation of grey and white matter, and hemorrhagic transformation. Thus, to be able 
to develop robust automated methods for cerebral infarct segmentation, heterogeneous 
image data are required. The proposed method was evaluated in a large cohort of patients 
from seven multicenter randomized trials enrolling in multiple countries. The follow-
up NCCT scans used in our study also had a (pragmatically) wide range of follow-up 
time after stroke onset, ranging from 12hours to 2 weeks. Despite these variations, the 
proposed approach based on three different CNNs produced accurate cerebral infarct 
segmentations. The volume of these segmentations had good or excellent correlation with 
the reference infarct volume. We have shown that accuracy for old, severe hypodense 
infarcts was higher than for subtle hypodense infarcts. Note that, although we presented 
the results in a selective manner, exactly the same procedure was applied for the infarct 
segmentations in all the three different infarct categories

A number of previous studies on automatic infarct core segmentation in various image 
modalities have been presented. Multiple CNN-based techniques have been introduced 
recently. On baseline CT perfusion, state-of-the-art infarct segmentation was obtained 
by a CNN architecture proposed by Liu et al, [14] achieving an average Dice coefficient 
of 0.51±0.31. On MRI the CNN architecture proposed by Kamnitsas et al [6] reported 
an average Dice coefficient of 0.66±0.24. Maier et al [7] tested several methods with 
different types of MR images. Their best reported result was achieved by a CNN with 
an average Dice coefficient of 0.73±0.18. The current state-of-the-art method for 
infarct segmentation on MR images is the CNN proposed by Zhang et al, [5] which 
achieved an average Dice coefficient of 0.79 in a test set with 90 images. Although 
good segmentation results were achieved in CT perfusion and MR images, NCCT 
scans are still the predominant method for assessment of follow-up infarct in patients 
with ischemic stroke. Therefore, we focused on using NCCT as input for the proposed 
cerebral infarct segmentation method.
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On NCCT scans, two semiautomated methods are available for infarct segmentation. 
The semiautomated method by Bardera et al [15] was evaluated with 18 patients and 
reported a Pearson’s correlation coefficient of 0.98 and 0.97 compared with the manual 
segmentations from two different observers. The semiautomated method by Kuang 
et al [16] was evaluated with 16 patients and reported an average Dice coefficient of 
0.76±0.10. By contrast, our method is both fully automated, which avoids the variability 
introduced by the user inputs, and has been tested on a far larger number of patients.

Other fully automated methods for infarct segmentation on NCCT are available. The 
method by Boers et al [17] reported an average Dice coefficient of 0.74±0.13 in a test set 
with 34 images. The average onset to follow-up scanning time in the study by Boers et 
al was 4.1±2.3 days. The average Dice coefficient between human observers in the study 
by Boers et al was 0.84 ranging from 0.63 to 0.94, which was somewhat higher than the 
agreement we achieved. However, it should be noted that the manual delineation was 
performed for old, hypodense infarcts only. The method by Vos et al [18] reported an 
average Dice coefficient of 0.74±0.09 in a test set with 30 images. In the study by Vos 
et al, the average time between onset and scan acquisition was 3 days ranging between 
2 and 5 days. More recently, the method by Gillebert et al [19] was evaluated with 12 
patients with ischemic stroke and reported Dice coefficients ranging from 0.27 to 0.71. 
The scans used to evaluate the method by Gillebert et al had an average acquisition time 
after onset of 40hours. Their method was evaluated in a limited set of selected images 
to illustrate different types of ischemic stroke lesions. In contrast with the methods of 
Boers et al, Vos et al, and Gillebert et al, our method has been thoroughly evaluated with 
a large and diverse test set.

The data used in our study included follow-up scans as early as 12hours after stroke 
onset. Infarcts in these early follow-up scans might be subtle and harder to segment. 
Thus, it was expected that our method would achieve a lower accuracy in such scans. 
Moreover, the manual delineation in these scans is more difficult, resulting in more 
variation among experts. This may also strongly contribute to the lower agreement of 
the automated method with the reference standard. It some cases (also in figure 3), 
the network in charge of segmenting subtle infarcts overestimates the infarct region by 
including subtle hypodense areas which are not part of the infarction. Another common 
source of misclassifications by our proposed method is the inclusion of cerebral sulci in 
the results of the network trained to segment severe infarctions (figure 3).

A major limitation is the highly selective nature of the HERMES population. All patients 
had anterior circulation stroke confirmed by CT angiography, mostly within 6 hours of 
onset. Patients were excluded from most studies if they had prior disability or low Alberta 
Stroke Program Early CT scores. As a result, many of the background abnormalities 
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typical in populations with acute stroke were less prevalent in our population. Moreover, 
average age was around 69, and very elderly patients were under-represented. Despite 
variation among study populations, these still represent a much more homogeneous 
group than patients with stroke as a whole.

Overall, the proposed method achieved an excellent correlation with the reference 
infarct volume. This suggests that our method can be used in clinical trials, replacing 
tedious manual delineations. Its value in functional outcome prediction for patients 
with ischemic stroke and its value as a secondary outcome measure in treatment trials 
still has to be established.
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Discussion

Processing time is brain
Treatment decisions in stroke are heavily dependent on imaging. The same way that 
newer generations of digital cameras have higher image resolutions and bigger image 
files, a comparable trend is observed with CT imaging for stroke patients. Early scans 
had poor resolution, thick slices, and covered only a small portion of the patient head. 
Nowadays, is not uncommon to find CT perfusion acquisitions with 30 volumes 
covering the entire patient head with tens of slices containing 512x512 voxels. It is 
unrealistic to expect that all these gigabytes of information are visually inspected by a 
radiologist without any help of a computer. It is also not reasonable to expect that all 
stroke centers around the world have dedicated supercomputers to analyze all these 
image data as fast as required for the work up of stroke patients.

In other words, there is an increasing demand for processing power to analyze 
increasingly larger CT scans. The infrastructure to deliver this processing power needs 
to be scalable, cost effective, and easily accessible. In this context, the goal of this thesis 
was to investigate if high performance computing (HPC) can contribute for fast and 
accurate analysis of medical images of acute stroke patients. On top of that, all HPC 
technologies used throughout this thesis are easily available to any regular consumer. 
All experiments in this thesis were performed using consumer hardware or public cloud 
infrastructures. The ambition was also to demonstrate that such HPC infrastructures 
can enable advanced image analysis in a fast enough manner to be used in the real-world 
workflow of stroke patients. Fast treatment decision in stroke increases the changes of 
good patient outcome. Therefore, also processing time is brain.

Amdahl’s law
In the first part of this thesis, we investigated how HPC techniques can be used to speed 
up image processing algorithms that analyze CT scans from stroke patients. Initially, 
HPC techniques were directly applied to an existing algorithm for cerebral infarct 
segmentation in follow-up non-contrast CT (NCCT) scans. This process is described in 
Chapter 2. Since the original cerebral infarct segmentation algorithm was fundamentally 
sequential, only a limited gain in performance gains was achieved, and the average speed 
up was only 30 seconds in the best configuration evaluated. The results presented in 
Chapter 2 suggested that to fully benefit from HPC existing image processing algorithms 
needed to be modified or entirely redesigned to take advantage of what HPC can offer. 
In short, one cannot simply throw 10 times more computing power to an existing 
image processing algorithm and expect it to run 10 times faster. If the algorithm is not 
suited for taking advantage of the architecture where it is being executed, the obtained 
performance gains is limited. Amdahl’s law already stated that there is a limit to speed up 
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of an algorithm regardless of the amount of parallel processing that is available.

Stroke is not a game
The most common architecture used to deliver HPC is based on graphical processing 
units (GPUs). GPUs were originally designed for performing the computations needed 
to create 30-60 images per second in a video game. In this context, data needed to be 
loaded one time into GPU memory and after that, the GPU needed to generate these 
30-60 images per second through the game session without minimal additional loading 
of data into the GPU memory. This is what GPUs were made for: load data once, do a 
lot of computations after using that same data over and over again. The situation is quite 
different when processing a CT scan. The data that needs to be loaded often does not fit 
into GPU memory, meaning that the data needs to be split into multiple chunks that 
are loaded multiple times to be processed only once.

To reduce the impact of this bottleneck, we proposed a compression technique to 
address the limitations in memory access when processing a CT scan (Chapter 3). To 
have a better measure of the impact of HPC techniques, we adapted an existing image 
processing algorithm for running in massive parallel architectures (Chapter 4). 

The results presented in Chapter 4 show that the processing of CT perfusion (CTP) scans 
can be reduced from around 30 minutes to 8 seconds when using HPC techniques. When 
combining HPC and the compression method proposed in Chapter 3, that number was 
reduced even further to only 6 seconds. The proposed compression technique achieves 
a compression ratio of 2 and, when comparing it with commonly available compression 
algorithms, it was able to compress and decompress data 4 times faster than the fastest 
available method, which is Run-length encoding (RLE). Although JPEG achieves better 
compression ratios (around 4.5), the time needed to compress and decompress required 
by JPEG is 11 times longer than the proposed method. 

CTP scans are the largest scans acquired during the stroke workflow, with size ranging 
between 2.5 GB and 5 GB. Following the results of multiple studies [1 - 3], the 
processing of CTP scans became part of the clinical guidelines for stroke management. 
Thus, we can conclude that the methods presented in chapters 3 and 4 are relevant for 
speeding up the assessment of ischemic stroke patients.

High performing clouds
The analyses presented in chapters 3 and 4 were performed using local workstations. 
Given the incidence of stroke worldwide, it is important that a more scalable approach 
for delivering HPC techniques is available. In chapter 5, we investigated the use high 
performance computing based on cloud infrastructures for improving the stroke 
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workflow. This investigation concluded that, compared with the traditional workflow, 
the usage of cloud-based infrastructures presents several advantages:

	 	It enables sharing of data between hospitals in only a few minutes. Traditionally,  
		  several minutes are required to burn a disk with the patient data and much time  
		  was required to send such a disk with a cab or ambulance to another hospital.
	 	It enables the use of large-scale cloud computing resources and advanced  
		  algorithms for processing the image data. In the traditional setting, the  
		  computing power is limited by the infrastructure that is available in the hospital  
		  premises.
	 	It allows a Pay-per-use model instead of the large upfront costs for acquiring the  
		  necessary infrastructure.
	 	It supports remote collaboration sessions with patient data directly available to  
		  all participants.

Jump into the deep
Deep learning emerged as a technique that leverages HPC and large datasets. As the 
next step on applying HPC to stroke management, part 2 of this thesis focused on the 
development of new deep learning algorithms for the segmentation of subarachnoid 
hemorrhages (SAH) and final cerebral infarct volume (FIV). By designing algorithms from 
the ground up to be implemented in HPC architectures, the expectation was to achieve 
substantially better performance in terms of execution time as well as in terms of accuracy. 
In the case of SAH segmentation, the processing time is around 30 seconds with an 
average Dice coefficient of 0.63. For comparison, the heuristic-based method proposed by 
Boers et al. [4] takes around 5 minutes with an average Dice coefficient of 0.55. The 
same approach used was adapted for FIV segmentations. In this case, the same processing 
time of around 30 seconds was achieved. For comparison, the FIV segmentation method 
described in chapter 2 took around 10 minutes to compute.

The original implementations of the methods in chapters 2, 4, 6, and 7 use some 
sort of transformation to reduce the computation load (see summary in Table 1). 
Those transformations are required because these methods were implemented to run 
sequentially. The counterpart methods proposed in this thesis do not suffer from such a 
limitation. Furthermore, the proposed methods have the potential to achieve even faster 
processing times if more parallel processing is used.
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Table 1. Impact image processing algorithms running on HPC platforms.

Task Time of 
proposed 
method

Time of 
reference 
method

Transformation used 
by reference method

Reference method

Chapter 2 FIV 
segmentation

10 minutes 2 hours Thick slice images Boers et al. [5]

Chapter 4 CTP noise 
reduction

6 seconds 30 minutes Truncation of kernel 
operations

Mendrik et al. [6]

Chapter 6 SAH 
segmentation

30 seconds 5 minutes Thick slice images Boers et al. [4]

Chapter 7 FIV 
segmentation

30 seconds 10 minutes Thick slice images Chapter 2

You only have to look at the Medusa straight on to see her…
It should be noted that when the results of the chapters in Part 1 were made publicly 
available, there was a strong resistance in the medical field against using cloud computing 
for processing patient data. This resistance came primarily from concerns regarding 
security and patient privacy. The work done in this thesis was part of a larger research 
project called Medical Distributed Utilization of Services & Applications (MEDUSA). 
This research project pioneered the development of the required technologies for 
processing medical data in cloud platforms. Nowadays, most of the concepts that 
were initially evaluated during the MEDUSA project are currently implemented in 
commercial solutions of companies such as NICO.LAB, Viz, Brainomix, and RapidAI. 
All these companies have cloud-based solutions that aim at improving the stroke care 
workflow by using advanced image analysis and cloud-based data sharing.

There were also doubts towards the practical aspects of the deep learning techniques 
in real clinical workflows. The adoption of deep learning models for radiology-related 
tasks were seen with skepticism by most medical professionals because of the lack 
of interpretability and explainability offered by these so called “black box” models. 
However, as shown in both chapters of Part 2 of this thesis, deep learning models can go 
beyond producing simple classification based on an input image. The method used in 
chapter 6, for instance, can highlight the visual features that lead to a positive detection 
of a SAH. This way, the medical professional can more easily interpret and evaluate 
the output of the deep learning model. In addition to the technical developments to 
address these interpretability and explainability concerns, there were also advances in 
the medical regulations. For instance, the FDA has proposed a regulatory framework for 
artificial intelligence and machine learning-based medical software (https://www.fda.
gov/media/122535/download).
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The introduction of more inclusion and exclusion criteria for different stroke treatment 
options has been a main factor forcing the adoption of deep learning-based methods 
for supporting stroke treatment decisions. For example, deep learning models can be 
used for measuring differences in clot characteristics to support treatment selection for 
mechanical removal of that clot. Alternatively, deep learning models can be used to 
determine the eligibility for thrombectomy outside the 6h standard treatment window 
in locations where CTP imaging is not available.

Despite the advancements in the field of deep learning in general, when it comes to 
application in the medical domain, there is still a need for improvements in terms of 
generalization. Unfortunately, the largest datasets available for training deep learning 
models for stroke are still around a few thousand images. This way, rare conditions that 
happen in, for example, only 5% of cases are poorly represented in such datasets, which 
limits the applicability of the trained models in these rare cases. Unfortunately, having 
a deep learning model that only works in the easy cases is less useful for the medical 
experts. Another common limitation of these models is the need for high quality 
ground truth labels. Such labels are difficult, expensive, and time consuming to acquire. 
Fortunately, there is an extensive body of research done about unsupervised learning 
techniques. Unfortunately, the use of unsupervised learning techniques to support the 
stroke workflow is still extremely limited.

Conclusion
This thesis addressed various aspects of the combination of HPC-enabled machine 
learning in combination with cloud infrastructures. It has been shown that this 
combination has an enormous potential to achieve fast and accurate analysis of large 
amounts of radiological images of patients suspected of stroke. These addressed 
technologies can democratize the usage of high-quality diagnostic tools which, in turn, 
can lead to a significant impact in the stroke care as this thesis shows demonstrations of 
benefits of HPC techniques in diagnosis of both ischemic and hemorrhagic stroke. We 
have also demonstrated that the clinical stroke workflow can potentially benefit from 
cloud-based solutions, and that we can use image analysis algorithms for supporting the 
assessment of stroke patients.
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Summary

The aim of this thesis is to investigate the use of high-performance computing (HPC) 
techniques in the development of methods for the detection and quantification imaging 
biomarkers for supporting the clinical workflow of acute stroke patients. In the first 
part of this thesis, we evaluate various HPC technologies and how these technologies 
can be leveraged by different image analysis applications used in the context of acute 
stroke care. The second part of this thesis focuses on developing and improving methods 
to quantitatively assess imaging biomarkers in computer tomography (CT) scans from 
stroke patients. In Chapter 2, we evaluated how computers with multiple computing 
devices can be used to accelerate medical imaging applications. These computers with 
different computing devices, such as multi-core CPUs (central processing units), GPUs 
(graphical processing units), and FPGAs (field-programmable gate arrays), are referred 
to as heterogeneous platforms. For the evaluation presented in Chapter 2, we used a 
new framework named FlowCL. We designed FlowCL for the development of parallel 
medical imaging applications running heterogeneous platforms. We compared an 
implementation of a region-growing method for cerebral infarct volume measurement 
with a new implementation targeted for heterogeneous platforms. The results of this 
new implementation are generated with significant speed-up compared to the original 
implementation.

Chapter 3 proposes a novel data compression technique that allows the efficient 
processing of CT perfusion (CTP) images in GPUs. The size of CTP datasets makes 
data transfers to computing devices time-consuming and therefore not suitable in acute 
situations. Chapter 3 introduces a fast and lossless compression algorithm for CTP data 
to reduce the time spent in such data transfers. The algorithm exploits redundancies 
in the temporal dimension of the CTP data and keeps random read-only access to the 
image elements directly from the compressed data on the GPU.

Chapter 4 goes a step further and evaluates the algorithm’s usefulness proposed in 
Chapter 3 with two different applications: a double threshold segmentation and a 
time-intensity profile similarity (TIPS) bilateral filter to reduce noise in CTP scans. 
The results show that the processing of compressed data uses between 2 and 2.8 times 
less memory and the execution times are between 1.2 and 1.7 times faster than when 
processing the original data. The outputs when processing compressed data are identical 
to the outputs when processing the original uncompressed data.

Chapter 5 presents a cloud platform for deploying medical applications. The goal of 
this platform is to improve acute care workflows by enabling fast medical data exchange, 
advanced processing of medical image data, automated decision support, and remote 
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collaboration between physicians in a secure and responsive virtual space. Chapter 5 
describes a prototype implemented in this cloud platform that supports the treatment 
of acute stroke patients. As a result, this prototype improves several aspects of the acute 
stroke clinical workflow and has the potential to play an essential role in the management 
of acute stroke patients.

In Part 2 of this thesis, Chapter 6 presents a convolutional neural network (CNN) 
for the detection and volumetric segmentation of subarachnoid hemorrhages (SAH) 
in non-contrast CT scans of patients with subarachnoid hemorrhagic stroke. The 
CNN was trained with 302 baseline non-contrast CT scans. The final segmentation 
performance was evaluated on an additional dataset with 473 baseline scans, and the 
SAH volume agreement was high with an intraclass correlation coefficient (ICC) of 
0.966. The average Dice coefficient of the volumetric SAH segmentation was 0.63 ± 
0.16, which is similar to the interobserver agreement between experts. The CNN was 
also evaluated for differentiating between ischemic and hemorrhagic stroke patients and 
achieved an accuracy of 0.96. The average CNN detection and segmentation time was 
around 30 seconds. In Chapter 7, another method based on CNNs was proposed for 
the quantification of the final infarct volumes in follow-up non-contrast CT scans from 
ischemic stroke patients. We developed three CNNs for the segmentation of subtle, 
intermediate, and severe hypodense lesions. The fully automated infarct segmentation 
was generated by merging the results of these three CNNs. The comparison between 
the results of the proposed method and the reference segmentations showed an excellent 
agreement with an ICC of 0.88.





Samenvatting



Samenvatting

136

Samenvatting

Het doel van dit proefschrift is om het gebruik van high-performance computing 
(HPC) technieken te onderzoeken bij de detectie en segmentatie ontwikkeling van 
beeldvormende biomarkers ter ondersteuning van de klinische workflow van patiënten 
met een acute beroerte. In Deel 1 van dit proefschrift evalueren we verschillende HPC-
technieken en hoe dergelijke technieken kunnen worden ingezet bij verschillende 
beeldanalysetoepassingen in de context van zorg voor een acute beroerte. Deel 2 van dit 
proefschrift richt zich op het ontwikkelen en verbeteren van de kwantitatieve bepaling 
van beeldvormende biomarkers in computertomografie (CT) scans van patiënten met 
een beroerte. 

In Hoofdstuk 2 hebben we geëvalueerd hoe computers met meerdere computerplatformen 
kunnen worden gebruikt om medische beeldvormingstoepassingen te versnellen. 
Deze computers met meerdere computerplatformen, zoals multi-core CPU’s (centrale 
verwerkingseenheden), GPU’s (grafische verwerkingseenheden) en FPGA’s (field-
programmable gate arrays) worden heterogene platformen genoemd. Voor de evaluatie 
die in Hoofdstuk 2 wordt gepresenteerd, hebben we een nieuw raamwerk gebruikt 
met de naam FlowCL. We hebben FlowCL ontworpen voor de ontwikkeling van 
parallelle medische beeldvormingstoepassingen die op heterogene platformen draaien. 
We vergeleken een implementatie van een regio groeiende methode voor het meten van 
herseninfarctvolume met een nieuwe implementatie gericht op heterogene platformen. 
De resultaten van deze nieuwe implementatie worden aanzienlijk sneller gegenereerd 
dan bij de oorspronkelijke implementatie.

Hoofdstuk 3 stelt een nieuwe datacompressie-techniek voor die de efficiënte verwerking 
van CT-perfusie (CTP)-beelden in GPU’s mogelijk maakt. De omvang van CTP-
datasets maakt de gegevensoverdracht naar computerapparatuur tijdrovend en daarom 
niet geschikt in acute situaties. Hoofdstuk 3 introduceert een snel en lossless compressie-
algoritme voor CTP-gegevens om de tijd die aan dergelijke gegevensoverdrachten wordt 
besteed te verminderen. Het algoritme maakt gebruik van redundanties in de temporele 
dimensie van de CTP-gegevens en houdt willekeurige alleen-lezen toegang tot de 
afbeeldingselementen rechtstreeks vanuit de gecomprimeerde gegevens op de GPU.

Hoofdstuk 4 gaat een stap verder en evalueert het nut van het algoritme dat in 
Hoofdstuk 3 is voorgesteld met twee verschillende toepassingen: een segmentatie met 
dubbele drempelwaarden en een bilateraal filter voor time-intensity profile similarity 
(TIPS) om ruis in CTP-scans te verminderen. De resultaten laten zien dat de verwerking 
van gecomprimeerde gegevens tussen de 2 en 2,8 keer minder geheugen gebruikt en 
dat de uitvoeringstijden tussen 1,2 en 1,7 keer sneller zijn dan het verwerken van de 
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originele data. De resultaten bij het verwerken van gecomprimeerde data zijn identiek 
aan de resultaten bij het verwerken van de originele ongecomprimeerde data. 

Hoofdstuk 5 presenteert een Cloud platform voor het inzetten van medische 
applicaties. Het doel van dit platform is het verbeteren van workflows voor acute zorg 
door snelle uitwisseling van medische gegevens, geavanceerde verwerking van medische 
beeldgegevens, geautomatiseerde beslissingsondersteuning en samenwerking op afstand 
tussen artsen in een veilige en responsieve virtuele ruimte mogelijk te maken. Hoofdstuk 
5 beschrijft een prototype geïmplementeerd in dit Cloud platform dat de behandeling 
van patiënten met een acute beroerte ondersteunt. Als gevolg hiervan verbetert dit 
prototype verschillende aspecten van de klinische workflow voor acute beroerte en heeft 
het de potentie om een ​​essentiële rol te spelen bij de behandeling van patiënten met een 
acute beroerte.

In Deel 2 van dit proefschrift presenteert Hoofdstuk 6 een convolutioneel neuraal 
netwerk (CNN) voor de detectie en volumetrische segmentatie van subarachnoïdale 
bloedingen (SAH) in niet-contrast CT-scans. Het CNN werd getraind met 302 baseline 
non-contrast CT-scans. De uiteindelijke segmentatieprestaties werden geëvalueerd op 
een aanvullende dataset met 473 baseline-scans en de SAH-volumeovereenkomst was 
hoog met een intraclass correlatiecoëfficiënt (ICC) van 0,966. De gemiddelde Dice-
coëfficiënt van de volumetrische SAH-segmentatie was 0,63 ± 0,16, wat vergelijkbaar is 
met de overeenkomst tussen experts. De CNN werd ook geëvalueerd om onderscheid 
te maken tussen ischemische en hemorragische beroertepatiënten en bereikte een 
nauwkeurigheid van 0,96. De gemiddelde CNN-detectie- en segmentatietijd was 
ongeveer 30 seconden. In Hoofdstuk 7 werd een andere methode, gebaseerd op 
CNNs, voorgesteld voor de kwantificering van de uiteindelijke infarctvolumes in non-
contrast CT-scans van patiënten met een ischemische beroerte. We hebben drie CNN’s 
ontwikkeld voor de segmentatie van subtiele, intermediaire en ernstige hypodense laesies. 
De volledig geautomatiseerde infarctsegmentatie werd gegenereerd door de resultaten 
van deze drie CNN’s samen te voegen. De vergelijking tussen de resultaten van de 
voorgestelde methode en de referentiesegmentaties toonde een excellente overeenkomst 
met een ICC van 0,88.
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