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Chapter 1 

Acute ischemic stroke 

Acute ischemic stroke (AIS) is caused by the occlusion of an intracranial artery 

by a thrombus, blocking the blood supply to regions of the brain distal to the 

occlusion. It has a high burden on an individual and society level due to its high 

prevalence and accompanying morbidity and mortality [1]. In the year 2020, over 

30.000 people were hospitalized in the Netherlands. From 1980 to 2020 the 

incidence increased by 156% [2]. Currently, approximately one-third of patients 

who experience AIS remain functionally dependent [3]. Another third does not 

survive the first three months after stroke onset.  

In the western world poor lifestyle, including smoking, poor diet, alcohol abuse, 

and lack of exercise, leads to an increased risk for AIS [4],[5]. This poor lifestyle is 

often accompanied by abdominal obesity, hypertension, diabetes mellitus, and high 

cholesterol, which are all associated with AIS [2],[5],[6]. Due to longer exposure to 

these risk factors, the chance for AIS increases over time[6]. 

Given the brain’s low capacity for storing nutrients and oxygen and its high 

metabolism, deprivation of blood supply quickly leads to tissue death [7],[8]. 

Initially, a small infarct core originates and additional tissue is put at risk 

(penumbra). If reperfusion of tissue fails, neuron cells within the penumbra turn 

necrotic, increasing the infarct core size, and more tissue is put at risk. The fast 

depravation of neuron cells leads to sudden neural deficits, including numb feeling 

or weakness of one side of the body, confusion, and difficulty speaking [9]. 

Diagnosis and treatment 

Standard AIS treatment includes the intravenous administration of alteplase 

(IVT) within 4.5 hours and endovascular treatment (EVT) within 6 hours after stroke 

onset, up to 24 hours in selected patients [10],[11]. Alteplase is a thrombolytic 

agent that lyses fibrin, which is the backbone of the thrombus. EVT consists of 

introducing a catheter in the vasculature (often within the femoral artery at the 

groin) and propagating it through the vasculature until the thrombus is reached. A 
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 Introduction 

stent retriever is placed and unfolded into the thrombus, capturing the thrombus 

within the stent, and allowing retraction of the thrombus from the vasculature. 

Another option is to place a relatively wide bore distal access catheter against the 

proximal surface of the thrombus and directly aspirate the thrombus (contact-

aspiration technique). The combination of these techniques is also commonly used. 

The primary aim of AIS treatment is fast recanalization of the occluded artery. 

Within the Netherlands, when AIS is suspected, the patient is often brought to the 

nearest hospital where medical imaging is acquired. First, a non-contrast computed 

tomography (NCCT) is acquired to differentiate from hemorrhagic stroke. Next, a 

CT angiography (CTA) is acquired to locate the occlusion. If the patient is eligible, 

administration of IVT is proceeded. If the occlusion is within the proximal anterior 

cerebral vasculature and the patient is first presented at a primary stroke center, 

the patient needs to be transferred to an intervention center in order to receive EVT 

[12].  

Acute ischemic stroke research 

In 2015, multiple randomized controlled trials, pooled in the HERMES 

collaboration and including the Dutch MR CLEAN trial, showed that EVT in addition 

to best medical management more than doubled the odds for improved functional 

outcome in patients with an occlusion in the anterior cerebral vasculature [13]. 

Nonetheless, still many patients do not recover after EVT, even when complete 

reperfusion has been achieved. Therefore more insight into predictors of outcomes 

after reperfusion therapy is urgently needed to aid in treatment decisions. Thus 

researchers focus on improving the understanding of the relation between AIS 

pathogenesis and treatment efficacy.  

Gaining knowledge of the relation between image characteristics and clinical 

outcomes could help understand the chance of treatment success. Medical images 

can provide information on the length, location, density, and composition of thrombi 

and infarct lesions [14]. Previous studies have already shown that measurements 

of the thrombus architecture on medical images are associated with treatment 

outcome. For example, Riedel et al. [15]. showed that patients with thrombi longer 
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than 8 mm have a low chance of recanalization after IVT. Santos et al. [16] showed 

that residual flow through thrombi can be quantified on CT images and introduced 

thrombus perviousness as a thrombus image biomarker. Thrombus perviousness 

is defined by the thrombus intensity difference between CTA and NCCT. The 

studies of Santos et al. showed that thrombus perviousness is associated with a 

higher chance for recanalization, improved functional outcome, and lower infarct 

volume [17],[15]. Another study has shown that a low clot burden score is 

associated with a lower chance of recanalization [15],[18].  

Other studies have focused on the relation between the ischemic lesion and 

functional outcome. For example, follow-up infarct volume showed a negative 

relation with functional outcome [19],[20]. Ernst et al. [21] has shown that 

accounting for the location of lesions strengthens the association between the 

lesion volume and functional outcome. 

Aim and thesis outline 

The goal of this thesis was to extend our knowledge of the relation between 

thrombus and infarct core imaging characteristics and clinical outcome in patients 

with AIS. This thesis is divided into three parts. The first part includes studies 

focusing on thrombus image characteristics and the second part includes studies 

focusing on follow-up infarct volume. The last part concludes this thesis with a 

general discussion, summary in both English and Dutch, list of abbreviations, 

portfolio, list of publications, ‘dankwoord’, and information about the author. 

Thrombus imaging characteristics 

In the first part, we focus on the association between thrombus image 

characteristics and treatment outcome.  

In chapter 2, we study the effect of NCCT slice thickness on the assessment of 

thrombus density and perviousness to gain knowledge on a possible bias that is 

introduced when the image quality is reduced. Previously, thrombus density and 

perviousness measurements have only been performed on thin-slice CT images. 

However, only thick-slice NCCT images are generally available for patients 
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enrolled in AIS studies. Consequently, a large number of patients is excluded. If the 

effect of slice thickness on the measured thrombus density and perviousness 

appears minimal, future studies that study these characteristics could discard the 

exclusion criterion for thick-slice CT images, resulting in larger study populations. 

Directly after the finalization of the MR CLEAN trial, 16 Dutch intervention 

hospitals started the MR CLEAN Registry, which was a prospective, observational 

study including patients treated with EVT [3]. The MR CLEAN Registry provides a 

large study population that was treated within daily clinical practice. Since the 

treatment of these patients was not subjected to strict randomized controlled trial 

protocols, the MR CLEAN Registry allows us to study a population that better 

represents the ‘normal’ AIS population compared to populations included in 

previous AIS studies. Therefore, in chapter 3, we study the relation between 

thrombus image characteristics and clinical outcome of patients enrolled in the MR 

CLEAN Registry.  

In chapter 4 we study the relation between thrombus perviousness and AIS 

treatment success based on the HERMES population. Due to the pooling of 

multiple randomized controlled trials, the HERMES collaboration allows us to study 

a large population of patients with AIS and compare the results from patients who 

only received best medical management, with results from patients who 

additionally received EVT.  

A previous study has shown that patients who are first admitted to a primary 

stroke center and then transferred to a comprehensive stroke center have longer 

onset to treatment times compared to patients who are directly transferred to a 

comprehensive stroke center [12]. For the transferred patients, the start of 

treatment was delayed by 30 minutes. The results of the study also showed that 

transfer patients had lower chance of good functional outcome. The start of the 

treatment in primary stroke centers might be delayed because the radiologists are 

less experienced in recognizing AIS. In chapter 5, we propose a machine learning 

based thrombus detection tool for NCCT images that could aid less experienced 

radiologists in recognizing AIS. The results from the tool are compared with two 

expert neuroradiologists.  
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Finally, the thrombus structure is non-static, but changes over time depending 

on the thrombus composition and surrounding environment. For example, in a low 

pressure environment, red blood cells can accumulate causing growth of the 

thrombus [22],[23]. On the other hand, a thrombus shrinks over time due to clot 

contraction and natural lysis [24],[25]. It is unknown if these processes affect 

thrombus imaging characteristics in the early time window. Therefore, in chapter 6, 

we study the influence of onset to imaging time on radiological thrombus 

characteristics. 

Follow-up infarct volume 

In the second part, we focus on the association between infarct imaging 

characteristics and clinical outcome.  

In the first chapter, chapter 7, we study the value of a machine learning based 

approach for the automated segmentation of infarct lesions on follow-up NCCT 

images (FIV). The manual delineation of infarct lesions is very time consuming, 

labor-intensive and introduces user-dependency. It is therefore not feasible to 

obtain lesion delineations within daily clinical practice. Moreover, study image 

datasets in AIS studies are growing and time spent on data analyses is increasing. 

An automated infarct segmentation tool would support fast user-independent 

delineation of infarct lesions.  

In a previous study, performed by Ernst et al. [21], it was shown that the 

association between FIV measured on NCCT images and functional outcome is 

strengthened if lesion location is taken into account. Diffusion weighted imaging 

(DWI) has the highest sensitivity for infarction and is therefore more appropriate in 

the assessment of infarct lesions [26],[27]. In chapter 8 we study the added value 

of the infarct location in the prediction of functional outcome. Within this study FIV 

and location are assessed on follow-up DWI images. 

Finally, in chapter 9 we hypothesize that infarct lesions on DWI images include 

additional prognostic information. Follow-up infarct volume is only moderately 

associated with functional outcome [19]. An earlier study showed that textural 

features extracted from lesions are associated with clinical outcome [28]. Also, the 
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shape of lesions assessed on admission DWI has been associated with FIV [29]. 

These results motivate us to investigate if DWI images contain other biomarkers 

than volume that can improve models in the prediction of  functional outcome. We 

will compare the performance of three machine learning models, based on FIV 

alone, features extracted by a convolutional autoencoder and based on radiomics 

features.  
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Chapter 2 

Abstract  

Background  It is expected that thrombus density and perviousness 

measurements are dependent on CT slice thickness because density values are 

blurred in thicker slices. This study quantifies the effect of slice thickness on 

thrombus density and perviousness measurements. 

Methods  Thrombus density and perviousness measurements were performed 

in 50 patients for varying slice thicknesses, using a manual and semi-automated 

technique. Linear regression was performed to determine the dependence of density 

measurements on slice thickness. Paired t-tests were used to test for differences in 

density and perviousness measures for varying slice thickness. 

Results  Thrombus density decreased for increasing slice thickness with 

approximately 2 HU per mm. Perviousness measurements were significantly higher 

for thick slice compared to thin slice NCCT. 

Conclusion  Thick slice NCCT scans result in an underestimation of thrombus 

density and overestimation of thrombus perviousness. 

Introduction 

Stroke has a major impact on society as it is one of the leading causes of death 

worldwide [1]. In  of all cases, stroke is caused by a thrombus that occludes an 

intracranial vessel (ischemic stroke) [2]. As a patient loses around 1.9 million 

neurons each minute, fast treatment to restore blood flow is crucial [3]. 

For the past years, research has focused on improving treatment for ischemic 

stroke. This resulted in endovascular treatment (EVT) as an addition to the 

standard treatment after it showed increased functional outcome in several 

randomized clinical trials [4]. Nonetheless, patient outcome is still poor and further 

research is focusing on patient-specific treatment selection, for example based on 

thrombus characteristics. It has been suggested that thrombus density 

measurements provide information on thrombus architecture and is a potential 

predictor for treatment effect [5]. In addition, Santos et al. [6],[7] showed that 
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  The effect of non-contrast CT slice thickness 

thrombus permeability was associated with a higher recanalization rate and better 

functional outcome, after both EVT and IV-tPA. 

Because the measurement of permeability requires dynamic imaging, the 

definition of thrombus perviousness was introduced as a measure to estimate 

thrombus permeability [6]. Perviousness is defined as the difference in thrombus 

voxel intensities, comparing CT angiography (CTA) to non-contrast CT (NCCT) [6]. 

In this assessment, imaging quality may be a limiting factor. Preferably, the 

assessment should be performed on low noise, high resolution, and thin slice 

images. In current clinical practice, thick slice NCCT images are commonly used 

because of lower noise levels and lower demand on storage capacity. CTA images 

have higher contrast to noise ratio and are therefore commonly stored as thin 

slices (approximately 1 mm thick). Because of averaging, which is applied to 

generate thick slice images, the signal of small-scale structures such as thrombi 

may be reduced. Kim et al. [8] showed reduced sensitivity and specificity for 

thrombus detection on thick slice NCCT compared to thin slice NCCT. In this study, 

we aim to quantify the effect of slice thickness on thrombus density and 

perviousness measurements. 

Materials and methods 

Patient selection 

We included  consecutive patients from the Multicenter Randomized Clinical 

trial of Endovascular treatment of ischemic stroke in the Netherlands (MR CLEAN) 

cohort with thin-slice (  2.5 mm) NCCT and CTA scans that were performed within 30 

minutes on the same scanner.  

Slice reconstruction 

Thick(er) slice images were reconstructed by taking the average over 

multiple thin slices for each voxel location. For a given slice thickness, multiple 

approaches can be followed to generate such an image. For example, if a new 

image is generated with twice as thick slice thickness, one can combine slices 1 
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and 2 or slices 2 and 3. Figure 2.1 illustrates how multiple approaches can be 

followed for thick slice reconstructions out of thin slices. First, all scans were 

supersampled to an initial slice thickness of 0.45 mm. Then, different 

reconstructions were created for given slice thicknesses. The resulted slice 

thicknesses ranged from 0.45 mm to 4.95 mm with an increment of 0.45 mm. The 

CTA slice thickness was kept at 0.45 mm. 

 

Figure 2.1 Illustration of the slice reconstruction that is used to increase slice thickness. The 

numbers in the layers show examples of densities. This figure shows two examples in which 

a scan with a slice thickness twice as large as the original (Left) was created. The example in 

the (Middle) shows the results when slices 1 and 2 and slices 3 and 4 were combined. The 

second example (Right) shows the results when slices 2 and 3 are combined to generate an 

image with a thicker slice. 

Density and pervious measurements 

Thrombus density measurements were initially performed on the original thin 

slice NCCT and CTA by a single expert observer, using both manual and semi-

automated thrombus perviousness measurements described in [6] and [9]. First, 

Elastix® [10] was used for rigid image registration to align the NCCT and CTA for 

each patient. For the manual density measurement, a spherical region of interest 

(ROI) with a radius of 1 mm was placed in the proximal, middle, and distal part of 

the thrombus. The semi-automated perviousness measurements followed multiple 

steps. First, 2 ROIs were placed proximal and distal to the thrombus and 

symmetrically on the contralateral side. A coarse centerline of the contralateral 
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vessel between the proximal and distal ROIs was determined using a minimum 

cost path calculation on the CTA image, filtered with a tuned Frangi’s vesselness 

filter [11], [12]. Then, the vessel contour was obtained from this coarse centerline 

using a graph-cut segmentation technique with kernel regression [12]. The initial 

coarse centerline was corrected to be the center of mass of this segmented vessel 

contour and the radius along the fine centerline was determined. Finally, based on 

symmetry, the fine centerline was projected onto the occluded vessel using 3D B-

spline registration to optimize alignments. The same kernel regression 

segmentation technique was used on the CTA to segment the occluded vessel, 

guided by the aligned centerline. Due to a drop in intensity at the location of the 

thrombus, the radius of the segmented lumen decreases significantly. At the site of 

the thrombus, the vessel contours were replaced with the contralateral radius 

contours, thereby creating a shape prior. Within the shape prior, a combination of 

region growing segmentation and mathematical morphologies is used to obtain the 

final thrombus segmentation.  

To assess thrombus perviousness, we used the thrombus attenuation increase 

(TAI), which is defined as the thrombus attenuation difference between CTA and 

NCCT measurements. The thrombus density measurements were obtained using 

the newly reconstructed NCCT images for all slice thicknesses. The density and 

perviousness measures for all slice thicknesses were compared to the original, thin 

slice, density and perviousness measurements. 

Statistical Analysis 

The mean and standard deviation of the difference in density measurements 

was calculated for each slice thickness. To investigate a potential correlation 

between thrombus density and slice thickness, a linear regression model was used 

based on the mean thrombus density for all patients. A paired t-test was used to 

investigate whether a significant difference in density and perviousness 

measurements was present, comparing the thin slice measurements to the 

measurements with the reconstructed scans with increased slice thicknesses.  
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All analyses were performed using IBM® SPSS® Statistics software, version 24 

(IBM Corp., Armonk, NY). 

Results 

Linear regression showed that the thrombus density values significantly 

decreased with increasing slice thickness. For each mm increase in slice thickness, 

the density measures decreased by 2.9 and 2.2 HU (both p < 0.001), for the 

manual measurements and the full thrombus segmentation respectively. Figure 2.2 

shows the manual thrombus density measurements in 50 patients for varying slice 

thicknesses. The density measurements as assessed by the full thrombus 

segmentation are shown in Figure 2.3. 

The paired t-test showed that there was a significant increase (p<0.001) in 

thrombus perviousness measures for increasing slice thickness, comparing the thin 

slice measurements with the measurement for NCCT with 0.9 mm slice thickness. 

Figure 2.4 and Figure 2.5 show the results of the perviousness measurements in 

50 patients for varying slice thicknesses, measured with the ROIs and full thrombus 

segmentation respectively.  

 

Figure 2.2 (Left) NCCT thrombus density measurements for varying slice thickness for 50 

patients manually measured with ROIs; (Right) NCCT mean thrombus density for varying slice 

thickness measured with ROIs 
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Figure 2.3 (Left) NCCT thrombus density measurements for varying slice thickness for 50 

patients measured with the full thrombus segmentation; (Right) NCCT mean attenuation 

decrease over slice thickness measured with the full thrombus segmentation 

 

Figure 2.4 (Left) Thrombus attenuation increase for varying slice thickness for 50 patients 

manually measured with ROIs; (Right) Mean attenuation increase over slice thickness 

measured with the ROIs 
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Figure 2.5 (Left) Thrombus attenuation increase for varying slice thickness for 50 patients 

measured with the full thrombus segmentation; (Right) Mean attenuation increase over slice 

thickness measured with the full thrombus segmentation 

Discussion 

In this study, it was shown that there was a significant decrease in thrombus 

density measures with increasing CT slice thickness. As a result, perviousness 

measures increased with increasing NCCT slice thickness. 

Thrombus characteristics, such as thrombus density and perviousness, may be 

used as treatment selection parameters or predictive parameters for treatment 

success and functional outcome for patients with ischemic stroke in the future [5-7]. 

While data storage will become a major challenge in the medical imaging field, it is 

important to know the consequences of data reduction [11]. This study showed that 

the increase of NCCT slice thickness resulted in reduced thrombus density and 

increased perviousness measurement values. Therefore, previous associations 

made between thrombus perviousness and favorable prognostics cannot be 

extrapolated for thick slice NCCT measurements, as they may lead to the 

overestimation of favorable prognostics.  

The results showed differences between the thrombus density and 

perviousness measurements, performed with the manual annotation compared to 

the semi-automated thrombus segmentation. Less variation was visible in the 

thrombus density and perviousness measurements between patients and the effect 
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of increased slice thickness appeared less for the semi-automated full thrombus 

segmentation. This was expected because a larger volume of density values is 

included in this technique, which makes it less susceptible to noise.  

The placement of ROIs in imaging data is easily applicable and can already be 

applied in daily clinical practice. However, it was shown that the full thrombus 

segmentation is less sensitive to slice thickness. Also, Santos et al. [12] showed a 

stronger association between thrombus perviousness and functional outcome and 

recanalization, based on full segmented thrombi measurements.  

The linear regression showed an inverse relation between slice thickness and 

density measurements. This suggests that a correction for slice thickness could 

result in a more accurate density measurement.  

A limitation of this study is that we did not correct for confounders. It could be 

possible that factors such as scanner manufacturer, reconstruction, size of the 

thrombus, or filtering algorithms have influenced our results.  

This study only used thrombus density and perviousness measurements from a 

single observer. Thereby, we did not take inter-observer variability into account. 

However, Santos et al. [9],[13] already showed reasonable inter-observer variability 

for both measurement techniques. 

The increase in slice thickness creates a blurring effect in the z-direction. As a 

result, the decrease in density of the thrombus in the CT image is dependent on 

the orientation and fraction of the vessels present within the slice.  

The longitudinal partial volume effect will be more apparent in thicker slices. 

Based on a phantom study, Monnin et al. [14] suggested that the optimal slice 

thickness is 75% of object width. As the average diameter of the M1 segment is 2.3 

± 0.3 mm and the vessel diameters are expected to decrease distally, this suggests 

a maximal slice thickness of approximately 1.7 mm [15]. However, we also see a 

reduction of thrombus densities with slice thickness between 0.45 and 1.7 mm.  

Conclusion 

This study showed that increasing NCCT slice thickness results in a decreasing 

thrombus density and an increase in thrombus perviousness assessment.  
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Abstract 

Background— Radiological thrombus characteristics are associated with patient 

outcomes and treatment success after acute ischemic stroke. These characteristics 

could be expected to undergo time-dependent changes due to factors influencing 

thrombus architecture like blood stasis, clot contraction, and natural thrombolysis. 

We investigated whether stroke onset-to-imaging time was associated with thrombus 

length, perviousness, and density in the MR CLEAN Registry population. 

Methods— We included 245 patients with M1-segment occlusions and thin-slice 

baseline CT imaging from the MR CLEAN Registry, a nationwide multicenter registry 

of patients who underwent endovascular treatment for acute ischemic stroke within 

6.5 h of onset in the Netherlands. We used multivariable linear regression to 

investigate the effect of stroke onset-to-imaging time (per 5 min) on thrombus length 

(in mm), perviousness, and density (both in Hounsfield Units). In the first model, we 

adjusted for age, sex, intravenous thrombolysis, antiplatelet use, and history of atrial 

fibrillation. In a second model, we additionally adjusted for observed vs. non-

observed stroke onset, CT-angiography collateral score, direct presentation at a 

thrombectomy-capable center vs. transfer, and stroke etiology. We performed 

exploratory subgroup analyses for intravenous thrombolysis administration, 

observed vs. non-observed stroke onset, direct presentation vs. transfer, and stroke 

etiology. 

Results— Median stroke onset-to-imaging time was 83 (interquartile range 53–

141) min. Onset to imaging time was not associated with thrombus length nor 

perviousness (  0.002; 95% CI −0.004 to 0.007 and  

0.011 per 5min, respectively) and was weakly associated with thrombus density in 

the fully adjusted model (adjusted  0.100; 95% CI 0.005–0.196 HU per 5min). The 

subgroup analyses showed no heterogeneity of these findings in any of the 

subgroups, except for a significantly positive relation between onset-to-imaging time 

and thrombus density in patients transferred from a primary stroke center (adjusted 

 0.18; 95% CI 0.022–0.35). 
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Conclusion— In our population of acute ischemic stroke patients, we found no 

clear association between onset-to-imaging time and radiological thrombus 

characteristics. This suggests that elapsed time from stroke onset plays a limited 

role in the interpretation of radiological thrombus characteristics and their effect on 

treatment results, at least in the early time window. 

Introduction 

Radiological thrombus characteristics are among the few biomarkers that are 

associated with acute ischemic stroke (AIS) treatment success. Thrombus 

perviousness, reflecting the extent to which intravenous contrast permeates into a 

thrombus, was shown to be strongly associated with higher recanalization rates 

and treatment success of intravenous alteplase (IVT) [1],[ 2]. Thrombus length was 

reported to negatively affect success rates of both IVT and endovascular treatment 

(EVT) [3], [4], although no effect on EVT outcomes was found in some other 

studies [5], [6]. Higher thrombus density is related to higher recanalization rates 

after IVT and EVT [7], [8]. 

Thrombus characteristics may vary over time. For example, stasis in low-

pressure systems can cause thrombus growth over time by the accumulation of red 

blood cells in low-density fibrin networks [9]. In contrast, time may allow for natural 

thrombolysis or IVT to reduce the size of the clot [10–13]. In addition, if a patient 

has good collaterals, decreased blood stasis was reported to limit thrombus growth 

distal to the clot and improve thrombus exposure to alteplase [14], [15]. Clot 

contraction may also reduce thrombus length, increase thrombus density, and 

decrease perviousness [16], [17]. 

Dynamic behavior of thrombi may influence the success of stroke treatment. For 

example, patients with a prolonged time to AIS treatment and favorable thrombus 

dynamics may show alteplase-induced or even spontaneous recanalization. This 

effect has been observed in patients transferred from primary hospitals to 

comprehensive stroke centers for EVT [18]. Alternatively, if the thrombus grows 

before treatment, the chance of recanalization with IVT reduces, and endovascular 

procedure time increases [3], [4]. Moreover, if radiological thrombus characteristics 
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change over time, the elapsed time between the moment of measurement and the 

start of stroke treatment may affect the association between these values and 

stroke treatment outcomes. 

Despite these possibly relevant effects, the effects of time on thrombus 

characteristics have been understudied. We therefore aimed to assess the relation 

between stroke onset to imaging time and thrombus length, perviousness, and 

density using data from a large national registry. 

Methods 

Study population 

This study includes patients from the Multicenter Randomized Clinical trial of 

Endovascular Treatment for Acute ischemic stroke in the Netherlands (MR CLEAN) 

Registry (part I) [19] between March 2014 and June 2016. The MR CLEAN 

Registry is a nationwide, prospective, observational, multicenter study at 16 

comprehensive stroke centers in the Netherlands, including all patients who 

underwent EVT for AIS since the completion of the MR CLEAN trial [20]. IVT was 

administered before EVT if patients were eligible. The central medical ethics 

committee of the Erasmus Medical Center Rotterdam, the Netherlands, granted 

permission (MEC-2014–235) to perform the study as a registry. Source data of this 

study are available in anonymized form upon reasonable request to the 

corresponding author.  

Inclusion criteria for the current study were: M1 occlusion; age 18 years; groin 

puncture within 6.5 h after stroke onset; and treatment in an MR CLEAN trial 

center. Only patients with thin-slice ( 2.5mm) CT-angiography (CTA) and non-

contrast CT (NCCT) images that were acquired on the same scanner no longer 

than 30 min apart were included. We used the images acquired at the first point in 

time. For patients who were transferred from a primary stroke center we used the 

primary center’s radiological images if they were available and of sufficient quality. 

Otherwise, we used the images acquired at the comprehensive stroke center. 

Patients were excluded if images contained excessive noise, artifacts, poor 
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contrast opacification on CTA, or uncorrectable registration errors. Patients with 

calcified thrombi were excluded as well since the high attenuation of these thrombi 

can cause streak and partial volume artifacts. 

Image Analysis 

Measurements of radiological thrombus characteristics were performed in ITK-

SNAP (www.itksnap.org) [19] by two neuroradiologists (B.G.D. and H.A.) [4]. The 

NCCT and CTA images for each patient were co-registered with rigid registration, 

using Elastix R® [21], such that thrombus measurements could be performed in 

both modalities simultaneously. If the alignment of the CTA and NCCT was 

suboptimal, we performed manual registration. 

Thrombus length was measured manually using the ITK-SNAP ruler function 

[22]. If contrast pick-up distal to the thrombus was not seen on CTA, the 

hyperdense artery sign on NCCT was used as a reference point for the distal 

thrombus end. If the thrombus extended into two arterial branches, the longest 

thrombus length was included as measurement. Thrombus perviousness and 

density were computed from three regions of interests (ROIs). On the co-registered 

NCCT and CTA images, three spherical ROIs with a 1mm radius were placed in 

the proximal, middle, and distal parts of the thrombus. Thrombus density was 

defined as the mean density of these ROIs on NCCT, in Hounsfield Units (HU). 

Thrombus perviousness was computed by subtracting the mean density of the 

ROIs on NCCT from the mean density of the ROIs on CTA, resulting in the average 

thrombus attenuation increase in HU (thrombus perviousness = ). 

Collateral score [23], occlusion location, and the Alberta Stroke Program Early 

CT Score were assessed on baseline CTA and NCCT by the MR CLEAN Registry 

core laboratory [19]. 

Statistical Analysis 

The dependent variables were thrombus length (mm), perviousness, and 

density (HU). The independent variable of interest was time from symptom onset or 

last seen well to imaging per 5 min. Imaging time was defined as the acquisition 

time of the NCCT images. Baseline characteristics were summarized appropriately 
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to the type of data. Comparisons were made by one-way ANOVA, Kruskal-Wallis, 

Mann-Whitney-U, or Fisher’s exact-test appropriate to the type of data. Visual 

representations of the data were made with scatter and bar plots.  

Univariable and multivariable linear regression were used to assess the 

association between onset to imaging time and thrombus length, perviousness, 

and density, resulting in beta coefficients ( ) with 95% confidence intervals (95% 

CI). The multivariable models were adjusted for the following baseline pre-specified 

variables: age, sex, history of atrial fibrillation, IVT administration, and antiplatelets. 

Model 2 was additionally adjusted for: observed stroke vs. non-observed stroke, 

CTA collateral score, transfer or direct presentation at a comprehensive stroke 

center, and stroke etiology according to the modified Trial of ORG 10172 in Acute 

Stroke Treatment (TOAST) criteria (cardio-embolic vs. large artery atherosclerosis 

vs. unknown). The TOAST criteria were scored for a previous study on our data set 

[15]. Because thrombus length and perviousness showed a right-skewed 

distribution, they were log-transformed for the regression analyses (Supplementary 

Figure 1).  

Exploratory sensitivity analyses were performed by comparing the results of 

univariable models for different subgroups: (a) patients with observed stroke onset 

vs. patients without observed stroke onset (using last-seen-well time as onset 

time), (b) patients with vs. without IVT administration prior to EVT, (c) patients with 

collateral score 0–1 vs. patients with CS 2–3, (d) transfer patients vs. direct 

presentation to a comprehensive stroke center, (e) patients with different stroke 

etiologies: cardioembolic stroke, large-artery atherosclerotic stroke and stroke with 

an undetermined origin. 

Missing data in the main and secondary variables of interest were imputed 

using multiple imputation for regression analyses only, based on relevant 

covariates and outcomes. A two-sided p-value of 0.05 was considered significant. 

Statistical analyses were performed with Stata/SE 14.2 (StataCorp, TX). 
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Results 

The total MR CLEAN Registry part I population consisted of 1,627 patients, of 

whom 825 had an M1 occlusion. We included 245 patients in the current study 

(Supplementary Figure 2 and Table 3.1). Of these, 90 patients were transferred 

from a primary to a comprehensive center for EVT. We measured radiological 

thrombus characteristics on images acquired in the primary center for 44 of these 

patients. Baseline characteristics of our study population were similar to the overall 

MR CLEAN Registry population with an M1 occlusion except for a lower frequency 

of patients transferred from a primary stroke center [90/245 (36%) vs. 441/825 

(53%), p < 0.01]. The median time from stroke onset to imaging was 83 (IQR 53–

141) min. Median thrombus length was 12 (IQR 9–16) mm, median perviousness 

was 5 (IQR 0.1–11) HU, and median density was 52 (IQR 46–58) HU (Figures 

3.1A–D). Figures 3.1E–G show the values of onset to imaging time in relation to 

thrombus length, thrombus perviousness, and thrombus density for all patients. 

The regression coefficients of the association of onset-to-imaging time and 

thrombus length, perviousness, or density are presented in Table 3.2. None of 

these associations were statistically significant, except for a positive association for 

thrombus density in the adjusted Model 2 (  0.10; 95% CI 0.005–0.20 HU/5min, 

Table 3.2). The sensitivity analyses showed no statistically significant associations 

for thrombus length, perviousness, or density in any of the subgroups 

(Supplementary Tables 1–4 and Supplementary Figures 3–7), except for a 

significantly positive relation between onset-to-imaging time and thrombus density 

in patients transferred for EVT from a primary stroke center (n = 90) in the adjusted 

Model 2 only (  0.18; 95%CI 0.022–0.35 HU/5min, Supplementary Table 4). 

Patients who were transferred from a primary center had longer median onset to 

imaging times (median 137min, IQR 65–181) than those presented directly to a 

comprehensive center (median 69min, IQR 48–103, p < 0.01). In addition, among 

IVT-treated transferred patients (n = 77), median onset-to-imaging times were 

shorter among patients whose thrombus characteristics were measured on images 

acquired in the primary stroke center (n = 36; 67 min, IQR 56–100), as compared 

to the comprehensive stroke center (n = 41, 175 min, IQR 138–197; p < 0.01). 
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Nonetheless, the longer time for IVT to work did not affect the association between 

onset-to-imaging time and thrombus characteristics (Supplementary Table 4). 

Table 3.1: Baseline characteristics of patients included in the current study, compared to all 
MR CLEAN Registry patients with an M1 occlusion.  

 Current study 

(n=245) 

MR CLEAN Registry 
patients with M1 

occlusion (n=825) 

P 

Baseline clinical variables (data known in [n]) 

Age, median (IQR) 69 (61-80) 72 (61-80) 0.57 

Sex (male), n(%) 127 (52) 423 (51) 0.89 

NIHSS baseline, median 
(IQR) 

15 (11-20) [243] 16 (11-19) [811] 0.85 

SBP (mmHG), median 
(IQR) 

148 (130-162) [238] 150 (131-165) [803] 0.29 

Medical history, n. (%) 

   Diabetes mellitus 45 (19) [242] 151 (18) [820] 0.93 

..Previous stroke 37 (15) [242] 152 (19) [820] 0.29 

  Atrial fibrillation 48 (20) [240] 195 (24) [812] 0.22 

Pre-stroke mRS, n (%) 0.45 

   0-2 204 (85) [240] 707 (86) [814]  

   3 36 (15) [240] 107 (14) [814]   

Workflow (data known in [n]) 

Observed onset time, n 
(%) 

187 (76) 618 (75)  0.67 

Intravenous alteplase, n 
(%)  

188 (77) 637 (78) 0.86 

Transferred from primary 
stroke center*, n (%) 

90 (36) 441 (53) <0.01 

Time from onset to 
presentation at first 

hospital, minutes, median 
(IQR)  

55 (40-92) [200] 55 (39-93) [640] 0.87 

Time from onset to 
imaging$, minutes, 

median (IQR)  

83 (53-141) 69 (51-106) [733] 0.62 

(Continued) 
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Table 3.1: Continued 

Imaging variable (data known in [n]) 

ASPECTS subgroups, n (%) 0.47 

0-4 9 (4) 46 (6)  

5-7 56 (23) 186 (23)  

8-10 180 (73) 571 (71)  

Collateral score, n (%) [known in] 0.95 

0 16 (7) [240] 48 (6)  

1 72 (30) [240] 252 (31)  

2 97 (40) [240] 323 (40)  

3 55 (23) [240] 179 (22)  

Extracranial carotid 
tandem lesion# 

28 (11) [192] 136 (16) [689]  

Thrombus length, mm, 
median (IQR)  

12 (9-16) NA NA 

NCCT thrombus density, 
HU, median (IQR)  

52 (46-58) NA NA 

Thrombus perviousness, 
attenuation increase, HU, 

median (IQR)  

5 (0.1-11) NA3 NA 

ASPECTS, Alberta Stroke Program Early CT Score; CTA, CT-angiography; IQR, interquartile 
range; HU, Hounsfield Units; mRS, modified Rankin Scale; NA, not applicable; NCCT, non-
contrast CT, NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure. 
If no [known in] number is shown, data were available for all included patients.  

*Images from the primary stroke center were used in 44/90 transfer patients (49%).  

$In current study sample: time of imaging used for measurements. In all Registry M1 occlusion 
patients: time of first acquired imaging.  

#Tandem lesion was defined as an atherosclerotic occlusion, high-grade stenosis, or 
dissection ipsilateral to the intracranial occlusion, as assessed on baseline CT angiography. 
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Table 3.2: beta coefficients of the effect of time from stroke onset to CT imaging (per 5 
minutes) on thrombus characteristics.  

 Model 0 

Unadjusted 

Model 1 

Adjusted for pre-
specified variables * 

Model 2 

Adjusted for pre-
specified variables* + 
variables of interest# 

Outcome variable      

  95% CI  95% CI  95% CI 

Thrombus 
length 

0.002 -0.002 to 
0.007 

0.003 -0.002 to 
0.008 

0.002 -0.004 to 
0.007 

Perviousness -0.005 -0.012 to 
0.011 

-0.001 -0.012 to 
0.012 

-0.002 -0.015 to 
0.011 

Thrombus 
density 

0.046 -0.036 to 
0.129 

0.047 -0.035 to 
0.120 

0.100 0.005 to 
0.196 

CI, confidence interval; ICA-T, internal carotid artery terminus.  

*pre-specified variables: age, sex, and history of atrial fibrillation.  

#variables of interest: observed stroke onset, intravenous alteplase, CTA collateral score, 
direct presentation at thrombectomy-capable center or transfer, stroke etiology (cardio-
embolic versus large artery atherosclerosis versus unknown). 

DISCUSSION 

Our study showed no association between stroke-onset to imaging time and 

thrombus length, density and perviousness, suggesting that within the critical time 

window of treatment no observable changes occur. Thrombus density may slightly 

increase over time, which was visible in our data in patients transferred from a 

primary stroke center. Transferred patients had a longer median onset to imaging 

time, possibly allowing for a higher density difference to develop. This density 

increase could be caused by the contraction of the thrombus resulting in the 

compression of erythrocytes in a densely packed structure, though may also have 

been a chance finding [17]. Overall, however, the effects of thrombus contraction 

[16], [17], thrombus growth [9], and endogenous or alteplase-induced thrombolysis 

[10–13] seem to balance each other out in the time window we observed. 

Only a small number of studies have been reported that focus on the influence 

of time on thrombus image characteristics. Qazi et al. [24] included onset to 

imaging time for the analysis of thrombus characteristics in patients with AIS. They 
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have studied the relation between collateral status and thrombus length. Similar to 

our study, onset-to-imaging time did not influence thrombus length. Also, Pikija et 

al. [25] have studied the relation of time with thrombus density. In contrast to our 

results, their results showed a drop in thrombus density within a 5-h time window 

for onset to imaging time. Finally, Haridy et al. [26] reported no association 

between the presence of a hyperdense artery sign (HAS) or relative thrombus 

density and onset to imaging time within a 24 h time window. Unfortunately, they 

did not specifically study the relation of time with thrombus density or perviousness. 

Therefore, we cannot directly compare our results with their study. 

Since the assessment of the radiological thrombus characteristics addressed in 

this study is not part of current treatment decision making in clinical practice and is 

not included in the national or international stroke guidelines [27], our results do not 

give rise to changes in the standard clinical care for AIS. For research on 

radiological thrombus characteristics in relation to stroke treatment outcomes, our 

results indicate that the elapsed time from symptom onset is of limited influence on 

the values of these characteristics, and as such would not have to be taken into 

account in the time window that we investigated.  

Our study has limitations. First, a selective group of patients was included. Our 

study population contained patients who underwent EVT and therefore included 

severe cases of stroke only. All patients were treated within a short time window 

since the onset to hospital time is relatively low due to the small surface area and 

high hospital density of the Netherlands [19], [28]. In addition, it is expected that 

the treatment window for EVT will be extended in the future, and onset to imaging 

time will be prolonged. Increased variation in time from stroke onset may make 

changes in radiological thrombus characteristics more pronounced [29]. In the 

overall Registry population, the proportion of transfer patients was higher than in 

our study sample. This may have contributed to our shorter median onset to 

imaging time: thin-slice CT scans are less often available for transferred patients, 

which was one of our inclusion criteria. Second, the dynamic behavior of thrombus 

size could not be assessed in a controlled environment; we combined data of a 

heterogeneous group of patients. To reduce the variability, we only selected 
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patients with an occlusion of the M1, though this resulted in a relatively small 

sample size. Third, thrombus measurements were performed on single-phase 

CTA. As such, results are dependent on the phase of the CTA. In case of stasis of 

blood flow and early CTA san timing, the contrast may not reach the exact proximal 

location of the thrombus, and contrast may not have reached the distal part of the 

thrombus. This may have resulted in an overestimation of thrombus length and 

lower perviousness values. Future implementation of multiphase CTA may resolve 

that issue [30]. Fourth, we tried to assess the dynamic behavior of thrombi on 

imaging made at a single point in time. Ideally, thrombus measurements would be 

performed at two moments in time in the same patient, to address individual rates 

of thrombus growth or shrinkage. By comparing thrombus characteristics in a large 

group of patients with varying onset-to-imaging times, we expected other factors 

influencing thrombus length to be approximately evenly distributed. Fifth, thrombi 

may be older than the duration of stroke symptoms, and hence be more organized 

than what one would expect based on the time from stroke onset to imaging. 

Cardiac thrombi for example may form and age in the heart, break loose, and 

embolize to cause a stroke [31], [32]. However, our results did not vary between 

stroke etiology subgroups. Sixth, apparent trends in the subgroup analyses may 

not have translated to statistically significant regression results due to the small 

number of patients in the subgroups. However, our effect estimates were close to 

zero and any trends found in the data visualization may have occurred due to 

chance. Finally, because we only included patients with an M1-occlusion to 

improve data homogeneity, we could not assess differences in thrombus location 

and length. Thrombi may contract over time in all directions, instead of only in 

length, thereby decreasing in diameter and embolizing to a more distal location. 

Further research with more observations in distal occlusion locations could focus 

on the association between onset-to-imaging time and the distance from the carotid 

terminus to the proximal thrombus border. 
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Conclusion 

Our results did not show a clear association between onset to imaging time and 

radiological thrombus characteristics for AIS patients within the observed time 

window. Only thrombus density slightly increased with longer onset to imaging time 

intervals due to inter-hospital transfer. There was no association between time and 

thrombus perviousness or length. This suggests that elapsed time from stroke 

onset plays a limited role in the interpretation of radiological thrombus 

characteristics and their effect on treatment results, at least in the relatively short 

time window observed in this study. 
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Abstract 

Background  Thrombus imaging characteristics have been reported to be 

useful to predict functional outcome and reperfusion in acute ischemic stroke. 

However, conflicting data about this subject exist in patients undergoing 

endovascular treatment. Therefore, we aimed to evaluate whether thrombus imaging 

characteristics assessed on computed tomography are associated with outcomes in 

patients with acute ischemic stroke treated by endovascular treatment.  

Methods  The MR CLEAN (Multicenter Randomized Clinical Trial of 

Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) Registry is 

an ongoing, prospective, and observational study in all centers performing 

endovascular treatment in the Netherlands. We evaluated associations of thrombus 

imaging characteristics with the functional outcome (modified Rankin Scale at 90 

days), mortality, reperfusion, duration of endovascular treatment, and symptomatic 

intracranial hemorrhage using univariable and multivariable regression models. 

Thrombus characteristics included location, clot burden score (CBS), length, relative 

and absolute attenuation, perviousness, and distance from the internal carotid artery 

terminus to the thrombus. All characteristics were assessed on thin-slice ( 2.5 mm) 

non-contrast computed tomography and computed tomography angiography, 

acquired within 30 minutes from each other.  

Results  In total, 408 patients were analyzed. Thrombi with a distal location, 

higher CBS, and shorter length were associated with better functional outcome 

(adjusted common odds ratio, 3.3; 95% CI, 2.0 to 5.3 for distal M1 occlusion 

compared with internal carotid artery occlusion; adjusted common odds ratio, 1.15; 

95% CI, 1.07 to 1.24 per CBS point; and adjusted common odds ratio, 0.96; 95% CI, 

0.94 to 0.99 per mm, respectively) and reduced duration of endovascular procedure 

(adjusted coefficient B, 

compared with internal carotid artery occlusion; adjusted coefficient B, 

coefficient B, 7.3; 95% CI, 2.9 to 11.8 per 

mm, respectively). Thrombus perviousness was associated with better functional 

outcome (adjusted common odds ratio, 1.01; 95% CI, 1.00 to 1.02 per Hounsfield 
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units increase). Distal thrombi were associated with successful reperfusion (adjusted 

odds ratio, 2.6; 95% CI, 1.4 to 4.9 for proximal M1 occlusion compared with internal 

carotid artery occlusion).  

Conclusion  Distal location, higher CBS, and shorter length are associated with 

better functional outcome and faster endovascular procedure. Distal thrombus is 

strongly associated with successful reperfusion, and a pervious thrombus is 

associated with better functional outcome. 

Introduction 

Thrombus location is the only thrombus imaging characteristic currently 

evaluated in the assessment of patients with acute ischemic stroke (AIS) in daily 

practice [1,2]. However, recent studies have reported other thrombus imaging 

characteristics that may be useful for predicting functional outcome and reperfusion 

in AIS [3–6]. Associations between thrombus imaging characteristics and these 

outcomes have been evaluated primarily in patients undergoing intravenous 

thrombolysis (IVT) [3],[6–9]. Conflicting data exist about the associations between 

thrombus characteristics and outcomes after endovascular treatment (EVT) of AIS.  

Because EVT has emerged as the mainstay of treatment for AIS because of 

proximal intracranial occlusions, the identification of imaging biomarkers that 

predict EVT outcomes would be highly relevant to acute stroke management. The 

present study aims to evaluate the associations between thrombus imaging 

characteristics and outcomes in patients undergoing EVT in the MR CLEAN 

(Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute 

Ischemic Stroke in the Netherlands) Registry. 

Materials and methods 

Patient selection 

The MR CLEAN Registry is an ongoing, prospective, observational, multicenter 

study at 16 intervention hospitals in the Netherlands. It includes all patients with 

AIS who underwent EVT since the completion of the MR CLEAN trial in March 
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2014. Patients were treated with IVT before EVT if eligible. The central medical 

ethics committee of the Erasmus Medical Centre Rotterdam, the Netherlands, 

evaluated the study protocol and granted permission (MEC-2014–235) to perform 

the study as a registry [10]. For the purpose of this analysis, we used the following 

inclusion criteria: intracranial proximal occlusion in the anterior arterial circulation; 

age 18 years; groin puncture within 6.5 hours after stroke onset; and treatment in 

an MR CLEAN trial center. The current study reports on patients registered in the 

MR CLEAN Registry between March 2014 and June 2016. Source data of this 

study are available from the corresponding author on reasonable request. 

Image analysis 

Patients underwent the MR CLEAN Registry imaging protocol (Methods I in the 

online-only Data Supplement). We included patients with available thin-slice ( 2.5 

mm) baseline non-contrast computed tomography (NCCT) and computed 

tomography angiography (CTA), acquired within 30 minutes from each other. All 

baseline NCCT and CTA scans were automatically aligned using rigid registration 

with Elastix software.[11] In case of suboptimal alignment, adjustments were 

performed by manual rigid registration, with Mevislab (by Dr. Dutra). Scans with 

uncorrectable registration errors, artifacts, excessive noise, or poor contrast 

opacification on CTA were excluded. To prevent bone artifacts that might interfere 

with the thrombus attenuation measurements, we excluded patients with an 

intracranial arterial occlusion restricted to the petrous, cavernous, and clinoid 

segments of the internal carotid artery (ICA). Calcified thrombi were also excluded 

because of their higher attenuation values (related to calcium composition) 

compared with the attenuation values of non-calcified thrombi, and because 

calcification produces streak and partial volume artifacts, which can cause 

overestimation of the thrombus size.  

We evaluated the following thrombus imaging characteristics: location, clot 

burden score (CBS), absolute and relative attenuation, perviousness, length, and 

distance from the ICA terminus to the thrombus (DT). The observers were blinded 

for all clinical data except for symptom side. The assessments of thrombus imaging 
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characteristics are detailed in the online-only Data Supplement (Methods II and 

Figures I and II in the online-only Data Supplement). 

Outcome measures 

The primary outcome was defined as the modified Rankin Scale (mRS) score at 

90 days. The mRS is a 7-point scale ranging from 0 (no symptoms) to 6 (death). 

Secondary outcomes were good functional outcome (score of 0 to 2 on the mRS), 

mortality at 90 days, reperfusion status assessed on digital subtraction 

angiography according to the extended Thrombolysis in Cerebral Infarction (eTICI) 

score,[12] duration of EVT, and symptomatic intracranial hemorrhage (sICH). The 

eTICI score was assessed by the MR CLEAN Registry imaging core lab, based on 

the degree of reperfusion in the downstream territory of the original occlusion on 

digital subtraction angiography. The eTICI score ranges from 0 (no reperfusion or 

antegrade flow beyond occlusion site) to 3 (complete reperfusion), including a 2C 

category (90% to 99% reperfusion) [12],[13]. Successful reperfusion status was 

defined as eTICI scores of 2b, 2c, or 3. 

Duration of EVT was determined in patients who underwent an actual 

thrombectomy, and this outcome was measured from artery puncture (time zero) to 

the time that successful reperfusion was achieved or to the end of procedure if no 

successful reperfusion was achieved. The following patients were not considered in 

the assessments of duration of EVT: no target occlusion depicted on digital 

subtraction angiography (recanalization of primary occlusion on the first run), or 

unreachable target occlusion (i.e. due to vascular tortuosity, stenosis, or occlusion 

of the carotid artery). 

Statistical analysis 

Subject characteristics 

We present the baseline clinical and imaging characteristics of our study 

population and of the full published MR CLEAN Registry data set [10] using median 

and interquartile range (IQR) for continuous variables and frequencies and 
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percentages for categorical variables. A correlation chart was performed to 

summarize the data about the distribution of each thrombus imaging characteristic, 

and to investigate whether thrombus imaging characteristics are correlated to each 

other, using the Spearman correlation coefficient for non-normally distributed data 

and the Pearson correlation coefficient for normally distributed data. 

Associations between thrombus imaging characteristics and 

outcomes 

Univariable and multivariable regression models were used to evaluate the 

association between thrombus imaging characteristics and outcomes. Ordinal 

logistic regression was used to assess the associations between thrombus 

characteristics and mRS as primary outcome measurement, resulting in an 

unadjusted and adjusted common odds ratio (common OR and adjusted common 

OR, respectively) for a 1-step shift towards better functional outcome. Unadjusted 

and adjusted binary logistic regression models were used to assess the 

associations with good functional outcome, successful reperfusion, mortality, and 

sICH as secondary outcomes. Unadjusted and adjusted linear regressions were 

performed to evaluate the associations with a duration of EVT as a secondary 

outcome measurement. We adjusted for age, pre-stroke mRS, time from stroke 

onset to artery puncture, IVT, diabetes mellitus, previous myocardial infarction, 

previous stroke, hypertension, and atrial fibrillation. Use of anticoagulants and 

antiplatelet agents was added to the adjustments for the analyses with reperfusion 

status, duration of EVT, and sICH as outcome measurements. In developing the 

multivariable model, we did not consider Alberta Stroke Program Early CT Score, 

baseline National Institutes of Health Stroke Scale score, and collaterals as 

potential confounders because we assumed they were in the causal pathway 

between thrombus and outcomes, as the following: proximal arterial thrombi (low 

CBS, short DT, and longer thrombus length) are hypothesized to cause impaired 

collateral filling [14],[15] and greater areas of hypodensity on NCCT, consequently 

leading to a lower Alberta Stroke Program Early CT Score, higher severity stroke 

score scale (National Institutes of Health Stroke Scale score), [16] poorer functional 
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  Thrombus image characteristics and outcomes in the MR CLEAN Registry 

outcome and higher chances of sICH. Interaction terms between primary treatment 

modalities and thrombus burden (CBS and length) were performed for the 

achieved outcomes. 

All statistical analyses were performed using R (R Foundation for Statistical 

Computing, version 3.5.1). For the regression analyses, missing data were imputed 

using multiple imputation [17]. Missing mRS scores at 90 days or mRS scores of 

0–5 assessed at <30 days from stroke were imputed. We performed multiple 

imputation using the variables listed in the online-only Data Supplement (Table I in 

the online-only Data Supplement). 

Results 

Subject characteristics 

Overall, 408 patients were included in our analysis (Figure 4.1). The median 

age was 70 years (IQR, 59 to 80), 54% (n=222) were male, and the median 

National Institutes of Health Stroke Scale score was 16 (IQR, 11 to 20). Of all 

patients eligible for EVT, 87% (n=356/408) underwent EVT with thrombus retrieval, 

and the most used primary treatment modality was the stent retriever (75%). The 

median duration of EVT was 62 minutes (IQR, 44 to 90 minutes). Thrombus 

location was the most commonly distal M1 (36%) followed by ICA (25%), and 

proximal M1 (24%). CBS of 8 to 10 was observed in 29% of patients (n=102/353). 

Median values of thrombus length, DT, absolute attenuation, relative attenuation, 

and perviousness were 12.7 mm (IQR, 8.7 to 17.9 mm), 8.3 mm (IQR, 0 to 14.4 

mm), 51.8 Hounsfield units (HU; IQR 45 to 58 HU), 1.33 (IQR, 1.19 to 1.52), and 5 

HU (−0.2 to 12.3 HU). IVT was administered in 77% of patients (n=314). Baseline 

characteristics in our cohort were similar to the full MR CLEAN Registry data set 

[10] (Table 4.1).  

Results of data distribution and correlation analyses among thrombus 

characteristics are detailed in the online-only Data Supplement (Figure III in the 

online-only Data Supplement). Longer thrombi were statistically correlated with 

shorter DT, more proximal location, lower CBS, lower perviousness, and higher 
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absolute attenuation (correlation coefficients of −0.44, −0.45, −0.53, −0.23, and 

+0.35, respectively). 

 

Figure 4.1: Flow chart of the patient selection process. CTA indicates angiography 

tomography; EVT, endovascular treatment; ICA, internal carotid artery; MR CLEAN, 

Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke 

in the Netherlands; and NCCT, non-contrast computed tomography. 
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  Thrombus image characteristics and outcomes in the MR CLEAN Registry 

Associations between thrombus image characteristics and 

outcomes 

Primary outcome 

More distal thrombus location and higher CBS values were significantly 

associated with improved functional outcome in the unadjusted and adjusted 

models. Thrombus located in the distal M1 segment had an increased odds of 

having improved functional outcome compared to ICA thrombus (adjusted common 

OR, 3.27; 95% CI, 2.03 to 5.29). Unadjusted and adjusted common ORs per point 

CBS were 1.12 (95% CI, 1.04 to 1.20) and 1.15 (95% CI, 1.07 to 1.24). A longer 

thrombus was associated with a reduced likelihood of improved functional out- 

come (adjusted common OR, 0.96; 95% CI, 0.94 to 0.99 per mm). An increased 

chance of improved functional outcome was observed in a more pervious thrombus 

(adjusted common OR, 1.01; 95% CI, 1.00 to 1.02 per HU increase) in the adjusted 

analyses (Table 4.2). 

Secondary outcomes 

Favorable functional outcome (mRS score of 0 to 2) 

Favorable functional outcome was observed in 38% of patients (n=155). 

Associations between thrombus imaging characteristics and dichotomized 

functional outcome (mRS score of 0 to 2) were similar to the primary functional 

outcome analyses, as listed in Table 4.2. A statistically significant interaction was 

observed between CBS and primary EVT modality. For higher CBS, patients 

treated with stent-retriever had increased chances of having favorable functional 

outcome compared with other EVT modalities (Figure IV in the online-only Data 

Supplement). No statistically significant interaction was observed between 

thrombus length and primary treatment modality. 

Mortality at 90 days 

Death at 90 days was observed in 26.2% of patients (n=107). This outcome 

was significantly associated with more proximally located thrombi (adjusted OR 

[aOR], 0.29; 95% CI, 0.14 to 0.61 for proximal M1 thrombi compared with ICA 
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occlusions), lower CBS (aOR, 0.85; 95% CI, 0.77 to 0.95), and longer thrombus 

length (aOR, 1.04; 95% CI, 1.01 to 1.07), as detailed in Table 4.2. 

Reperfusion status 

In patients who underwent thrombectomy, successful reperfusion was achieved 

in 60% (n=215/356). Only site of occlusion was significantly associated with 

successful reperfusion (Table 4.3). Proximal and distal M1 thrombi were associated 

with an increased likelihood of successful reperfusion compared with ICA thrombi 

(aOR, 2.60; 95% CI, 1.42 to 4.97 for proximal M1 thrombi and aOR, 1.96; 95% CI, 

1.14 to 3.44 for distal M1 thrombi). No significant associations were observed 

between reperfusion and thrombus location in M2 or other segments. However, a 

trend towards an increased chance of successful reperfusion with a more distal 

thrombus location was observed. 

Duration of endovascular procedure 

Duration of EVT was significantly associated with thrombus location, CBS, and 

thrombus length (Table 4.3). Endovascular procedure was 14 to 15 minutes faster 

for distal M1 occlusions compared with ICA occlusions (adjusted coefficient B, 

was an increase of 7 to 8 minutes in EVT duration (adjusted coefficient B, 7.3; 

95% CI, 2.9 to 11.8). An increase of 1 point in CBS was associated with a 

reduction of 8 to 9 minutes of the duration of EVT (adjusted coefficient B, 

95% CI, −14.5 to −2.4). 

Symptomatic intracranial hemorrhage 

No significant associations were observed between thrombus imaging 

characteristics and sICH (Table 4.3). 
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  Thrombus image characteristics and outcomes in the MR CLEAN Registry 

Table 4.1: Baseline characteristics of the Registry subgroup included in our study and of the 
MR CLEAN Registry dataset 

(Continued) 

 

 
MR CLEAN Registry 
subgroup included 

(n=408) 

Full MR CLEAN 
Registry database 

(n=1488)  

Baseline clinical variables 

Age, median (IQR)  70 (59–80); (n=408) 71 (60 to 80); (n=1488) 

Sex (men), n. (%) 222 (54.4); (n=408) 794 (53.3); (n=1488) 

NIHSS baseline, median (IQR) 16 (11 to 20); (n=398) 16 (11 to 20); (n=1458) 

SBP (mm Hg), median (IQR) 149 (131 to 163); 
(n=397) 

150 (125 to 175); 
(n=1446) 

DBP (mm Hg), median (IQR) 80 (70 to 90); (n=396) 80 (70 to 91); (n=1439) 

Medical history, n (%) 

Diabetes 75 (18.6); (n=404) 255 (17.2); (n=1479) 

Hypertension 202 (50.4); (n=401) 745 (50.7); (n=1469) 

Dyslipidemia 116 (29.1); (n=398) 431 (29.9); (n=1401) 

Current smoking 97 (24); (n=404) 338 (22.9); (n=1474) 

Previous stroke 63 (15.6); (n=404) 249 (16.8); (n=1479) 

Previous myocardial infarction 73 (18.4); (n=397) 228 (15.6); (n=1459) 

Previous atrial fibrillation 84 (20.9); (n=401) 327 (22.3); (n=1466) 

Anticoagulation 131 (33); (n=395) 493 (33.6); (n=1457) 

Pre-stroke modified Rankin Scale score, n (%) 

0 253/397 (63.7) 991/1461 (67.8) 

1 52/397 (13.1) 189/1461 (12.9) 

2 36/397 (9.1) 110/1461 (7.5) 

≥ 3 56/397 (14.1) 171/1461 (11.7) 

Pre-stroke modified Rankin Scale 
score, n (%)   

0 253/397 (63.7) 991/1461 (67.8) 

1 52/397 (13.1) 189/1461 (12.9) 

2 36/397 (9.1) 110/1461 (7.5) 

≥ 3 56/397 (14.1) 171/1461 (11.7) 



67 

 

 

Chapter 4 

Table 4.1: Continued 

(Continued) 

 
MR CLEAN Registry 
subgroup included 

(n=408) 

Full MR CLEAN 
Registry database 

(n=1488) 

Imaging variables 

ASPECTS subgroups, n (%)   

0-4 23/408 (5.6) 93/1488 (6.5) 

5-7 101/408 (24.7) 341/1488 (24) 

8-10 284/408 (69.6) 989/1488 (69.5) 

Collateral score, n (%)   

0% filling of the occluded territory 32/397 (8.1) 97/1381 (7) 

>0% and 50% filling of the 
occluded territory 127/397 (32.0) 461/1381 (33.3) 

>50% and <100% filling of the 
occluded territory 158/397 (39.8) 535/1381 (38.7) 

100% filling of the occluded territory 80/397 (20.2) 282/1381 (20.9) 

Thrombus location, n (%);   

ICA 101/407 (24.8) 395/1422 (27.8) 

Proximal M1 97/407 (23.8) 364/1422 (25.6) 

Distal M1 148/407 (36.4) 462/1422 (32.4) 

M2 51/407 (12.5) 175/1422 (12.3) 

M3 4/407 (1.0) 9/1422 (0.6) 

A1/A2 6/407 (1.4) 6/1422 (0.4) 

Clot burden score, n (%);   

0-4 97/353 (27.5) 371/1238 (30) 

5-7 154/353 (43.6) 510/1238 (41.2) 

8-10 102/353 (28.9) 537/1238 (28.8) 

DT, median (IQR) 8.3 (0 to 14.4) NA 

Thrombus length (mm), median 
(IQR) 

12.75 (8.7 to 17.9); 
(n=408) NA 
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  Thrombus image characteristics and outcomes in the MR CLEAN Registry 

Table 4.1: Continued 

A1/A2 indicates occlusions in segment A1 or A2 of the anterior cerebral artery; ASPECTS, 
Alberta Stroke Program Early CT Score; DBP, diastolic blood pressure; DSA, digital 
subtraction angiography; DT, distance from the internal carotid artery terminus to the 
thrombus; EVT, endovascular treatment; HU, Hounsfield units; ICA, internal carotid artery; 
IQR, interquartile range; M1, segment M1 of the middle cerebral artery; M2, segment M2 of 
the middle cerebral artery; M3, segment M3 of the middle cerebral artery; MR CLEAN, 
Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke 
in the Netherlands; NA, not available; NIHSS, National Institutes of Health Stroke Scale; and 
SBP, systolic blood pressure. 

 
MR CLEAN Registry 
subgroup included 

(n=408) 

Full MR CLEAN 
Registry database 

(n=1488) 

Imaging variables 

Thrombus absolute attenuation (HU), 
median (IQR) 

51.8 (45 to 58); 
(n=408) NA 

Treatment variables 

Intravenous thrombolysis, 

n. (%) 
314/408 (77) 1161/1488 (78.0) 

Time to artery puncture, median 
(IQR)–minutes; 

195 (150 to 251); 
(n=408) 

208 (160 to 265); 
(n=1488) 

Performed procedure, n. (%)   

EVT with thrombus retrieval 356/408 (87.3) 1280/1488 (86) 

Target occlusion not accessible 21/408 (5.1) 80/1488 (5.4) 

No target occlusion depicted on DSA 27/408 (6.6) 119/1488 (8) 

Other (procedure ended before 
attempt) 4/408 (1) 80/1488 (5.4) 

Primary treatment modality,  

n (%) 
334/356 (93.8) 1220/1280 (95.3) 

Stent retriever 252/334 (75.4) 969/1280 (79.4) 

Aspiration device 65/334 (19.4) 207/1280 (17) 

Local delivery of the thrombolytic 
agent 4/334 (1.2) 10/1280 (0.8) 

Different approach 13/334 (3.8) 34/1220 (2.8) 

Duration of EVT – median (IQR)–
minutes; 62 (44 to 90); (n=319) 64 (40 to 90); 

(n=1331) 
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  Thrombus image characteristics and outcomes in the MR CLEAN Registry 

Table 4.2: Continued 

 

Mortality at 90 days 

Binary regression (death) 

Unadjusted Model Adjusted Model* 

OR 95% CI aOR 95% CI 

Site of occlusion 

ICA 1 (Reference) 1 (Reference) 

Proximal M1 0.44† 0.24—0.84† 0.29† 0.14—0.61† 

Distal M1 0.35† 0.19—0.61† 0.19† 0.09—0.38† 

M2 0.79 0.38—1.59 0.52 0.21—1.23 

Other‡ 0.63 0.08—3.11 0.21 0.01—2.30 

CBS 0.91† 0.83—0.99† 0.85† 0.77—0.95† 

DT 1.00 0.98—1.02 0.98 0.95—1.01 

Length 1.01 0.98—1.04 1.04† 1.01—1.07† 

Perviousness 1.00 0.99—1.01 0.99 0.98—1.01 

Absolute 
attenuation 0.98 0.96—1.01 1.00 0.97—1.03 

Relative 
attenuation 1.27 0.62—2.62 1.64 0.72—3.73 

acOR indicates adjusted common odds ratio; aOR, adjusted odds ratio; CBS, clot burden 
score; cOR, common odds ratio; distal M1, distal M1 segment of middle cerebral artery; DT, 
distance from the internal carotid artery terminus to the thrombus; ICA, internal carotid artery; 
M2, M2 segment of middle cerebral artery; mRS, modified Rankin Scale at 90 d; proximal M1, 
proximal M1 segment of middle cerebral artery; and OR, odds ratio.  

*Adjusted for: age; pre-stroke mRS; intravenous thrombolysis; time from onset to groin 
puncture; previous history of stroke, atrial fibrillation, hypertension, diabetes mellitus, and 
myocardial infarction. 

†P value <0.05.  
‡M3 segment of middle cerebral artery or anterior cerebral artery. 
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  Thrombus image characteristics and outcomes in the MR CLEAN Registry 

Table 4.3: Continued 

 

sICH 

Binary regression 

Unadjusted Model Adjusted Model* 

OR 95% CI aOR 95% CI 

Site of occlusion 

ICA 1 (Reference) 1 (Reference) 

Proximal M1 0.45 0.13—1.43 0.33 0.09—1.20 

Distal M1 0.43† 0.15—1.25 0.32 0.10—1.02† 

M2 0.42 0.08—2.00 0.38 0.07—1.98 

Other‡ 0.00 NA 0.00 NA 

CBS 0.95 0.79—1.13† 0.92 0.76—1.12† 

DT 098 0.91—1.06 0.99 0.90—1.08 

Length 1.03 0.98—1.09 1.04 0.98—1.10 

Perviousness 1.13 0.92—1.39 1.16 0.94—1.43 

Absolute 
attenuation 1.01 0.99—1.03 1.01 0.99—1.03 

Relative 
attenuation 0.91 0.21—4.04 0.84 0.16—4.25 

aOR indicates adjusted odds ratio; B, regression coefficient B; CBS, clot burden score; 
distal M1, distal M1 segment of middle cerebral artery; DT, distance from the internal carotid 
artery terminus to the thrombus; EVT, endovascular treatment; ICA, internal carotid artery; 
M2, M2 segment of middle cerebral artery; proximal M1, proximal M1 segment of middle 
cerebral artery; OR, odds ratio; and sICH, symptomatic intracerebral hemorrhage.  

*Adjusted for: age; pre-stroke mRS; intravenous thrombolysis; time from onset to groin 
puncture; use of anticoagulants and antiplatelet agents; previous history of stroke, atrial 
fibrillation, hypertension, diabetes mellitus, and myocardial infarction.  

†P value <0.05. 

‡M3 segment of middle cerebral artery or anterior cerebral artery. 

functional 

Discussion 

In the MR CLEAN Registry, thrombus imaging characteristics are associated 

with outcomes after EVT. A lower thrombus burden (i.e. distal occlusion, shorter 

thrombus length, and higher CBS value) was associated with better functional 

outcome and faster endovascular procedure. A more pervious thrombus was also 
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associated with favorable functional outcome. Only site of thrombus occlusion was 

significantly associated with reperfusion, in which a distal thrombus had a higher 

chance of successful reperfusion. We also demonstrated that a shorter thrombus is 

more likely to have a distal location, higher CBS, increased perviousness, and 

lower attenuation. 

Associations of thrombus imaging characteristics with functional outcome and 

recanalization are well-described in patients treated with IVT, in whom failed 

recanalization and worse functional outcome were associated with low CBS, 

proximal thrombus location, longer thrombus length, and lower perviousness 

[3],[6],[8],[9]. However, conflicting data about thrombus imaging characteristics and 

outcomes are observed in EVT. In accordance with our study, thrombi with a more 

distal location, shorter length, and higher CBS have been reported to be 

associated with improved functional outcome in patients who underwent EVT 

[6],[18–20]. Conversely, some studies reported no association between functional 

outcome and thrombus length after EVT, however, they included only MCA thrombi 

[21],[22]. In accordance with our study, longer endovascular procedural time has 

been associated with longer thrombus length [18]. The associations of thrombus 

characteristics with functional outcome and duration of EVT could be related to 2 

possible mechanisms: (1) As demonstrated in our study, longer thrombi had a 

lower CBS and a more proximal location, and by virtue of their larger thrombus 

volume may simply be more difficult to retrieve, requiring more attempts and 

prolonging the procedural time, as shown previously [18],[23] and (2) ICA and 

proximal M1 occlusions may result in decreased collateral flow via the anterior 

cerebral artery pial vessels [14],[15] or lead to greater stroke volume because of 

the involvement of the lenticulostriate vessels, consequently leading to a higher 

NIHHS score and poor functional outcome [16],[24]. 

Conflicting data about the association of thrombus attenuation and 

perviousness with outcomes have been reported. Some studies have reported that 

successful reperfusion after EVT is more likely in hyperdense thrombi.[25],[26] 

However, other reports, as well as the 2 largest published cohorts of thrombus 

attenuation assessments, are in line with our findings, showing that thrombus 
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attenuation was not associated with reperfusion,[6],[21],[27],[28] functional 

outcome, duration of EVT and sICH.[21] Different results about thrombus 

attenuation assessment might be because of variability in hematocrit levels, vessel 

calcification, and time of CT scan acquisition.[29] Further studies need to be 

performed before concluding that thrombus density is a not predictor of successful 

reperfusion and to evaluate the utility of this parameter in thrombectomy planning. 

Thrombus perviousness has been associated with successful recanalization 

and improved functional outcome after IVT.[3],[5],[19] We observed an association 

between improved functional outcome and more pervious thrombi, yet no 

significant association was observed between thrombus perviousness and 

reperfusion after EVT. Likewise, despite a trend towards an increased chance of 

successful reperfusion with a more distal thrombus location, we observed no 

significant association between reperfusion and thrombus located in M2 or more 

distal segment. The absence of a significant effect of both thrombus perviousness 

and thrombus located in M2 or more distal segment on reperfusion may share an 

explanation since pervious thrombus, and more distal thrombus location was 

reported to be associated with one another [3], as demonstrated in our study. 

Thrombi located in the M2 or M3 segments, and therefore, more pervious thrombi, 

are technically more difficult to reach during EVT because of their distal location 

and the smaller diameter of these MCA segments.[30],[31] Moreover, the use of 

IVT before EVT might increase the chance of thrombus fragility and thrombus 

migration especially in more pervious thrombi, leading to a higher frequency of clot 

inaccessibility by EVT, or thrombus fragmentation and thereby decreased eTICI 

scores.[32] Conversely, some studies have reported that IVT softens thrombi and 

thereby facilitates EVT.[33] Given that more pervious thrombi may be more 

sensitive to IVT, this effect may increase the chance of reperfusion after EVT.[19] 

All these together might provide an explanation for the neutral effect of thrombus 

perviousness or distal location on reperfusion after EVT. However, further research 

is needed on this topic. 

Our study has limitations. Many patients were excluded because of the absence 

of thin-section NCCT or CTA, pro- longed time between the scanned NCCT and 
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CTA (>30 minutes), poorly co-registered scans and poor image quality. This might 

be explained by the fact the MRCLEAN Registry is a multicenter study, and not all 

centers saved or performed thin-slice NCCT/CTA, especially primary stroke 

centers. However, despite excluding a considerable number of patients, our study 

population is the largest sample to date about thrombus imaging characteristics in 

AIS treated by EVT, and it was a reliable sample of the entire MR CLEAN Registry, 

demonstrating similar baseline characteristics. An additional limitation is the use of 

CTA to assess CBS and thrombus length, which may be influenced by the 

backflow of a poor collateral circulation. However, overestimated CBS and length 

may strengthen the prognostic value of these thrombus characteristics because 

poor collaterals are known to be associated with poor outcomes.[4],[18] For a more 

reliable measurement, dynamic CTA imaging might be a valuable alternative. 

Furthermore, accurate measurements of thrombus length are limited in curved or 

branched arteries. Although thrombus volume has been described to be a more 

accurate measure for thrombus burden, irrespective of angioarchitecture and col- 

laterals, we think thrombus length and CBS are reasonable quantitative parameters 

for thrombus burden, and they might be more feasible in clinical practice in terms of 

rapidity and ease of use.[18],[22] Differences in operator techniques, 

thrombectomy devices,[10] imaging parameters across institutions, may have led 

to distinct clot-retriever interactions and might have interfered with thrombus 

imaging assessments. However, this aspect of the study makes it more 

generalizable to real-world clinical practice. In our population, stent-retriever was 

by far the most performed modality, which may be a bias in the statistical analyses 

because of the unbalanced variation of EVT modalities. Our study does not 

account for operator differences. Further studies need to be done analyzing this 

operator and device variables. Finally, our data were gathered in routine clinical 

practice. Registries, in general, are prone to missing and incorrect values. 

However, all data were verified by our study coordinators and missing values were 

imputed. 
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Conclusion 

Imaging characteristics related to thrombus burden are associated with 

functional outcome and duration of endovascular procedure after thrombectomy for 

AIS. Distal site of occlusion, shorter thrombi, and higher CBS is associated with 

better functional outcome and faster endovascular procedure. Site of occlusion is 

strongly associated with reperfusion status, and pervious thrombus is associated 

with favorable functional outcome. 
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Abstract 

Background  Thrombus perviousness estimates residual flow along a 

thrombus in acute ischemic stroke, based on radiological images, and may 

influence the benefit of endovascular treatment for acute ischemic stroke. We 

aimed to investigate potential endovascular treatment (EVT) effect modification by 

thrombus perviousness. 

Methods  We included 443 patients with thin slice imaging available, out of 

1766 patients from the pooled HERMES (Highly Effective Reperfusion Evaluated in 

Multiple Endovascular Stroke trials) data set of 7 randomized trials on EVT in the 

early window (most within 8 hours). Control arm patients (n=233) received 

intravenous alteplase if eligible (212/233; 91%). Intervention arm patients (n=210) 

received additional EVT (prior alteplase in 178/210; 85%). Perviousness was 

quantified by thrombus attenuation increase on admission computed tomography 

angiography compared with non-contrast computed tomography. Multivariable 

regression analyses were performed including multiplicative interaction terms 

between thrombus attenuation increase and treatment allocation. In case of 

significant interaction, subgroup analyses by treatment arm were performed. Our 

primary outcome was 90-day functional outcome (modified Rankin Scale score), 

resulting in an adjusted common odds ratio for a one-step shift towards improved 

outcome. Secondary outcomes were mortality, successful reperfusion (extended 

Thrombolysis in Cerebral Infarction score, 2B–3), and follow-up infarct volume (in 

mL). 

Results  Increased perviousness was associated with improved functional 

outcome. After adding a multiplicative term of thrombus attenuation increase and 

treatment allocation, model fit improved significantly (P=0.03), indicating interaction 

between perviousness and EVT benefit. Control arm patients showed significantly 

better outcomes with increased perviousness (adjusted common odds ratio, 1.2 

[95% CI, 1.1–1.3]). In the EVT arm, no significant association was found (adjusted 

common odds ratio, 1.0 [95% CI, 0.9–1.1]), and perviousness was not significantly 

associated with successful reperfusion. Follow-up infarct volume (12% [95% CI, 

7.0–17] per 5 Hounsfield units) and chance of mortality (adjusted odds ratio, 0.83 
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[95% CI, 0.70–0.97]) decreased with higher thrombus attenuation increase in the 

overall population, without significant treatment interaction. 

Conclusion  Our study suggests that the benefit of best medical care 

including alteplase, compared with additional EVT, increases in patients with more 

pervious thrombi 

Introduction 

In acute ischemic stroke, thrombi are often assumed to completely occlude 

vessels, blocking all flow like a cork on a bottle of wine. However, some thrombi 

are permeable, allowing for residual flow into and through them.[1–3] Thrombus 

perviousness estimates residual flow through thrombi based on routine non-

contrast CT (NCCT) and single-phase CT angiography (CTA).[4],[5] Perviousness 

was associated with improved outcomes and recanalization rates after intravenous 

alteplase. [4] For endovascular treatment (EVT) however, reported effects of 

perviousness vary considerably.[6],[7] 

The current standard treatment of acute ischemic stroke due to anterior 

circulation large vessel occlusions consists of alteplase if patients are eligible, 

followed by EVT.[8],[9] Although EVT has greatly improved outcomes, even after 

EVT more than half of the patients remain permanently disabled or die after their 

stroke.[9] The added benefit of intravenous alteplase is investigated in several 

recently completed and ongoing randomized trials.[10] Alteplase benefit may vary 

case-by-case: large proximal occlusions are known to show little benefit,[11] while 

10% of EVT-eligible patients recanalize with alteplase before initiation of EVT.[12] 

Selecting the treatment with the highest chance of benefit (alteplase, EVT, neither, 

or both) is, therefore, expedient and could enable a more targeted and effective 

use of treatment modalities. 

Currently, no radiological thrombus characteristics other than occlusion location 

are used in acute ischemic stroke decision-making.[8] The possible association of 

thrombus perviousness with alteplase treatment success, either alone or combined 

with EVT, could play a role in improving stroke treatment selection.[4],[5] To assess 

the role of perviousness, a large data set is needed, enabling separate analysis of 
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treatment approaches. We aimed to investigate the effect of thrombus 

perviousness on EVT results in the HERMES trial (Highly Effective Reperfusion 

Evaluated in Multiple Endovascular Stroke) pooled data set of 7 large randomized 

trials on EVT for stroke.[9],[13–19] 

Methods 

Patients 

The HERMES collaboration pooled individual patient data from 7 randomized 

controlled trials on EVT in acute ischemic stroke of the anterior circulation, [9],[13–

19] totaling 1766 patients included between December 2010 and December 2014. 

Inclusion criteria of the individual trials were reported previously.[13–19] Pooling 

protocol, study selection, risk of bias, individual patient data acquisition, and data 

checks are described in the original pooling report.[9] Control arm patients received 

best medical care, including alteplase if eligible. The intervention arm consisted of 

additional EVT.  

Patients were included in the current study if thin-slice ( 2.5 mm) NCCT and CT 

angiography (CTA) images were available (n=690). We excluded patients if NCCT 

and CTA images were on different scanners (n=11), or >30 minutes apart (n=40). 

We excluded patients with scans that did not cover the intracranial area of interest 

(n=33), were of insufficient quality (n=93; beam hardening: n=50, movement 

artifacts: n=32, contrast present on NCCT: n=6, scatter artifacts: n=4, and venous 

phase CTA: n=1), or with incorrigible registration errors (n=76). Thrombi located 

too close to bone (n=6), partial occlusions (n=4), narrow and distal thrombi (n=3), 

and bilateral middle cerebral artery thrombi (n=1) were excluded. The remaining 

443 patients were included in the final analysis (Figure 5.1). The HERMES data 

used for this study are available via the VISTA-Endovascular repository. We 

followed the PRISMA-IPD guideline for study execution and reporting (Methods in 

the Data Supplement). 
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Thrombus perviousness Measurements 

NCCT and CTA images were co-registered using rigid registration with 

Elastix.[20] Thrombus perviousness was quantified by measuring thrombus 

attenuation increase (TAI) between NCCT and CTA images as described 

previously.[4] For image selection and ROI placement, open-source software ITK- 

SNAP was used.[21] 

 

Figure 5.1: Patient inclusion flowchart. Other includes too close to bone (n=6), only atrial 

occlusion (n=4), too narrow thrombus (n=3), bilateral middle cerebral artery thrombus (n=1), 

CTA indicates computed tomographic angiography; HERMES, Highly Effective Reperfusion 

Evaluated in Multiple endovascular Stroke and NCCT, non-contrast computed tomography 

Thrombus attenuation was measured manually by placing 3 spherical ROIs with 

a radius of one millimeter in the proximal, middle, and distal parts of the thrombus 

(Figure 5.2). The average density (  in Hounsfield units [HU]) of all ROIs was 

calculated for NCCT and CTA ( NCCT and CTA). TAI was calculated according 

to: TAI= CTA− NCCT.[5] 

Measurements were performed by one of 3 trained raters (Drs. Kappelhof, 

Dutra, and Alves).[22] Raters were blinded for occlusion location, clinical 

information, and measured attenuation values. Training was done with 25 cases 

from the MR CLEAN Registry.[23] Scan acquisition characteristics including NCCT 
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and CTA slice thickness difference (CTA slice thickness minus NCCT slice 

thickness), [24] scanner brand, and scanner kVp were recorded for all included 

patients. 

 

Figure 5.2: Three regions of interest (red) are placed in a left middle cerebral artery thrombus 

on non-contrast computed tomography (CT; A) and CT angiography (B). To calculate 

thrombus attenuation increase as a measure for perviousness, the density (in Hounsfield 

Units) in each region of interest is measured. Subsequently, the average non-contrast CT 

attenuation value is deducted from the average CT angiography value. 

Outcome measures 

Our primary outcome was functional outcome (ordinal modified Rankin Scale 

[mRS]) at 90 days. The mRS score ranges from 0 to 6, with 0 indicating complete 

functional independence, and 6 indicating death. Secondary outcome measures 

were dichotomized functional outcome (mRS score, 0–2 versus 3–6 indicating 

functional independence; mRS score, 5–6 versus 0–4 indicating poor outcome), 

mortality, successful reperfusion (extended Thrombolysis in Cerebral Infarction 

score grade, 2B–3) after EVT (intervention arm patients only), and follow-up infarct 

volume (FIV) in mL as measured on follow-up NCCT.[25] 

Statistical Analysis 

Statistical analyses were pre-specified in a statistical analysis plan (Methods in 

the Data Supplement). Baseline clinical, imaging, and follow-up variables were 
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compared with the overall HERMES population and between every quartile of TAI. 

One-way ANOVA was used to assess differences in normally distributed numerical 

variables, Kruskal-Wallis and Mann-Whitney U tests for non-normal numerical 

variables, and Fisher exact tests for categorical variables. 

TAI outliers (n=11) were identified with the outlier labeling rule with a multiplier 

of 2.2, marking them as outliers if their difference with the median was 2.2× the 

interquartile range (IQR).[26] For 10 patients (2%), one marker was adjusted due to 

erroneous placement outside the vessel or thrombus. All remaining outliers (n=4, 

1%) were attributable to short pervious thrombi, random noise, or slice thickness 

differences between NCCT and CTA, and were included in the final analysis. 

Univariable and multivariable ordinal logistic regression were used in the 

primary outcome variable analysis (mRS shift). Univariable and multivariable binary 

logistic regression was used for dichotomized outcome variables. Associations 

between TAI and FIV were tested with linear regression. Because FIV showed a 

right-skewed distribution, log-trans- formation was performed. Associations 

between TAI and outcomes are reported per 5 HU. 

Regression analyses were adjusted for age, baseline National Institutes of 

Health Stroke Scale score, intravenous alteplase, occlusion location, diabetes, 

stroke onset to randomization time, slice thickness difference between NCCT and 

CTA, and included random effects for allocated study and scanner brand. 

Unadjusted and adjusted (common) odds ratios (u[c]OR and a[c]OR) were reported 

with 95% CI. We added an interaction term between TAI and allocated treatment in 

separate, subsequent models. For successful reperfusion as outcome measure, an 

additional regression model included an interaction term between TAI and 

alteplase treatment. If treatment interaction was significant, subgroup analyses 

were performed. Exploratory subgroup analyses were performed using unadjusted 

and adjusted ordinal logistic regression for EVT effect per quartile of TAI, for the 

primary outcome only.  

Statistical analyses were performed with R version 3.5.2 (R Foundation for 

Statistical Computing, Vienna, Austria). The significance level was set at P<0.05. 
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Results 

Median age was 67 years (IQR, 59–76), median baseline National Institutes of 

Health Stroke Scale score was 18 (interquartile range, 14–21), and 53% of patients 

were male (Table 5.1). In comparison to the overall HERMES population, mRS 

scores, occurrence of sICH, and FIV were slightly higher. Intravenous alteplase 

was administered to 91% of the patients in the control arm and 85% of the patients 

in the intervention arm.  

TAI showed a slightly right-skewed distribution with a mean of 4.5 HU (SD, 

12.7) and median 3.2 HU (IQR, −4.3 to 11.4; Figure I in the Data Supplement). 

Baseline characteristics did not significantly differ between TAI quartiles (Table I in 

the Data Supplement). TAI values did not differ between patients with and without 

extracranial carotid tandem lesions (P=0.47). Scan acquisition details are 

discussed in Results in the Data Supplement. 

Primary Outcomes 

Ninety-day mRS was available for 438 of 443 patients. Higher TAI 

corresponded to lower mRS (P<0.01; Figure 5.3). There was significant interaction 

between TAI and allocated treatment (P for interaction, 0.03; Table 5.2). In the 

control arm, TAI was associated with improved outcomes (acOR, 1.22 [95% CI, 

1.11–1.33]). In the intervention arm, no significant effect was found (acOR, 0.99 

[95% CI, 0.88–1.11]). These results were consistent in an exploratory analysis of 

alteplase-treated patients (390/443, 88%; Table III in the Data Supplement). 

Analysis per TAI quartile showed a non-significant benefit of EVT in the highest 

quartile (Table IV in the Data Supplement). 
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Table 5.1: Baseline and follow-up Characteristics 

 Current study 

(n=443) 

HERMES total 

(n=1766) 

 

p 

Baseline clinical characteristics (data known in [n]) 

Age, median (IQR) 67 (59-76) [442] 68 (57-76) [1761] 0.26 

Sex (male), n(%) 236 (53) [442] 929 (53) [1762] 0.78 

Left hemisphere 
stroke, n(%) 

198 (51) [389] 652 (51) [1275] 0.95 

Baseline NIHSS, 
median (IQR) 

18 (14-21) [440] 17 (13-21) [1751] 0.13 

Treatment allocation, n(%) 

Intervention 210 (48) [442] 871 (49) [1764] 0.38 

Control 232 (53) [442] 893 (51) [1764] 0.38 

Intravenous alteplase, n(%) 

Intervention 179 (85) [210] 763 (88) [871] 0.23 

Control 211 (91) [232] 809 (91) [893] 0.90 

Onset to 
randomization time 

(min), median 
(IQR) 

189 (148-252) [441] 183 (140-245) [1756] 0.62 

Atrial fibrillation, 
n(%) 

117 (30) [390] 424 (33) [1286] 0.14 

Diabetes mellitus, 
n(5) 

74 (17) [442] 287 (16) [1756] 0.82 

Hypertension 238 (54) [442] 988 (56) [1757] 0.25 

Imaging (data known in [n]) 

Occlusion location 

ICA 92 (21) [443] 442 (27) [1648] 0.80 

M1 331 (75) [443] 1073 (65) [1648] 0.80 

M2 19 (4.3) [443] 131 (7.9) [1648] 0.80 

Other 1 (0.2) [443] 2 (0.1) [1648 0.80 

(Continued) 
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Table 5.1: Continued 

 Current study 

(n=443) 

HERMES total 

(n=1766) 

 

P 

Imaging (data known in [n]) 

Carotid tandem location, n(%) 

Intervention 18 (8.6) [210] 122 (7.4) [1648] 0.71 

Control 17 (7.2) [232] 122 (7.4) [1648] 0.71 

NCCT thrombus 
density (HU), 
median (IQR) 

55 (48-62) [443] NA  

Follow-up (data known in [n]) 

mRS at 90 days, n(%) 

0 27 (6) [438] 156 (9) [1743] 0.04* 

1 51 (12) [438] 244 (14) [1743]  

2 68 (16) [438] 282 (16) [1743]  

3 91 (21) [438] 274 (16) [1743]  

4 89 (20) [438] 356 (20) [1743]  

5 38 (9) [438] 150 (9) [1743]  

Mortality (mRS 6), 
n(%) 

74 (17) [440] 281 (16) [1754] 0.84 

Post-EVT eTICI 
score 2B-3, n(%) 

134 (74) [180] 548 (74) [745] 0.74 

sICH, n(%) 22 (5) [389] 63 (4) [1729] 0.01* 

Follow-up infarct 
volume (mL), 
median (IQR) 

51 (17-125) [425] 41 (14-120) [1665] 0.01* 

eTICI indicates extended Thrombolysis in Cerebral Infarction score; EVT, endovascular 
treatment; HERMES, Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke; 
HU, Hounsfield units; ICA, internal carotid artery; IQR, interquartile range; M1, segment 1 of 
medial cerebral artery; M2, segment 2 of medial cerebral artery; mRS, modified Rankin Scale; 
NA, not available; NCCT, non-contrast computed tomography; NIHSS, National Institutes of 
Health Stroke Scale; and sICH, symptomatic intracranial hemorrhage.  

*Statistical significance (P<0.05). 
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Figure 5.3: Thrombus attenuation increase (TAI) values varied per modified Rankin Scale 

(mRS) score (P>0.001) 

Secondary Outcomes 

Functional Independence 

In the control arm, patients with 90-day mRS score of 0 to 2 (n=59/231; 26%) 

had more pervious thrombi than patients with mRS score of 3 to 6 (median, 8.5 

[IQR, 1.1– 17.4]) versus 1.2 [IQR, −4.9 to 9.4], P 0.01, respectively). In the 

intervention arm, TAI values did not significantly differ between patients with mRS 

score of 0 to 2 and mRS score of 3 to 6 (Figure II in the Data Supplement).  

Interaction between TAI and allocated treatment was significant (P=0.046). 

Subgroup analysis showed a significant positive association between TAI and 

functional independence in the control arm, but not in the intervention arm (Table 

2). Figure 5.4 shows the adjusted probability of functional independence plotted 

against TAI, for intervention and control arm patients. Treatment effect of EVT in 

addition to best medical care (alteplase if eligible) decreases with higher TAI, 

although there is no point where the CIs are separated. Unadjusted results are 

presented in Figure III in the Data Supplement. 
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Table 5.2: aOR for the effect of TAI (per 5 HU) on outcomes 

Outcome measure aOR# (95% CI)* Interaction with 
EVT 

aOR# per arm (95% 
CI) 

Ordinal mRS  1.10 (1.03-1.18) † p=0.03† Control:  
1.22 (1.04-1.19)* 

Intervention:  
0.96 (0.85-1.08) 

mRS 0-2 1.15 (1.05-1.27) † p=0.05† Control:  
1.33 (1.14-1.56)* 

Intervention:  
1.04 (0.90-1.21) 

mRS 5-6 0.92 (0.83-1.02) p=0.03† Control:  
0.82 (0.70-0.95)* 

Intervention:  
1.07 (0.90-1.27) 

Mortality 0.85 (0.75-0.97) † p=0.58 NA 

Final infarct volume 
(effect ratio) 

0.91 (0.86-0.95) † p=0.11‡ Control: 
0.87 (0.82-0.93)* 

Intervention:  
0.97 (0.89-1.05) 

Intervention arm 
only: Successful 

reperfusion  

0.95 (0.79-1.14) Interaction with IV 
alteplase: p=0.47 

NA 

Unadjusted results shown in Table II in the Data Supplement. Control arm: intravenous 
alteplase if eligible (n=232), intervention arm: additional EVT (n=210). aOR indicates adjusted 
odds ratio; CTA, computed tomography angiography; EVT, endovascular treatment; HU, 
Hounsfield units; mRS, modified Rankin Scale; NA, not applicable/available; NCCT, non-
contrast computed tomography; and TAI, thrombus attenuation increase.  

*Adjusted for age (y), baseline NIHSS, alteplase, occlusion location, diabetes, stroke onset to 
randomization time, NCCT-CTA slice thickness difference; and including random effects for 
study and scanner brand.  

†Statistical significance (P<0.05). 

‡Exploratory analysis in model with non-significant treatment interaction 

mRS score of 5 to 6 and Mortality 

Higher TAI was associated with a lower chance of poor outcome in the control 

arm (P for interaction 0.03; Table 5.2). Greater TAI also corresponded to a smaller 

chance of mortality in the overall population (aOR, 0.85 [95% CI, 0.75–0.97]), but 

treatment interaction was not significant (P=0.58). 
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Figure 5.4: Probability of functional independence (90-d modified Rankin Scale [mRS] score, 

0-2) vs thrombus attenuation increase (TAI) 

 

Results are adjusted for pre-specified variables: age, baseline National Institutes of Health 

Stroke Scale, alteplase, occlusion location, diabetes, stroke onset to randomization time, and 

non-contrast computed tomography-computed tomography angiography slice thickness 

difference. Control arm: best medical care (intravenous alteplase if eligible; n=232). 

Intervention arm: endovascular treatment in addition to best medical care (n=210). 

Successful Endovascular Reperfusion 

eTICI scores were available for 180/210 intervention arm patients (86%). 

Successful reperfusion was reached in 134/180 cases (74%). We found no 

significant effect of TAI on reperfusion (Table 5.2). Interaction between TAI and 

alteplase was not significant for successful reperfusion (P=0.47)—although only 31 

patients (15%) in the intervention arm did not receive intravenous alteplase. Post- 

EVT eTICI scores were known in 26 of them (12% of all intervention arm patients). 
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Follow-up Infarct Volume 

A 5 HU increase in TAI was associated with a 9% decrease in FIV (95% CI, 

14%–5%). Interaction between TAI and treatment arm was not significant (P=0.11; 

Table 5.2; Figure IV in the Data Supplement). 

Discussion 

The benefit of EVT as an addition to alteplase diminishes in patients with more 

pervious thrombi, due to improved outcomes with increasing perviousness in 

patients receiving alteplase alone. Increased thrombus perviousness was 

associated with improved functional outcome in HERMES control arm patients, 

who, in a high proportion, were treated with intravenous alteplase. No significant 

effect of perviousness on functional outcome was found in patients included in the 

intervention arm, who received EVT in addition to best medical care. Results of 

associations with secondary outcomes were similar. No value for perviousness was 

observed where better outcomes were associated with withholding EVT, though 

the association with functional outcome was more pronounced in the higher 

perviousness quartiles.  

Our findings generally agree with previous studies showing increased 

recanalization rates and improved outcomes in patients with more pervious thrombi 

after intravenous alteplase treatment.[4],[5],[7],[27–29] These studies, however, 

compared intravenous alteplase to conservative treatment only [4] or found no 

interaction with EVT, possibly due to lower patient numbers.[5] Improved target 

vessel recanalization for pervious thrombi seems to lead to improved outcomes 

after intravenous alteplase, [28] on average leaving less opportunity for EVT to give 

additional benefit. On the association between perviousness and EVT, results vary: 

in contrast to our results, a recent study in EVT-treated patients reported a 

significantly positive association between perviousness and functional outcome in 

the adjusted analyses.[7] Perviousness was reported to be associated with higher 

chances of first-pass success of aspiration thrombectomy.[30] 

Previous studies have dichotomized TAI, to classify thrombi into pervious and 

non-pervious.[4],[5] The optimal cut-off value varied between studies and data sets. 



5

 96 

 

 

  Thrombus perviousness and outcome in the HERMES collaboration 

However, these values were subsequently used by other study groups without 

testing validity in their data.[31] Therefore, and since dichotomization was not 

necessary for our research question, we did not dichotomize TAI. Following this 

reasoning, the TAI values in the per-quartile analysis should be interpreted with 

care. Though interesting, the subgroup analysis is not meaningfully powered with 

110 patients per group: TAI cutoff values may not be applicable to other data sets. 

The observed effect of perviousness may be partly explained by thrombus 

histopathology. A study on thrombi retrieved during EVT showed a positive 

correlation between perviousness and fibrin/platelet fractions.[31] However, 

conflicting results exist: a recent study reported opposite results.[32] RBC-rich 

thrombi were found to be more responsive to thrombolytic therapy.[33] In relation to 

EVT, fibrin-rich thrombi were associated with longer intervention times and a higher 

chance of secondary embolisms.[34] Thrombus perviousness may also be 

associated with stroke cause, though published results on this topic are 

inconsistent.[35],[36]  

Interestingly, we observed some negative values for TAI. Slice thickness 

differences between NCCT and CTA could affect density measurements due to 

partial volume effect.[24] Minor co-registration errors could minimally offset marker 

placement in NCCT or CTA. Random (Gaussian) noise could affect HU values on 

either NCCT or CTA. These factors unlikely affect TAI measurement validity: 

random noise and small co-registration flaws are likely random, we adjusted for 

slice thickness differences, and our results are reproducible in studies using the 

same methods.[4],[7] An effect of differences in scanner voltage on HU values was 

not supported by our data. 

Limitations 

We excluded patients due to unavailable thin-slice imaging. Alternative methods 

like the qualitative assessment of residual flow is possible using thick-slice NCCT, 

but less precise.[24] Almost all centers acquire thin-slice imaging initially but do not 

store such images: perviousness could be measured for many more patients if thin-

slice imaging is preserved, and a practical, fast, (automatic) measurement method 

is available. 
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In our sample, we had no information on alteplase administration before scan 

acquisition. In patients receiving thrombolysis before transfer to an EVT-performing 

center, alteplase may have been started before scan acquisition, already exposing 

some thrombi to alteplase. The effects of alteplase administration on thrombus 

perviousness are currently unknown. Patients may have recanalized and recovered 

after alteplase and before randomization, leading to a possible inclusion bias, 

though start of EVT was not delayed by waiting for the effect of alteplase (except 

for REVASCAT, n=206/1766).[17] These patients may have had more pervious 

thrombi; thereby the current study may under-represent patients with very pervious 

thrombi and underestimate the effect of perviousness. Likewise, we did not know 

the time from alteplase administration to CTA acquisition. Thrombus perviousness 

might increase if alteplase has had more time to act on the thrombus.  

Our data consisted of pooled data from multiple trials. We cannot exclude an 

uneven distribution of the number of included patients per trial. However, since part 

of the imaging was requested from trials individually, and scanning protocols were 

heterogeneous, we are reasonably sure that patients from each trial were included. 

In addition, we included a random effect for allocated study in all adjusted 

regression analyses.  

Technical aspects of image acquisition can influence TAI measurements. Slice 

thickness of the images we used varied from 0.6 to 2.5 mm. Thicker slices give a 

lower measured density on NCCT due to volume averaging with surrounding brain 

tissue.[24] In addition, CTA scan timing can influence TAI, by slightly differing 

scanning phase. Dynamic or multiphase CTA incorporates the time dimension by 

making CTA scans at multiple time points after contrast injection, which can avoid 

the issue of scanning too early after contrast bolus.[37] 

Difficult delineation of thrombi can hamper measurements. The distal thrombus 

border is hard to discern in case of poor collaterals on CTA and an isodense 

thrombus on NCCT. However, this occurred only in nine patients in our data set. 

Measurement in dynamic CTA may show the distal thrombus border more 

accurately in patients with poor collateral flow.[37]  
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Finally, it is important to note that although we found significant treatment 

interaction and decreasing additional benefit of EVT with increasing perviousness, 

we did not find a TAI value where control arm patients did significantly better than 

intervention arm patients. Thus, our results do not provide definitive evidence to 

withhold treatment based on a certain value of perviousness.  

Further research could focus on combinations of thrombus characteristics, like 

perviousness, length, and location, in relation to alteplase and EVT response. 

Small-volume, short, pervious, distal M2-thrombi may benefit from alteplase, 

whereas proximal, large-volume, long, impervious ICA terminus occlusions may 

not. Larger thrombi may respond better to intravenous tenecteplase.[38] 

Additionally, the effect of perviousness on outcomes of combined alteplase and 

EVT versus direct EVT only, or on EVT device outcomes could be studied further. 

In the future, thrombus perviousness may support patient selection for alteplase 

alone, combined alteplase and EVT, or EVT alone, and support endovascular 

treatment modality choice. 

Conclusions 

In patients treated in the control arm of HERMES, of whom most were treated 

with alteplase, increased thrombus perviousness was associated with improved 

functional outcome, decreased mortality, and reduced infarct volume. We found no 

significant association among patients allocated to the EVT-arm. The benefit of 

EVT as an addition to best medical care including alteplase diminishes in patients 

with more pervious thrombi, due to improved outcomes with increasing 

perviousness in patients receiving alteplase alone—though no value for 

perviousness was observed where withholding EVT was associated with better 

outcomes. 
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Abstract 

Background  The aim of this study was to develop a convolutional neural 

network (CNN) that automatically detects and segments intra arterial thrombi on 

baseline non contrast computed tomography (NCCT) scans. 

Methods  We retrospectively collected computed tomography (CT) scans of 

patients with an anterior circulation large vessel occlusion (LVO) from the Multicenter 

Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in 

the Netherlands trial, both for training (n = 86) and validation (n = 43). For testing, 

we included patients with (n = 58) and without (n = 45) an LVO from our 

comprehensive stroke center. Ground truth was established by consensus between 

two experts using both CT angiography and NCCT. We evaluated the CNN for 

correct identification of a thrombus, its location and thrombus segmentation and 

compared these with the results of a neurologist in training and expert 

neuroradiologist. 

Results  Sensitivity of the CNN thrombus detection was 0.86, vs. 0.95 and 0.79 

for the neuroradiologists. Specificity was 0.65 for the network vs. 0.58 and 0.82 for 

the neuroradiologists. The CNN correctly identified the location of the thrombus in 

79% of the cases, compared to 81% and 77% for the neuroradiologists. 

Conclusion  The sensitivity and specificity for thrombus identification and the 

rate for correct thrombus location assessment by the CNN were similar to those of 

expert neuroradiologists. 

Introduction 

The outcome of patients with an acute ischemic stroke (AIS) caused by a large 

vessel occlusion (LVO) of the anterior circulation has been significantly improved 

since the introduction of endovascular treatment (EVT) [1],[2]. However, the 

number of patients that reach a favorable functional outcome after treatment is still 

low [2]. Reducing the time to treatment is currently the main goal in optimizing the 

treatment of AIS [3-5]. 
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Fast recognition of the occluding thrombus is key in diagnosis and treatment 

selection. Patients with symptoms of AIS are most commonly brought to the 

nearest primary stroke center [6],[7]. In most hospitals, computed tomography (CT) 

is the modality of choice for AIS diagnosis because of its speed and broad 

availability at emergency rooms [8]. A non contrast CT (NCCT) is initially acquired 

to exclude hemorrhagic stroke. An intra arterial thrombus might already be 

recognized on NCCT by a hyperdense artery sign (HAS) [9-11]. An additional CT 

angiography (CTA) is normally used to determine the location of the occlusion and 

to evaluate the accessibility to the thrombus with EVT. If the stroke is caused by an 

LVO, patients might need to be transferred to a comprehensive stroke center to 

receive EVT. Consequently, if an LVO is missed by the radiologist, a patient might 

be withheld from EVT and not receive appropriate treatment.  

Furthermore, a delay in diagnosis and assessment of treatment eligibility 

reduces the chance of favorable outcome [12-14]. In many primary stroke centers, 

radiologists are less familiar with the detection of thrombus. Moreover, specialized 

neuroradiologists are often limitedly available during non office hours. The 

automated detection and segmentation of thrombus on baseline NCCT images has 

the potential to reduce time to treatment and improve appropriate treatment 

selection. 

Convolutional neural networks (CNN) have shown high potential for the 

automated analysis of medical images. They have been applied with high 

performance for multiple segmentation tasks, including brain lesion and vessel 

segmentation [15-18]. The aim of this study was to assess the accuracy of a CNN 

for (1) identification of intra arterial thrombus in NCCT of the brain, (2) thrombus 

location assessment, and (3) thrombus segmentation on baseline NCCT images. 

Materials and Methods 

Patient Selection and Data Sets 

For training and validation of the CNN we used baseline NCCT from the 

Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute 
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Ischemic Stroke in the Netherlands (MR CLEAN) trial. MR CLEAN included 

patients from the Dutch stroke treatment centers with an LVO in the anterior 

circulation confirmed by CTA [19]. The training and validation set consisted of 86 

and 43 NCCT images of stroke patients, respectively. The training and validation 

set were randomly selected and separated, such that the optimization of the 

hyperparameters was not influenced by the validation set and the accuracy 

assessment was performed solely on unseen data. We used the validation set to 

evaluate network performance during the optimization process.  

The accuracy of the trained CNNs was assessed using a test set, which 

consisted of 58 NCCT scans with a proven LVO and 45 NCCT scans from patients 

with stroke mimics. For testing, we included patients with AIS or stroke mimics from 

our comprehensive stroke center. The imaging protocol of our test data was similar 

to the imaging protocol of the MR CLEAN trial [19]. The study was conducted in 

accordance with the Declaration of Helsinki. The medical ethical committee of each 

participating center approved the MR CLEAN trial (MEC 2010 041) and written 

informed consent was obtained for each participant. For the additional test set, the 

center’s medical ethical committee approved the use of the anonymized datasets in 

this study and informed consent was waived (W19_255 # 19.307).  

We only included scans with a slice thickness less than 2.5 mm and with a 

maximum time difference between NCCT and CTA of 30 min. We excluded scans 

with artifacts, excessive noise, and poor contrast enhancement. We also excluded 

scans of stroke patients with migration of the thrombus between NCCT and CTA 

acquisition. 

Pre-processing 

All scans were registered to an atlas so that the NCCT and CTA for each 

patient were aligned and the voxel dimensions were equal for all scans. The 

registration ensured that the midplane of the brain coincided with the y z plane 

halfway the x direction. As a result, the hemispheres were symmetrically oriented. 

For the registration we used ELASTIX ® software [20].  
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For each patient, we obtained a brain mask using a region growing approach: 

First, we considered all voxels with intensity value above 160 Hounsfield units (HU) 

as skull. We filled all foramina within the skull by a morphological dilatation with a 7 

mm radius. A seed with a 7 mm radius was placed at the center of gravity of the 

segmented skull to segment the brain with region growing. The region expanded 

until the border of the skull was reached. To assure that calcified arteries were 

included in the mask, we performed an additional closing operation that filled all 

holes that existed after the region growing step. For the brain mask, all 

segmentations within slices below the foramen magnum were excluded. The 

location of the foramen magnum was considered the first slice with a brain 

segmentation area below 900 mm2 below the slice with the largest segmented 

brain area. 

CNN design 

The thrombus detection was based on two observations: (1) the asymmetry 

between the hemispheres and (2) the HAS of the thrombus on NCCT images. 

Therefore, we developed two CNNs: an asymmetry detection network and a HAS 

detection network. Both networks were patch based. The asymmetry detection 

network consisted of two parallel convolutional pathways, one for each 

hemisphere. The output of both pathways was combined and fed to the fully 

connected layers. The HAS network consisted of a single convolutional pathway. 

Patch size was 24×24×24 voxels, corresponding to 12×12×12 mm.  

Both networks had a design similar to AlexNet [21] and consisted of five 3D 

convolutional layers with a 5 × 5 × 5 dimension followed by a Rectified Linear Unit 

(ReLU) layer (see Figure 6.1). Within the first three layers, we decreased the 

dimension of the feature maps and increased the number of feature maps by a 

factor two for each layer. Subsequently, we decreased the number of feature maps 

by half within each subsequent layer. To reduce the chance for overfitting, we 

added an additional dropout after the first fully connected layer. We used the 

default settings of the pytorch library, which is 0.5 for fully connected layers.  
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The fully connected part of both networks consisted of two fully connected 

layers followed by ReLU. The input of the fully connected part of the HAS detection 

network consisted of a single output from the convolutional layers. For the 

asymmetry detection network, we concatenated the output from the two parallel 

convolutional pathways before feeding it to the fully connected layers. We added 

an additional dropout after the first fully connected layer. The CNNs were trained 

and validated separately. During training, we alternated thrombus patches with 

non thrombus patches for input so that the number of thrombus and non thrombus 

was balanced. Because the thrombus is very small, we only required a small 

number of non thrombus patches to balance the data. As it is possible to extract an 

abundant number of non thrombus patches from a single scan, we did not need 

additional scans to extract negative patches. During the training process, the 

hyperparameters of the CNN were optimized for correctly discriminating thrombus 

patches from non thrombus patches. 

Ground truth 

Ground truth thrombus segmentations in the MR CLEAN data have been 

previously obtained in a study performed by Santos et al. [22]. The ground truth 

thrombus segmentations for the test set were established by joint reading of two 

experts with >5 years of experience. Because the thrombus location is more 

apparent for the human eye on CTA images, we used the combination of CTA with 

the NCCT images to determine the ground truth thrombus location. The thrombus 

segmentations were performed using ITK SNAP [23]. 
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Figure 6.1 Convolutional neural networks (CNN) architectures for the asymmetry and 

hyperdense artery sign (HAS) detection network. Both networks have similar architectures. 

The convolutional layers consist of 5 convolutional layers with max pool layers after the first 

two convolutions. The asymmetry detection network concatenates the output of the 

convolutional layer from left and right patch pair, before passing through the dense layers. 

Dimensions of the feature maps and convolutional kernels are shown at the borders. The 

number of filters is shown at the forward pass for each convolutional kernel. 

Classification pipeline 

To speed up processing, we performed the thrombus segmentation in two 

steps. For each scan, we first performed a coarse segmentation by feeding both 

networks with non overlapping patches. If both networks or only the HAS detection 

network classified a patch within the scan as “thrombus present”, we performed an 

additional voxel wise segmentation for that specific patch by the same networks. 

Therefore, the number of patches per scan to be processed by the networks was 

reduced. 
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Network evaluation 

We evaluated the CNN for the correct identification of a thrombus, thrombus 

location assessment and thrombus segmentations. An expert neuroradiologist with 

>15 years of experience (expert 1) and a neuroradiologist in training with >4 years 

of experience (expert 2) performed the same task on the same test set 

independently: the experts evaluated the scans for presence of a thrombus and 

performed manual segmentations of the thrombus if they assumed the presence of 

a thrombus in the scan. The neuroradiologists were blinded for any clinical 

information and were not aware of the ratio of non thrombus versus thrombus 

scans. We compared the results from the CNN with those of the experts. 

We assessed the sensitivity, specificity and precision for the detection of a 

thrombus within a NCCT scan. A thrombus was considered as “present” if at least 

one voxel within the NCCT scan was classified as “thrombus”. The thrombus 

location was considered correct if at least a single voxel of the segmentation 

overlapped with the ground truth segmentation. Sensitivity was defined as the ratio 

of thrombi correctly found “present” by the CNN or neuroradiologists and the total 

number of scans with truly present thrombi according to the ground truth. 

Specificity was defined as the ratio of thrombi correctly found “absent” by the CNN 

or neuroradiologists and the total number of scans with absent thrombi according 

to the ground truth. The accuracy of the thrombus location assessment was 

defined as the percentage of scans with correct thrombus location. To evaluate the 

thrombus segmentation of the CNN and both neuroradiologists we assessed the 

agreement of the thrombus volume and mean density by the computation of the 

two way intraclass correlation coefficient (ICC) agreement using the ‘irr’ library from 

R CRAN repository [24] for thrombus volume and mean density in HU. The ICC of 

the thrombus volume assessment was computed for all patients within the test set 

with a proven thrombus. If a thrombus was not correctly detected, we set the 

volume to zero. For the ICC of the mean thrombus density, we only included the 

thrombus density measurements for patients with a proven thrombus for which the 

CNN and both neuroradiologists correctly detected the thrombus. We additionally 
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created scatter and Bland–Altman plots to study the relation between the 

measurements made by network or neuroradiologists and the ground truth. 

Results 

The sensitivity of the CNN thrombus detection was 0.86, vs. 0.95 and 0.79 for 

neuroradiologist 1 and 2 respectively (Table 6.1). Specificity was 0.65 for the 

network vs. 0.58 and 0.82 for the neuroradiologists. Precision was 0.75, 0.74 and 

0.81 for the CNN, neuroradiologist 1 and neuroradiologist 2, respectively. The CNN 

correctly identified the location of the thrombus in 79% of the cases, compared to 

81% and 77% for the neuroradiologists. An example of the results is given in 

Figure 6.2. The agreement in thrombus volume was fair (ICC: 0.49) for the CNN, 

poor for neuroradiologist 1 (ICC: 0.37) and fair for neuroradiologist 2 (ICC: 0.55). 

For the thrombus density, the ICC was poor (ICC: 0.14) for the CNN and fair for 

neuroradiologist 1 and 2 (ICC: 0.45 and ICC: 0.40, respectively). The scatter and 

Bland–Altman plots for the segmented thrombus volumes and for the thrombus 

density are shown in Figures 6.3 and 6.4, respectively. The scatter plots show the 

relation of the thrombus volumes and densities that were computed from the  

 

 

Figure 6.2: An example of the segmentation results. (A) Original non contrast computed 

tomography (NCCT); (B) Segmentation made by one of the neuroradiologists; (C) 

Segmentation acquired by the CNN 
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thrombus segmentations by one of the neuroradiologists or CNN and those of the 

ground truth. The diagonal line within the scatter plots, represents the perfect 

match of the results between the neuroradiologists or CNN and ground truth. The 

Bland–Altman plots show the difference in measurements, comparing the results of 

the neuroradiologists or CNN with the ground truth. The mean and standard 

deviation of the differences are also shown within the plots, represented as bias 

and limits of agreements. The exact values of the bias and limits of agreements for 

thrombus volume and density, together with the other results are shown in Table 

6.1. 

 

Table 6.1. Test results from the CNN, neuroradiologist 1 and neuroradiologist 2. The table 
shows sensitivity, specificity, correct thrombus location assessment rate and the intraclass 
correlation coefficient (ICC) with bias and limits of agreements (LoA) for both thrombus volume 
and density. 

 CNN Neuroradiologist 1 Neuroradiologist 2 

Sensitivity 0.86 0.93 0.78 

Specificity 0.69 0.60 0.88 

Precision 0.75 0.74 0.82 

Correct thrombus 
location 0.79 0.81 0.77 

Thrombus volume 

ICC 0.49 0.37 0.55 

 
95% CI:  

0.27 to 0.66 

95% CI:  

0.42 to 0.75 

95% CI:  

0.29 to 0.72 

Bias (mm3) 73 -58.6 -91.5 

LoA (mm3) -447/593 -427/309 -453/269 

Thrombus density 

ICC 0.14 0.45 0.40 

 
95% CI:  

0.12 to 0.41 

95% CI:  

0.07 to 0.70 

95% CI:  

0.07 to 0.64 

Bias (mm3) -4.6 3.8 2.8 

LoA (mm3) -18/9 -7/14 -7/13 
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Figure 6.3: Scatter (Left) and Bland–Altman plots (Right) for thrombus volumes. The dotted 

line and dashed lines within the Bland–Altman plot represent the bias and limits of 

agreements, respectively 



117 

 

 

Chapter 6 

 

Figure 6.4: Scatter (Left) and Bland–Altman (Right) plots for thrombus density. The dotted 

line and dashed lines within the Bland–Altman plot represent the bias and limits of 

agreements, respectively 
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Discussion 

We have implemented and evaluated a CNN-based thrombus detection and 

segmentation approach on baseline NCCT image data. The accuracy was similar 

to expert neuroradiologists.  

Of the two neuroradiologists who evaluated the images, one had highest 

sensitivity for thrombus identification and thrombus location assessment, while the 

other had the highest specificity for thrombus detection. In all cases, the network 

scored second best. The network performed better on sensitivity than specificity, 

which means that the network is better at detecting true positives than true 

negatives. 

The thrombus volumetric agreement, represented by the ICC, of the 

segmentations of the network was similar to the agreement amongst the 

neuroradiologists. However, the agreement of the thrombus density as determined 

with the network was poor and less accurate than the density agreements of the 

neuroradiologists. This suggests that, even though the thrombus volume was 

similar, the thrombus was not segmented at the exact same location as the ground 

truth segmentation. Moreover, the Bland–Altman plots for the CNN show that the 

segmentation generated by the CNN generally caused an overestimation of the 

thrombus volume and underestimation of the thrombus density. The segmentations 

of both neuroradiologists generally underestimated the thrombus volume and 

overestimated the thrombus density. Overall, the results suggest that our network 

is less suitable for exact thrombus segmentation and should mainly be used for 

thrombus detection. 

The evaluation of correct thrombus segmentation is challenging because of 

class imbalance. A common segmentation evaluation is the DICE coefficient, which 

quantifies the overlap between ground truth and segmentation [25]. However, 

because the number of background voxels is substantially larger than the number 

of thrombus voxels the DICE score will be strongly penalized for false positives. 

Because thrombus volume and density have been associated with treatment 

outcome [26],[27], we have decided that these parameters were more appropriate 

evaluation parameters.  
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Before the presented CNN was established, we evaluated multiple CNN 

architectures. Hereby, we varied patch size, learning rate, batch size, dropout rate 

and inclusion of batch normalization. In the end, the presented CNN architecture 

performed best in discriminating thrombus from non-thrombus patches. 

There are a few studies that describe the detection of LVO. Murray et al. 

published an extensive systematic review in which they summarized the available 

tools for LVO detection [28]. However, most of these methods do not point out 

where the thrombus is located. Machine learning methods, such as random forest 

learning and support vector machines, are used to detect LVO based on the 

Alberta stroke program early CT score or the detection of diffusion-perfusion 

mismatch from CT perfusion images. The use of these so-called black-box LVO 

detection is suboptimal since radiologists have to search for the thrombus location 

themselves after the detection of the LVO. Moreover, previous approaches detect 

thrombi in CTA images only, whereas the availability of contrast-enhanced imaging 

is suboptimal in off-hours situations [29],[30].  

Lisowska et al. [31] presented a thrombus segmentation method with a similar 

approach. Their network performs thrombus detection based on asymmetry in 

NCCT images. Their network resulted in a high area under the receiver operating 

characteristic curve, but low precision-sensitivity area under the curve (AUC). 

Concretely, the network showed high performance for balanced data, but low 

performance in unbalanced data. This makes their network less suitable for the 

segmentation of entire scans. 

In addition to the approach presented by Lisowska et al. we combined 

asymmetry detection with HAS detection. Moreover, the presented architecture of 

our CNNs was based on AlexNet [21], which is a well-known and validated 

architecture for image recognition tasks. Because our results were obtained by the 

joined result of both CNN’s, we were not able to create an AUC similar to Lisowska 

et al. and directly compare the results. More specifically, since the two CNN’s each 

have their own threshold, these two thresholds would result in a 3D type of AUC. 

To compare our results, we computed the Youden’s J statistic for our results and 

made an estimation of this statistic from the AUC presented by Lisowska et al. 
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From this we were able to conclude that our network outperformed their network. 

More details on this comparison can be found within the Supplementary Materials 

(Analysis S1).  

The presented CNN has the potential to be used in clinical practice to support 

non-experts in thrombus detection on baseline NCCT. The detection of thrombus 

on NCCT has several benefits. First, it can speed up the clinical workup, as NCCT 

is always performed first. When the thrombus is clearly detected on NCCT, the 

patient can be immediately sent to a comprehensive stroke center and the 

intervention team can already be informed before CTA imaging is performed and 

analyzed. In addition, it could be beneficial for smaller community hospitals, which 

operate in less developed settings to detect LVOs, without the need for an 

additional CTA. 

The CNN could be incorporated within the current workflow. The application of 

our network requires registration and pre-processing steps as described in the 

methods section. With the appropriate hardware typical analysis time is less than 2 

min.  

Still, the presented results showed that in about 15% of patients the thrombus is 

missed and approximately 35% of the detected thrombi are actually false positives. 

Therefore, this network is not yet accurate enough to replace experts and should 

be considered a support tool. Moreover, in current practice, all patients with a 

clinical suspicion of an LVO, require a CTA. Before such a CNN could be 

integrated within daily clinical practice, its value should be assessed in a 

prospective study to determine if the use of the CNN advances correct thrombus 

detection, faster treatment and reduction in workload of expert neuroradiologists. 

The future availability of accurate thrombus volume segmentation may support 

the analysis of thrombus image characteristics in large image data sets present in 

randomized controlled trials. Thrombus density, perviousness and volume have 

previously been associated with functional outcome and recanalization 

[26],[27],[32]. Currently, thrombus image characteristics are analyzed using semi-

manual annotation, which is tedious, time-consuming and is prone to observer 

variability. This makes analysis of large number of images less feasible. In 
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contrast, automated segmentation allows for fast segmentation and thrombus 

biomarker extraction. 

Automated accurate thrombus volume segmentation may also support machine 

learning approaches for the extraction of histological information, based on 

thrombus image characteristics. For example, Liebeskind et al. [33] showed that 

thrombus density might characterize thrombi as blood-cell rich or fibrin-rich, 

indicating whether a thrombus would be susceptible to intravenous thrombolysis. In 

future work, the CNN could be fed with histological information in combination with 

the segmentation and location of the thrombus to train for thrombus histology 

information extraction from imaging data alone. 

This study suffers some limitations. First, the sample size of this study was 

limited. CNN networks require large number of samples to obtain a good accuracy. 

The more samples are included for training, the more generalizable the CNN will 

be, since it will be trained on a larger variation of thrombus cases. Since our main 

goal was to evaluate the accuracy of a tool for thrombus detection and the 

thrombus segmentations were merely evaluated for exploration for potential future 

work, we think that the current training dataset is sufficient enough for this proof of 

concept. We thereby kept track of the training and validation accuracy to prevent 

from overfitting. 

Second, the number of experts that were included to determine the accuracy of 

manual detection was low. To accurately assess the performance of manual 

detection for clinical practice, readings by more observers would be required.  

Third, the non-thrombus patches used within our training data were obtained 

from images of patients with an LVO. We made the assumption that the pixel 

values of patches with no thrombus pixels were comparable to patches that would 

be sampled from scans acquired from patients with stroke mimics. A limitation of 

this assumption is that we did not take any parenchymal and/or vascular changes 

into account that could have been caused by the occlusion. 

Finally, we only included patients with anterior circulation LVOs. Future 

research should extend the task to identifying posterior circulation LVOs and more 

distal occlusions. 
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Conclusions 

We have proposed a CNN for the detection and segmentation of thrombus in 

the anterior intra-arterial vasculature on NCCT in order to provide a tool for less 

experienced radiologists for the fast detection of AIS. The accuracy of thrombus 

detection is similar to expert neuroradiologists. Therefore, the presented CNN is a 

promising tool to be included in future clinical workflows. However, the sensitivity 

and specificity are currently too low to exclude CTA imaging in the workup of 

patients suspected with an LVO.  

Moreover, the results of the thrombus segmentations showed a low volumetric 

agreement, similar to expert neuroradiologists, and low thrombus density 

agreement with ground truth. Therefore, the presented network is less suitable for 

exact thrombus segmentation. 
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Abstract 

Background Infarct volume is a valuable outcome measure in treatment trials 

of acute ischemic stroke and is strongly associated with functional outcome. Its 

manual volumetric assessment is, however, too demanding to be implemented in 

clinical practice. The aim of this study is to assess the value of convolutional neural 

networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT 

images in a large population of patients with acute ischemic stroke. 

Methods We included CT images of 1026 patients from a large pooling of 

patients with acute ischemic stroke. A reference standard for the infarct 

segmentation was generated by manual delineation. We introduce three CNN 

models for the segmentation of subtle, intermediate, and severe hypodense lesions. 

The fully automated infarct segmentation was defined as the combination of the 

results of these three CNNs. The results of the three-CNNs approach were 

compared with the results from a single-CNN approach and with the reference 

standard segmentations. 

Results The median infarct volume was 48 mL (IQR 15–125 ml). Comparison 

between the volumes of the three-CNNs approach and manually delineated infarct 

volumes showed excellent agreement, with an intraclass correlation coefficient (ICC) 

of 0.88. Even better agreement was found for severe and intermediate hypodense 

infarcts, with ICCs of 0.98 and 0.93, respectively. Although the number of patients 

used for training in the single-CNN approach was much larger, the accuracy of the 

three-CNNs approach strongly outperformed the single-CNN approach, which had 

an ICC of 0.34. 

Conclusion Convolutional neural networks are valuable and accurate in the 

quantitative assessment of infarct volumes, for both subtle and severe hypodense 

infarcts in follow-up CT images. Our proposed three-CNNs approach strongly 

outperforms a more straightforward single-CNN approach. 
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Introduction 

Measuring the volume of infarcts on non-contrast computed tomography 

(NCCT) scans provides a quantitative assessment of infarcted brain tissue 

resulting from ischemic stroke. Follow- up infarct volume measured after 24 hours 

from onset [1] is a valuable predictor of functional outcome. Infarct volume has 

been suggested as a surrogate endpoint for classic patient outcome scales in 

multiple randomized controlled trials.[2] By combining infarct volume with infarct 

location, a more precise prediction of patient outcome can be achieved.[3] 

The reference standard for infarct segmentation is manual delineation by 

medical experts. However, manual delineation has several disadvantages as it is 

time-demanding, subjective, prone to errors, and costly.[4] Accordingly, manual 

delineation does not work well in large cohort studies.  

Convolutional neural networks (CNNs) have outperformed many existing image 

analysis methods for image classification and image segmentation. CNNs have 

produced good segmentation results in multiple medical imaging domains, 

including segmentation of ischemic stroke lesions in magnetic resonance images of 

the brain.[5–7] In this study, we evaluated the usefulness of CNNs for automatic 

segmentation of infarcted brain tissue in follow-up NCCT scans from patients with 

an acute ischemic stroke. 

Materials and Methods 

Image data 

We used anonymized image data from the HERMES collaboration.[8] This 

collaboration combined clinical and image data from seven clinical trials that 

investigated the efficacy of endovascular therapy in patients with acute ischemic 

stroke. Central medical ethics committees and research boards of each 

participating hospital approved each trial and the use of anonymized image data in 

this retrospective study. All patients, or their legal representatives, provided written 

informed consent. 
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We used image data only from patients with follow-up NCCT acquired between 

12 hours and 2 weeks after stroke onset and for whom a reference infarct 

segmentation was available. A total of 1026 patients had follow-up NCCT imaging 

acquired within the selected time window and with an available reference 

segmentation. Thin-slice image data were reconstructed into scans with 5 mm slice 

thickness. 

Reference segmentations 

The reference infarct segmentation on the follow-up NCCT scans was manually 

delineated by one of two experienced observers, as described by Boers et al.[9] In 

short, infarcts were identified as hypodense areas. Infarcted tissue in the ipsilateral 

hemisphere with characteristics of an old infarct were excluded from the reference 

segmentation. NCCT scans of patients who underwent decompressive 

hemicraniectomy were excluded. Parenchymal hemorrhages within or adjacent to 

the infarcted area were included in the reference segmentation. A standard window 

width of 30 Hounsfield units (HU) and center level of 35 HU were used to limit 

variation between observers. If multiple follow-up images were available, reference 

segmentation was performed in the latest acquired scan. The manual 

segmentations were checked by one of three expert radiologists and, when 

necessary, corrections were made. 

Preprocessing 

To exclude trivial voxels that were of no interest, such as air or skull, we used 

automatic methods for intracranial region and cerebrospinal fluid (CSF) 

segmentation. First, we excluded all voxels outside the brain using an intracranial 

region segmentation. Subsequently, we also discarded all voxels selected by the 

CSF segmentation. All discarded voxels were neither used to train the CNN nor 

used for accuracy testing of the CNN.  

The intracranial region segmentation uses the size range of the foramina of the 

skull, as reported by Berge et al. [10], and typical HU values of the skull. This 

segmentation was performed according to the following steps: 
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 A threshold-based segmentation was performed to segment bones. We 

considered everything with intensity >160 HU as bone. 

 A morphological dilatation with a 7 mm radius was used to close all 

foramina of the skull except the foramen magnum. 

 The center of gravity of the segmented bone was used as a seed for a 

region growing inside the skull. 

 A morphological dilatation with a 7 mm radius was applied to the region 

growing result to bring the segmented intracranial region close to the 

skull border. 

 The foramen magnum was detected by evaluation of the segmented 

area in each individual slice from top to bottom. The foramen magnum 

slice was determined as the first slice with a segmented area <900 mm² 

after the slice with the maximum segmented area. All voxels below the 

foramen magnum slice were excluded from the segmentation. 

The CSF segmentation was performed by selecting the voxels around the 

centroid of the segmented intracranial region as seeds for region growing. All 

voxels within a maximum distance of 15 mm from this centroid and with density 

values between −5 and 13 HU were used as seeds. The lower and upper 

thresholds of this region growing were also −5 and 13 HU. 

We used a previously presented method for automated intra-cranial 

hemorrhage segmentation [11] to exclude the parenchymal hemorrhages of the 

CNN- based infarct segmentation. These hemorrhage voxels were not used to train 

the CNN. However, for infarct volume accuracy testing, any area that was 

classified as hemorrhage was added to the infarct segmentation. 

CNN-based infarct segmentation 

The CNN architecture used in this study was developed in-house. Its 

hyperparameters were optimized for segmentation of a single foreground structure 

in head NCCT scans, which in this case was the infarcted brain tissue. Previously, 

the same CNN architecture was successfully used for intracranial hemorrhage 

segmentation.[11] This CNN architecture determines the probability of the voxel at 
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the center of an image patch being foreground (infarcted tissue) or background 

(any other tissue). This probability was subsequently dichotomized using a cut-off 

value, which was optimized with the data in the validation set.  

The CNN architecture has two convolutional layers followed by two fully 

connected dense layers. Each dense layer has 256 nodes. The size of the input 

patch was 19×19×3 voxels; 19×19 voxels in the axial plane and three slices high. 

Each slice of the input patch was processed as a different image channel. After 

each convolutional layer, there is a max-pooling layer with a 2×2 kernel and a 2×2 

stride. The first convolutional layer has 64 feature maps and the second has 128 

feature maps. Both convolutional layers have kernels with size 5×5. 

The hypodensity of the infarcted tissue in NCCT scans is related to breakdown 

of cells and its fluid content. As shown in Figure 7.1, the infarcted areas in the three 

NCCT scans have different HU values. In Figure 7.1, we also show the distribution 

of the average HU values of the infarct reference segmentations. In our population, 

the HU value distribution depicted three peaks, which we named subtle, 

intermediate, and severe hypodense infarcts. Because of this observation, we 

trained three CNNs. Each of these CNNs was trained to classify a different 

hypodensity distribution of infarcted brain tissue. We grouped all patients according 

to the hypodensity of the delineated infarct. We used the average HU value of the 

infarction for this grouping. The average infarct intensity was computed after 

excluding the hemorrhage voxels of the reference segmentation. The thresholds 

that define each infarction class were (14, 22) HU for severe, (22, 32) HU for 

intermediate, and (32, 44) HU for subtle.  

We used 570 randomly selected scans to train the three CNNs. We augmented 

the number of training infarct patches by flipping along the sagittal plane and by 

rotation. No data augmentation was applied to the non-infarct patches. We used an 

additional 60 scans to optimize the cut-off value for generating binary 

segmentations, 20 scans for each CNN. The union of the results of these three 

CNNs and the result of the intracranial hemorrhage segmentation was considered 

to be the automated generated infarct segmentation. The remaining 396 scans 

were used to test segmentation performance.  
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Figure 7.1: Histogram of average infarct intensities of the manually delineated infarcts. The 

left CT image at the top displays a relatively old infarct with a severe hypodensity; in the 

middle, an intermediate old infarct is shown; and the image on the right shows a relatively 

young infarct with a subtle hypodensity. 

For comparison, we also trained a single CNN architecture for the segmentation 

of all types of infarction. The same methodology and data were used for this single 

CNN approach and the three-CNNs approach. 

We used the Dice coefficient as an accuracy measure of the infarct 

segmentation performance in the test set. We calculated the intraclass correlation 

coefficients (ICCs) to compare the reference and the automatically generated 

infarct volumes. ICCs were interpreted according to the American Psychological 

Association al. [12] :<0.4 is poor; 0.4 to <0.6 is fair, 0.6 to <0.75 is good, and 

0.75 is excellent. We opted not to compare our approach with U-Net or Mask R-

CNN architectures. Both these architectures are more extensive than the proposed 

architecture and, in a straightforward approach, their input would be an entire 

NCCT slice. Since we used 5 mm reconstructions, and not all slices from a NCCT 

scan have infarction, we did not expect a satisfactory segmentation given the 
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limited number of NCCT slices with infarcted brain tissue that would be used as 

training samples. 

Results 

The median infarct volume was 48 (IQR 15–125) mL overall, with 29 (IQR 11–

86), 46 (IQR 18–101), and 89 (IQR 35–210) mL for patients with a subtle, 

intermediate, and severe hypodense infarct, respectively.  

The comparison between manually delineated infarct volumes and the volumes 

from the three-CNNs approach showed an excellent agreement with an ICC of 

0.88. Even better agreement was observed for severe and intermediate hypodense 

infarcts with ICCs of 0.98 and 0.93, respectively. Agreement was good for subtle  

 

Figure 7.2: Top: Comparison of the infarct volume of the results from the three-CNNs 

approach (y axis) with the reference to infarct volume (x axis). Bottom: Bland-Altman plots of 

the infarct volumes. The difference in the volume determination is given along the y axis, and 

the average of the automated and reference infarct volume is depicted along the x axis. The 

different columns show separate severe, intermediate, and subtle hypodensity infarcts. 
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Table 7.1: Results of automated infarct segmentation for severe, intermediate, and subtle 
hypodense infarcts and the average over the whole test dataset for the three-CNNs approach. 
For comparison with the accuracy of the single CNN approach. 

  ICC Dice Test set size 

Three-CNNS approach 

 Severe 0.98 0.78±0.09 67 

 Intermediate 0.93 0.61±0.21 204 

 Subtle 0.66 0.37±0.26 125 

 All infarctions 0.88 0.57±0.26 396 

Single CNN approach 

 All infarctions 0.34 0.18±0.23 396 

CNN, convolutional neural network; ICC, intraclass correlation coefficient 
 

hypodense infarcts, with an ICC of 0.66. In Figure 7.2, the agreement between the 

infarct volumes is shown. Agreement of the single CNN approach was poor, with 

an ICC of 0.34. 

The average Dice coefficient achieved by the three-CNNs approach was 

0.57±0.26. The average Dice coefficients for each category were 0.78±0.09, 

0.61±0.21, and 0.37±0.26, for the severe, intermediate, and subtle hypodense 

infarcts, respectively. The method based on a single CNN achieved an average 

Dice coefficient of 0.18±0.23. Table 7.1 shows a summary of the segmentation 

performance measures. In Figure 7.3, we show some sample results from the 

three-CNNs approach. 

Discussion 

We have shown that CNNs are valuable in the automated cerebral infarct 

segmentation in follow-up CT images of patients with acute ischemic stroke, with 

excellent agreement with volumetric assessments of expert observers. Owing to 

the wide variety of the severity of hypodensities, we proposed using the 

combination of three CNNs, which strongly outperformed a single CNN approach. 

Infarct location and infarct volume have been strongly associated with outcome 

of patients with ischemic stroke in several studies.[3],[13] Reliably segmenting  
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Figure 7.3: Sample results. From left to right we have input image, union of the segmentation 

results, and reference segmentation. For simplicity, in the center column we rendered the 

hemorrhages (blue) over the subtle infarcts (yellow), subtle infarcts over standard infarcts 

(orange), and standard infarcts over severe infarcts (red). The Dice coefficients from top to 

bottom were 0.10, 0.26, 0.40, 0.55, and 0.70. In the left column the original images are shown. 

The right shows the merged segmentations 
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cerebral infarcts is challenging because of pathophysiological heterogeneity, 

presence of pre-existing pathologies such as old infarcts, leukoaraiosis, atrophy, 

intrinsic differences in attenuation of grey and white matter, and hemorrhagic 

transformation. Thus, to be able to develop robust automated methods for cerebral 

infarct segmentation, heterogeneous image data are required. The proposed 

method was evaluated in a large cohort of patients from seven multicenter 

randomized trials enrolling in multiple countries. The follow-up NCCT scans used in 

our study also had a (pragmatically) wide range of follow-up time after stroke onset, 

ranging from 12 hours to 2 weeks. Despite these variations, the proposed 

approach based on three different CNNs produced accurate cerebral infarct 

segmentations. The volume of these segmentations had good or excellent 

correlation with the reference infarct volume. We have shown that accuracy for old, 

severe hypodense infarcts was higher than for subtle hypodense infarcts. Note 

that, although we presented the results in a selective manner, exactly the same 

procedure was applied for the infarct segmentations in all the three different infarct 

categories. 

A number of previous studies on automatic infarct core segmentation in various 

image modalities have been presented. Multiple CNN-based techniques have been 

introduced recently. On baseline CT perfusion, state-of-the-art infarct segmentation 

was obtained by a CNN architecture proposed by Liu et al., [14] achieving an 

average Dice coefficient of 0.51±0.31. On MRI the CNN architecture proposed by 

Kamnitsas et al. [6] reported an average Dice coefficient of 0.66±0.24. Maier et al7 

tested several methods with different types of MR images. Their best reported 

result was achieved by a CNN with an average Dice coefficient of 0.73±0.18. The 

current state-of-the-art method for infarct segmentation on MR images is the CNN 

proposed by Zhang et al., [5] which achieved an average Dice coefficient of 0.79 in 

a test set with 90 images. Although good segmentation results were achieved in 

CT perfusion and MR images, NCCT scans are still the predominant method for 

assessment of follow-up infarct in patients with ischemic stroke. Therefore, we 

focused on using NCCT as input for the proposed cerebral infarct segmentation 

method. 
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On NCCT scans, two semi-automated methods are available for infarct 

segmentation. The semi-automated method by Bardera et al. [15] was evaluated 

with 18 patients and reported a Pearson’s correlation coefficient of 0.98 and 0.97 

compared with the manual segmentations from two different observers. The semi-

automated method by Kuang et al. [16] was evaluated with 16 patients and 

reported an average Dice coefficient of 0.76±0.10. By contrast, our method is both 

fully automated, which avoids the variability introduced by the user inputs, and has 

been tested on a far larger number of patients. 

Other fully automated methods for infarct segmentation on NCCT are available. 

The method by Boers et al. [17] reported an average Dice coefficient of 0.74±0.13 

in a test set with 34 images. The average onset to follow-up scanning time in the 

study by Boers et al. was 4.1±2.3 days. The average Dice coefficient between 

human observers in the study by Boers et al. was 0.84 ranging from 0.63 to 0.94, 

which was somewhat higher than the agreement we achieved. However, it should 

be noted that the manual delineation was performed for old, hypodense infarcts 

only. The method by Vos et al. [18] reported an average Dice coefficient of 

0.74±0.09 in a test set with 30 images. In the study by Vos et al, the average time 

between onset and scan acquisition was 3 days ranging between 2 and 5 days. 

More recently, the method by Gillebert et al. [19] was evaluated with 12 patients 

with ischemic stroke and reported Dice coefficients ranging from 0.27 to 0.71. The 

scans used to evaluate the method by Gillebert et al. had an average acquisition 

time after onset of 40 hours. Their method was evaluated in a limited set of 

selected images to illustrate different types of ischemic stroke lesions. In contrast 

with the methods of Boers et al., Vos et al., and Gillebert et al., our method has 

been thoroughly evaluated with a large and diverse test set. 

The data used in our study included follow-up scans as early as 12 hours after 

stroke onset. Infarcts in these early follow-up scans might be subtle and harder to 

segment. Thus, it was expected that our method would achieve a lower accuracy in 

such scans. Moreover, the manual delineation in these scans is more difficult, 

resulting in more variation among experts. This may also strongly contribute to the 

lower agreement of the automated method with the reference standard. It some 
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cases (also in Figure 7.3), the network in charge of segmenting subtle infarcts 

overestimates the infarct region by including subtle hypodense areas which are not 

part of the infarction. Another common source of misclassifications by our 

proposed method is the inclusion of cerebral sulci in the results of the network 

trained to segment severe infarctions (Figure 7.3).  

A major limitation is the highly selective nature of the HERMES population. All 

patients had anterior circulation stroke confirmed by CT angiography, mostly within 

6 hours of onset. Patients were excluded from most studies if they had prior 

disability or low Alberta Stroke Program Early CT scores. As a result, many of the 

background abnormalities typical in populations with acute stroke were less 

prevalent in our population. Moreover, average age was around 69, and very 

elderly patients were under-represented. Despite variation among study 

populations, these still represent a much more homogeneous group than patients 

with stroke as a whole.  

Overall, the proposed method achieved an excellent correlation with the 

reference infarct volume. This suggests that our method can be used in clinical 

trials, replacing tedious manual delineations. Its value in functional outcome 

prediction for patients with ischemic stroke and its value as a secondary outcome 

measure in treatment trials still has to be established. 
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Abstract 

Background— Follow-up infarct volume (FIV) is moderately associated with 

functional outcome. We hypothesized that accounting for infarct location would 

strengthen the association of FIV with functional outcome. 

Methods— We included 252 patients from the HERMES collaboration with 

follow-up diffusion weighted imaging. Patients received endovascular treatment 

combined with best medical management (n = 52%) versus best medical 

management alone (n = 48%). FIV was quantified in low, moderate and high modified 

Rankin Scale (mRS)-relevant regions. We used binary logistic regression to study 

the relation between the total, high, moderate or low mRS-relevant FIVs and 

favorable outcome (mRS < 2) after 90 days. The strength of association was 

evaluated using the c-statistic. 

Results— Small lesions only occupied high mRS-relevant brain regions. Lesions 

additionally occupied lower mRS-relevant brain regions if FIV expanded. Higher FIV 

was associated with a higher risk of unfavorable outcome, as were volumes of tissue 

with low, moderate and high mRS-relevance. In multivariable modeling, only the 

volume of high mRS-relevant infarct was significantly associated with favorable 

outcome. The c-statistic was highest (0.76) for the models that included high mRS-

relevant FIV or the combination of high, moderate and low mRS-relevant FIV but 

was not significantly different from the model that included only total FIV (0.75). 

Conclusion— This study confirms the association of FIV and unfavorable 

functional outcome but showed no strengthened association if lesion location was 

taken into account. 

Introduction 

Despite advances in treatment of acute ischemic stroke (AIS), many patients do 

not return to functional independence. Insight into the course of disease obtained 

by the prediction of functional outcome might help patient specific rehabilitation. 

For example, the patient and family could be informed on realistic expectations 
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about recovery, and rehabilitation therapy could be focused specifically on the 

patient’s needs. 

Follow-up infarct volume (FIV) is associated with functional outcome after AIS 

and has been suggested as a prognostic marker. However, FIV is only moderately 

associated with outcome: only 12% of functional outcome is explained by FIV [1]. 

Moreover, the association between the volume of infarcted tissue and functional 

outcome varies among lesion locations[2],[3],[4]. 

Infarcts that are located in highly modified Rankin Scale (mRS)-relevant regions 

negatively affect functional outcome, even when the lesion is small [2],[3],[4],[5]. 

Ernst et al. [2] and Sheth et al. [6] showed that the association between lesion 

volume and functional outcome, measured by mRS at 90 days, is stronger if lesion 

location is taken into account. In the study of Ernst et al., an increase in lesion 

volume in high mRS-relevant areas was associated with a higher risk of 

unfavorable outcome. In their study, lesion volume was quantified on 3 to 9 days 

follow-up (FU) non-contrast computed tomography (NCCT) images. 

Diffusion weighted imaging (DWI) is the preferred modality for assessing 

infarcted tissue due to its high sensitivity, which reaches near 100% sensitivity 

within 6 h after stroke onset [7], [8]. We therefore aimed to study whether the 

association between FIV as depicted on FU DWI and functional outcome according 

to the mRS at 90 days is strengthened when lesion location is taken into account 

for patients with an anterior large vessel occlusion. 

Materials and Methods 

Patient population 

We included patients from the HERMES collaboration with available FU DWI. 

The HERMES collaboration is a prospective meta-analysis of seven clinical 

randomized controlled trials (RCTs) that assessed the treatment efficacy of the 

combination of endovascular treatment (EVT) and best medical management 

including intravenous alteplase versus best medical management alone for patients 

with an occlusion within the proximal anterior circulation (ICA, M1 and M2 
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occlusions) [9]. In case patients were randomized for additional endovascular 

treatment, intravenous thrombolysis was administered within 4.5 h if eligible. Most 

trials allowed randomization for EVT within 6 h. The REVASCAT trial and the 

ESCAPE trial allowed randomization within 8 and 12 h respectively. Patients were 

excluded in case of poor FU DWI quality. Poor image quality scans included motion 

artefacts, noise or incomplete field of view. According to the trial protocols, if follow-

up DWI was acquired, it was done at 24 h after treatment [10],[11],[12],[13],[14]. 

Each RCT in the HERMES collaboration was approved by the relevant national 

or local medical ethical committee. All medical images and reports were 

anonymized, and informed consent was obtained for each patient according to 

each trial protocol. Patients included in these trials consented for participation on 

the individual trials as well as additional research with the data. 

Lesion segmentation and regions 

For segmentation, an initial coarse delineation was obtained by labeling all 

voxels as infarct positive that differed in intensity by 20% compared to the 

mirrored ROI at the contralateral side on trace DWI. Then, a subsequent manual 

adjustment was performed if needed by one of three expert neuroradiologists 

(WHvZ, LFMB or CM). Lesion segmentations also included areas with 

parenchymal hemorrhage within and adjacent to the infarct. In this study, 

hemorrhage was recognized on DWI as hypointense regions. If the patients 

received decompressive hemicraniectomy and no pre-surgical scan was available, 

only lesions within the theoretical boundary of the skull were included within the 

segmentation. 

Each brain was divided into 66 anatomical regions using three different atlases. 

We used the Laboratory of Neuro Imaging Probabilistic Brain Atlas [15], which 

includes 56 mostly cortical regions. These regions were extended with internal 

capsule, corona radiata, thalamus, corpus callosum and middle cerebral 

peduncles, which are part of the John Hopkins University International Consortium 

DTI-based white matter atlases [16] and Harvard–Oxford cortical and subcortical 

atlases [17],[18],[19],[20]. The atlases were aligned to each DWI scan by affine and 
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additional B-spline registration with the use of the statistical parametric mapping 8 

toolbox (http://www.fil.ion.ucl.ac.uk/spm/). The regions were classified as high, 

moderate and low relevance for mRS, similar as presented by Ernst et al.[2] and 

according to a previously presented strength of association by Cheng et al. [3] (see 

Figure 8.1). A voxel-based lesion mapping approach was used in which the impact 

of a brain region on functional outcome was represented by the Z-score acquired 

through a Brunner and Munzel Rank order test. Corresponding to these regions, 

total FIV was divided into sub-volumes categorized as being low, moderate and 

high mRS relevant. 

 

Figure 8.1: The division of brain regions according to high, moderate and low mRS relevance 
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Statistical analysis 

Medians and interquartile ranges (IQR) are reported for all continuous variables. 

Frequencies (n) and percentages (%) are reported for all categorical and 

dichotomous variables. Odds ratios are presented per 10 mL of FIV with 95% 

confidence interval. We tested for a significance level of p < 0.05. 

Primary outcome was a favorable functional outcome according to the modified 

Rankin Scale (mRS), defined as mRS 2, at 90 days after stroke onset. For the 

primary outcome, we performed unadjusted univariable and multivariable logistic 

regression analyses. The independent variables for the univariable models were 

total FIV and high, moderate and low mRS-relevant FIV in milliliter. The 

independent variables for the multivariable model were high, moderate and low 

mRS-relevant FIV in milliliter. For each analysis, we performed an additional 

adjusted multivariable regression analysis in which we adjusted for age, sex, 

diabetes mellitus, atrial fibrillation, previous stroke or pre-stroke mRS > 0, treatment 

allocation, occlusion site, time from stroke onset to treatment and the collateral 

score. 

Secondary outcome was shift (on the mRS) towards better functional outcome 

at 90 days, for which we performed ordinal logistic regression. We performed 

univariable and multivariable regression analysis as per the models for the primary 

outcome. 

To study the quality of the statistical models, we computed the c-statistic and 

the Akaike information criterion (AIC). For logistic regression, the c-statistic is the 

area under the curve (AUC) of the receiver operating characteristic (ROC). An 

ROC graphically represents the ability of a binary classifier to predict the correct 

diagnosis as its discrimination threshold varies. The AUC represents the probability 

of the classifier to correctly predict the outcome. For ordinal outcomes, a single 

ROC no longer exists. In this case, the c-statistic can be computed from the 

cumulative ROCs [21]. We used DeLong’s test [21] to compare the different c-

statistics. The AIC gives a measure of the relative quality of fit of the models: it 

tests how well a model fits the sampled data compared to the other models that 

were fitted on the same data. 
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Results 

Within the HERMES collaboration 307 patients had available 24-h FU DWI. We 

excluded 55 patients due to poor FU DWI quality, resulting in a total population of 

252 patients. Baseline and follow-up characteristics for the subpopulation of this 

study and the overall HERMES patient group are shown in Table 8.1. The median 

age of the study population was 69 years, and a small majority was female. Most 

patients (81%) had a pre-stroke mRS of 0. The occlusion location was most 

common within the M1 segment (72%) of the MCA, followed by the ICA-T (22%). 

Only a small number of patients had a M2 occlusion (6.1%). Within our study 

population, 52% received endovascular treatment, from which 46% also received 

IVT and 46% received IVT alone. The remaining 2% received neither IVT nor EVT 

and supportive care only. Favorable outcome at 90 days was reached in 53% of 

the study population. Figure 8.2 shows an example of the infarct segmentations on 

diffusion weighted MRI in areas with different mRS relevance. Figure 8.3 shows the 

infarct distribution for the study population for the axial, coronal and sagittal slice 

with the largest infarct probability. Lesions were most often present in the right 

lentiform nucleus. 

Table 8.1: Baseline and follow-up characteristics for our subpopulation and those of the 
HERMES dataset 

Characteristic 

Volume analysis subgroup 
(n=252) 

Mean ± SD (N) 

[Median] (IQR) 

or % (n/N) 

HERMES (n=1764) 

Mean ± SD (N) 

[Median] (IQR) 

or % (n/N) 

Age (years) 66 ± 14 (251)  
[69] (59, 76) 

66 ± 14 (1761)  
[68] (57, 76) 

Male gender 49% (124/252) 53% (929/1762) 

NIHSS at baseline 17 ± 4.9 (251)  
[17] (13, 21) 

17 ± 5.1 (1751)  
[17] (13, 21) 

Diabetes mellitus 16% (40/251) 16% (287/1756) 

Atrial fibrillation 44% (77/177) 33% (447/1351) 

Prior stroke 11% (27/252) 11% (188/1751) 

Continued 
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Table 8.1: Continued 

Characteristics Volume analysis subgroup 
(n=252) 

Mean ± SD (N) 

[Median] (IQR) 

or % (n/N) 

HERMES (n=1764) 

Mean ± SD (N) 

[Median] (IQR) 

or % (n/N) 

Pre-stroke mRS 

   0 81.4% (144/177) 83% (1057/1280) 

   1 16% (28/177) 13% (162/1280) 

   2+ 2.8% (5/177) 4.8% (61/1280) 

Occlusion location 

ICA-T 22% (55/246) 20.2% (350/1731) 

M1 72% (176/246) 73.8% (1277/1731) 

M2 6.1% (15/246) 6.0% (104/1731) 

EVT allocation 52% (131/252) 49% (871/1764) 

tPA delivered 93% (233/252) 89% (1572/1764) 

Treatment 

EVT + tPA 46% (117/252) 43% (763/1764) 

   EVT only  5.6% (14/252)  6.1% (108/1764) 

   tPA only 46% (116/252) 46% (809/1764) 

Best medical management 2.0% (5/252) 4.8% (84/1764) 

Onset to randomization (min) 195 ± 97.6 (252)  
[180] (130.0,233.0) 

202 ± 89 (1756)  
[183] (140.0,245.0) 

NIHSS at baseline 

   0-4 0.4% (1/251) 0.4% (7/1751) 

   5-15 42% (105/251) 37% (647/1751) 

   16-20 32% (81/251) 37% (655/1751) 

   21-42 26% (64/251) 25% (442/1751) 

TICI 2b/3 (EVT treated 
subjects only) 

84% (97/115) 75% (550/729) 

Favorable outcome at 90 
days 

53% (133/249) 47%(462/978) 
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Figure 8.2: An example of the infarct segmentations on diffusion weighted MRI in areas with 

different mRS-relevance 

 

Figure 8.3: Infarct distribution shown for the axial (a), coronal (b) and sagittal (c) slice with the 

largest infarct probability present. 
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Figure 8.4 shows box plots for the FIV for the low, moderate, high mRS-relevant 

regions and total FIV in relation to mRS with corresponding standard deviations. 

The increase of FIV was associated with a higher risk of unfavorable outcome for 

all the different regions. Moreover, the variance in infarct volume increased with 

worsening outcome, especially for high and low mRS-relevant regions. 

 

Figure 8.4: Box plots showing the infarct volume distribution per mRS category for the low 

(a), moderate (b) and high (c) mRS-relevant infarct regions and the total infarct volume (d). 

Figure 8.5 shows the lesion volume for low, moderate and high mRS-relevant 

brain regions per patient. In patients with small total FIV, only high mRS-relevant 

brain regions were affected. With increasing total FIV, the lesions additionally 

occupied moderate mRS and subsequently low mRS-relevant brain regions. 
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Figure 8.5: Lesion volume distribution classified as low, moderate and high mRS-relevant. 

Total lesion volume increases along the x-axis. Each bar represents a single subject. 

Results for the logistic regression models and ordinal logistic regression are 

presented in Table 8.2. For the univariable logistic models (models 1 to 4), all 

volume measures were significantly associated with favorable mRS. The odds ratio 

was highest for total FIV and lowest for low mRS-relevant region FIV. For the 

multivariable model (model 5), only high mRS-relevant region FIV was significantly 

associated with favorable mRS. Similar results were obtained for the ordinal logistic 

regression model. Results after adjustments were comparable to the unadjusted 

analyses. 

For the univariable logistic regression models, the AIC was lowest for the model 

that included high mRS-relevant FIV. The model including high mRS-relevant FIV 

was a better fit to the data than the multivariable model. For the ordinal logistic 

regression models, AIC was lowest for the model that included total FIV. 

Only small differences were seen in the c-statistic for the different models. For 

the logistic model, the c-statistic was highest for the model that included high mRS-

relevant FIV. However, according to DeLong’s test, there was no significant 

difference between the c-statistic of the total FIV model (model 1) and the c-
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statistic for the high mRS-relevant FIV model (model 2). For the ordinal logistic 

regression models, the c-statistic was highest for both the model that included total 

FIV (model 6) and the high mRS-relevant FIV model (model 7). 

Table 8.2: Associations between the total follow-up infarct lesion volume and the follow-up 
infarct lesion volume divided in high, moderate and low mRS-relevant regions and favourable 
mRS at 90 days 

 OR 
(95% CI) 

AIC c-stat aOR 
(95% CI) 

Logistic regression (Favorable outcome, mRS ) 

Univariable 

Model 1 Total FIV 0.83  
(0.77, 0.89) 

300 0.75 0.78  
(0.70, 0.86) 

Model 2 High mRS-
relevant FIV 

0.62 (0.53, 
0.74) 

295 0.76 0.53  
(0.42, 0.67) 

Model 3 Moderate 
mRS-

relevant FIV 

0.72 (0.62, 
0.83) 

322 0.74 0.66  
(0.54, 0.81) 

Model 4 Low mRS-
relevant FIV 

0.50 (0.38, 
0.66) 

309 0.70 0.45  
(0.31, 0.65) 

Multivariable 

Model 5 High mRS-
relevant FIV 

0.67  
(0.53, 0.84) 

298 0.76 0.56  
(0.41, 0.76) 

Moderate 
mRS-

relevant FIV 

1.00  
(0.80, 1.25) 

0.87  
(0.66, 1.16) 

Low mRS-
relevant FIV 

0.86  
(0.54, 1.35) 

1.12  
(0.65, 1.95) 

Ordinal logistic regression (shift towards better outcome) 

Univariable 

Model 6 Total FIV 0.84  
(0.81, 0.88) 

830 0.72 0.83  
(0.79, 0.87) 

Model 7 High mRS-
relevant FIV 

0.70  
(0.64, 0.77) 

837 0.72 0.67  
(0.60, 0.78) 

Model 8 Moderate 
mRS-

relevant FIV 

0.72  
(0.65, 0.80) 

859 0.71 0.69  
(0.61, 0.78) 

Model 9 Low mRS-
relevant FIV 

0.52  
(0.44, 0.62) 

841 0.69 0.51  
(0.42, 0.62) 

Continued 
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Table 8.2: Continued 

  OR 
(95% CI) 

AIC c-stat aOR 
(95% CI) 

Ordinal logistic regression (shift towards better outcome) 

Multivariable 

Model 
10 

High mRS-
relevant FIV 

0.79  
(0.69, 0.91) 

832 0.72 0.76  
(0.65, 0.89) 

Moderate 
mRS-

relevant FIV 

0.89  
(0.77, 1.04) 

0.83  
(0.67, 1.37) 

Low mRS-
relevant FIV 

0.86  
(0.62, 1.21) 

0.96  
(0.67, 1.37) 

† Adjusted for age, sex, diabetes mellitus, atrial fibrillation, previous stroke or pre-stroke 
mRS>0, treatment allocation, occlusion site, time from stroke onset to treatment and the 
collateral score. 

Discussion 

For patients with AIS caused by an anterior large vessel occlusion, our results 

did not show significant differences between models, and therefore no differences 

in strength of associations between infarct volume and outcome were observed 

when lesion location was taken into account. 

Lesions within low mRS-relevant regions were only present in patients with 

higher total FIV. The results suggest that lesions progress from high mRS-relevant 

regions to less mRS-relevant regions when a stroke worsens. This agrees with the 

concept that leptomeningeal collaterals are relevant only to cortical MCA or ICA 

tissue and do not compensate for perfusion deficits in subcortical structures, such 

as the basal ganglia [22], and that ischemia progresses in case of late or 

inadequate reperfusion. 

Our results did not correspond with the results presented by Ernst et al. [2], for 

which infarct lesion volume was quantified based on NCCT images. Their total FIV 

and high mRS-relevant FIV were overall larger compared to our study. Also, they 

showed a larger difference in volume between high mRS-relevant FIV and total 

FIV. The reason for discrepancy in our results was likely the difference in study 

populations. Ernst et al. only included patients from the MR CLEAN trial. The MR 
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CLEAN trial included a relatively unselected group of patients with an anterior 

circulation large vessel occlusion (ICA, middle cerebral artery M1 and M2 

segments, anterior cerebral artery A1 and A2 segments) within 6 h after stroke 

onset and a National Institutes of Health Stroke Scale (NIHSS) score above 2. No 

other imaging selection criteria as ASPECTS, collateral score or core and/or 

penumbra size on CTP were used. The inclusion criteria differed between trials and 

were more selective in some trials: patients were included if occlusions were 

present in only the intracranial carotid artery or middle cerebral artery (M1 

segment) [13], [14], [23], [24], or only with more severe deficits [13], or with good 

collateral score [24], a core/penumbra mismatch [14] or smaller core [13] or a 

broader inclusion window [24] 

Multiple studies have presented a voxel-based approach, studying the relation 

between specific anatomy and functional outcome [3], [4], [25],[26],[27]. For 

example, Cheng et al. [3] used voxel-based lesion symptom mapping to study the 

relation of infarct lesion measured on fluid-attenuated inversion recovery imaging 

and functional outcome. They presented statistical maps which show the relation 

between the spatial distribution of ischemic lesions and mRS at 1-month follow-up. 

Their results showed that the corona radiata, internal capsule and insula were of 

highest influence for mRS at 1 month. Laredo et al. [25] showed that large lesions 

strongly predict poor mRS, especially for insular lesions. Munsch et al. [4] studied 

the voxel-specific relation between infarct, measured on DWI, and mRS and 

cognitive function. Their results showed that infarct location is a significant 

predictor for cognitive function. However, they were not able to show a significant 

relation between location and dichotomous mRS. Wu et al.[5] showed that the 

posterior limb of the internal capsule, corona radiata and especially the white 

matter tracts were associated with greater severity of AIS and poor long-term 

outcome. 

In the study population, lesions were most present in the right lentiform nucleus, 

which consist of the putamen and globus pallidus. These regions are responsible 

for the sensory and motor function, and learning processes. Russmann et al. [28] 
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studied the effect of isolated lentiform nucleus infarcts. Infarcts in this region were 

related with sensory deficits, aphasia and hemineglect. 

The current and previously presented moderate association of infarct volume 

and functional outcome is possibly explained by Goyal et al. in their recent 

publication [29]. They state that the variability of tissue vulnerability causes 

heterogeneity in ischemic tissue. More specific, even though tissue appears 

infarcted on imaging, it is possible that this tissue is still (partially) salvageable and 

recovers over time. The heterogeneity of ischemia has previously been studied in 

small studies. Nagesh et al. [30] showed in 9 patients that within 10 h after stroke 

onset ischemic lesions consisted of multiple heterogenic zones of ADC values. 

Guadagno et al. [31] showed, based on PET images of 5 patients, heterogeneity in 

blood flow and metabolism in regions that appeared hyperintense on DWI. 

Considering these insights, previously and current presented infarct volumes 

probably do not correctly represent true infarct. 

This study suffers from some limitations. First, even though the HERMES 

collaboration combined multiple large randomized controlled trials with a 

heterogeneous population, our substudy population was relatively small and 

consists of highly selected patients. FU MRI is often not included within standard 

imaging protocol for FU stroke imaging. As a result, our study population only 

contained patients from the HERMES centers that included 24-h FU MRI within 

their study protocol. Moreover, the HERMES trials included only patients without 

prior disability, with proximal anterior circulation large vessel occlusions who were 

eligible for EVT. Since all patients had anterior circulation large vessel occlusions, 

the spectrum of patient deficits was more similar than occurs in an unselected 

stroke patient population that would include a majority with medium and small 

vessel occlusions in more locations, including patients with posterior circulation 

occlusions. Strategic location effects are likely to be more marked when overall 

lesion volumes are smaller and more varied. Also, our study population does not 

represent minor or severe cases of stroke. It is expected that patients with infarcts 

that affect low-mRS relevant regions experience fewer symptoms and are therefore 

less likely to present acutely in time window for acute interventions (IVT or EVT). 
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Patients who did not meet the inclusion criteria for the trials due to 

contraindications, such as late presentation or high NIHSS score, were also not 

included. In addition, the majority of trials selected patients according to imaging 

characteristics such as the extent of changes on non-contrast CT or MRI, perfusion 

characteristics or collateral vessel quality. It is also plausible that MRI scans were 

only acquired for patients that had a better early outcome and were therefore able 

to tolerate MRI acquisition. Since patients with clinically or radiologically severe 

presentations are expected to have worse outcome than those included in the 

HERMES trials, future studies should assess the influence of lesion location and 

outcome for this population. Also, our study did not take hemispheric dominance 

into account. Finally, in this study, the mRS score was used for defining functional 

outcome. This score is a common endpoint in acute ischemic stroke trials and 

measures the degree of dependence in daily activities. The score is mainly focused 

on motor function (particularly walking) and is less sensitive for the evaluation of 

complex or cognitive functions such as memory or emotional processing [24]. Lack 

of association of radiologically defined tissue volumes weighted by relevance to the 

mRS therefore is strongly biased towards motor function and does not cover 

regions such as the cingulate gyrus (which is involved in emotional processing) or 

parahippocampal gyrus (which is involved in memory processing). In addition, 

simplifying the mRS outcome into an arbitrary dichotomy of “good” and “poor” may 

obscure structure–function relationships. Future studies should focus on the 

relation between the NIHSS in combination of the Montreal cognitive assessment 

score and infarct location. We expect a stronger relation between neurological 

impairment found with these scores and specific brain regions. 

According to our results, information on the specific post-treatment infarct 

location depicted on DWI does not contribute to better estimation of treatment 

outcome. Probably, this is because the high mRS-relevant regions are always 

included within the infarct. 
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Conclusion 

Our results confirm the association between FIV as depicted on follow-up DWI 

and favorable functional outcome. We have shown that for patients with an infarct 

resulting from an ICA/MCA occlusion, the association between FIV quantified on 

follow-up DWI and functional outcome according to the modified Rankin scale 

(mRS) is not strengthened when lesion location is taken into account. 
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Abstract 

Background— Infarct volume (FIV) on follow-up diffusion-weighted imaging (FU-

DWI) is only moderately associated with functional outcome in acute ischemic stroke 

patients. However, FU-DWI may contain other imaging biomarkers which could aid 

in improving outcome prediction models for acute ischemic stroke. 

Methods— We included FU-DWI data from the HERMES, ISLES, and MR 

CLEAN-NO IV databases. In a first step, lesions were segmented using a deep 

learning model trained on the HERMES and ISLES datasets. Then, we assessed 

the predictive performance of three classifiers in the MR CLEAN-NO IV trial cohort, 

based on: (1) FIV alone, (2) the most important features obtained from a trained 

convolutional autoencoder (CAE), and (3) radiomics features. In all models, a 

Support Vector Machine (SVM) was trained to predict functional independence 

(modified Rankin Scale: 0-2). Furthermore, we investigated feature importance in 

the radiomics feature-based model. 

Results— For the outcome prediction, we included 206 patients, from which 144 

scans were included in the training set, 21 in the validation set and 41 in the test set. 

The classifiers including the CAE and the radiomics features showed an AUC of 0.81 

and 0.88 respectively, while the model based on FIV had an AUC of 0.79. This 

difference was not found to be statistically significant in independent data. Feature 

importance results from the radiomics model showed that lesion intensity 

heterogeneity received more weight than lesion volume in outcome prediction by the 

classifier. 

Conclusion— This study suggests that predictions of functional outcome should 

not be based on FIV alone and that FU-DWI images capture additional prognostic 

information. 
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Introduction 

Acute ischemic stroke (AIS) has a major impact on patients’ lives: the majority 

of AIS patients do not return to functional independence or their functional status 

before experiencing AIS – even with adequate treatment [1]. Accurate estimation of 

functional outcome after treatment could aid to guide patients in setting realistic 

expectations and deciding on the focus of the rehabilitation process [2]. 

Follow-up infarct volume (FIV) as measured on radiological follow-up imaging 

has been suggested as a prognostic marker for functional outcome [3]. However, 

previous studies have indicated that FIV is only moderately associated with 

functional outcome: only 12% of functional outcome is explained by FIV [3]. It has 

been suggested that current imaging techniques – such as computed tomography 

(CT), CT perfusion, and diffusion-weighted imaging (DWI) – are not able to 

accurately predict or measure infarcted tissue [4]. A complicating factor is that 

progression from severely ischemic tissue to actual infarction is likely not constant 

over time and not always clearly visible on CT or DWI. Also, cells within the 

ischemic region could potentially remain viable depending on their tolerance to 

ischemia [4]. A previous study has shown that ischemic lesions may still evolve in 

the subacute phase even after successful treatment, resulting in smaller or larger 

lesions after 1 week follow-up [5]. 

Previous studies have suggested that tissue estimated as infarcted on 

radiological imaging may contain additional prognostic information which could 

improve outcome prediction for AIS. For example, intensity heterogeneity on 

images in infarcted regions might reflect the variance in tissue vulnerability to 

ischemia and may represent the degree of ischemia [6]. Also, Wang et al. showed 

that textural features, including heterogeneity, assessed on T2 FLAIR and ADC 

images are associated with follow-up NIHSS and modified Rankin Scale (mRS) [7]. 

Moreover, the shape of the lesion may contain important information on the 

potential progression from ischemia to infarcted tissue [8]. 

Previous studies have demonstrated the potential of machine learning (ML) to 

use automatically extracted imaging biomarkers for outcome prediction in AIS. For 

example, Qiu et al. [9] trained a support vector machine (SVM) to show that 
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thrombus radiomics features were more predictive for recanalization in patients 

treated with intravenous alteplase compared to manually extracted thrombus 

features. Also, Hilbert et al. [10] showed that features automatically extracted by an 

autoencoder combined with a dense layer outperformed ML models trained on 

handcrafted imaging biomarkers in predicting successful reperfusion and functional 

outcome at 90 days after stroke onset. 

We hypothesized that infarct volume alone as measured on DWI is not sufficient 

to represent the pathological changes in the ischemic brain region and that DWI 

data may contain additional prognostic information that is still unknown. We 

compared the performance of an ML model based on FIV alone with a radiomics 

features-based model and a model based on features obtained from a deep-

learning autoencoder network in the prediction of favorable functional outcome. 

Materials and Methods 

 

Figure 9.1: Study workflow for functional outcome prediction. Three different feature sets 

were extracted: follow-up infarct volume, features extracted by a convolutional autoencoder, 

and radiomics features. Each feature set was split into a train (80%) and test (20%) set. A 

support vector machine (SVM) was trained on the train set to classify favorable outcome. The 

SVMs were tested on the test set. The results were evaluated for each SVM. 
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Figure 9.1 shows the workflow of this study, which can be split up into two 

stages: feature extraction and outcome classification. Before we were able to 

extract features from the study dataset, we used an external dataset to train the 

CAE and a deep learning network for the delineation of the infarct lesions. 

Datasets 

The external dataset included patients from the HERMES collaboration [11] with 

available diffusion-weighted images (DWI) at 24 hours and DWI images from 

patients with subacute lesions from SISS ISLES 2015 [12]. The HERMES 

collaboration was formed to pool patient-level data from seven clinical randomized 

controlled trials which showed the efficacy of endovascular treatment (EVT) over 

best medical management alone for patients with an occlusion of arteries of the 

proximal anterior circulation (ICA, M1 and M2) [11]. Each trial in the HERMES 

collaboration was approved by the relevant national or local medical ethical 

committee. All imaging data and clinical reports were anonymized and informed 

consent was obtained for each patient according to each trial protocol. Patients 

included in these trials consented to participation in the individual trials as well as 

the use of their data for future research. 

The study dataset included patients from the MR CLEAN-NO IV trial with 

available DWI at 24 hours post-treatment. The MR CLEAN-NO IV trial was a 

randomized clinical trial in which the effect of immediate endovascular treatment 

(EVT) is compared to intravenous treatment with alteplase (IVT) followed by 

endovascular treatment on 90-day functional outcome in patients with AIS [13]. 

Patients were included if they were eligible for IVT and EVT, over the age of 18 

with a proximal occlusion of the anterior circulation, who were directly admitted to 

an EVT-capable hospital. Informed consent was obtained following a deferred 

consent procedure, in accordance with national legislation in the three participating 

countries[14]. 

Since imaging was acquired in a multi-center and international setting, scanner 

types and image acquisition parameters varied. Images were acquired with a field 

of strength 1.5 or 3 Tesla. The slice thickness ranged from 3 to 6 mm. For this 
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study, patients were excluded if DWI contained motion artifacts or in case of 

unsolvable registration errors. 

Pre-processing and image analysis 

Image registration 

All DWI images were transformed to standard MNI space via non-rigid 

registration using the SPM8 toolbox [15], resulting in isotropic voxel dimensions of 

1 mm. Intensities were normalized using the white stripe normalization toolbox [16]. 

Images processed by the CAE were additionally subsampled to an isotropic voxel 

spacing of 3 mm before analysis. 

Lesion segmentation 

To delineate the infarct lesions for the MR CLEAN-NO IV population, we trained 

a Deepmedic network [17]. Deepmedic is a multi-scale 3D convolutional neural 

network with a fully connected Conditional Random Field and has shown to be 

computationally efficient and performed best for brain lesion segmentation in the 

ISLES 2015 challenge [12]. We trained the network on the HERMES DWI images 

for which lesion segmentations were available [3]. Images were split into a training 

set (70%), a validation set (10%) and a test set (20%). The trained network was 

applied to the MR CLEAN NO-IV image dataset. Each resulting segmentation was 

checked by one of two experienced observers [JWH and MLT] and manually 

adjusted in case of erroneous segmentation using ITK-SNAP [18]. Hemorrhagic 

transformation was included within the lesion. For cases where no consensus 

could be reached, the segmentations were assessed by two expert 

neuroradiologists [CBLMM and MSK, with >20 and >5 years of experience, 

respectively] to reach a consensus. 

Feature extraction 

Convolutional autoencoder 

We developed and optimized a CAE for the reconstruction of DWI images 

(Figure 9.2) using the Keras libraries [19]. By learning how to reduce the 

dimensions of the feature space and reconstruct images from this low-dimensional  
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Figure 9.2: The convolutional autoencoder architecture. The dimension of the input image is 

64x80x64. The encoder consists of four 4x4x4 convolutional layers with stride 2 and Rectified 

Linear Unit activation. For each subsequent convolutional layer, the number of filters is 

doubled, starting at 16. Each convolutional layer is followed by group normalization. After the 

final convolutional layer of the encoder the feature space is flattened, and a dense layer is 

added. The decoder contains the same components as the encoder in opposite direction, only  

the feature space is upsampled first by factor 2 and the stride of the convolutional layers is 

kept at 1. After the fourth convolutional layer, three additional convolutional layers reduce the 

fourth dimension of feature space to 1, resulting in the original image dimensions. 

feature space (latent space), the CAE learns the most important features that 

describe the source image. A CAE consists of several layers that downsample an 

image (encoder) to a compressed feature space (latent space) followed by several 

upsampling layers (decoder) that inverse the downsampling by upsampling the 

image to original image dimensions. The encoder consisted of four 4x4x4 

convolutional layers with stride 2 and Rectified Linear Unit activation. Since each 

convolutional layer divides the feature space dimensions in half it was favorable to 

use input dimensions of powers of 2. Therefore, we have first zero padded the 

input image to the dimensions of 64x80x64. For each subsequent convolutional 

layer, the number of filters was doubled, starting at 16. Each convolutional layer 

was followed by group normalization to reduce the chance of overfitting. After the 

final convolutional layer of the encoder, the feature space was flattened, and a 

dense layer was added to reduce the number of features in the latent space to 100. 

The decoder inversed the encoder by first upsampling the feature space by a factor 

2 followed by a convolutional layer with stride 1 to keep feature space dimensions. 
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The number of filters of the first four convolutional layers of the decoder was equal 

to the encoder, but in opposite direction. Again, each convolutional layer was 

followed by group normalization. After the fourth convolutional layer, three 

additional convolutional layers were added to gradually reduce the fourth 

dimension of feature space to 1 resulting in the input image dimensions. After the 

last convolutional layer, the output image was cropped to establish the original 

image dimensions. The loss function of the CAE was the mean squared error 

(MSE) between the source image and the resulting image. 

For the development and optimization of the CAE, the data from HERMES and 

ISLES challenge were combined and divided into a training (80%) and validation 

set (20%). To increase the number of training samples available, we performed 

data augmentation for the training set by flipping the images over the z-axis. The 

network was trained for 200 epochs with a batch size of 2. We used the validation 

set to optimize the CAE. After optimization, we extracted features from the MR 

CLEAN-NO IV DWI dataset. 

Radiomics 

Radiomics features extracted from medical images aim to identify and quantify 

pathological effects that might be invisible to the human eye [20]. Radiomics 

features are extracted from a region of interest (ROI), in our case the infarct lesion, 

and include first order statistics, shape, and textural features (Figure 9.3). 

Examples of first-order statistics are minimum, maximum, and mean intensity 

within the lesion. Shape features contain both 2D metrics such as the maximum 

diameter within a slice of the ROI, and 3D metrics, including the 3D volume of the 

ROI. Textural features are computed using filtering methods and matrices that 

capture the relationship between multiple voxels. An example of these matrices is 

the gray level size zone matrix (GLSZM), which represents the number of 

neighboring pixels with the same intensity. Metrics computed from this matrix 

represent coarseness and homogeneity within the lesion. In total 100 radiomics 

features were extracted using the PyRadiomic Toolkit [20]. 
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Figure 9.3: Illustration of the three radiomics feature classes. Radiomics features consist of 

shape, texture and first order statistics features. Shape features describe the 2D and 3D size 

and shape of the lesion. Textural features describe the intensity distribution and relations 

between neighbouring voxels. First order statistics describe the intensity distributions of the 

lesion. 

Classification 

A SVM classifier was optimized based on FIV, radiomics and CAE features, 

respectively. The SVM classifier separates different outcome groups by optimizing 

a hyperplane that describes the boundary with maximal distance between the 

features that belong to the different outcome groups. We assessed its performance 

for accurately predicting functional independence defined as mRS 0-2 at 90 days. 

For the implementation of the SVM, we used the scikit-learn toolkits [21]. The 

optimization and testing were performed similarly for both feature sets. From the 

MR CLEAN NO-IV DWI dataset, 80% of the DWI images were used for 5-fold 

cross-validation. The remaining 20% of the images were used to test the 
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performance of the final classifier. Before optimizing the SVMs, all features were 

normalized with the scikit-learn ‘RobustScaler’ function, which scales each feature 

based on its median and interquartile range. To optimize the SVM, we performed a 

grid search to find the most optimal kernel type and coefficient (gamma), and 

regularization parameter (C). The following options were used: linear kernel type, 

radial basis function, polynomial or sigmoid; gamma: 1e-2 to 1e3 per order of 

magnitude. The performance of the classifiers was evaluated based on the area 

under the receiver operating characteristic curve (AUC) computed for the test set. 

The AUCs were pairwise compared and tested for statistically significant 

differences with the highest AUC as reference using deLong’s test [22]. 

Classification accuracy, precision and recall were also reported. For the radiomics-

based classifier, we investigated feature importance based on the Shapley additive 

explanation (SHAP) values [23]. For the CAE, we visualized a representative 

predicted validation image and compared it to the original validation image. 

Results 

Study population 

From the 307 patients with FU-DWI imaging in the HERMES dataset, we 

excluded 55 patients due to poor image quality. No images were excluded from the 

ISLES dataset (n=64), which resulted in a total dataset of 316 images. From these 

images, 253 were included in the training set and 63 DWI images in the validation 

set.  

The MR CLEAN-NO IV dataset contained 220 patients with available FU-DWI 

scans. We excluded 11 patients due to poor image quality and 3 patients due to 

uncorrectable registration errors. This resulted in 206 patients in the study 

population from which 144 scans were included in the training set, 21 in the 

validation set and 41 in the test set. Baseline and follow-up characteristics for the 

MR CLEAN-NO IV subpopulation and the overall study population are provided in 

the supplemental material at the end of this chapter, Table A1. 
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Autoencoder image reconstruction 

The training MSE of the CAE was 2.0 e-3 (arbitrary units) and the validation 

error was 5.1e-3. Figure 9.4 shows the reconstruction of a validation image 

established by the CAE (middle) and the corresponding difference map (right). The 

difference map shows small intensity differences in most of the healthy brain 

regions. The largest differences in intensities were present at the transition 

between brain tissue and cerebral spinal fluid. Of note, some predicted voxels 

within the lesion and ventricles also differed in intensity from the original. The CAE 

was able to reconstruct the lesion at a similar location as the original image. 

 

Figure 9.4: Example of imaging reconstruction using a trained convolutional autoencoder. 

(Left) An axial slice of the original validation image; (Middle) The corresponding slice of the 

predicted image; (Right) The absolute difference between the normalized original and 

predicted image. 

Functional outcome prediction 

Table 9.1 shows the results of the best performing classifiers that were trained 

on FIV, the CAE, and radiomics features. We found the highest test accuracy for 

the FIV-based SVM classifier (0.74). The precision was highest for the radiomics 

features-based SVM classifier (0.80) while the recall was highest for the SVM 

classifier based on FIV (0.73). Based on the AUC (Figure 9.5), the SVM classifier 

trained on radiomics features showed the best performance (0.88). Yet, this 

improved outcome prediction was not statistically significant compared to the 
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model based on FIV (p=0.15) or the model based on the CAE-trained SVM 

classifier (p=0.37). 

Radiomics feature importance 

Figure 9.6 lists the top 15 radiomics features with the largest impact on the 

outcome prediction by the SVM classifier based on SHAP values. The majority of 

these features consisted of textural features [24]. The two most important features 

were ‘large area of high gray level emphasis’ and ‘large area of low gray level 

emphasis’, which are based on the GLSZM matrix. These features represent the 

presence of large areas with high or low intensities within the lesion and steered 

the classifier towards unfavorable functional outcome classification. The lesion 

volume features with the most impact on the classification were mesh volume 

(volume based on the reconstructed 3D mesh based on the delineation) and voxel 

volume (lesion volume based on voxel volume). These features were in 9th and 10th 

place. 
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Figure 9.5: Receiver operating curves for the best performing support vector machine model 

based on three different inputs: features extracted by the convolutional autoencoder, 

radiomics features and follow-up infarct volume. 
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Figure 9.6: SHAP summary plot showing the top 15 radiomics features and their feature 

classes with the largest impact on the classification based on the SHAP values. Negative and 

positive SHAP values represent unfavorable and favorable outcome classification, 

respectively. The feature values are represented by a color map, ranging from blue (low value) 

to red (high value). Abbreviations of second order radiomics feature classes in gray level 

matrices: size zone (glszm), dependence (gldm), run length (glrlm). 

Discussion 

We compared the predictive performance of ML models based on three 

different feature sets: FIV, radiomics, and CAE features. We showed that favorable 

outcome prediction based on radiological imaging characteristics was improved 

when using automatically extracted imaging biomarkers from FU-DWI images. 

However, we were unable to show statistically significant differences in 

independent data. We found that the intensity heterogeneity in the FU-DWI lesion 

was most important for functional outcome prediction. 

The model based on radiomics features most accurately predicted favorable 

functional outcome, and our SHAP-analysis showed that its most important 

features are related to textural information. Thus, the SVM classifier weighted the 

decision for predicted outcome mostly on texture and to a lesser extent on lesion 

volume. The most important textural features relate to intensity heterogeneity. This 
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corresponds with the current literature [7] and might reflect the heterogeneity in 

tissue vulnerability. Possibly, intensity heterogeneity in our study population relates 

to the presence of hemorrhage, which is negatively associated with functional 

outcome [25]. We performed an explorative analysis to study if hemorrhage was 

present within patients with heterogeneous lesions. Together with an expert 

neuroradiologist (C.B.L.M.) we visually inspected the DWI and T2* images of 

patients with high values for heterogeneity and negative SHAP values (which 

corresponds to the prediction of unfavorable outcome). Information about treatment 

outcome was not provided. Hemorrhage could not be observed in these patients. 

This study suggests that functional outcome prediction should not be based on FIV 

alone as an imaging biomarker and FU-DWI images capture additional prognostic 

information about the ischemic tissue in patients with an LVO. 

The radiomics feature-based SVM outperformed the CAE feature-based SVM 

and was best at correctly classifying patients with favorable outcome: 20% of the 

patients for whom the favorable outcome was predicted did not achieve functional 

independence, while for CAE feature-based SVM this was 25%. However, the 

recall for the radiomics feature based classifier was only 65%, while for the CAE 

feature-based SVM 73% of patients with favorable outcome were selected. 

Considering these results, we think that the CAE feature based SVM is more 

appropriate for clinical decision making, since patients with the potential for 

favorable outcome should not be missed. 

An advantage of the use of CAE features over radiomics features is that no 

lesion delineations are required for feature extraction. In this study, lesion 

delineation required manual annotations which is time consuming and introduces 

user dependency. Also, since the CAE features are based on the entire brain 

volume, information on surrounding tissue relative to the lesion is incorporated. A 

disadvantage of using the CAE is that features are less interpretable. Future 

studies could potentially perform activation visualization to study which information 

of the brain was most important for the classifier [26]. Also, ischemic lesion location 

could be a feature of interest for predicting functional outcome [27]. 
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This study suffers from some limitations. First, selection bias might have 

occurred since for functional outcome prediction we only included patients who 

complied with the inclusion criteria of the MR CLEAN NO-IV. Consequently, our 

results cannot be generalized to ischemic stroke patients with more distal 

occlusions or posterior circulation occlusions or a stroke with minor symptoms. In 

addition, our results are not generalizable to patients who were not eligible for IVT 

and/or EVT, or who were presented outside the treatment window or with a 

baseline NIHSS <2. Also, in our healthcare system, follow-up MRI for AIS patients 

is mostly only acquired in a research setting. We therefore only included patients 

from centers who participated in the NO-IV trial in whom follow-up MRI was 

performed as a secondary outcome measure as required per trial protocol. Second, 

the mRS score was used since it is a common endpoint in AIS trials for the 

assessment of independence in daily activities. However, it is coarse and mainly 

focuses on motor function, with less attention to the assessment of cognitive 

function or emotional processing. Third, the performance of the CAE might be 

hampered due to the optimization process of the CAE itself. Improving the CAE, by 

for example adding more data to the training set, might improve the classification of 

functional independence by the SVM based on CAE features. 
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Supplementary materials 

Figure A1: Baseline and follow-up characteristics of the selected study and total population 
of the MR CLEAN NO-IV trial 

Characteristic Study population  MR 
CLEAN NO-IV 

(n = 206) 

Total population MR 
CLEAN NO-IV (n = 539) 

Male sex, n (%) 111 (54) 305 (57) 

Age, mean (SD) 69 (13) 70 (13) 

Pre-stroke mRS >0, n (%) 46 (22) 164 (30) 

EVT allocation, n (%) 97 (47) 273 (41) 

Left sided stroke, n (%) 115 (56) 290 (54) 

Thrombus location, n (%)   

    ICA 48 (23) 118 (22) (n=539) 

    M1 123 (60) 330 (61) (n=539) 

    M2 34 (17) 85 (16) (n=539) 

    Other 1 (0.5) 5 (0.9) (n=539) 

Follow-up infarct volume 
(mL), median (IQR) 17 (7.3 to 67) 11 (6 to 74) 

mRS 2, n (%) 115 (56%) 270 (50%) 
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General discussion 

The main goal of this thesis was to extend our knowledge of thrombus and 

infarct core imaging characteristics and their relation to clinical outcome in patients 

with AIS. For this, we have studied the effect of image quality and timing on 

thrombus imaging characteristics. To this end, we have developed machine 

learning based methods for automated thrombus and infarct core segmentation 

and studied the association between thrombus and follow-up infarct core image 

characteristics and clinical outcome.  

Thrombus imaging characteristics and treatment outcomes 

In part I we have first shown in chapter 2 that thick slice NCCT can lead to 

underestimation of thrombus density and overestimation of thrombus perviousness. 

Our work shows that results on the association between thrombus density and 

perviousness and functional outcome assessed on thin-slice images cannot be 

extrapolated to thick-slice NCCT measurements. Therefore, our study emphasizes 

the importance of understanding the negative consequences of data reduction. In 

most studies, thin-slice NCCT images are selected for thrombus imaging 

characteristics assessment [1]–[4], including the studies presented in this thesis. 

However, in daily clinical practice often only thick-slice NCCT images derived from 

thin slices are stored to minimize data storage. If thrombus perviousness and 

density measurements would be included as parameters for AIS treatment decision 

making based on currently available research, measurements should be performed 

on the thin slice images before they are disposed of. In the other case, if thick slice 

images would be used, further research should focus on the association between 

thrombus density and perviousness measurements assessed on thick slice images 

and treatment outcome. 

Secondly, in chapter 3 we have studied the association between onset to 

imaging time and thrombus imaging characteristics. Previous studies have 

suggested that the thrombus architecture is subjected to clot contraction, natural 

lysis, and stasis [5]–[11]. Our study was based on the hypothesis that the dynamic 

behavior of thrombi may influence treatment success. However, the results of our 

study did not show an association between onset to imaging time and thrombus 
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length, density, and perviousness. It is expected that future onset to baseline 

imaging times will only further decrease due to efforts by clinicians to optimize the 

clinical workflow for patients with AIS [12]. Our study suggests that onset to 

imaging time only plays a limited role in the interpretation of baseline thrombus 

imaging characteristics. Hereby, it should be noted that our study only included 

patients who were treated within an early time window and with a proximal 

occlusion. The effect of onset to imaging time on thrombus imaging characteristics 

for patients with prolonged treatment windows or with a more distal occlusion 

remains unclear. 

Third, in chapters 4 and 5 we have studied the relation between thrombus 

imaging characteristics and treatment outcomes. In chapter 4, we showed that for 

patients receiving EVT the chance of better functional outcome was higher if the 

thrombus was shorter, at a more distal location and if the thrombus burden was 

low. This association was also shown for favorable functional outcome. Thrombus 

perviousness was positively associated with better functional outcome, but only 

after adjusting for confounders. Moreover, the study showed that patients with an 

occlusion within the M1 had a higher chance of successful reperfusion. Additional 

analysis showed that shorter thrombi were associated with more distal locations, 

high CBS, high perviousness, and low attenuation. Previous results showed 

contradicting results for the association between thrombus imaging characteristics 

and treatment outcomes [13]–[16]. Our study is a step further towards better insight 

in the relation between thrombus imaging characteristics and treatment outcome of 

patients treated with EVT. 

The study in chapter 5 focused on the association between thrombus 

perviousness and treatment outcome. The results of the study showed that, for 

patients who received best medical care alone, higher thrombus perviousness was 

significantly associated with better functional outcome and a lower chance for 

mortality, and higher infarct volume. This positive effect of higher thrombus 

perviousness on better treatment outcome diminished with EVT treatment.  

It has been suggested that the positive effect of thrombus perviousness on 

treatment outcome after IVT is caused by residual flow through the thrombus. 
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Thrombus perviousness is used as estimation for thrombus permeability. 

Thrombus permeability possibly facilitates residual blood flow through the 

thrombus, allowing for alteplase to penetrate more into the thrombus, resulting in 

more contact of alteplase with fibrin and therefore benefitting lysis.[17], [18] Even 

though we have shown that some thrombi are pervious, studies have never 

quantified thrombus permeability. In order to do this, we need to know the pressure 

drop over the length of the thrombus.  

Finally, in chapter 6 we have developed a CNN for automated thrombus 

detection and segmentation on baseline NCCT. The CNN showed similar 

sensitivity and specificity for the detection of thrombi compared to expert 

neuroradiologists. However, the perviousness and density measurements 

computed from the segmentations were less accurate than the measurements 

made by the expert neuroradiologists. Therefore, our suggested method provides a 

promising tool for thrombus detection but is less suitable for thrombus 

segmentation.  

An automatic thrombus detection tool for NCCT could support less experienced 

radiologists in recognizing acute ischemic stroke and potentially speed up the 

clinical workup. In most countries, patients with suspicion of AIS are first brought to 

the nearest hospital. These are often primary stroke centers with less experience in 

diagnosing AIS. Since an NCCT scan is the first image acquired within the imaging 

protocol, the detection of a thrombus on NCCT could allow for faster referral to a 

comprehensive treatment center, compared to the situation where an additional 

CTA needs to be acquired first before definite diagnosis. 

An automatic thrombus segmentation tool would also benefit the analysis of 

thrombus imaging characteristics. Currently, the majority of studies that study the 

relation between thrombus image characteristics and treatment outcomes for 

patients with AIS are based on manual assessment. The results of these studies 

include uncertainty introduced due to user dependency. Also, Santos et al. [19] 

showed that density measurements based on full thrombus segmentation result in 

a better representation of the thrombus density heterogeneity and allow for 

accurate volume and length measurements, compared to manual measurements. 



10

 194 

 

 

 General discussion 

Manual segmentation of the entire thrombus is very time-consuming and labor-

intensive. Even if studies would show an association between thrombus imaging 

characteristics and treatment outcomes, based on manually acquired full thrombus 

segmentations, the manual segmentation of thrombi within daily clinical practice is 

infeasible since it would cause delays in the clinical workflow.  

Infarct core imaging characteristics and treatment outcomes 

Part II focused on the relation between infarct core imaging characteristics and 

treatment outcome. In chapter 7 we have proposed a CNN for automatic 

segmentation of cerebral infarcts in follow-up NCCT images. We have shown that 

the segmentation of infarct lesions based on the union of the results from three 

different CNNs, each specialized in segmenting lesions of different densities, 

outperformed a single CNN that was trained to segment the entire lesion 

regardless of lesion age. The agreement between the results from the best 

performing CNN and the manual delineations was excellent. Similar to automatic 

thrombus segmentation, automatic lesion segmentation allows for the exclusion of 

user dependency and reduces workload in the delineation of the lesions. 

Therefore, it makes the assessment of lesion imaging characteristics in large 

image datasets and within clinical practice more feasible.  

In chapter 8 we have studied the added value of including the infarct location in 

the prediction of functional outcome based on follow-up infarct volume. The results 

showed no significant difference in the strength of association between infarct 

volume and functional outcome when the lesion location was taken into account. 

The results of the study also showed that low mRS-relevant regions were only 

affected in patients with relatively high lesion volumes. This suggests that with an 

occlusion of the anterior circulation, high mRS-relevant regions are initially affected 

and lesions progress into less mRS-relevant regions when the lesion volume 

increases. Our results were in contradiction with the results presented by Ernst et 

al. [20] They showed a strengthened association between follow-up infarct volume, 

measured on NCCT, and functional outcome when lesion location was taken into 

account. 
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Chapter 9 was based on the hypothesis that lesions shown on follow-up DWI 

images may contain additional prognostic information, other than lesion volume 

alone. The results of this study showed better performance by a machine learning 

model based on radiomics features or features learned by a convolutional 

autoencoder in predicting favorable functional outcome, compared to a machine 

learning model based on follow-up infarct volume alone. However, this difference 

was not statistically significant. Moreover, results showed that the radiomics-based 

model put more weight on intensity heterogeneity compared to volumetric-based 

features. The results of this study suggest that future studies should not only focus 

on follow-up lesion volume when studying the relation between the lesion and 

functional outcome, but should also include additional information such as 

heterogeneity within the lesion. 

 

The studies in this thesis benefited from the availability of the HERMES 

collaboration, including the MR CLEAN trial, the MR CLEAN Registry, and MR 

CLEAN-NO IV. Earlier studies were performed in the early phase of AIS research, 

and therefore only included small study groups. The bundling of the HERMES trials 

allowed us to study a large heterogenic population. The MR CLEAN Registry had 

the additional advantage of only including patients who were treated within daily 

clinical care. Specifically, their treatment was not subject to strict clinical trial 

protocols, which could benefit treatment outcome, and results from the MR CLEAN 

Registry population provide a more realistic representation of the patient group. 

Moreover, the MR CLEAN-NO IV study protocol included final lesion volume on 

MRI at 24 hours as trial endpoint. Consequently, the lesion delineation on follow-up 

MR was available for a large number of patients within the MR CLEAN-NO IV 

population. 

 

Despite the available large trial populations, our study populations were still 

selective. By design, all study populations only included patients over 18 years old, 

with an occlusion within the proximal anterior circulation, and who received 

treatment within an early time window. Moreover, patients with poor quality images 
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were excluded. Considering the small size of thrombi, especially in diameter, thick 

slice images would miss detailed information on thrombus density and length due 

to averaging effect. For that reason, our studies focusing on thrombus imaging 

characteristics only included patients who had thin-slice CT images available. As a 

side effect of this design of the studies, a majority of patients were excluded since 

most medical centers only store thick slice images. The studies including DWI 

images had a selective study population since MR imaging is not part of the 

standard imaging protocol in most centers. Also, MR imaging is not a suitable 

image modality for patients who are poorly conditioned and therefore not able to 

lay still for a long time or patients who are claustrophobic. Nonetheless, MRI 

images were the modality of choice since it has the highest sensitivity for infarct.  

 

Within this thesis, we have proposed multiple machine learning approaches. 

Machine learning based approaches have shown to be promising in the 

assessment of medical imaging, including the detection and segmentation of 

lesions and classification of outcomes[21], [22]. The advantage of machine 

learning over conventional rule-based artificial intelligence approaches is that 

machine learning models can learn complex relations between features and labels 

from examples. However, it should be noted that most machine learning models 

are incapable of extrapolating to data domains different from the training data 

domain. Therefore, it is expected that the accuracy of the models presented within 

this thesis, for the segmentation of thrombi and infarct lesions and the classification 

of outcome, would be much lower for patients that do not fit within the inclusion 

criteria of our studies. As a solution, models can be trained again on new datasets 

or possibly, transfer learning can be applied since it allows the learning of the 

predicting functions of a new target domain, with the function learned from our 

current datasets as background knowledge. 

 

In conclusion, within this thesis, we first emphasized the importance of being 

aware of the effect of image quality reduction on thrombus imaging characteristics 

measurements. Secondly, we showed that the time between stroke onset and 
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baseline imaging has a limited effect on thrombus length, density, and 

perviousness measurements within the early time window. Third, we have shown 

that a shorter thrombus, with a more distal location or a low thrombus burden, 

increased the chance for better functional outcome for patients treated with EVT. 

For patients treated with IVT, we showed a positive association between thrombus 

perviousness and functional outcome. Fourth, we proposed two ML-based 

segmentation methods, one for segmenting thrombi and the other segmenting 

infarct lesions. These methods are a step forward in facilitating user-independent 

image analysis within large trials and daily clinical practice. Fifth, we showed that 

taking the lesion location into account does not strengthen the association between 

lesion volume and functional outcome. And finally, we showed better performance 

in the prediction of favorable outcome by a machine learning model that was based 

on radiomics features, compared to a model that was based on lesion volume 

alone. Hereby, we also showed that, for the best performing model, lesion 

heterogeneity received more weight than lesion volume for the decision made by 

the model.  
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Summary 

Radiological imaging characteristics of thrombus and infarct 
core in acute ischemic stroke and their association with clinical 
outcome 

Acute ischemic stroke (AIS) is caused by an occlusion of an intracranial artery 

by a thrombus. The occlusion leads to oxygen and nutrient deprivation and 

disruption of the drainage of waste products in the cerebral tissue distal from the 

occlusion. Since the brain’s low capacity for storing nutrients and oxygen and its 

high metabolism, deprivation of blood supply quickly leads to tissue death. 

Therefore, the main focus of AIS treatment is to establish reperfusion as rapidly as 

possible. Reperfusion therapy includes the intravenous administration of alteplase 

(IVT) and endovascular thrombectomy (EVT).  

Treatment outcomes have improved significantly since multiple randomized 

controlled trials proved the efficacy of EVT in addition to IVT. However, still only a 

minority of patients end up independent from care or with minor disability. 

Therefore, researchers focus on to further improve the understanding of the 

relation between AIS pathogenesis and treatment efficacy. In this thesis we study 

the association between radiological thrombus and ischemic core imaging 

characteristic and their relation to functional outcome. 

In chapter 2 we studied the effect of non-contract CT slice thickness on 

thrombus density and perviousness measurements. We included 50 patients with 

an M1 occlusion from the MR CLEAN trial. For each patient, baseline thin-slice 

non-contrast computed tomography (NCCT) and CT angiography (CTA) were 

aligned through rigid registration. From the thin-slice NCCT images, thicker slice 

images were reconstructed by supersampling 1 or multiple slices. The thrombus 

density and perviousness measurements were acquired for NCCT images with 

slice thickness ranging between 0.45 mm to 4.95 mm. Results showed that 

thrombus density values significantly decreased and perviousness measurements 

significantly increasing with increasing slice thickness. In conclusion, this study 

suggests previous associations made between thrombus density or perviousness 
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and favorable prognostics, based on thin slice NCCT images, cannot be 

extrapolated for thick slice NCCT measurements. 

In chapter 3 we studied if the onset to imaging time is of influence on thrombus 

length, density and perviousness measurements. We included 245 patients with an 

M1 occlusion who underwent EVT from the MR CLEAN Registry with available 

baseline thin-slice NCCT and CTA. After rigid registration, we manually obtained 

length, density and perviousness measurements. We studied the association 

between onset or last seen well to NCCT acquisition time per 5 minutes and the 

thrombus imaging characteristics. Results showed no significant associations, 

which suggests that that onset to imaging time only plays a limited in the 

interpretation of baseline thrombus imaging characteristics. 

In the study in chapter 4 we studied the association between thrombus imaging 

characteristics and treatment outcomes. We included 408 patients from the MR 

CLEAN Registry, which only included patients who received EVT. We performed 

manual thrombus characteristics measurements on baseline thin-slice NCCT and 

CTA images. We evaluated thrombus location, clot burden score (CBS), absolute 

and relative attenuation, perviousness, length and distance from the internal 

carotid artery to the thrombus. Results showed that a more distal occlusion, shorter 

thrombus length and a higher CBS was significantly associated with better 

functional outcome and a faster EVT procedure. Patients with a thrombus within 

the proximal and distal M1 had higher chance of reperfusion. Thrombus 

perviousness was significantly associated with better functional outcome. 

In chapter 5 we performed a similar study as in chapter 4. However, in this 

study we focused on the association between thrombus perviousness and 

treatment outcomes. We included 443 patients from the HERMES population with 

available thin-slice baseline NCCT and CTA. The HERMES population included 

both patients who were randomized to best medical management (BMM) only, 

including IVT, or BMM and EVT. Perviousness measurements were performed 

manually. Results showed that higher perviousness was significantly associated 

with better functional outcome in patients who only received best medical 

management. In this patient group, perviousness was also positively associated 
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with favorable functional outcome. These associations were not seen in the 

intervention group.  

In chapter 6 we proposed a machine learning (ML) based method for the 

automatic segmentation of thrombi on baseline NCCT. Our method combined two 

convolutional neural networks (CNN), one for asymmetry detection and the other 

for hyperdense artery sign detection. The network was trained and tested on 129 

baseline thin-slice NCCT images of patients from the MR CLEAN trial. The results 

of the CNN were compared to annotation results from two expert neuroradiologists. 

For this we included additional 58 NCCT scans from patients with a proven 

occlusion and 45 NCCT scans from patients with stroke mimics. Ground truth was 

established by two expert observers, who also had the CTA image available. 

Results showed that the CNN had comparable performance in the correct detecting 

of the thrombus and quantification of the thrombus volume, compared to the 

experts. The CNN was less accurate in thrombus density measurements. 

In chapter 7 we developed a ML based method for the segmentation of infarct 

on follow-up NCCT images. In this study we compared the results of a model that 

included the combination of three CNNs, each focused on the segmentation of 

infarct of different density (mild, intermediate and high), with the results of a model 

that included a single CNN for the segmentation of the entire infarcted region. We 

included patients from the HERMES collaboration dataset. The CNNs were trained 

on 570 and tested on 396 NCCT follow-up images, acquired between 12 hours and 

2 weeks follow-up. Ground truth included manual delineations from two expert 

observers. Results showed that the three-CNN approach outperformed the single-

CNN approach.  

In Chapter 8 we studied if accounting for infarct location would strengthen the 

association between follow-up infarct volume (FIV) and functional outcome. For 

this, we defined low, moderate and high mRS-relevant brain regions. We included 

252 patients with available follow-up diffusion weighted imaging from the HERMES 

collaboration dataset. The infarct lesions were semi-automatically delineated and 

allocated to the different mRS-relevant regions. We compared the results from a 

univariable logistic model, which included the total FIV, with a multivariable logistic 
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model that included the different mRS-relevant infarct volumes in the prediction of 

favorable functional outcome. The quality assessment of the models was based on 

the c-statistic and the Akaike information criterion. The results showed no 

significant strengthening in the association between FIV and functional outcome if 

lesion location was taken into account. The results additionally showed that lesions 

were only present within lower mRS-relevant regions in patients with higher total 

FIV, suggesting that lesions progress from high mRS-relevant regions to lower 

mRS-relevant regions.  

In chapter 9 we hypothesized follow-up infarct lesions shown on medical 

images contain prognostic information, additional to infarct volume. To study this, 

we compared the performance of three ML models in the prediction of favorable 

functional outcome: a model based on FIV alone, a model based on radiomics 

features and a model based on features extracted from the latent space of a 

convolutional autoencoder (CAE). We used the same HERMES dataset as chapter 

8 and additional images from the SISS ISLES 2015 challenge to pre-train the CAE 

and a deep learning network for the segmentation of lesions on DWI images. For 

the favorable functional outcome prediction by the ML models we included follow-

up DWI images of 206 patients from MR CLEAN NO-IV. The model based on the 

radiomics features showed best performance in predicting favorable outcome, 

followed by the CAE based model. However, the difference in performance was not 

statistically significant. For the radiomics based model we additionally performed a 

feature importance analysis, which showed that texture heterogeneity was most 

important in the prediction of functional outcome. 

In conclusion, in this thesis we emphasized the importance of understanding the 

negative effect of lower image quality on radiological thrombus image 

characteristics measurements. We also showed that in the early time window (up 

to 6 hours), onset to baseline imaging time has limited influence on thrombus 

imaging characteristics. Furthermore, we showed that thrombus perviousness is 

associated with better functional outcome in patients who receive best medical 

management. Results on this association were not consistent for patients who 

received EVT. However, for patients receiving EVT we did show a positive 
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association with better functional outcome if the thrombus had a proximal location, 

was short or for high CBS. We also proposed a ML-based method for automatic 

thrombus segmentation to make the analysis of radiological thrombus imaging 

characteristics feasible within routine clinical practice. Similarly, we designed a ML 

based method for the segmentation of infarct on follow-up NCCT images. 

Moreover, we showed that accounting for infarct lesion location does not 

strengthen the association between follow-up infarct volume and functional 

outcome. And finally we suggested that infarct lesion on follow-up DWI contains 

prognostic information, additional to FIV, in particular information about texture 

heterogeneity.
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Radiologische beeldkarakteristieken van trombus en infarct bij 
acute herseninfarcten en hun relatie tot klinische uitkomst 

Een acuut herseninfarct wordt veroorzaakt door een occlusie van een 

intracraniële arterie door een trombus. De occlusie leidt tot een zuurstof en 

voedingstekort en verstoring van het afvoeren van afvalproducten in het cerebrale 

weefsel distaal van de occlusie. Door de lage opslagcapaciteit voor 

voedingsstoffen en zuurstof en het hoge metabolisme van de hersenen, leidt het 

gebrek aan bloedtoevoer al snel tot necrose. Daarom is het hoofddoel van de 

behandeling van een herseninfarct het zo snel mogelijk herstellen van de 

weefselperfusie. De reperfusietherapie bestaat uit de intraveneuze toediening van 

alteplase (IVT) en endovasculaire trombectomie (EVT).  

De uitkomst van behandelingen is aanzienlijk verbeterd nadat meerdere 

gerandomiseerde klinische studies de veiligheid en effectiviteit van EVT als 

aanvulling op IVT hadden bewezen. Desondanks is er maar een klein deel van de 

patiënten die uiteindelijk medisch onafhankelijk zijn, zonder of alleen met lichte 

handicap. Daarom proberen onderzoekers hun kennis te verbreden over de relatie 

tussen de pathogenese van acute herseninfarcten en de doeltreffendheid van de 

behandeling. In dit proefschrift onderzoeken we de relatie tussen de radiologische 

beeldkarakteristieken van de trombus en het infarct en hun relatie tot klinische 

uitkomst.  

In hoofdstuk 2 onderzochten we het effect van de plakdikte van CT scans 

zonder contrast (NCCT) op de gemeten trombus densiteit en perviousness. We 

includeerden 50 patiënten vanuit de MR CLEAN studie met een occlusie in het M1 

segment. Voor elke patiënt gebruikten we de baseline dunne plak NCCT en CT 

angiografie (CTA) en legden deze op elkaar door middel van rigide registratie. 

Dikke plakken werden van de dunne plakken gereconstrueerd door middel van de 

supersampling van 1 of meerdere plakken. De trombus densiteit en perviousness 

werden daarna gemeten op NCCT met plakdiktes tussen de 0.45 en 4.95 

millimeter. De resultaten lieten zien dat de waarden van de gemeten trombus 
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densiteit significant lager en de gemeten perviousness significant hoger waren met 

toenemende plakdikte. De conclusie van deze studie is dat eerder aangetoonde 

relaties tussen trombus densiteit of perviousness en goede prognose, gebaseerd 

op dunne plak NCCT, niet geëxtrapoleerd kunnen worden naar metingen op basis 

van dikke plak NCCT. 

In hoofdstuk 3 hebben we onderzocht of de tijd tussen het begin van een acuut 

herseninfarct en de eerste beeldvorming invloed heeft op de lengte, densiteit en 

perviousness van de trombus. We includeerden 245 patiënten met een M1 

occlusie die EVT zijn ondergaan vanuit de MR CLEAN Registry, waarvan de dunne 

plak NCCT en CTA van voor de behandeling beschikbaar waren. Na de rigide 

registratie, verkregen we de trombus lengte, densiteit en perviousness via manuele 

metingen. We onderzochten de relatie tussen de tijd van het begin van een infarct, 

of de tijd waarop een patiënt voor het laatste in goede gezondheid is gezien, tot de 

eerste NCCT (per 5 minuten) en de trombus beeld karakteristieken. De resultaten 

lieten geen significante relatie zien, wat suggereert dat de tijd tussen het begin van 

het infarct en de eerste beeldvorming maar in beperkte mate invloed heeft op de 

trombus beeld karakteristieken gemeten voor behandeling. 

In hoofdstuk 4 onderzochten we de relatie tussen trombus beeld 

karakteristieken en de uitkomst van behandeling. We includeerden 408 patiënten 

vanuit de MR CLEAN Registry, waarin alle patiënten behandeld zijn met EVT. De 

trombus karakteristieken werden manueel gemeten op baseline dunne plak NCCT 

en CTA. We evalueerden de locatie, clot burden score (CBS), de absolute en 

relatieve attenuatie, perviousness en lengte van de trombus en de afstand tussen 

de arteria carotis interna en trombus. De resultaten toonden dat een meer distale 

occlusie, korte trombus en een hogere clot burden score significant was 

gerelateerd met een betere uitkomst en een snellere EVT behandeling. Patiënten 

met een trombus in de proximale en distale M1 hadden een hogere kans op 

reperfusie. Trombus perviousness was significant gerelateerd met een betere 

functionele uitkomst. 

In hoofdstuk 5 voerden we een soortgelijke studie uit als in hoofdstuk 4. De 

focus van deze studie lag echter alleen op de relatie tussen trombus perviousness 
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en de uitkomst van behandeling. We includeerden 443 patiënten van de HERMES 

populatie waarvan de baseline dunne plak CT scan en CT angiografie beschikbaar 

was. De HERMES populatie bevat zowel patiënten die gerandomiseerd waren voor 

alleen zo goed mogelijke medische management, waaronder IVT, en patiënten die 

daarop aanvullend EVT behandeling kregen. De perviousness metingen werden 

manueel verricht. Resultaten lieten zien dat een hogere perviousness significant 

was gerelateerd aan een betere functionele uitkomst voor patiënten die alleen zo 

goed mogelijke medische management ontvingen. In deze patiënten groep was 

perviousness ook positief gerelateerd aan gunstige functionele uitkomst. Dezelfde 

relaties werden niet gezien in de interventiegroep. 

In hoofdstuk 6 stellen we een op machine learning (ML) gebaseerde methode 

voor, voor het automatisch segmenteren van trombi op baseline NCCT. Onze 

methode combineert twee convolutional neural networks (CNN’s), de één voor 

asymmetrie-detectie en de ander voor hyperdense artery sign detectie. Het 

netwerk is getraind en getest op 129 baseline dunne plak NCCT beelden van 

patiënten in uit de MR CLEAN trial. De resultaten van de CNN werden vergeleken 

met annotaties van twee expert neuroradiologen. Hiervoor includeerden we 

aanvullend 58 NCCT scans van patiënten met een bewezen occlusie en 45 NCCT 

scan van patiënten met symptomen die lijken of een herseninfarct. De gouden 

standaard was verkregen door twee expert waarnemers, die ook de CTA scan tot 

hun beschikking hadden. De resultaten lieten zien dat de CNN vergelijkbaar met de 

experts in staat was om de trombus te detecteren en het volume van de trombus te 

bepalen. De CNN was minder precies in de trombus densiteit metingen.  

In hoofdstuk 7 ontwikkelden we een op ML gebaseerde methode voor het 

segmenteren van infarct op follow-up NCCT beelden. In deze studie vergeleken we 

de resultaten van een model dat bestond uit de combinatie van drie CNN’s, ieder 

gefocust op de segmentatie van infarct met verschillende intensiteit (mild, 

gemiddeld, en hoog), met een model dat uit een enkel CNN bestond voor het 

segmenteren van de gehele infarct regio. We includeerden patiënten uit de 

database van de HERMES collaboratie. De CNN’s werden getraind op 570 en 

getest op 396 follow-up NCCT beelden die verkregen waren tussen 12 uur en 2 
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weken follow-up. De gouden standaard bestond uit manuele segmentaties 

gemaakt door twee expert waarnemers. Het resultaat van het model gebaseerd op 

de 3 CNN’s was beter dan het resultaat van het model gebaseerd op 1 CNN. 

In hoofdstuk 8 onderzochten we of de relatie tussen follow-up infarct volume 

(FIV) en functionele uitkomst wordt versterkt als de infarct locatie wordt 

meegewogen. Hiervoor definieerden we lage, gemiddeld en hoge mRS-relevante 

brein regio’s. We includeerden 252 patiënten vanuit de database van de HERMES 

collaboratie waarvan de follow-up diffusie gewogen MRI beelden (DWI) 

beschikbaar waren. De infarct laesies werden semiautomatisch gesegmenteerd en 

verdeeld onder de verschillende mRS-relevante regio’s. We vergeleken de 

resultaten van een univariabel logistisch model, gebaseerd op het totale FIV, met 

een multivariabel logistisch model dat gebaseerd was op de verschillende mRS-

relevante gebieden voor het voorspellen van gunstige functionele uitkomst. De 

kwaliteit van de beoordelingen van het model werd bepaald met behulp van de c-

statistiek en de Akaike informatiecriterium. De resultaten lieten geen significante 

versterking van de relatie tussen FIV en functionele uitkomst zien wanneer de 

locatie van de laesie werd meegenomen. Daarbij lieten de resultaten zien dat 

laesies zich alleen in de lagere mRS-relevante regio’s bevonden bij patiënten met 

een hoger totaal FIV, wat suggereert dat laesies zich vanuit hogere mRS-relevante 

regio’s uitbreiden naar lagere mRS-relevante regio’s.  

In hoofdstuk 9 stelden we de hypothese dat follow-up infarct laesies 

weergegeven op medische beeldvorming prognostische informatie bevatten, 

aanvullend op infarct volume. Om dit te onderzoeken vergeleken we drie ML 

modellen voor de predictie van gunstige functionele uitkomst: een model 

gebaseerd op alleen FIV, een model gebaseerd op radiomics features en een 

model gebaseerd op features die vanuit de latent space van een convolutional 

autoencoder (CAE) verkregen zijn. We gebruikten dezelfde HERMES dataset als in 

hoofdstuk 8 met aanvullend beelden uit de SISS ISLES 2015 challange om de 

CAE van te voren te trainen en een deep learning network te trainen ter behoeve 

van het segmenteren van laesies op DWI beelden. Voor het voorspellen van 

gunstige door de ML modellen includeerden we follow-up DWI beelden van 206 
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patiënten vanuit de MR CLEAN NO-IV. Het model dat gebaseerd was op de 

radiomics features presteerde het best in het voorspellen van gunstige uitkomst, 

gevolgd door het model gebaseerd op de CAE features. Maar de resultaten lieten 

geen statistisch significant verschil zien. Voor het op radiomics gebaseerde model 

deden we een extra analyse waarbij we keken naar de weging van features in de 

predictie. Deze analyse liet zien voor het voorspellen van functionele uitkomst de 

hoogste weging werd gegeven aan features die betrekking hadden op textuur 

heterogeniteit. 

Concluderend, in dit proefschrift benadrukten we dat het belangrijk is om de 

negatieve gevolgen van een verlaagde beeldkwaliteit op gemeten radiologische 

trombus beeldkarakteristieken te begrijpen. We lieten ook zien dat in de eerste 

uren (tot en met 6 uur), de tijd tussen het begin van een infarct tot aan de baseline 

beeldvorming maar van beperkte invloed is op gemeten trombus 

beeldkarakteristieken. Ook lieten we zien dat trombus perviousness gerelateerd is 

aan betere functionele uitkomst voor patiënten behandeld met zo goed mogelijke 

medische management. De resultaten voor deze relatie waren niet consistent voor 

patiënten die behandeld werden door middel van EVT. Maar binnen de 

interventiegroep werd wel een positieve relatie met betere functionele uitkomst 

gezien als de trombus een proximale locatie had, kort was of bij een hoge CBS. 

We stelden ook een op ML gebaseerde methode voor, voor het automatisch 

segmenteren van trombi om de analyse van trombus beeldkarakteristieken binnen 

de dagelijkse klinische praktijk mogelijk te maken. Vergelijkbaar ontwikkelden we 

een op ML gebaseerd model voor het segmenteren van infarct op follow-up NCCT 

beelden. Daarbij lieten we zien dat de relatie tussen FIV en functionele uitkomst 

niet werd versterkt wanneer de locatie van de laesie werd meegewogen. En tot slot 

suggereerden we dat infarct laesies op follow-up DWI beelden prognostische 

informatie bevatten als aanvulling op FIV, met name informatie over textuur 

heterogeniteit. 
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