17 research outputs found

    Review of 3D Point Cloud Data Segmentation Methods

    Get PDF

    From point cloud to BIM: a survey of existing approaches

    Get PDF
    International audienceIn order to handle more efficiently projects of restoration, documentation and maintenance of historical buildings, it is essentialto rely on a 3D enriched model for the building. Today, the concept of Building Information Modelling (BIM) is widely adoptedfor the semantization of digital mockups and few research focused on the value of this concept in the field of cultural heritage.In addition historical buildings are already built, so it is necessary to develop a performing approach, based on a first step ofbuilding survey, to develop a semantically enriched digital model. For these reasons, this paper focuses on this chain startingwith a point cloud and leading to the well-structured final BIM; and proposes an analysis and a survey of existing approacheson the topics of: acquisition, segmentation and BIM creation. It also, presents a critical analysis on the application of this chainin the field of cultural heritag

    Review of the “ as-buit BIM ” approaches

    Get PDF
    International audienceToday, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain

    Review of the “ as-buit BIM ” approaches

    Get PDF
    Today, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain

    Point cloud processing for smart systems

    Full text link

    Topological Structure Learning and Feature Extraction of 3D Point Clouds for Grasping

    Get PDF
    Recently, the expectation to rescue robots has been increasing much in order to perform the monitoring in disaster areas. However, there are many critical problems in rescue robots. Especially, we must improve the perceptual system of the rescue robot by using 3D measurement sensor. In this paper, we discuss the learning method of topological structure from 3D point cloud and introduce our Sokuiki sensor array system for measuring 3D distance data. Next we explain Batch-Learning Growing Neural Gas (BL-GNG) for learning the topological structure. Furthermore, we apply BL-GNG to extract the topological structure of a ladder. Finally, we show several experimental results of the proposed method

    Consistent Density Scanning and Information Extraction From Point Clouds of Building Interiors

    Get PDF
    Over the last decade, 3D range scanning systems have improved considerably enabling the designers to capture large and complex domains such as building interiors. The captured point cloud is processed to extract specific Building Information Models, where the main research challenge is to simultaneously handle huge and cohesive point clouds representing multiple objects, occluded features and vast geometric diversity. These domain characteristics increase the data complexities and thus make it difficult to extract accurate information models from the captured point clouds. The research work presented in this thesis improves the information extraction pipeline with the development of novel algorithms for consistent density scanning and information extraction automation for building interiors. A restricted density-based, scan planning methodology computes the number of scans to cover large linear domains while ensuring desired data density and reducing rigorous post-processing of data sets. The research work further develops effective algorithms to transform the captured data into information models in terms of domain features (layouts), meaningful data clusters (segmented data) and specific shape attributes (occluded boundaries) having better practical utility. Initially, a direct point-based simplification and layout extraction algorithm is presented that can handle the cohesive point clouds by adaptive simplification and an accurate layout extraction approach without generating an intermediate model. Further, three information extraction algorithms are presented that transforms point clouds into meaningful clusters. The novelty of these algorithms lies in the fact that they work directly on point clouds by exploiting their inherent characteristic. First a rapid data clustering algorithm is presented to quickly identify objects in the scanned scene using a robust hue, saturation and value (H S V) color model for better scene understanding. A hierarchical clustering algorithm is developed to handle the vast geometric diversity ranging from planar walls to complex freeform objects. The shape adaptive parameters help to segment planar as well as complex interiors whereas combining color and geometry based segmentation criterion improves clustering reliability and identifies unique clusters from geometrically similar regions. Finally, a progressive scan line based, side-ratio constraint algorithm is presented to identify occluded boundary data points by investigating their spatial discontinuity

    Toward knowledge-based automatic 3D spatial topological modeling from LiDAR point clouds for urban areas

    Get PDF
    Le traitement d'un très grand nombre de données LiDAR demeure très coûteux et nécessite des approches de modélisation 3D automatisée. De plus, les nuages de points incomplets causés par l'occlusion et la densité ainsi que les incertitudes liées au traitement des données LiDAR compliquent la création automatique de modèles 3D enrichis sémantiquement. Ce travail de recherche vise à développer de nouvelles solutions pour la création automatique de modèles géométriques 3D complets avec des étiquettes sémantiques à partir de nuages de points incomplets. Un cadre intégrant la connaissance des objets à la modélisation 3D est proposé pour améliorer la complétude des modèles géométriques 3D en utilisant un raisonnement qualitatif basé sur les informations sémantiques des objets et de leurs composants, leurs relations géométriques et spatiales. De plus, nous visons à tirer parti de la connaissance qualitative des objets en reconnaissance automatique des objets et à la création de modèles géométriques 3D complets à partir de nuages de points incomplets. Pour atteindre cet objectif, plusieurs solutions sont proposées pour la segmentation automatique, l'identification des relations topologiques entre les composants de l'objet, la reconnaissance des caractéristiques et la création de modèles géométriques 3D complets. (1) Des solutions d'apprentissage automatique ont été proposées pour la segmentation sémantique automatique et la segmentation de type CAO afin de segmenter des objets aux structures complexes. (2) Nous avons proposé un algorithme pour identifier efficacement les relations topologiques entre les composants d'objet extraits des nuages de points afin d'assembler un modèle de Représentation Frontière. (3) L'intégration des connaissances sur les objets et la reconnaissance des caractéristiques a été développée pour inférer automatiquement les étiquettes sémantiques des objets et de leurs composants. Afin de traiter les informations incertitudes, une solution de raisonnement automatique incertain, basée sur des règles représentant la connaissance, a été développée pour reconnaître les composants du bâtiment à partir d'informations incertaines extraites des nuages de points. (4) Une méthode heuristique pour la création de modèles géométriques 3D complets a été conçue en utilisant les connaissances relatives aux bâtiments, les informations géométriques et topologiques des composants du bâtiment et les informations sémantiques obtenues à partir de la reconnaissance des caractéristiques. Enfin, le cadre proposé pour améliorer la modélisation 3D automatique à partir de nuages de points de zones urbaines a été validé par une étude de cas visant à créer un modèle de bâtiment 3D complet. L'expérimentation démontre que l'intégration des connaissances dans les étapes de la modélisation 3D est efficace pour créer un modèle de construction complet à partir de nuages de points incomplets.The processing of a very large set of LiDAR data is very costly and necessitates automatic 3D modeling approaches. In addition, incomplete point clouds caused by occlusion and uneven density and the uncertainties in the processing of LiDAR data make it difficult to automatic creation of semantically enriched 3D models. This research work aims at developing new solutions for the automatic creation of complete 3D geometric models with semantic labels from incomplete point clouds. A framework integrating knowledge about objects in urban scenes into 3D modeling is proposed for improving the completeness of 3D geometric models using qualitative reasoning based on semantic information of objects and their components, their geometric and spatial relations. Moreover, we aim at taking advantage of the qualitative knowledge of objects in automatic feature recognition and further in the creation of complete 3D geometric models from incomplete point clouds. To achieve this goal, several algorithms are proposed for automatic segmentation, the identification of the topological relations between object components, feature recognition and the creation of complete 3D geometric models. (1) Machine learning solutions have been proposed for automatic semantic segmentation and CAD-like segmentation to segment objects with complex structures. (2) We proposed an algorithm to efficiently identify topological relationships between object components extracted from point clouds to assemble a Boundary Representation model. (3) The integration of object knowledge and feature recognition has been developed to automatically obtain semantic labels of objects and their components. In order to deal with uncertain information, a rule-based automatic uncertain reasoning solution was developed to recognize building components from uncertain information extracted from point clouds. (4) A heuristic method for creating complete 3D geometric models was designed using building knowledge, geometric and topological relations of building components, and semantic information obtained from feature recognition. Finally, the proposed framework for improving automatic 3D modeling from point clouds of urban areas has been validated by a case study aimed at creating a complete 3D building model. Experiments demonstrate that the integration of knowledge into the steps of 3D modeling is effective in creating a complete building model from incomplete point clouds
    corecore