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ABSTRACT 

Over the last decade, 3D range scanning systems have improved considerably enabling 

the designers to capture large and complex domains such as building interiors. The 

captured point cloud is processed to extract specific Building Information Models, where 

the main research challenge is to simultaneously handle huge and cohesive point clouds 

representing multiple objects, occluded features and vast geometric diversity. These 

domain characteristics increase the data complexities and thus make it difficult to extract 

accurate information models from the captured point clouds.  

The research work presented in this thesis improves the information extraction 

pipeline with the development of novel algorithms for consistent density scanning and 

information extraction automation for building interiors. A restricted density-based, scan 

planning methodology computes the number of scans to cover large linear domains while 

ensuring desired data density and reducing rigorous post-processing of data sets.  

The research work further develops effective algorithms to transform the captured 

data into information models in terms of domain features (layouts), meaningful data 

clusters (segmented data) and specific shape attributes (occluded boundaries) having 

better practical utility. Initially, a direct point-based simplification and layout extraction 

algorithm is presented that can handle the cohesive point clouds by adaptive 

simplification and an accurate layout extraction approach without generating an 

intermediate model. 

Further, three information extraction algorithms are presented that transforms point 

clouds into meaningful clusters. The novelty of these algorithms lies in the fact that they 

work directly on point clouds by exploiting their inherent characteristic. First a rapid data 

clustering algorithm is presented to quickly identify objects in the scanned scene using a 

robust hue, saturation and value (H S V) color model for better scene understanding.  

A hierarchical clustering algorithm is developed to handle the vast geometric 

diversity ranging from planar walls to complex freeform objects. The shape adaptive 

parameters help to segment planar as well as complex interiors whereas combining color 

and geometry based segmentation criterion improves clustering reliability and identifies 
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unique clusters from geometrically similar regions. Finally, a progressive scan line based, 

side-ratio constraint algorithm is presented to identify occluded boundary data points by 

investigating their spatial discontinuity. 

Keywords: 3D scanning; shape acquisition of building interiors; feature extraction; point 

cloud segmentation; information extraction; virtual reality. 
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NOMENCLATURE 

x y z  = Spatial coordinates of the  captured point 

r g b  = Color parameter of the captured point 

b  = Blue color parameter of the captured point 

α  = Horizontal scanning resolution 

λ  = Vertical scanning resolution  

PAF  = Planar alignment factor 

max  H  = Maximum horizontal angular spans 

max  V  =  Maximum vertical angular spans 

N  =  Number of scanned points in horizontal direction 

M  = Number of scanned points in vertical direction 

D  = Minimum scanner distance from the wall 

dn   = Data density distance at n
th
 point 

θ  = Incident angle 

L  =  Domain length 

dalw  = Allowable data density distance 

nα  = Restricted angular span 

Ln  =  Consistent scanning range 

ξ  = Fraction factor for feature extraction 

f  = Fraction value for limited scanner distance (D) 

θl  = Restricted angular span 

md  = Multiple value for minimum data density distance 

x1  = Minimum data density distance 

Xn  = Linear scanning range 

Ol  = Overlap distance between consecutive scans 

nscans  = Number of scans to cover the range 

dnc  = Measured captured data density 

dnc4  = Measured captured data density with four neighboring points 

dnc8  = Measured captured data density with eight neighboring points 

max

nL
 

= Maximum scanner range 

min

nL   = Minimum scanner range 

n̂   = Simplification direction vector 

Np  =  Number of simplifying parallel planes 
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Ψthreshold. = Average angular deviation threshold 

tv  =  Vicinity region thickness 

H  = Point cloud height 

r  =  Reduction ratio 

t  =  Slice thickness 

Ψavg  = Average angular deviation value 

Ns  = Point cloud set in each simplification slice 

pi  = i
th
 point in the point cloud 

qj  = j
th
 neighboring point around a point pi  

dij  = Neighborhood distance vector (qj-pi) 

Ψi,j  = Angular deviation of distance vector (di,j) from normal vector n̂  

max

vt   = Maximum vicinity region thickness 

µ  = Division factor for maximum vicinity region thickness 

pp  = Corresponding projection point for a point ‘p’ in space 

mp  = Number of linear segments for intersection investigation 

fl  = Focal length of the digital camera 

Oc  = Optical centre of shape capturing system 

Op  = Perspective centre of shape capturing system 

xa yb  = Projected point coordinates in the optical plane 

u, v  = Parametric parameters in two orthogonal directions 

h s v  = Hue, Saturation and Value of a data point (p) 

q  =  Number of nearest points for plane approximation 

Δh  = Hue deviation 

Sr  = Point data saturation parameter  

FDAvg = Fixed distance average of neighboring points 

FDN =  Number of points in the fixed distance neighborhood 

β  = Multiplication factor for computing FDNs  

Kr  = Number of nearest points for computing PAF 

arp  = Average angular residual value 

df  = Fixed neighborhood distance  

AADD = Adaptive average density distance 

DistF = Multiplication factor used with AADD to compute df 

nx ny nz = Direction normal vector at spatial point p(x y z) 
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i

avgθ   = Average angular deviation of pi from normal vector n̂  

threshold

avgθ
 

= Permissible threshold of angular deviation 

h
thres

  = Permissible threshold of hue deviation 

thres

normVectorλ  
= Permissible threshold of normal vector 

ji

rSR ,
 = Side ratio at the (i, j)

th
 point in M x N points grid along rows 

ji

cSR ,
 = Side ratio at the (i, j)

th
 point in M x N points grid along columns 

ji

lSR ,
 = Side ratio at the (i, j)

th
 point in M x N points grid in lateral directions 

SR(i,j) = Limiting value of the side ratios at (i, j)
th
 point 
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

The digitization of existing objects and complex 3D environments has emerged as an active 

research field in virtual reality having diverse applications ranging from anatomical 

reconstruction, cartography, cultural artefact modeling, digital archaeology, infrastructural 

renewal, and ‘as built-as design’ evaluations. This reverse engineering process can be divided 

into two main stages (1) acquisition of spatial geometry and (2) extraction of vital 

information in terms of key features or complete digital models. The effectiveness of the 

overall process can be improved by identifying, eliminating or reducing the inaccuracies of 

the shape capturing process in the first stage and then developing customized post-processing 

and shape modeling tools for extracting specific geometric information in the second stage.  

Three dimensional (3D) range scanning technology is an efficient and fast method of 

capturing accurate spatial geometry as a set of 3D data points from the visible surfaces of the 

scanned scene called a 'point cloud'. These range scanning systems have been significantly 

improved over the last decade and can now capture surface geometries from surfaces lying 

few hundred meters away, in a single scan position (Callieri,  Cignoni,  Dellepiane et al., 

2009). These scanners can be used to capture geometries from very large scenes such as 

industrial facilities, historical sites and occupied building interiors. However, the capturing 

accuracy of these scanners is restricted by the traditional scanning errors arising from sensor 

noise and varying surface characteristics. In addition to these errors, other domain specific 

inaccuracies also transpire in the point cloud of large building interiors due to restricted 

scanner accessibility, presence of multiple objects, irregular surfaces geometries, occluded 

features and overlapping regions with varying surface complexities. Such a scanned scene 

generates a cohesive point cloud with varying data density, missing surface geometries and 

multiple region discontinuities. Although present day scanners are quite efficient in 

minimizing the traditional scanning errors arising from scanner mechanisms (Alonso,  Rubio,  

Martin et al., 2011; Li and Mitchell, 1995; Lichti, 2007; Zhuang and Roth, 1995 ), surface 

properties  (Bucksch,  Lindenbergh and Ree, 2007; Křemen,  Koska and Pospíši, 2006) and 

ambient conditions (Lichti,  Gordon and Tipdecho, 2005; Pfeifer,  Dorninger,  Haring et al., 
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2007), handling domain specific geometries and complex feature characteristics of large scan 

scenes is still an open research field.  

The geometric information extraction process on the other hand, is highly application 

dependent. Most published research has mainly focused on reverse engineering of shapes 

(Curless, 2000; Hoppe,  DeRose,  Duchamp et al., 1992; Várady,  Martin and Cox, 1997), 

which often rely on adaptive post-processing tools (Breunig,  Kriegel,  Ng et al., 2000; Davis,  

Marschner,  M.Garr et al., 2002; Knorr,  Ng and Tucakov, 2000; Liepa, 2003; Richter, 2009; 

Sotoodeh, 2006; Turk and Levoy, 1994; Weyrich,  Pauly,  Heinzle et al., 2004) for 

compensating the scanning inaccuracies while extracting approximate geometric features, 

developing fairly accurate model(s) and generating representative virtual environments.  

Most of these existing techniques (Curless, 2000; Várady,  Martin and Cox, 1997) are 

demonstrated on single, isolated objects, where small inaccuracies are compensated through 

local approximation. Few other approaches (Alharthy and Berthel, 2004; Elberink and 

Vosselman, 2009; Pfeifer,  Dorninger,  Haring et al., 2007; Sampath and Shan, 2007) 

involving large data sets are developed for building exteriors and structured point clouds 

captured by airborne scanners, where the scanned geometry is approximated through 

simplified geometries. Further, these simplified approaches normally focus on large planar 

structures in the scanned scene alone and omits intricate geometric details of other, relatively 

small objects.  

However, accurate information extraction from point clouds of building interiors is quite 

challenging task as it has to compensate unstructured point data having varying data density 

arising due to the stationary position of the scanner and domain's dimensional characteristics. 

Further, dissimilar surfaces ranging from planar walls to complex objects lying on the floor 

have to be differentiated for desired feature extraction. The point cloud representing multiple, 

and, comparable sized objects in the scanned scene, have to be processed, so that individual 

tools for layout extraction, data decimation, object identification, feature extraction, pattern 

recognitions, and virtual modeling can be developed.  

The biggest bottleneck in extracting desired information is the characteristics of the 

point cloud, which is an uninformative set of spatial data points representing the multiple 

objects and discontinuous surfaces in the scanned scene. This shape capturing process cannot 

differentiate between the spatial complexity, feature geometry, location and orientation of 

objects. Thus, the data is often processed using additional geometric parameters in order to 
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get the desired information. e.g. geometric modeling through polygonal surfaces (Dey, 2007; 

Edelsbrunner and Mücke, 1994; Hoppe,  DeRose,  Duchamp et al., 1992), visualizing point 

clouds in graphics applications (Adamson and Alexa, 2003; Alexa,  Behr,  Cohen-Or et al., 

2003; Fabio, 2003), data simplification for fast data processing (Alharthy and Bethel, 2002; 

Araújo and Jorge, 2005; Nooruddin and Turk, 2003; Sampath and Shan, 2007) and 

segmentation and simplification for improving computational efficiency for individual 

surface extractions (Boulaassal,  Landes,  Grussenmeyer et al., 2007; Brenner, 2005; Pu and 

Vosselman, 2006), modeling (Kim and Shan, 2011; Zhou and Neumann, 2008) and virtual 

scene creation (Lerma,  Navarro,  Cabrelles et al., 2011; Lu,  Shi and Zhu, 2008). 

The effectiveness of all these post-processes not only relies on the accuracy of the 

initially captured data, but also on the post-processing steps and their suitability for a specific 

application e.g. hole filling strategies of single isolated objects cannot be extended  to 

building interiors as the multiple regions comprising the hole edges might belong to different 

objects. Further, a geometric model from such a cumulative point cloud is not of much use 

except for pure visual scene understanding. Hence, customized tools need to be devised to 

compensate for domain specific scanning errors and identify and extract application specific 

features such as building layouts, key surface features, and segmented objects. Later, 

modeling approaches can be used to generate individual models from these features and 

segmented data sets representing single isolated objects, if required.  

1.2 Problem Formulation 

The work of this thesis focuses on the domain-specific limitations of 3D range scanning and 

subsequent information extraction processes involving occupied building interiors. As 

mentioned above, it is essential to identify and reduce the domain specific scanning 

inconsistencies and develop specific, information extraction tools, instead of generating 

unified geometric models from cohesive point clouds. Further, as the size of the captured data 

is normally huge, it is also desirable that these methods can be directly implemented on 

points, so that the desired information can be extracted without an explicit reconstruction of 

an intermediate surface model. 
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Figure 1.1: Basic scanning process of a building interior. 

Figure 1.1 shows the basic process of 3D scanning of building interiors. A scanner 

captures the cohesive data sets from multiple objects in the scanned scene and generates 

unified point cloud. The geometry is primarily captured in terms of 3D point coordinates (x y 

z). In addition to the spatial coordinates, color (r g b) can also be captured using a scanner 

mounted digital camera, that can capture multiple synchronized colored images, from which 

a panoramic image can be created depicting the unified colored scene. Finally the color 
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parameters (r g b) from the mapped pixels from this panoramic image are merged with the 

corresponding point coordinates (x y z) resulting in colored point cloud (x y z r g b). 

A uniform density data set can be captured if the distance between the scanner and the 

domain’s surfaces remains constant. A moving scanner can maintain this condition to some 

extent; however, their availability and subsequent registration inaccuracies limit their use. 

Recently, one such scanner has been proposed (Chen,  Kua,  Shum et al., 2010; Liu,  

Carlberg,  Chen et al., 2010), which is still in development phase. Thus, a stationary scanner 

is mainly used to capture large domains and generate point clouds with data inconsistencies. 

This approach requires effective scanning methodologies and robust data processing 

algorithms to compensate the data inconsistencies captured in the point clouds.  

There are three distinct scanning inconsistencies that are observed in the data set 

representing building interiors: (1) non-uniform data density, (2) region voids and (3) data 

cohesiveness arising from stationary scanning of dimensionally incoherent domain having 

multiple objects and overlapping geometries. 

The non-uniformity in the captured data arises due to the varying domain distance from 

the stationary scanner having fixed angular resolution. Here, the data density can be defined 

in terms of number of captured points per unit area. However, this definition largely depends 

on the surface orientations, which is often not known at the scanning stage. Thus, the data 

density is implicitly defined as the local distance between neighboring data points. The 

density can be represented as the inverse of Euclidean distance between two neighboring data 

points. As a stationary scanner captures the surface geometries using a fixed angular scanning 

resolution, a uniform data-density point cloud can only be obtained from a domain, whose 

surfaces lie at a comparable distance from the scanner. However, that is often not the case, 

and the captured data exhibits large variation in the data density based on the surface distance 

from the scanner. Such inconsistent data densities are especially observed in domains having 

large dimensional disparity (large length/width ratio) such as narrow pathways, long hallways 

and interiors with limited domain accessibility as shown in Figure 1.2, where the far-away 

regions are often captured with very sparse data or low data density as shown in the scanned 

data of a long hall-way in Figure 1.3. 
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Figure 1.2:  Narrow interior pathways and restricted accessibility scanning scenarios (a) Interior corridors 

(b) Slender over-bridge architecture, and, (c) Interior domains with restricted accessibility. 

 

Figure 1.3: Captured spatial data from an interior building pathway. 

The region voids are generated due to the presence of multiple objects and overlapping 

geometries that partially restricts the surface accessibility in the scanned scene. The scanning 

process fails to capture these occluded regions and generates corresponding data voids, which 

are often surrounded by discontinuous boundary of multiple objects. Such voids cannot be 

approximated from the surrounding data set as in traditional hole filling algorithms (Barequet 

and Kumar, 1997; Borodin,  Novotni and Klein, 2002; Wu,  Wang and Han, 2008) of isolated 

objects. Further, it becomes even more difficult to differentiate these voids if the occluded 

regions forming these voids are lying very close to each other and have similar surface 

geometric properties.  

In additions to these voids, the unified scanning process also combines the point clouds 

from multiple objects into a single, cohesive point cloud. So, specific information extraction 

pertaining to prominent geometric features, individual objects and diversified surfaces 

becomes a complex task as it requires the identification of a section of the point cloud 
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representing the desired feature to be extracted. This cohesive point cloud represents 

geometrically diverse surfaces ranging from large planar regions to intricate interior objects 

and single coherent approach cannot handle such shape diversity and geometric intricacy. 

Further, there are instances, where the adjacent scanned regions have similar geometries, but 

they belong to different objects. In this case, additional geometric parameters, computed from 

local data are also not able to form a reliable differentiating parameter to extract individual 

features. 

An effective scan planning methodology can play a significant role towards minimizing 

these scanning issues. However, in the absence of any specific guidelines, the shape 

capturing process largely depends on a scan planner’s skill alone.  

Even highly accurately captured data require effective information extraction algorithms 

to covert these uninformative point clouds into a usable format. However, the first step of any 

information extraction process is defining the term information, which varies considerably 

based on the applications in which the point cloud is to be used. The information may be 

defined as specific feature geometries, or key dimensional parameters. It may be defined as 

primitive shape approximation for simple shape representation, decimated data sets for 

improving computational efficiency, segmented data sets of individual objects or surfaces for 

creating geometric models or virtual scenes. Thus, individual information extraction 

processes are to be developed that can process the cohesive and uninformative data 

accordingly for the desired outcome. 

For many interior scanning applications such as layout extraction, object identification, 

feature extraction and pattern recognitions, a cumulative model of the cohesive point cloud is 

not helpful except in pure graphic applications (Adamson and Alexa, 2003; Kua,  Corso and 

Zakhor, 2012; Polleyfeys,  Koch,  Vergauwen et al., 1999), where the missing regions are 

very roughly filled. Some other applications (Budroni and Böhm, 2009; Kua,  Corso and 

Zakhor, 2012; Shih and Hu, 2007) extract simplified models through simple planar fitting 

and piecewise merging of simplified surfaces. Such models are good for simple 

representation of scanned scenes and are quite effective for visualizing and communicating 

the captured data; however, their potential in extracting individual geometric properties is far 

less formulaic, which limits their usability in vast variety of applications involving complex 

objects. As a complete geometric model is not required most of the times, it is essential to 
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generate specific information extraction tools that can convert the captured data into useful 

features. 

1.3 Research Objectives and Scope 

The objective of this thesis is to develop a framework for reverse engineering of building 

interior environments, where systematic scan planning and subsequent information extraction 

methodologies are developed. This framework will minimize the domain-specific scanning 

errors through effective scanning methodology and enable the designer to extract specific 

geometric information through the proposed tools. Further, as the captured data from large 

building interiors is often very large, it is desirable that the proposed post-processing and 

information extraction tools are robust and are applicable directly on the point clouds. In 

general, this thesis focuses on the two important stages of the overall reverse engineering 

process of building interiors: shape capture and information extraction.  

The first stage is dedicated to the development of a systematic scanning methodology 

that encompasses the domain’s dimensional characteristics and the restricted scanner’s 

accessibility and generates a consistent density point cloud. The proposed scan planning 

methodology provides a mathematical tool that defines the limited domain that can be 

scanned with desired data density using a stationary scanner. Thus, the number of scans 

required to cover the whole domain can be computed and the desired data density condition 

can be maintained.  

The second stage extracts specific information from the captured data. The specific 

requirements of the reverse engineering process involving building interiors are analyzed and 

the desirable features are identified. This study focuses on few specific features namely 

layout extraction and data segmentation and develops corresponding feature extraction tools 

to make the point cloud informative and usable.  

The layout extraction approach exploits the planarity of the data sets representing 

relatively flat regions such as floor, ceiling and walls using a planar alignment factor (PAF). 

This approach achieved data reduction by omitting the interior point clouds and uses only the 

planar (wall, floor, or ceiling) point cloud that defines the building blueprint. The approach is 

extended to formulate a data segmentation algorithm, where PAF is used to subdivide the 

cohesive point clouds into its individual segments using two hierarchical steps and simple 
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(planar) and intricate (interior) data clusters are extracted sequentially. The proposed 

hierarchal segmentation approach exploits the spatial conformity, local surface geometry and 

color information to form a reliable segmentation strategy. These proposed approaches work 

directly on point clouds and no explicit surface reconstruction is involved. A side-ratio 

constraint algorithm is also presented to identify discontinuous boundaries. 

 The proposed work will expand the existing literature with a consistent density scan 

planning methodology and three information extraction tools. The resultant dense point 

clouds can be directly used for visualization and accurate feature extraction. The direct point-

based, layout extraction methodology can be used to extract blueprints, area and volume 

calculations, and path planning. Further, the individual segmented data obtained through the 

proposed color-assisted, geometry driven methodology can be used for various applications 

such as pattern recognition, object identification, floor layout planning, individual geometric 

modeling and virtual reality environment reconstruction. Finally, the occluded boundaries 

can be used to refine extracted data clusters and improve scene understanding. 

1.4 Outline of the Thesis 

The literature review on 3D range scanning of building interiors, scanning inconsistencies, 

scan planning, layout extraction and data segmentations approaches is discussed in Chapter 2. 

This chapter also summarizes the common information extraction approaches involving large 

point clouds data sets and it differentiates them from building interiors applications. It 

presents the objectives of range scanning of building interiors along with specific 

requirements and the reason for choosing the specific features, for which the methodologies 

and tools are developed in this thesis. 

Chapter 3 introduces a scan planning methodology for a typical building interior 

environment.  The proposed approach establishes the need of uniform density point clouds 

and defines parameters for defining the data density. It discusses the effect of domain’s 

dimensional parameters and the scanner’s position on the captured data density and devises a 

robust scan planning methodology for generating consistent density point clouds. It also 

enlists a set of guidelines for scanning an interior building such that the occluded regions are 

minimised. The efficacy of the proposed approach is presented on diverse data sets 

representing long pathways, narrow exterior facets and occupied building interiors. 
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The following chapters exhibit three information extraction algorithms. The layout 

extraction algorithm, data segmentation algorithm and discontinuous boundary detection 

algorithm are presented in chapters 4, 5 and 6, respectively. All of these algorithms do not 

require the explicit reconstruction of intermediate surfaces and instead uses inherent 

characteristics of the point cloud such as spatial coherence, locally computed geometric 

parameters and color consistency evaluation.  

The layout extraction algorithm (chapter 4) identifies planar regions defining the floor 

plan by retaining the corresponding points using a planar alignment factor. The process omits 

the complex interior point cloud and the sliced wall data set is used to generate section 

layouts. Subsequently, the inherent color characteristics are exploited along with the planar 

alignment factor, spatial coherences and locally computed adaptive geometries to segment 

the cohesive point cloud using a color based and subsequently shape based hierarchical 

approach (chapter 5). The shape based hierarchy manages to effectively segment the point 

cloud from complex as well as simple planar regions. Lastly, a discontinuous boundary 

detection algorithm (chapter 6) is presented that helps in identifying the occluded region 

boundaries in the point cloud representing multiple overlapping objects. 

Chapter 7 takes a closer look at the proposed methodologies and demonstrated 

algorithms in terms of the probable applications. It demonstrates the usability of the resultant 

data in applications such as visualization for virtual reality, building conformance verification 

for as built as design, floor layout extraction for surveying, geometric parameter 

computation, navigation path planning and data segmentation for pattern recognition, object 

identification, and individual geometric modeling.  

Chapter 8 summarizes the scan planning methodology and information extraction 

algorithms. It also provides the limitations of the proposed system, and recommendations for 

improvement and future work. 
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CHAPTER 2 LITERATURE SURVEY 

2.1 Introduction 

During scanning of building interiors, the quality of the captured data largely depends on 

adaptability of the 3D scanning sub-system to the dimensional, positional and topological 

characteristics of the domain and its objects. A scanning sub-system controls the scanning 

parameters according to the domain characteristics in such a way that accurate data are 

captured. The state of this captured data ascertains the level of information that has been 

captured and can be extracted in subsequent data interpretation stages. Thus, at this stage, it is 

essential to optimize the 3D scanning sub-system by removing, controlling and minimizing 

scanning inconsistencies as much as possible so that the captured data are the true 

representation of the scanned domain. Subsequently, the information extraction sub-system 

uses data interpretation tools that transform the captured point cloud into desired geometric 

and spatial features. The development of these domain-specific data interpretation tools 

requires deep understanding of the domain characteristics in terms of its explicit needs, key 

features and subsequent applicability of the extracted information. 

This chapter discusses the related research work involved in various aspects of a these 

two sub-systems of the reverse engineering process involving building interiors. To better 

understand the idea behind the development of proposed techniques and specific contribution 

of this thesis, it is essential to review previous techniques used and their relative merits and 

demerits. Much of the work in range scanning and shape reconstruction process has been 

demonstrated on single, isolated objects or exterior building facets having no or manageable 

surface occlusions. Very few methods have used interior buildings as application domains 

and have limited their focus on manual scan planning, data simplification, shape 

approximation and scene visualization of the unified captured data. Most of these techniques 

rely on the development of accurate post-processing tools to get rid of the scanning 

limitation, instead of optimizing the scanning parameters. Interestingly, processed data for 

one application often makes it useless for another, thus, the post-processing must focus on 

data and information retention while extracting useful information for a given application. 
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Finally, most of these techniques use an intermediate surface model and are not directly 

applicable on point clouds, which is much better approach for large point clouds due to their 

large size. 

2.2 Shape Acquisition 

The spatial geometry may be acquired by a variety of techniques based on the capturing 

accuracy, scanning time and capturing mechanism of the scanner and the geometric 

characteristics of the domains. A detailed shape acquisition pipeline is compiled by 

Bernardini and Rusmeier (Bernardini and Rushmeier, 2002). Complex 3D shapes are 

commonly captured using contact or non-contact type acquisition systems. A contact-type 

system (e.g. a coordinate measuring machine (CMM)) uses a contact probe to capture surface 

details with high accuracy (Li and Gu, 2004). However, the size restrictions of the acquisition 

hardware, necessary physical contact of the probe with the scanning objects and significant 

scanning time limit its applicability to the small objects only.  

The non-contact shape acquisition systems (Li and Gu, 2004; Várady,  Martin and Cox, 

1997) on the other hand, can rapidly capture accurate surface details of very complex objects 

due to its fast speed. Moreover, no physical contact with the scanning object makes it 

especially suitable for historical artefacts and delicate objects. This technique emits some sort 

of light or radiation and detects its reflection from the surfaces in the scanned scene to 

capture their shape in terms of a set of spatial data points called a point cloud.  

Triangulation based scanners shine a laser on the subject and capture its relative position 

on the object surface in the camera's field of view (Mayer, 1999).  The actual position of the 

surface point in space is determined by triangulating the position of the emitter, camera, and 

the laser's position in camera's field of view. However, the essential condition is that the 

surface must be visible in the camera's point of view at all times that requires the laser and 

camera to be quite close the object surface, making it impractical to scan large objects. Such 

triangulation-based range finders can scan isolated objects within the limited range and, are 

not suitable for scanning large structures and complex scenes. 

White light scanning methods (Ailing,  Chunhui,  Zhuangde et al., 2008; Fleischer,  

Windecker and Tiziani, 2001) also work on triangulation principle but use white light fringes 

projected on the object being scanned. These fringes form contours on the object, which are 
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captured by two cameras from different viewing directions. This type of scanning method 

requires placing the object in converging field of view of the two cameras, which restricts the 

size of the object that can be scanned. Thus, large structures such as building interiors can’t 

be captured with this scanner. Their suitability for large structures is also limited due to their 

lengthy setup time, controlled lighting requirements and structured measurement 

environments.  

Time-of-flight based range scanners on the other hand, can capture geometries by timing 

the round-trip of a light pulse and thus can captures far-away geometries up to few hundred 

meters. The accuracy of these captured data is governed by the precision with which the time 

can be recorded. Other large scale laser scanners measure the surface position by comparing 

the phase shifts between the reference and the reflected signals of the modulated light. 

Modern day time-of-flight scanners can compensate for data distortion due to small amounts 

of vibrations (Blais,  Picard and Godin, 2004)  and are capable of capturing 10,000~100,000 

points every second using system of rotating mirrors. Thus, very large domains can be 

captured within seconds or minutes based on the required resolution. The fast acquisition 

speed has helped the 3D scanning process to expand its application to large sites for reverse 

engineering, infrastructure renewal, as-built drawing generation of large structures, industrial 

plants, monuments, documentation of historical and cultural sites, site modeling, feature 

extraction, quantity surveying, freeway redesigning, creating geographic information system 

(GIS) maps, and virtual reality modeling etc.   

Lately, high quality digital photogrammetry (Guarnieri,  Vettore and Remondino, 2004) 

has also emerged as a viable option to generate 3D models from multiple digital images 

captured from different directions. It has been widely demonstrated on satellite, aerial and 

terrestrial images for applications involving cultural heritage (El-Hakim,  Gonzo,  Voltolini et 

al., 2007; Gruen,  Remondino and Zhang, 2004), urban planning and forensic investigations 

(Gonzalez-Aguilera and Gomez-Lahoz, 2009). In all these applications, visualization is more 

important than geometric accuracy. Photogrammetry is an effective option in capturing large 

3D domain if multiple images can be taken from far-off distance covering the whole domain 

in each shot for effective merging, which can be easily done for building exteriors (Boehler 

and Marbs, 2004). Alternatively, it can be used to capture specific objects such as statues and 

small intricate shapes through multiple images taken from converging directions. In case of 

building interiors, the approach can work for generating approximate visual models, but will 
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require a large number of images which is limited by time or location constraints. Moreover, 

the process of converting 2D images to 3D data sets requires typical photogrammetric 

pipelines based on sensor calibration, feature characteristics, image orientation and surface 

measurement techniques and it does not straightaway generate 3D data set unlike time-of-

flight and phase shift scanners.  

Several other methods can also extract 3D shapes through extraction of iso-surfaces 

from CAT scans (Rocchini,  Cignoni,  Montani et al., 1999; Sun,  Tian,  Wu et al., 2010), 

shape carving of video streams (Polleyfeys,  Koch,  Vergauwen et al., 1999) and shape 

extractions from passive silhouettes (Zheng, 1994), however, their capturing accuracies and 

modeling approaches limits their applicability to large domains such as building interiors.  

In conclusion, the non-contact based range scanners working on the time-of-flight or 

phase-shift principles (Callieri,  Cignoni,  Dellepiane et al., 2009; Schuon,  Theobalt,  Davis 

et al., 2008) exhibit fast shape acquisition, higher geometric precision and direct generation 

of 3D point clouds and hence, are commonly used in a typical shape acquisition pipeline of 

building interiors. 

This diverse spectrum of applications uses the captured data in their own unique way 

according to their explicit set of requirements. Unfortunately, the immense point clouds 

acquired by these non-contact range scanners include random scanning errors arising from 

sensor accuracy and the object's surface properties and other systematic scanning errors, 

originating from domain-specific parameters (domain size, presence of multiple objects, 

relative location of objects and scanner). The random errors introduce noise, erroneous 

outliers, missing regions, and sampling inconsistencies in the captured data sets. These errors 

can be minimized with improved hardware, but small amount of such errors are ubiquitous in 

the captured data. Additionally, systematic errors are responsible for generating inconsistent 

data density, large data voids and occluded boundaries due to domain-specific characteristics 

such as multiple overlapping objects and limited scanner positions.  

These errors restrict the designer's ability to extract useful information from the point 

cloud. Thus, it is essential to anticipate these systematic errors and to understand the domain-

specific requirements so that the scanning process is planned to minimize the scanning 

inconsistencies and the captured data can facilitate accurate information extraction from point 

clouds and not through approximation.  
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2.3 Scanning Inconsistencies 

In the context of interior building scanning applications, a stationary scanner is often used 

that projects a laser beam onto an angled rotating mirror, which reflects the beam to the 

scanned scene. The whole scanning unit also rotates around the vertical axis and thus 

captures everything in its whole 360° in its horizontal plane and about 320° in the vertical 

plane due to the position of the scanner. A stationary scanner often captures the spatial 

geometry using a horizontal scanning resolution (α), which is fixed for the whole horizontal 

domain. Thus, as the region is located away from the scanner, the distance between two 

consecutive points reduces and only sparse data density can be captured in this region. This 

condition is highly prevalent in interior domains having large dimensional disparity. The 

accuracy is lost due to two primary reasons (1) varying density that decreases as the distance 

of the surfaces from the scanner increases and (2) increased span of the missing data due to 

occluded objects at large angular obliquity. e.g. in Figure 2.1, a stationary scanner is shown 

that captures a point cloud from multiple objects in the scanned scene, as can be seen, with 

the fixed horizontal scanning resolution (α), the spacing between the captured data points 

increases away from the scanner. Further, the size of missing wall geometries (A' and B') also 

increases for the same sized overlapping objects (A and B), lying at varying distances from 

the scanner.  

 

Figure 2.1: Scanning scenario of multiple objects with a single stationary scanner (top view). 

Such scanning inconsistencies are often dealt with in the post-processing stage, where 

the erroneous outliers are eliminated, missing data is approximated and inconsistent density 

is interpolated as compiled in the following subsections. 
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2.3.1 Varying data density  

A density variation in the data set is the result of erroneous outliers or under-sampled data 

due to the scanning mechanism of a stationary scanner. An outlier is defined as an 

“observation that deviates so much from other observations so as to arouse suspicion that it 

was generated by a different mechanism” (Hawkins, 1980). It often represents false data 

point in Cartesian space due to overlapped signal from multiple surfaces. In case of large, 

occupied building interiors with multiple objects in the scanned scenes, outliers are often 

recorded along the edges of occluded objects along the scanning rays (Kua,  Corso and 

Zakhor, 2012) due to partially reflected signals from the foreground and background objects. 

The under-sampling on the other hand is a systematic error of a stationary scanner, due to 

which the far-away surfaces are captured with lower data density and can be controlled with 

effective scan planning.  

Outliers are generally identified and removed during post processing stage using 

distance (Knorr,  Ng and Tucakov, 2000) or density (Breunig,  Kriegel,  Ng et al., 2000; 

Sotoodeh, 2006) characteristics of the neighboring data points or are extracted as by-product 

of data clustering process (Jain,  Murty and Flynn, 1999; Rousseeuw and Leroy, 1987; 

Sotoodeh, 2007).  

Knorr (Knorr,  Ng and Tucakov, 2000) used a distance-based evaluation approach to 

identify a point as an outlier if at least a fraction ‘b’ of the data set ‘P’ is further away than a 

pre-defined distance ‘r’. This method is dependent upon the selection of these parameters and 

demands higher computational cost (O(n3)) for large point clouds. The density based 

approaches (Breunig,  Kriegel,  Ng et al., 2000; Sotoodeh, 2006) on the other hand, identify 

outliers based on user defined MinPts around the point. A point with a drastically different 

value of MinPts than its surroundings is more likely to be an outlier. However, the selection 

of MinPts is a complex task for point cloud data set with vastly varying data densities, where 

a real surface point may be identified as outlier due to the sparse data density in that region. 

Alternatively, the clustering approaches (Filin, 2002; Jain,  Murty and Flynn, 1999; 

Rousseeuw and Leroy, 1987; Sotoodeh, 2007) use segmentation to group clusters having 

similar characteristics, and identify outliers as points that are not part of any cluster. A. K. 

Jain has recently compiled an extensive report (Jain, 2010) an overview of clustering, 

discussed major challenges of designing clustering algorithms and enlisted emerging research 
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trends in this field including semi-supervised clustering, ensemble clustering, simultaneous 

feature selection clustering and large scale data clustering. 

However, the performance of all these post-processed outlier detection methodologies is 

largely dependent on the initial characteristics of the scanned data and the local variation of 

point density affects the accuracy of the extracted outliers. Thus, an effective scanning 

methodology needs to be adopted that generates an initial point set with consistent data 

density, which minimizes the need of subsequent post-processing strategies or increase their 

reliability.  

In contrast, under-sampled data sets or voids represent regions with low point cloud 

density or missing data, respectively. Under-sampled data sets often lead to inaccuracies in 

extracting the details of individual features. Most existing post processing techniques 

(Barequet and Kumar, 1997; Carr,  Fright and Beatson, 1997; Curless and Levoy, 1996; 

Davis,  Marschner,  M.Garr et al., 2002; Liepa, 2003; Nooruddin and Turk, 2003; Weyrich,  

Pauly,  Heinzle et al., 2004) focus on void filling strategies and compensate for under-

sampling by interpolating the rough surrounding surface to increase data density and fill the 

missing gaps with synthetic data points and do not work directly on the point cloud data. For 

large objects and spaces, the regions with missing data may become significant because huge 

occlusions can exist between neighboring structures or discontinuous surfaces. The 

traditional void filling approaches are based on triangular meshes (Barequet and Kumar, 

1997; Davis,  Marschner,  M.Garr et al., 2002; Nooruddin and Turk, 2003) or volumetric 

implicit surfaces (Carr,  Fright and Beatson, 1997; Curless and Levoy, 1996; Liepa, 2003; 

Weyrich,  Pauly,  Heinzle et al., 2004) and extending these approaches to very large data sets 

with multiple holes and density variations often leads to topological issues due to unknown 

shape semantics and unguided neighborhood connectivity of disjointed regions. Moreover, it 

is computationally very expensive to use these techniques on large volume scanned data (106 

to 108 data points) representing building interiors.  

Some recent researchers (Chen,  Kua,  Shum et al., 2010; Liu,  Carlberg,  Chen et al., 

2010; Ohno,  Kawahara and Tadokoro, 2009) have proposed innovative scanning 

mechanisms that reduces the distance dependency of the surfaces from the scanner. Prof. 

Zokhor’s research group (Chen,  Kua,  Shum et al., 2010; Kua,  Corso and Zakhor, 2012; 

Liu,  Carlberg,  Chen et al., 2010) at University of California, Berkeley is developing a back 

pack scanner that can generate the consistent density data sets from building interiors as this 
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scanner captures the surrounding data from nearest surfaces while sitting on the back of a 

moving person. This back pack scanner is focused mainly on visualization applications, 

where the simplified geometry is superimposed with their corresponding images. Hence, 

geometric details of interior space are not captured accurately. Moreover, the Global Position 

System (GPS) locations used to register multiple scans are to be mapped to known 

coordinates and require robust and accurate geometric accuracies that the present GPS 

systems lack, especially in interior environments. Another researcher group (Ohno,  

Kawahara and Tadokoro, 2009) has proposed a scanner that controls the scanning parameters 

based on the initial guess of the shapes to capture dense point clouds from complex objects. It 

controls the angle and the angular velocity of the pan-tilt mechanism and thereby captured 

higher data density from complex regions. This time consuming process requires multiple 

scanning of the domain, recursively computing the captured density and re-scanning the 

regions with enhanced data density.  The process might not work in environments, where the 

domain can’t be isolated for such a long time. Both these scanners are at their initial 

development stages and are not commercially available. Therefore, the domains are mainly 

captured using stationary scanners, which necessitates an effective scanning methodology 

that captures maximum surface geometry and minimizes subsequent data approximations 

must be devised in order to ensure shape capturing accuracy. 

A consistent data density is essential to support direct point based modeling schemes 

(Alexa,  Behr,  Cohen-Or et al., 2001; Linsen, 2001) for representing scanned surfaces in 

both modeling (Alexa,  Behr,  Cohen-Or et al., 2003; Alexa,  Behr,  Cohen-Or et al., 2001; 

Fleishman,  Cohen-Or,  Alexa et al., 2003; Guennebaud and Gross, 2007) and computer 

graphic applications (Adamson and Alexa, 2003; Amenta and Kil, 2004; Duranleau and 

Poulin, 2006; Kalaiah and Vashney, 2003). A direct point based visualization approach is 

very helpful in accessing the quality and relevance of the captured data without generating 

intermediate surfaces, which are normally not required in scanning scenario of building 

structures involving multiple objects with varying feature sizes.  

2.3.2 Missing data  

Missing data are a common error in all 3D scanning applications. These are normally 

encountered due to the inconsistent surface properties. However, in case of occupied building 
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interiors, the size of the missing data is large and it often corresponds to the occluded 

geometries of multiple objects and their relative locations from the scanner.  

Most applications involving isolated objects approximate the missing data through post-

processing using hole filling strategies, which are primarily based on surface approximation 

of intermediate triangular meshes (Barequet and Kumar, 1997; Davis,  Marschner,  M.Garr et 

al., 2002; Nooruddin and Turk, 2003) or volumetric implicit surfaces (Carr,  Fright and 

Beatson, 1997; Curless and Levoy, 1996; Weyrich,  Pauly,  Heinzle et al., 2004). Generating 

an intermediate meshed model from very large and unified point clouds is not viable, and is 

not required, as it is essential to segregate individual data sets representing multiple objects in 

order to extract desired geometric features or individual surface models. Multiple range scans 

can be registered (Bornaz,  Lingua and Rinaudo, 2003; Hu,  Zha and Zhang, 2006) to capture 

missing regions and large domains. However, it requires meticulous scan planning that 

depends on the planner's skill level and no explicit guidelines are available that can assist in 

scanning large interior domains.  

Thus, a systematic shape acquisition pipeline must be devised that captures maximum 

surface geometry and minimizes subsequent data approximations in order to extract accurate 

shape information in various down-stream applications. An explicit set of scanning 

guidelines will assist the designer to plan an effective scanning strategy that generates point 

clouds with desired set of data characteristics in terms of point cloud density and missing 

occlusions. 

2.4 Post-processing and Information Extraction 

Post-processing operations adapt the captured point clouds to the application at hand for 

specific information extraction. Based on the application, these operations may aim at data 

simplification, feature extraction, data segmentation, geometric model reconstruction, or 

virtual reality modeling. Each post-processing operation treats the captured data in its own 

unique way in order to extract the desired output from the point cloud, e.g. visualization 

applications simplify the captured data to minimize the computation cost for fast display, 

feature extraction applications focus on individual attributes, pattern recognition applications 

aims to identify individual objects through segmentation, robotic path-planning applications 

do proximity analysis to find unrestricted pathways, and virtual reality modeling applications 
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attempts to reconstruct the scanned environments. It is essential to identify the application 

specific needs in order to devise post-processing methodologies for that specific application. 

The following sub-section describes some of these needs and their current research status for 

applications involving building interior.  

2.4.1 Point cloud simplification 

The shape acquisition mechanism of a typical range scanner cannot differentiate surface 

complexities of geometrically diverse objects lying at similar distances from the scanner. 

Such equidistant objects are captured with comparable data density. The scanner's parameters 

are often set in such a way to capture high density data sets to ensure that sufficient surface 

geometry from complex shapes is recorded. This leads to over-sampled data points 

representing simple surfaces such as planes. The high density data points for such simple 

surfaces are to be simplified to make it usable for most successive applications.  

Most simplification algorithms rely on some sort of initial shape assessment to devise a 

reduction methodology. These simplification methodologies attempt to retain this initial 

approximated shape during data reduction process. Schroeder et al. (Schroeder,  Zarge and 

Lorensen, 1992) simplified meshes by geometric and topological characterization of 

polygonal models locally. This approach removes vertices based on their deviation from the 

local average plane. Vertex removal and re-triangulation can generate topologically 

inconsistent models. Hoppe et al. (Hoppe,  DeRose,  Duchamp et al., 1992) used a complex 

energy minimization approach that minimizes the signed geometric distance of the generated 

surface from the point cloud to create a topologically optimized triangulated model that 

works well for uniform and noise free data. Day et al. (Dey,  Giesen,  Leekha et al., 2001) 

presented a point cloud simplification method with a user-controlled density guarantee which 

detects redundancy in the input point cloud with the help of the Cocone algorithm and local 

feature size concepts (Amenta,  Choi,  Dey et al., 2000). The approach is quite effective, but 

only uses local curvatures as a driving factor for data decimation.  Pierre and others (Pierre,  

Giuliana,  Craig et al., 2007) have compiled a detailed survey on the re-meshing of surfaces 

for graphical applications. In general, polygonal simplification requires an initial triangulated 

surface model to start the decimation process, which is a complex and error-prone process of 

generating a void free triangulated model from point clouds with large voids due to 

occlusions. 
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An adaptive triangulation (Akkouche and Galin, 2001; Araújo and Jorge, 2005) of 

implicit surfaces can extract a decimated, smooth and water tight triangulated model by 

optimizing the sizes of the triangles. However, such a model approximates the underlying 

implicit surface model only and not the original point cloud data set. This method is also 

computationally expensive, especially for large spatial data such as building scans. 

Direct point cloud simplification, on the other hand, attempts to reduce the number of 

data points without generating any intermediate surface. Lee et al. (Lee,  Woo and Suk, 

2001) presented a normal deviation driven, octree-based spatial subdivision strategy to 

extract a representative 3D data point from each cell for data simplification. However, it 

requires a structured and noise free point cloud for simplification. Another height decision 

method (Chang and Chang, 2002) was used to remove points from the non-contour part of 

the data set with a limited applicability for non-complex contoured surfaces. Pauly and others 

(Pauly,  Gross and Kobbalt, 2002; Pauly,  Kobbalt and Gross, 2004) modified the mesh-based 

simplification theory to achieve point-based simplification for point-based graphics and 

multi-resolution surface modeling using the moving least square (MLS)  method and iterative 

simplification process. This method re-computes the MLS surface after each point removal 

and is computationally expensive. Song (Song and Feng, 2008) proposed an approach of 

progressively removing the non-boundary points. This algorithm is also computationally 

expensive and cannot be extended to objects that have no distinct boundaries. The 

applicability of direct point cloud simplification method is advantageous but it requires 

complex, recursive computation, which is often expensive.  

Most simplification approaches on large data sets have been demonstrated on exterior 

Airborne data set (ADS ) where the data decimation is achieved as a by-product of the local 

surface fitting (Alharthy and Berthel, 2004; Boulaassal,  Landes,  Grussenmeyer et al., 2007) 

or user-defined feature extraction process (Pu and Vosselman, 2006; 2007; Vosselman,  

Gorte,  Sithole et al., 2004). In the first approach, the scanned data sets are approximated by 

multiple local surfaces with relatively simple geometry such as planes and the points with 

very low deviations from these locally fitted planes are removed. This approach has been 

extensively used in airborne data sets (Rottensteiner, 2003; Rottensteiner and Briese, 2002; 

Sampath and Shan, 2010; Verma,  Kumar and Hsu, 2006; Vosselman and Dijkman, 2001; 

Zhou and Neumann, 2008) where multiple regions such as grounds, walls and roofs are 

simplified and are approximated through local plane fitting. The second set of algorithms 
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simplify a point cloud by removing the non-feature data points while retaining the data points 

representing a specific feature such as roofs (Vosselman,  Gorte,  Sithole et al., 2004), walls, 

doors (Pu and Vosselman, 2006) and windows (Pu and Vosselman, 2007). The later approach 

focuses on the segmented data regions representing the desired feature and simplifies the data 

set by removing non-feature data points. However, as the primary objective of these 

processes is surface modeling and not explicit data simplification, thus, it often over-

simplifies the scanned geometry, especially the regions with complex geometries.  

A few researchers (Bahmutov,  Popescu and Mudure, 2006; Barnea,  Filin and 

Alchanatis, 2007; Budroni and Böhm, 2009; Wang and Luebke, 2003) have demonstrated the 

simplification strategies on triangulated models, which are generated from interior point 

cloud data. A simplified triangulation model (Wang and Luebke, 2003)was used that 

integrates the scanned data using local normal and confidence-level semantics along with 

weighted color and texture coordinates. Such a cumulative triangulated model can enhance 

the overall visualization of the scanned scene, but it cannot differentiate geometric diversity 

of individual objects in the scene. Another similar method (Bahmutov,  Popescu and Mudure, 

2006) had demonstrated a rapid simplification methodology for large interiors using simple 

shape semantics and registered textures, e.g. an approximated rectangular cuboids with 

mapped textures can be used to represent long pathways in building interiors. This approach 

generates visually appealing results with limited geometric accuracy. A plane sweep 

algorithm based method (Budroni and Böhm, 2009) recognizes the planar structures of a 

room in the vertical and horizontal directions, sequentially. Thus, points representing walls, 

ceiling and floor are segmented and are approximated by simplified planar data sets. The 

result generated simplified surface models of piece-wise planar data sets.  

The simplification of large, complex domains requires an adaptive approach that does 

not over simplify point clouds and retains multiple features in the scanned scene. Most 

simplification methods demonstrated on building interiors rely on identification of planar 

regions in the point clouds and tend to over-simplify the scanned geometries and thus are not 

suitable for occupied building interiors which include both planar (walls, floor and ceiling) 

and complex (freeform objects) geometries, simultaneously.  
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2.4.2 Feature extraction 

The point cloud data set of occupied building interiors represents unified point clouds from 

multiple objects that involve wide range of features. It is essential to transform this raw data 

into some usable format through specific feature extraction or segmentation. Such post-

processing of data is governed by characteristics of the scanned scene and the subsequent 

usability of the captured data.  

Specific feature extraction approaches often rely on a priori knowledge of scanned 

features and segregation of corresponding point clouds. A semantic knowledge management 

system (Duan,  Cruz and Nicolle, 2010) was proposed to classify the building elements for 

architectural reconstruction based on their geometry (points, planes) and building elements 

(walls, floors, ceilings, door and windows). Rusu et al. (Rusu,  Marton,  Blodow et al., 2008) 

presented a similar object/feature classification in a typical household (kitchen) environment. 

They also generated methodologies to extract and model these specific features from the 

corresponding point cloud data sets for virtual reality reconstruction. Similar context-based 

methodologies are being developed by Dr. Huber's group at the Robotic Institute of Carnegie 

Mellon University (Huber,  Akinci,  Tang et al., 2010; Oliver and Huber, 2010; Xiong and 

Huber, 2010), which aims to generate semantic 3D models of indoor environments. The 

methodology requires a priori knowledge of the building features and shape semantics. 

However, the type of feature to be extracted depends largely on the application of the 

extracted data and can be anything from floor plan layouts, doors, windows, wall features, 

and interior objects of the 3D-scanning environments.  

Automated floor plan extraction has been extensively demonstrated on 2D aerial images 

of 3D building exteriors. An approximate 3D shape extraction approach has been 

demonstrated by combining the CCD images and sparse laser scanning samples (Hongjian 

and Shiqiang, 2006). It uses the Laplacian sharpening approach that processes the CCD 

images with Laplacian filter to extract 2D edges and determines the building height from 

sparse aerial data points. The approach can only extract primitive shapes of building 

exteriors. Another improved approach of building feature extraction from terrestrial laser data 

(Pu and Vosselman, 2006) uses the segmentation approach with different feature constraints 

based on the data segments, which may not be suitable for domains with no predefined 

constraints. A geotechnical monitoring framework (Su,  Hashash and Liu, 2006) was 
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presented for an urban excavation application. This paper describes the planning, execution, 

and data processing phases of collecting accurate construction information with an 

unprecedented level of detail on the as-built site conditions. The usability of 3D range images 

is extended to interior design applications in a feasibility study (Shih and Hu, 2007). In this 

paper, the captured range images are mainly utilized for visual inspection only and a 

feasibility study is proposed for applications involving design modeling, production drawing, 

construction monitoring and follow-up interior maintenance and management. However, the 

feasibility study needs to be demonstrated on real applications that require the development 

of robust geometric data extractions strategies by solving issues such as identifications of 

occluded geometries and voids, establishing individual feature correspondence and 

segmentation of cohesive data. 

Interior floor plan has been a well studied field in robotics navigation research. In which 

case, a robot-mounted laser scanner is often used to generate floor plans. This presents an 

additional challenge of addressing robot localization. Moreover, the extracted layouts are not 

significantly accurate to be used as a building layout.  Recently, floor plans are extracted 

from 3D models created from reverse engineering of point clouds. Most of these algorithms 

rely on planar region approximation and region growth approach (Hähnel,  Burgard and 

Thrun, 2003), random sample consensus algorithm (Schnabel,  Wahl and Klein, 2007), 

traditional Hough transforms (Tarsha-Kurdi,  Landes and Grussenmeyer, 2007) and plan-

sweep search algorithms (Budroni and Böhm, 2009; Johnston and Zakhor, 2008). Hähnel’s 

approach (Hähnel,  Burgard and Thrun, 2003) identifies planar regions by approximating a 

plane through random set of points by minimizing the sum of the squared distances between 

the points and the plane, whereas the plane normal is given by the eigenvector. Subsequently, 

neighboring planes are merged together into large local planes. The random sample 

consensus (RANSAC) paradigm (Schnabel,  Wahl and Klein, 2007) is used for fitting 

parametric model to the data. A candidate plane is fitted through three points and testing the 

remaining points to compute its planar score. The plane is identified based on a threshold 

score and its converged trials.  Improved Hough Transforms (Vosselman,  Gorte,  Sithole et 

al., 2004) use surface normal to speed up the planar surface detection process, where the 

plane parameters are mapped to the individual points and their normals in space, thereby 

reducing the risk of detecting false data planes. The plane sweep algorithm (Budroni and 

Böhm, 2009) identifies planar regions by sweeping a predetermined plane and computing a 
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distance threshold of points from the sweeping plane. Most of these methods solve the floor 

plan problems as a sub-part of a more complex problem, which is often computationally 

expensive due to the huge size of the point cloud. 

A relatively simple layout extraction approach works on the partial scanned data 

captured from a single horizontal slice of the domain. A piece-wise linear model is fitted to 

this data set and layouts are extracted using traditional iterative point fitting (Duda,  Hart and 

Stork, 2001), split and merge (Pavlidis and Horowitz, 1974) and other similar, 

computationally inexpensive approaches (Nguyen,  Gächter and Martinelli, 2007). However, 

these approaches are unable to successfully fill the gaps created during scanning due to 

occlusions. Thus, it will be useful to generate direct point based approaches and extract 

layouts from sliced data sets from 3D point cloud data sets.  

2.4.3 Point cloud segmentation 

One of the most important aspects of automatic and semi-automatic generation of 3D and 

building information models (BIM) from point clouds is the fragmentation of the data into 

manageable clusters. The convenience of segmenting such small clusters helps in reducing 

the computational cost and simplifying the scanned scene besides extracting specific 

geometric information. Such segmentation is even more crucial for cases representing large 

point clouds of building interiors.  

Such large point clouds are often segmented by approximating the identified regions into 

planar surfaces. These surface classifications have been extensively demonstrated on LiDAR 

data for building model extraction (Elberink and Vosselman, 2009; Forlani,  Nardinocchi,  

Scaioni et al., 2006; Kim and Shan, 2011), point cloud registration (Behan, 2000), specific 

pattern or feature extraction (Alharthy and Bethel, 2002),  terrain segmentation (Arefi and 

Hahn, 2005), and structure recognition (Vosselman,  Gorte,  Sithole et al., 2004). Most of 

these algorithms focus on model reconstruction from LiDAR data in two main steps: (1) 

separating ground and non-ground points (Zhang et al., 2003; Shan and Sampath, 2005) to 

simplify the point cloud and (2) processing non-ground points to determine planar roof 

segments (Rottensteiner, 2003; Tarsha-Kurdi,  Landes and Grussenmeyer, 2007; Vosselman,  

Gorte,  Sithole et al., 2004). During this reconstruction process, the data are segmented as an 

essential by-product and not the main objective of this virtual model reconstruction process.  
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The segmentation-based simplification of exterior point clouds lies in the fact that the 

unimportant points (ground points) are equidistant from the airborne scanner and thus their 

depth analysis often forms the basis of a reliable classification strategy. Moreover, such 

segmentation strategies operate under the assumption that the scanned surfaces are 

unobstructed. In an indoor environment, the surfaces are often obstructed by multiple objects 

in the scanned scenes. Additionally, the varying distance of these surfaces from the scanner 

generated non-uniform data sets, which increases the segmentation complexities.  

Relatively few segmentation methods have been applied successfully to range scans of 

building interiors. A hybrid approach (Wolfart,  Sequeira,  Ng et al., 1999) was proposed for 

surface segmentation of the triangulated interiors through data re-sampling, local surface 

fitting, and discontinuous edge detection to solve the problem of segmenting building 

interiors. Although the technique produced satisfactory results for large planar regions such 

as walls and cabinets, the algorithm could not accurately cluster points that lie on small 

objects with freeform shapes due to inadequate seed points.  To address this problem, 

Rabbani (Rabbani,  Heuvel and Vosselman, 2006) used normal residuals to identify reliable 

seed points in the cloud and a normal deviation-based smoothness parameter for region 

growing.  The method was able to successfully extract unique clusters from a scanned 

industrial environment. The computed geometric parameters were, however, not highly 

reliable and prone to significant errors in overlapping regions which lead to data over-

segmentation. In contrast, a plane-sweep algorithm (Budroni and Böhm, 2009) was proposed 

for segmenting 3D point clouds into planar clusters. The relative advantage of this approach 

is that it works directly on sampled points instead of tessellated surface-based approaches 

(Rabbani,  Heuvel and Vosselman, 2006; Wolfart,  Sequeira,  Ng et al., 1999).  Although 

effective, the technique omits all non-planar data points and is an approximation rather than 

the segmentation technique. Therefore, it cannot directly be used to segment building 

interiors that contain desks, chairs and personal items. 

Many researchers have approximated the scanned data into its semantics features, such 

as walls, windows, or doors using planar primitives. Stamos (Stamos,  Gene,  Wolberg et al., 

2006) used an adaptive segmentation approach to identify such planar regions and model 

them with planes whereas the non-planar regions were modeled by meshed surfaces. Such an 

adaptive approach can handle planar and complex regions, alike and reduces modeling 

complexity considerably. However, it first generates the tessellated model and then simplifies 
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it to generate the adaptive model. Similarly, a prior knowledge regarding the feature sizes, 

positions, and topologies is beneficial in recognizing specific elements (doors, windows, roof 

and walls) in a point cloud (Pu and Vosselman, 2009; Vosselman,  Gorte,  Sithole et al., 

2004), which can help in differentiating primitive shapes, such as planes, cylinders and 

spheres by means of non interactive methods to detect clusters. Other strategies segment 

planes using the RANSAC algorithm (Boulaassal,  Landes,  Grussenmeyer et al., 2007). 

Although these approaches have been demonstrated on exterior facets but the methodology is 

applicable to interior environments as well and need further investigations. 

In building interior environments, in addition to structural elements, the space is often 

occupied by furniture and other objects, which create large occlusions during scanning. These 

interior objects influence the detection of major structural elements such as walls, floor and 

ceiling. (Dell’Acqua and Fisher, 2002) showed a technique to reconstruct the shape of planar 

surfaces behind arbitrary occluding surfaces by combining small planar regions with similar 

geometric properties. An edge based planar reconstruction methodology (Castellani,  

Livatino and Fisher, 2002) was also proposed by combining occluded edges of the interior 

objects. Wang and Oliveira (Wang and Oliveira, 2007) proposed a smooth surface 

reconstruction methodology that was able to fill small occlusions in relatively complex areas. 

Recently, a labelling and merging algorithm (Oliver and Huber, 2011) was presented, in 

which the regions are identified, labelled and are grouped together to create hole free planar 

regions such as walls. The approaches have been demonstrated on relatively less cluttered 

data sets involving small objects. Moreover, such methods can extract only primitive surfaces 

from the point clouds.  

Complex surface extraction methods from range data of large building interiors often 

exploit known shape or size semantics to generate cumulative building models. An automatic 

data segmentation and geometric feature extraction algorithm (Huang and Menq, 2001) was 

presented. Wang and Luebke (Wang and Luebke, 2003) generated triangulated models of the 

scanned data by using normal and confidence-level semantics along with weighted color and 

texture coordinates. A cumulative triangulated model can enhance the overall visualization of 

the scanned scene, but it does not permit surface segmentation and reconstruction of 

individual objects in the scene.  Bahmutov et al (Bahmutov,  Popescu and Mudure, 2006) 

demonstrated a rapid building reconstruction method for large structures by using shape 

semantics such as rectangular cuboids for pathways walls. The super-positioning of 
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registered color information on this sparse depth map can generates photorealistic models 

with over-simplified geometries (Grazzini,  Prasad and Dillard, 2010; Xu,  Ye and Fan, 2002; 

Zhang,  Yang,  Liu et al., 2008). These over-simplifications often lose critical geometric 

details. It is, therefore, difficult to use a single algorithm that simultaneously handles simple 

planar shapes and complex, organically shaped objects. Furthermore, most geometry based 

segmentation methods require intermediate surface generation (Wolfart,  Sequeira,  Ng et al., 

1999) or geometric parameter computation (Rabbani,  Heuvel and Vosselman, 2006) which 

are often not reliable if the scanned scene contains multiple overlapping objects.  

Color based segmentation methodologies (Cheng,  Jiang,  Sun et al., 2001; Debevec,  

Taylor and Malik, 1996; Yang,  Kim,  Toh et al., 2010; Zhang,  Yang,  Liu et al., 2008) have 

been extensively used for images. With the availability of colored point clouds from modern 

day 3D-scanners, these approaches can be exploited to segment colored point clouds as well.  

A color-based registration methodology (Xu,  Ye and Fan, 2002) was demonstrated for 

isolated 3D-objects, where the objects were scanned and the color parameters were used to 

register multiple views. Wang and Luebke (Wang and Luebke, 2003) presented an integrated 

methodology that combines color and 3D distance fields. This approach generates a color 

spatial model by combining 3D Euclidean distances and 2D range images. Although they 

used the colored range data to generate cohesive interior scenes, the mapped color 

information can be exploited to form an effective segmentation strategy. Zhan, Liang and 

Xiao (Zhan,  Liang and Xiao, 2009)proposed such a color-based segmentation strategy (color 

based segmentation) for clustering the scanned data of a heritage site and reiterated the 

importance of using color as the segmentation parameter, especially for areas with similar 

geometric properties. However, color cannot be used as a sole differentiating parameter for 

formulating robust segmentation strategies. This is partly due to the fact that the physical 

properties of the scanned surfaces and irregular lighting condition generate varying shades of 

single colors. Recently, an illumination-invariant color space (Yang,  Kim,  Toh et al., 2010) 

is proposed which can be effectively used to formulate robust color-based segmentation 

strategies. Further, combining the geometric and color based parameters can facilitate 

effective segmentation of colored point clouds  



29 

 

2.5 Concluding Remarks 

Over the last decade, laser sensors have become more adaptable to be used in capturing large, 

complex structures of building interiors. It has emerged as an accurate and very fast means of 

capturing large complex geometries. However, extracting desired information from this 

cohesive point cloud is a cumbersome task, especially when the point cloud represents 

occupied building interiors with multiple overlapping objects. Specific tools are required to 

convert the point clouds into information models to improve its usability. The literature 

survey focuses on core issues of this shape capturing and information extraction process and 

identifies key parameters fulfilling the post-processing expectations of the point cloud 

representing building interiors.  

This chapter provided a detailed discussion on the scanning techniques for capturing 

spatial geometry from point clouds. All aspects of the 3D scanning process were considered 

to identify parameters responsible for accurate acquisition of interior environments. The 

conditions leading to inconsistent densities and voids are discussed. Current scanners and 

their shape acquisition mechanisms were explored in terms of their scanning resolution, 

capturing speed, dimensional accuracies and measurement limitations were explored and 

literature addressing these issues was compiled. 

The main scanning inconsistencies considered were variation in data density and missing 

data points from occluded regions, which are very critical in the case of building interiors. 

The variation in data density is an implicit problem of modern day stationary scanners 

capturing large domains where as the missing data mainly corresponds to occluded 

geometries in occupied building interiors. These non-uniformity and voids in the data sets are 

often improved by post processing the captured data through shape approximation and thus 

the resultant shape often is over-simplified. Moreover, such approximation also fails in the 

absence of a reliable up-sampling model for significantly sparse data set and large voids. 

Very few methods have presented preliminary studies on redesigning scanning mechanisms 

for capturing consistent data density. Nonetheless, stationary scanners are still largely used to 

capture large domains. Excessive post-processing corresponding to inconsistent density and 

data voids can be avoided by using registered data from multiple scans, but no specific 

scanning guidelines are available. Thus it is imperative that an effective scanning 
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methodology is essential to minimize the scanning inconsistencies at the initial stage that will 

minimize subsequent post-processing during information extraction stage.  

Even an accurately captured point cloud represents a set of spatial data points with no 

direct usability. An effective set of tools are required to extract desired geometric, spatial and 

dimensional features from the point clouds. Defining these features is a complex task as they 

are highly application dependent and the information extraction tools cannot be standardized. 

However, all such tools need to have two main desirable characteristics: (1) its direct 

applicability on point clouds to avoid costly shape reconstruction cost for extracting 

preliminary features and (2) its application-specific simplification/segmentation strategy to 

handle large point clouds.  

The interior building layout extraction algorithms described in the literature often obtain 

the layout from the reconstructed surface model of the captured data, which is 

computationally very expensive for large data sets and is of little use for occupied building 

interiors due to reconstruction inaccuracies. Thus, there is a need to have efficient 

simplification and layout extraction algorithm which can efficiently tackle cohesive data sets 

of occupied building interiors. The layout extraction should be applicable on original point 

clouds and should compensate data representing interior objects and occluded geometries. 

It is essential to segment the point clouds to improve scanned scene clarity pertaining to 

individual objects/regions of scanned environment. Traditional geometry based algorithms 

are effective in segmenting individual surface data clusters of an isolated object only. Such 

approaches are not effective in scanning environments involving multiple objects with 

similar geometric properties and overlapping regions. Thus, additional differentiating 

parameters are to be identified to improve the robustness and level of segmentation. 

 The next chapter introduces an efficient scan planning methodology for capturing large 

building interiors with consistent data density and minimum information loss. Such data can 

be used to extract accurate information during post-processing of the scanned data.   
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CHAPTER 3 CONSISTENT DENSITY SCANNING  

3.1 Introduction 

Range scanning of complex, three-dimensional objects has been used in a variety of 

engineering and scientific applications (Várady,  Martin and Cox, 1997). Commercial range 

scanners capture the shapes by acquiring spatial data points from visible surfaces in the 

scanned scene. It is essential to capture sufficient data points to represent an accurate 

geometry of the scanned surface, feature or an object. The usability of this captured data is 

governed by the quality of the point cloud acquired during the range scanning which can be 

defined in terms of captured data density and its consistency over the whole scanned domain. 

The captured data density obtained from small, isolated objects is often very consistent due to 

the coherent characteristics of the scanned domain and fairly uniform distance between the 

scanner and the object being scanned.  

However, when a 3D scanner captures large domains involving diverse features, 

multiple objects and incoherent geometries, the captured data density is not consistent. The 

variation in the data density occurs due to the scanner’s limitations and domain’s physical 

parameters such as vast geometric diversity, presence of occluded regions and surface 

properties. It is difficult to control the inconsistencies arising from surface properties and 

positions of the objects in the scanned scene. However, the properties of the captured data 

can be controlled to some extent by compensating the scanner’s limitations with effective 

scan planning. A uniform density data set can only be captured if the distance between the 

scanner and the domain’s surfaces remains constant. Thus, a moving scanner is an ideal 

option, however, such scanners are still in development stage and the data is captured largely 

with stationary scanners with fixed angular scanning resolutions. Moreover, limited number 

of stationary scanner positions and varying surface distances from the scanner contribute 

towards scanning inconsistencies that can only be controlled through effective scan planning. 

The data density is reduced over the surfaces lying away from the scanner and thus, essential 

shape details may be lost. Due to this disparity in data density, most post-processing 

approach cannot be equally effective over the whole scanned domain, especially in regions 

with sparse point clouds. This density variation is not given that much importance in existing 

literature as most algorithms aspire to extract only primitive shapes from the point clouds, for 
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which, the sparse data does suffice. However, such inconsistent density point clouds are not 

sufficient in scanning scenario involving large domains with complex feature capturing 

capability.  

3.2 Need of Consistent Data Sets  

The consistent data density is essential to capture and visualize accurate scanned geometries. 

The dense data set facilitate precise reconstruction of captured features to accurately model 

the virtual reality environments. Such reconstruction also provides a fast way of evaluating 

the underlying structural form of the scanned data using point-based visualization techniques 

(Pauly,  Keiser,  Kobbelt et al., 2003) that exploit both coordinate data and the corresponding 

normal vectors. However, accurate normal vectors and the geometric features can only be 

generated if the density of acquired data points does not vary significantly across the entire 

scanned domain. A uniform distribution or consistent density of data points is almost 

impossible in a single scan of large objects and spaces that have restricted accessibility, 

unavoidable occlusions, discontinuous surfaces, and distant regions that produce spurious and 

under-sampled data.  

A consistent data density is also required for approximating the missing data arising 

from object occlusions and restricted space accessibility. Availability of sufficient data points 

around the occluded regions ensures that the local shape is accurately reconstructed and can 

be extrapolated to approximate the missing regions. Such region approximation ensures that 

the gap is filled with accurate shapes and is not over-simplified. 

Problems arising from inconsistent data density and data under-sampling are commonly 

addressed using post processing tools (Barequet and Kumar, 1997; Carr, Fright and Beatson, 

1997; Curless and Levoy, 1996; Davis,  Marschner,  M.Garr et al., 2002; Liepa, 2003; 

Nooruddin and Turk, 2003; Weyrich,  Pauly,  Heinzle et al., 2004) that attempt to interpolate 

the surrounding data points in order to approximate missing data points or sparse data 

regions. These techniques are not always effective or computationally efficient for large 

domains due to the volume of missing data, existence of overlapping objects, and large 

variations of feature sizes.  

A viable approach of minimizing the post-processing of data sets is to control the 

captured data density at the shape acquisition stage through an effective scan planning 
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methodology. However, an experienced scan planner is needed to plan and implement such a 

methodology and no systematic approach is available that can help in planning the scanning 

methodology for generating fairly consistent point clouds. A desirable method must associate 

the domain’s dimensional parameters to the scanner’s settings to compute the optimum scan 

capturing settings. Such a process will ensure that the captured data density is fairly 

consistent and desired shape features can be extracted from the point cloud. In this work, a 

systematic scan planning methodology, applicable to large building interiors is introduced 

that produces consistent point cloud data with user defined data density. The proposed 

method determines the partial range that a stationary scanner can capture ensuring the data 

density and computes the total number of range scans required to cover the whole domain 

within the desired “limiting density value”.  

3.3 Range Scanning of Building Interiors  

A typical scanning scenario involving large buildings, structures, and enclosed environments 

uses a stationary, rotating range sensor to capture shape and geometry. The sensor consists of 

a laser projection system and photo detectors that record either the spatial displacement or the 

time-of-flight of the reflected light. If N and M are the number of rays emitted in horizontal 

and vertical planes, respectively, then the corresponding angles between two consecutive 

rays, defined as angular scanning resolutions (α and λ) are defined as follows: 

1
;

1

maxmax











MN
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 (3.1) 

where max∠H  and max∠V  are the maximum angular spans that the scanner can traverse in 

the horizontal and vertical directions, respectively. The data points from the visible surfaces 

are captured at this fixed angular resolution through the laser rays and thus, the geometric 

parameters of the scanned domains governs the quality of the captured data.  

3.3.1 Domain shapes and data characteristics 

The quality of the captured point cloud can be symbolically measured through the local 

variation of the captured data density from a given surface, which is primarily dependent on 
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its distance from the scanner due to fixed angular scanning resolutions. Hypothetically, each 

stationary scanner can capture a spherical domain with uniform distribution of data points 

due to the fixed distance of its surfaces from the scanner. Such a spherical domain can be 

termed as an ideal domain of a stationary scanner (Figure 3.1(a)). A consistent data set can 

also be captured from the cylindrical domain, when a small variation in the captured point 

cloud is permitted along the vertical span (Figure 3.1(b)). 

 

Figure 3.1: Ideal domains for a stationary scanner for capturing consistent data density (a) Uniform data 

sets from a spherical domain, and (b) Low density variation in cylindrical domain. 

In most practical cases, the actual world domains will differ drastically from these ideal 

domains and thus uniform density data sets are not feasible. Instead, the quality of the 

captured data is measured in terms of a limiting value of the captured data density called 

“consistent density”. The data density is said to be consistent if its variation in the captured 

data set is less than a predefined value. The captured data density at a given location in the 

scanned scene is mainly dependent on its distance from the scanner. A relatively consistent 

data density can be captured from a domain, where the surfaces lie at a comparable distance 

from the scanner such as a square room or a large hall having comparable dimensional sides 

(length/width ≈ 1).  However, linear spaces (Figure 3.2) such as long corridors and hallways 

with very large length/width ratio are severely affected with density variation problems 

arising due to vastly increasing distances of its surfaces from the stationary scanner and are 

addressed in this study.  
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Figure 3.2: Narrow interior pathways and restricted accessibility scanning scenarios (a, b, c) Interior 

corridors (d) Under-ground tunnels (e) Constricted exterior walkway (f) Slender over-bridge. 

In a typical scanning scenario of such large linear spaces, a scanner is placed at a 

distance (D) from the linear world domain, and geometry is captured using a fixed angular 

scanning resolution (α) as shown in 2D in Figure 3.3. The spatial distribution of point cloud 

largely depends on the geometric characteristics of the involved surfaces or features, and 

hence point cloud density in terms of the number of points per unit area/vol. is not feasible. 

Instead, data density in the captured point cloud is indirectly defined in terms of fast and 

measurable parameter called data density distance (dn), which is the distance between two 

consecutive captured data points along the scan direction. Data density is maximum at the 

nearest region from the scanner where dn and incident angle (θ) are minimum. The data 

density at the nth-point depends on its distance from the scanner. The reduction in data 

density is appreciable along long, narrow pathways where the high length/width ratio restricts 

the scanner distance (D) to be low. This low scanner distance is responsible for large date 

density distances (dn) at far away regions as the angular scanning resolution (α) is often fixed 

for a given scanner setting. 
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Figure 3.3: Data density distance (dn) variation in a typical narrow domain scanning scenario using a 

stationary scanner. 

In addition, the further away the measured surface discontinuity is from the stationary 

scanner, the more likely large spurious data values will exist because of the mixed pixel 

problem (Breunig,  Kriegel,  Ng et al., 2000). This type of erroneous data is the result of 

overlapping signals from the front and back surfaces along the silhouette boundaries (Figure 

3.4) along the scanning direction. With an increase of incident angle (θ) and data density 

distance (dn), the scatter of such outliers increases (from A to B). Ideally, a scanner must use 

minimum incident angle (θ=0°) to capture the data to minimize the spread of spurious data, 

which is not practical for a stationary scanner and thus, an effective scan planning 

methodology must use a limiting value of these scanning parameters to compute the 

permissible scanning range for consistent scan data density. 
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Figure 3.4: Scanning outliers due to mixed pixel problem at silhouette boundary 

3.3.2 Captured data density  

The lack of synchronization between the ideal domain (spherical) of a stationary scanner and 

the real world domain leads to non-uniformity in the captured data. As the geometric 

characteristics of the features involved in different real world domains vary considerably, a 

highly generalized mathematical description for defining the data density in terms of data 

density distance (dn) is not feasible for individual features and diverse applications. A 

simplified geometric representation of the domain using piecewise integration of multiple 

planar surfaces is proposed that helps in formulating the mathematical definition of data 

density. Such simplification is also necessary as the exact dimensional details of domain 

features are often not available at a pre-scan stage.  

The data density distance is computed by extending the scanning rays from its ideal 

domain to the real world, planar domain and the captured data density distance (dn) at a 

location is computed for given scanner specifications (N, α, scanning time) and key 

geometric parameters of the world domain (D, L, θ ). Analytically, the captured data density 

distance (dn) at the nth point along the horizontal scanning line is defined by the eqn. (A.1) in 

Appendix-A. 
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It is to be noted that data density distance (dn) is defined in terms of a domain parameter 

(D) and angular resolution (α) only and hence, does not require extensive spatial information 

of the domain features 

3.3.3 Restricted data density 

Restrictive data density is defined by the limiting condition of the allowable data density 

distance (dalw) such that captured data represent coherent data density throughout the domain. 

The limiting value of this user defined, allowable data density distance (dalw) is governed by 

the desired data characteristics of the subsequent applications where the captured data is to be 

used. It can be computed from the smallest feature size for geometric modeling, shape 

capturing capabilities of the reference elements for accurate registration or sparse data 

distribution for simplified shape extraction. In most practical cases, the data density 

requirements vary considerably for different applications and defining an allowable density 

condition (dalw) is a complex task.  Three possible cases are proposed to define the value of 

this allowable data density distance (dalw) to cover most of the practical cases and 

corresponding scan planning methodology is outlined in the following paragraphs. 

3.4 Consistent Point Cloud Scanning Methodology  

Scanning large buildings, structures, and enclosed environments with a single stationary 

scanner (Figure 3.3) generates a point cloud with varying data density. An efficient scan 

planning methodology can generate consistent data sets by restricting the variation in data 

density distance (dn) within an allowable value (dalw) and the resultant data set is called a 

consistent point cloud.  

In this study, three cases are proposed to define the restricted value of the allowable data 

density distance (dalw), however, the proposed methodology can work for any user defined 

value of allowable data density distance (dalw). This restricting condition defines the scanning 

range of each stationary scanner that can be captured to ensure the desired data density 

condition. Restricting the captured data density distance (dn) to a maximum value (dalw) 

reduces the overall scanning range of a stationary scanner. Although the commercial scanners 

have large scanning range up to few hundred meters, only a small portion of this range can be 

captured with desired data density and is termed as consistent scanning range (Ln).  
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A consistent scanning range (Ln) for each stationary scanner is computed analytically by 

comparing the captured data density distance (dn) at nth point and the allowable dalw using the 

process described in the flow-chart (Figure 3.5). The analytical model computes the number 

of points (n) that can be captured from the linear domain by checking the density condition, 

recursively. The numbers of points determines the permissible angular span (nα) which is 

used to compute the corresponding consistent scanning range (Ln) of a stationary scanner.  

Multiple scanning ranges are captured by positioning the scanner at equidistance 

locations computed using the proposed scan planning methodology and then these 

individually captured data sets are registered to generate overall point cloud, which is 

consistent in terms of its data density variations.  
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Figure 3.5: Flowchart of the consistent scanning process. 

3.4.1 Defining allowable data density distance 

Depending upon the type of geometry being captured and the physical scanner parameters, 

one or more of the following three cases can be used to define the allowable data density 
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distance (dalw) and compute its corresponding consistent scanning range (Ln) as discussed 

below. 

Case I: :  dalw = constant = ξ• feature size 

Scanning applications with specific shape capturing objectives define the allowable density 

as a discrete value based on the size of the desired feature (dalw = constant =  ξ• feature size). 

In this case, a suitable fraction value (ξ) is selected in such a way that sufficient data points 

are captured from the desired feature to represent its true surface geometry. A low value of ξ 

captures more number of points from feature that help in recreating its true geometries. The 

relationship between a consistent scanning range (Ln) and the other scanner parameters for 

this dalw condition is defined by Eqn. (A.2) in Appendix-A as follows: 
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n       where ( α≈sinα  for small α) (3.3) 

where the permissible scanning range can be computed for a given value of D and N and an 

allowable value of dalw. The quadratic relationship between Ln and D for a constant value of 

dalw and N indicates that the a consistent scanning range (Ln) reduces rapidly for small 

scanner distance (D ). The consistent scanning range (Ln) can be increased by using a higher 

resolution scan (large N ) for narrow spaces, which is limited by the available scanning time.  

Case II:   dalw = f D 

This case is suitable for applications where the desired data density is not known and the 

accessibility to the domain surfaces is very restrictive i.e. the scanner distance D can only 

have very small values or the domain may have multiple occluded surfaces. The 3D scanning 

with such small scanner distance (D) generates data sets where the data density diminishes at 

a much faster rate and only a small range can be captured with given data density condition 

(Figure 3.3). This limited scanning range for narrow spaces and multiple surface occlusions 

limit the accurate selection of reference elements (contrast circles or spheres) due to the 

sparse data density in far off regions. The incident angle (θ) increases rapidly and thus makes 

it difficult to capture and use the reference elements for accurate registration due to their 
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distorted projected shapes (contrast circle) and sparse data density (reference spheres). 

Therefore, the allowable data density condition (dalw) is restricted by the shape capturing 

capability of these reference elements. The sharp reduction of data density in this case is due 

to the low D value and thus the restrictive data density condition has to be a function of 

scanner distance D as given in Eqn. 4.  

Dfd
alw
                                      (3.4) 

where the value of fraction (f  ≤  1 ) is dependent on the permissible variation of data density 

around the scanner and is computed from the restricted angular span (nα  ≤  θl) for a specific 

position of the scanner. An optimum value ensures that the projected geometry of the 

reference elements is clearly identifiable in the scanned scene for effective registration of 

scans. The fraction value is defined as  
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where nα ≤ θl and it has been seen in the experiments that the reference elements of diameter 

of 0.15m  lying within a restricted incident angle ( θl ≤ 55º) at angular scanning resolution of 

α = 0.072° are accurately captured and generate good results during the data registration from 

the multiple scans. The maximum consistent scanning range Ln with this density condition is 

computed as follows: 

2
22 N

fDL
n
                      (3.6) 

The scanning range can be computed by solving Eqns. 3.5 and 3.6 simultaneously with 

the restricted incident angle θl. The scanning range computed in this way ensures that each 

scan data sets include selectable reference elements, which are identifiable from multiple 

scans for data registration. The selection of fraction value (f) is dependent on the size of the 

reference elements and their accessibility in the captured data.  
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Case III:  dalw = mdd1  

This restrictive data density condition ensures that the variation in the captured data is 

coherent for given hardware parameters. This condition is applicable when the time available 

for range scanning is limited and the captured data set is used to extract basic shape 

information such as layout and cross-section. Some such application scenarios include busy 

pathway, high traffic tunnel and subways.  In this case, it is essential to control the overall 

variation in data density and thus, the permissible data density distance (dalw) is defined as a 

multiple of minimum data density distance (d1) permitted by the scanning time constraint i.e. 

dalw = mdx1 = mdd1; where md ≥ 1). This option is used where sufficient density variation is 

permitted and a multiple value (md) can quickly provide the least data density distance 

captured at the far end. A large multiple value of about 50-75 can help in capturing major 

dimensional distances and approximated layouts. The consistent scanning range (Ln) for this 

density condition is computed from the relationship defined in Eqn. (A.4) of Appendix-A: 

cos

2

2 Dm
L d

n        (3.7) 

The consistent scanning range is mainly dependent upon the scanner’s distance D and 

multiple factor (md) for a specific number of points N.   However, the range does not change 

appreciably with the change in the number of points because the denominator, cos(α), is 

almost constant ( 1) for a given span of scanning resolution angle α (0.009° to 0.09°).  

3.4.2 Computing permissible scanning range 

The consistent scanning range (Ln) is selected based on the specific requirements of the 

application. The whole world domain can be scanned using multiple scans and registered 

with sufficient overlap (minimum 3-4 common reference elements for consecutive scans) as 

shown in Figure 3.6. The captured data within the consistent scanning range (Ln) is retained 

from each scanner in the registered set to ensure that the overall data density characteristics 

are achieved.  
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Figure 3.6: Digitizing large linear domain with multiple stationary scanners. 

Linear scanning range (Xn) defines the permissible domain length along the scanned 

surfaces that is captured with the consistent data density condition. This range (Xn) is 

computed from the consistent scanning range (Ln) and the corresponding scanner distance (D) 

as shown in Eqn. 3.8. Once Xn is computed, the total number of scans (nscans) required to 

capture the linear world domain (L) can be computed as below: 
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where Ol  represents the domain overlap between two consecutive scanning ranges which can 

be determined based on the position and capturing accuracy of the reference elements. The 

above methodology is used to scan linear world domains with narrow pathways or restricted 

bottlenecks in the following section to demonstrate its effectiveness.  
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3.4.3 Captured data density evaluation 

The proposed scanning methodology attempts to generate consistent density scan data sets 

from slender domains with large length to width ratio. However, it is important to evaluate 

the effectiveness of the captured data set in terms of the actual data density. The actual 

captured data density distance (dnc), from the real linear domain is measured and compared 

with its corresponding theoretical value (dn) to prove the quantitative effectiveness of the 

proposed methodology. 

The data density distance, captured at the nth point is measured as the average distance of 

its nearest spatial points. The captured data set is expected to form a rectangular grid of 3D 

coordinate points on the scanned surface, where each data point is surrounded by 8 spatial 

points as shown in Figure 3.7. Thus, the captured data density distance can be computed from 

4 or 8 nearest points of this rectangular grid. The corresponding captured data density 

distances (dnc4 and dnc8) at few sampled data points along the scanned domain are measured 

using N-nearest point search and compared with the expected data density distances at those 

points computed analytically.  

 

Figure 3.7:  Expected point cloud distribution over a linear domain using stationary scanner. 
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3.5 Scanning Results and Discussions  

The proposed scanning methodology is first demonstrated on a 46m long interior hallway. 

This test environment largely contains long, relatively flat walls, an open floor, ceiling pipes, 

and doors. The domain is captured with multiple scans at various desired data density 

conditions using a stationary range scanner FARO-LS880 (specifications in Table 3.1). Only 

one side of this long corridor is shown in the results for clear visualization of captured shape. 

The methodology is demonstrated on large building corridors (50m × 70m) with very narrow 

corridors (D < 3m), an industrial unit (75m × 45m) with restricted pathways, and an exterior 

facet (35m long) with slender walkway. 

Table 3.1: Technical specifications of FARO® laser scanner (LS 880). 

Parameters Values 

Range  (       ) 76.7 m 

Minimum Range  (       ) 0.6 m 

Linear Error at 25m. (84% reflectivity) 3 mm 

Max. Resolution (points) 40000 x 17224 

Measurement Rate 120000 pixel/sec 

Angular Scanning Resolution ( α ) 0.009°-0.09° 

Scanning Time (max. to min.) 1:49:12 to 0:01:05 

Laser Power 10.5 mW 

Wave Length 785 nm 

Vertical Angular Span     (           ) 320° 

Horizontal Angular Span (           ) 360° 

 

In the first case, Figure 3.8 (a) shows a fish-eye view of the scanned space and its 

corresponding spatial data set (Figure 3.8(b)) captured with a single stationary scanner.  

The scanner captures a dense point data set from the closest region on the domain 

(region A) with clear, identifiable features. The acquired density of data is clearly reduced as 

the regions become distant from the scanner. The regions in Figure 3.8(b) exhibit the 

captured data with typical scanning characteristics such as missing data due to surface 

maxH

maxV
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nL

min

nL



46 

 

occlusions or reflective properties. Consequently, surface details are lost in these regions 

(regions B and C), especially due to occlusions from the vertical hanging flags on the left 

side of the domain (region C). Thus, a single scan cannot effectively capture such narrow, 

long corridors and multiple scanning is required. 

 

 

Figure 3.8: (a) The scanned domain elevation and its corresponding (b) Scan data with a single stationary 

scanner. 

3.5.1 Multiple scan planning 

The proposed consistent density-based multiple scan plan methodology is used to capture this 

long, narrow corridor. A restrictive density value (dalw) is used to compute the permissible 

scanning range (Ln or Xn), which, in turn, is used to compute the number of scans to capture 

the whole domain. The final scanning parameters, including the allowable density conditions, 

partial scanning ranges, number of scans and the expected data density distances are 

compiled in Table 3.2. It is to be noted that the data densities are determined using three 

possible cases, however, the first case is used to validate the models and then other two cases 

are demonstrated on different domain applications in Section 3.5.4. 
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Table 3.2: Experimental parameters for multiple scanning with allowable data density distances. 

Case I: dalw = Const  Case II: dalw = fD  Case III: dalw = mdd1=mdx1 
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The feature based allowable density condition (Case I) is used to demonstrate the steps 

of the proposed methodology. Eight spheres (SL1-SL8, SR1-SR8) and twelve contrast circles 

(CL1-CL12, CR1-CR12) of 0.150m and 0.200m diameters respectively are used as reference 

elements on each wall of the corridor for subsequent registration as shown in Figure 3.9. 

  

(a) Top view of scanned domain and location of reference spheres on both walls 

(b) Front view of scanned domain and location of reference circles 
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Figure 3.9: The locations of the reference elements along the scanned scene 

Although the contrast circles are shown only on one side of the wall, similar contrast 

circles and spheres are added on the other wall. The scanner distance D = 2.82m is used due 

to the limited availability of corridor space. The domain is scanned with different values of 

dalw and the corresponding parameters and the results are presented in the following section.  
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3.5.2 Scan results of narrow pathway 

The narrow pathway (Figure 3.8(a)) is scanned using multi-scan methodology and each 

scanned data set is pre-processed to remove the outliers in an effort to minimize the 

cumulative scanning errors. These multiple scanned data sets are then merged and data away 

from cut-off regions is removed and consistent scanning ranges are retained. For the first case 

(dalw=const.), the hallway is scanned with dalw=11.5 cm (ξ=0.3, feature size=38.3cm) using 

two scans. Each scanner position captures the whole world domain (Figure 3.10(a) and (b)) 

with large density variations, which are registered using the common reference elements (SL3, 

SL4, SL5, SR3, SR4, SR5, CL4, CL6, CR4) from both the walls as shown in Figure 3.10(c).  

Although this combined data set exhibits a restricted data density distance of 11.5cm at 

the far-away regions, it is not sufficient to accurately capture the reference elements and 

surface geometry in those regions. However, the nearby reference elements (SL3, SL4, SL5, 

SR3, SR4, SR5, CL4, CL6, CR4) from both the walls are sufficient to register the data accurately.  

The same world domain is scanned with dalw = 5.3cm (ξ=0.3, feature size = 17.7cm) and 3cm 

(ξ=0.3, feature size = 10cm) to capture electric cabinets and pipes using 3 and 5 scans, 

respectively, as shown in Figure 3.11(a) and (b).  

It is evident from Figure 3.11(a) that the feature visualization and shape capturing 

capability improves with an increase in the number of scans. However, the geometric details 

of some of the intricate features in the scene such as the door frame recesses, electrical panels 

and pipes are missing. The lost data corresponds to the feature sizes smaller than the 

permissible scan density distance (dalw). These minute details in the scanned scene are 

captured by further reducing the allowable scanning data density distance (dalw) to 3cm and 

scanning the whole domain with five scans as shown in Figure 3.11(b). Only few regions are 

not captured effectively due to the typical surface characteristics of the individual features 

such as translucent glass panes, which permit the scanning rays to pass partially through it 

and cannot be captured. Other sources of error correspond to occluded regions and materials 

having poor reflective properties. Accurately registered, dense scanned data from multiple 

partial scans can capture greater surface details for better visualization and subsequent 

geometric extraction of small features such as safety shower recess and electric panels 

(Figure 3.11 (b)). 
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Figure 3.10:   Multiple scan registration for reducing overall data density variation. 
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Figure 3.11:  The registered scanned data set from multiple scans with (a) dalw =5.3cm. (3 scanning 

position) and (b) dalw = 3cm. (5 scanning position). 

Furthermore, merging several scans with inadequate or poorly captured reference 

elements leads to registration inaccuracies. The consistent scanned data in Figure 3.12 (a) is 

obtained by registering eight very small scans with each having its scan range of about 4m. 

The surface visibility of the registered scan has deteriorated from the previous illustration and 

the features cannot be clearly identified due to added secondary noise. For example, the depth 

recesses of the shower and electrical panels are filled with noisy data set, which makes it 

difficult to visualize these features. When a minimum of three reference elements cannot be 

captured by consecutive scans, a better approach to generate high density data sets is to 

increase the scanning resolution instead of increasing the number of scans. Another important 

observation is that the shape capturing capability of the occluded regions is mainly dependent 

on the location of the scanner. Such hidden regions can be effectively captured by placing the 

scanner close to the occluded region. Thus, the same domain can be scanned with 5 scanner 
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positions and the safety shower data can be captured with additional scanner position in front 

of the safety shower and merged with the original scanned data as shown in Figure 3.12 (b).   

 

Figure 3.12:  The registered scanned data from multiple scans with (a) dalw = 2cm (8 scanning positions) 

and (b) dalw =3cm. (5+1 scans for capturing desired feature (safety shower). 

3.5.3 Scan data density evaluation 

The actual captured data density distance (dnc) is measured and compared with the theoretical 

value (dn) to access the quantitative evaluation of the proposed methodology. The data 

density distance, captured at the nth point is measured as the average distance of its nearest 

spatial points. The captured data set is expected to form a rectangular grid of 3D coordinate 

points on the scanned surface, in which, each data point is surrounded by 8 spatial points. 

Thus, the captured data density distance can be computed from 4 or 8 nearest points of this 

rectangular grid. The corresponding captured data density distances (dnc4 and dnc8) at few 

sampled data points along the scanned domain are measured using N-nearest point search. 

These average densities distances (dnc4 and dnc8) are plotted against the expected theoretical 
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value (dn) for all the four scanning scenarios presented in Section 3.5.2 as shown in Figure 

3.13. 
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Figure 3.13:  A comparison of captured data density distances (dnc4 and dnc8) with the theoretical (dn) value 

along the scanning domain (L) using (a) one (b) two (c) three and (d) five scans. 

It can be seen from these graphs (Figure 3.13(a-d)) that the captured data density 

distances (dnc4 and dnc8) comply well with the theoretical values (dn), especially in the 

scanner’s vicinity. This is due to the fact that this region is densely captured and is least 

affected by the typical scanning errors with small incident angle. Due to lesser overlap, the 

registration noise in this region is also minimal (Figure 3.13(b)). The small variations in the 

captured and theoretical values are due to the secondary data noise introduced during scan 

registration and the surface characteristics of that region. The data density variations at far off 

distances from the scanner are relatively large due to large incident angle in those areas. The 

overall density variation in the captured data reduces with the increase in the number of 

partial scans (Figure 3.13(c) and (d)). The data density distance (dnc) in the overlapped region 

is normally less than its corresponding theoretical value (dn), since the captured density in 

this region corresponds to the points from two consecutive scan data sets, thus a greater 

number of points per unit area are available and that decreases the average data density 
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distance. In general, the captured data density distance conforms well to its theoretical value 

and thus, prove the effectiveness of the proposed methodology in achieving a desired value.  

3.5.4 Real world domain scanning examples 

The proposed methodology is implemented on the corridors of a large building structure 

(50m× 70m), interiors of an industrial domain (75m× 45m) with very tiny pathways and a 

35m long exterior facet of a building as shown in Figure 3.14. 

 

Figure 3.14:  Real world domains including (a) Narrow interior corridors (b) Industrial domain (c) Exterior 

facet. 

The scanning complexity of the large interior pathways is due to its narrow domain with 

large length/width ratio and varying feature sizes in the captured data. An effective scan plan 

is governed by the subsequent use of the captured data. An application may require to capture 

specific feature size (Case-I: dalw =ξ• feature size), merge multiple scans accurately (Case-II: 

dalw=fD) or extract basic shape outline (Case-III: dalw = mdx1). The challenge is not only to 

place scanner positions at its computed locations, adjust for the presence of multiple objects 

in the scanned scene but also to identify common reference elements from different scanning 

positions for effective registrations and thus asks for limited angular scanning span. The third 

example of scanning an exterior facet tests the proposed approach for applications with 

complex features and evaluates its registration accuracy. 

The building corridors are scanned with dalw = 5.3cm where Xn=9m, which required 14 

scans to cover the total length of about 220 m of these corridors. Thirty small reference 

spheres (diameter = 0.150m), 40 contrast circles and 4 extra large reference spheres (diameter 

= 0.3m at intersections) were used to register these multiple scans to capture the data with 

desired data density. Figure 3.15(a) shows the top view of the raw registered data set from all 

these 14 scans. In Figure 3.15(b), the same data set is shown after removing the floor data 
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points to improve the visual clarity. It is evident from these figures that a highly dense data 

set can be generated with consistent data density throughout the domain using the proposed 

methodology. The same domain is scanned with the md = 75(Case III), with four scans. The 

registered results of raw data are compiled in Figure 3.16(a) and refined results are presented 

in Figure 3.16(b). In this case, this data set is not very dense, but is good enough for 

extracting basic geometric information such as section layouts with minimum scanning and 

subsequent data processing. 

 

Figure 3.15:  Narrow interior corridors scanning results (top view) of large building using 14 scans for dalw 

= 5.3cm. (a) Raw registered data and (b) Registered data without the floor data points.  

 

Figure 3.16:  Narrow interior corridors scanning results (top view) of large building using 4 scans for dalw = 

mdd1 (md = 75)  (a) Raw registered data and (b) Registered data without the floor data points. 

The Case-II (dalw = fD with f = 0.007, nα =55°) is used in an industrial domain (75m×

45m) having very tiny pathway accessibility. The total area was covered by scanning 1:5 
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resolution scans at 37 different positions throughout the domain. The proposed scan planning 

methodology required 32 scanner positions and additional 5 scans were used to capture 

occluded regions.  Thirteen reference spheres and 52 contrast circles were used in the 

registration process. Here, a relatively small number of reference elements are used as 

multiple reference elements are accessible from multiple scanner positions due to open 

interior environment. The approximate distance between consecutive scanner positions was 

computed to be about 10m. The scanner was placed at these computed distances, subjected to 

the space availability. Using a stationary scanner is especially useful in this case as it can be 

placed at any position, which may be otherwise inaccessible to a mobile scanner.  Figure 

3.17(a) shows the slice of the scanned data showing the position of the scanners and the 

Figure 3.17(b) shows the registered data set with a partitioning plane. The data set on the 

right side of the plane shows the interior registered data, which is obtained by removing the 

ceiling and floor data points in this region. The noise-free interior data and matching region 

boundaries in Figure 3.17(b) indicate that accurate registration was achieved from multiple 

scans. Further, the sliced data (Figure 3.17(a)) shows that accurate layouts can be effectively 

extracted from the registered scanned data. The scanning issues due to the near side of the 

objects are not encountered as the minimum distance between the scanner and the scanned 

surfaces was more than the minimum range (0.6m). 

 

Figure 3.17:  Interior industrial building scanning results with 37 scans (a) Location of the scanner in an 

industrial environment (b) Dense registered data with interior data showing the accuracy of 

multi-scan registration process. 
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Finally, the proposed methodology is demonstrated on exterior building facet to 

demonstrate its effectiveness in capturing surface details. An exterior facet length of about 

35m is scanned with dalw = 3cm and D = 2.5m at 1:5 resolution. The whole domain was 

scanned with 5 distinct positions of the scanner with Xn ≈ 7m. The data sets are captured and 

are registered from these five scanner positions. Specific data sections from the cumulative 

registered data set are reconstructed as shown in Figure 3.18.  It is clear from this Figure 3.18 

that a consistent density data set captured by the proposed methodology can be effectively 

used to reconstruct the geometric shapes of the captured surfaces. In the reconstructed parts 

from the point clouds, the details of the stone work on the wall, windows geometry and 

related features are accurately captured and reconstructed. The specific details of small 

features such as the door switch, stone work on the wall, and bench geometry are also 

captured effectively.  Thus, the proposed methodology is capable of generating consistent 

density data sets by capturing and registering multiple scans using controlled data density 

variations. The captured features can be accurately reconstructed, if required.  

 

Figure 3.18: Exterior facet scanning results using 5 scans with dalw=3cm. 
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3.6 Scanning Guidelines 

The Following guidelines help in generating consistent point cloud data sets: 

1. Place scanner in such a way that domain surfaces are equidistance from the scanner. 

2. In case of slender domains, the surfaces in the immediate neighborhood of the 

scanner are only considered as those will be captured with the scanner. 

3. The distance between adjacent scanner positions should conform to its computed 

value for a given data density condition. 

4. It is beneficial to capture a large slender domain using multiple low resolution scans, 

provided the scans can be registered without introducing any secondary noise.  

5. It is beneficial to use higher resolution and time consuming scans only if time is not a 

limiting factor and the computed scan ranges (Ln) becomes very small for a desired 

data density condition and introduces secondary noise. 

6. The reference spheres should be placed in such a way that these are visible from 

multiple scanner positions. 

7. The occluded regions can be minimized by scanning such a region directly using 

lowest incident angle by placing the scanner in its nearest vicinity. 

8. The outliers and other scanning errors must be removed/minimized before such data 

is registered. 

3.7 Concluding Remarks 

The digitization process of a large domain using 3D range scanning is often affected by 

inconsistent data densities that lead to inaccuracies in shape visualization and specific 

information extraction. The effect of inconsistent densities is especially critical for 

applications involving large slender domains and stationary scanners. 

In this chapter, factors responsible for inconsistent densities are identified and an 

effective, restrictive density-based scan planning methodology to capture accurate shape 

geometry from large real-world domains is presented. Three cases are proposed to select the 

restricted data density based on the desired feature size, scan registration constraints, and 

overall density distribution. The restricted density is used to compute the consistent scanning 

range for each scanner position. A dense point cloud is extracted by registering the scanned 

data and retaining the partial scanning ranges from multiple scans. An analytical 
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methodology is presented to formulate the mathematical relationships for computing the 

consistent scanning range for each stationary scanner for given density conditions. The 

effectiveness of the proposed scanning methodology is demonstrated on a long, narrow 

corridor by generating a consistent density data set, measured quantitatively. A low incident 

angle (θl) is necessary to capture and register multiple scans of narrow spaces with small 

scanner distance (D). The occluded regions can be effectively captured by placing the 

scanner in front of these regions and thereby reducing incident angle and corresponding 

surface occlusions. The scanning flaws corresponding to the surface characteristics can be 

partially improved by multiple scanning of a given domain. Finally, this systematic scan 

planning methodology has been demonstrated on diverse real life application domains and 

effective scanning results have been achieved. The approach ensures that similar data density 

data sets are captured, even from long linear domains, where density variations pose complex 

challenges to accurate information extraction. 
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CHAPTER 4 DATA SIMPLIFICATION AND LAYOUT EXTRACTION 

4.1  Introduction 

Range scanning of large buildings generates an immense point cloud of spatial data points, 

which are to be processed to compensate the scanning inconsistencies and generate functional 

information model by extracting useful information for subsequent applications. Although, it 

is helpful to minimize scanning inconsistencies at the scanning stage as described in the last 

chapter, it is still essential to develop specific post-processing tools that can convert the 

captured data sets into useful format in terms of specific geometries, features and individual 

data segments. 

Application specific needs define the features/geometries that are to be extracted from its 

point cloud. Reverse engineering focuses on automatic or semi-automatic reconstruction 

strategies to generate geometric models through segmentation and surface modeling (Várady,  

Martin and Cox, 1997) of point clouds and has been extensively reported on single, isolated 

objects. A similar approach does not suffice for point cloud representing large domains 

involving multiple objects, where the reconstructed model of the unified data set is 

topologically inconsistent and does not help in extracting desired geometries/features from 

unified point cloud. Specifically, the presence of multiple objects in the scanned scene is a 

deterrent to accurate information extraction. Hence, it is crucial to identify the correct points 

representing specific geometries, features or objects for improving the reliability of the 

extracted features, besides handling large size of the point cloud.  

It is also important for the post processors to handle the large, unified point cloud of 

large, occupied building interiors. Data decimation is an important part of any feature 

extraction process, however in this case, it is essential to preserve specific features during the 

simplification process. Thus, a suitable set of post-processors must be designed to handle the 

unified point clouds of occupied building interiors and convert them into functional 

information models representing individual surfaces or feature segments. It is beneficial to 

use direct point based tools that can simplify and correlate spatial points to its respective 

feature for extracting objects of interest.  
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4.2 Building Features

It is essential to identify the type of features to formulate their corresponding extraction 

strategies by generating specific post-processing tools. Due to the vast possibilities of the 

features present in a typical interior scanning scene, it is not possible to devise a universal 

approach to data post-processing (decimation, segmentation or feature extraction) and hence 

adaptive approaches are to be devised for specific applications that conform to the desired 

characteristics of the feature extraction. Identification of these features mainly depend on the 

semantic level at which these features are to be extracted as shown in Figure 4.1.  

 

Figure 4.1:   Various levels of extractable features from point cloud of building interiors. 

The first semantic level defines the features based on the kinds of shapes that need to be 

extracted from the scanned data (representative or overall shape). This can be further 

categorized into its constituents in the next level and that can be further subdivided into its 

own individual features, surfaces, edges and so on, as desired. Thus, different features can be 

extracted from the united point cloud based on the specific requirements of the given 

application.  This chapter presents a representative shape extraction in terms of data 

decimation and layout extraction in an occupied building interior environment, which works 

directly on point cloud data. This two stage simplification and layout extraction algorithm 

extracts building layouts in a user defined direction by identifying and retaining the layout 

points and decimating others. It achieves point decimation by about 88-95% and the proposed 
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algorithm has diverse application. Subsequent chapters compile the developed algorithms for 

segmenting and discontinuous boundary detections that transform the captured point cloud 

into meaningful cluster and region discontinuity. 

4.3 Related Work 

Most of the existing simplification techniques have been extensively demonstrated on 

intermediate surface models or spatial data points of isolated objects. Pierre et al. (Pierre,  

Giuliana,  Craig et al., 2007) have recently compiled a detailed survey on the re-meshing of 

surfaces for graphical applications. However, extendibility of such simplification methods 

(Amenta,  Choi,  Dey et al., 2000; Dey,  Giesen,  Leekha et al., 2001; Hoppe,  DeRose,  

Duchamp et al., 1992; Schroeder,  Zarge and Lorensen, 1992) is quite limited. Generating 

decimated polygonal models using an adaptive triangulation (Akkouche and Galin, 2001; 

Araújo and Jorge, 2005) of implicit surfaces is computationally expensive (O(n3)).  

Direct point cloud simplification(Chang and Chang, 2002; Lee,  Woo and Suk, 2001) is 

an effective alternative for direct simplification of point clouds that attempts to reduce the 

number of data points without generating any intermediate surface. Pauly et al. (Pauly,  

Gross and Kobbalt, 2002; Pauly,  Kobbalt and Gross, 2004) modified the mesh-based 

simplification theory to achieve point-based simplification for point-based graphics and 

multi-resolution surface modeling using the moving least square (MLS)  method and iterative 

simplification process. This method re-computes the MLS surface after each point removal 

and is computationally expensive. However, an idea of removing trivial points without 

removing points corresponding to desired feature (boundary) by Song and Feng (Song and 

Feng, 2008) can be exploited to reduce data points without losing feature (layout). The 

applicability of direct point cloud simplification method is advantageous due to the 

availability of visualization tools such as pointshop3D (Zwicker,  Pauly,  Knoll et al., 2003). 

Layout extraction on the other hand was initially inspired by contour extraction in rapid 

prototyping that have been used extensively(Lee and Woo, 2000; Park,  Chang and Park, 

2007; Shin,  Park and Park, 2004) to reduce the total reverse engineering time (Chen,  Ng and 

Wang, 1999) of isolated object. Automated layout extraction from 3D buildings is a 

relatively new research area and relied on 2D aerial images to compute the building 

footprints as layouts. Suveg and Vosselman (Suveg and Vosselman, 2002) presented a simple 
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automatic 3D building reconstruction methodology based on a knowledge-based system and 

combining the basic primitives (flat, gable, and hip roof building) extracted from aerial 

images. An attempt to combine images with sparse point clouds was presented (Hongjian and 

Shiqiang, 2006) using the Laplacian sharpening approach, where a threshold segmentation 

approach is used to extract 2D edges from images and the building height is determined from 

sparse points. Another improved approach of building feature extraction from terrestrial laser 

data (Pu and Vosselman, 2006) uses the segmentation approach with different feature 

constraints based on the data segments, which may not be suitable for domains with no 

predefined constraints. Su et al. (Su,  Hashash and Liu, 2006) presented a basic framework 

using 3D scanning in geotechnical monitoring of an urban excavation through planning, 

execution, and data processing phases of collecting accurate construction information with an 

unprecedented level of detail on the as-built site conditions. These approaches have only been 

demonstrated on external shapes to extract building footprints or exterior layouts. 

Very few algorithms have been demonstrated on layout extraction from interior point 

clouds. A feasibility study (Shih and Hu, 2007) that emphasizes the usability of 3D range 

data in interior design applications is presented, where the captured data is utilized in visual 

inspection, design modeling, production drawing, construction monitoring and follow-up 

interior maintenance and management. Tseng et al. (Tseng,  Tanaka and Leeladharan, 2002) 

attempted to extract internal profiles using a laser-based approach. This approach requires a 

dedicated controller to guide the laser for estimating the profile shape of the scanned 

structure. The information extraction from laser scanned data has been recently addressed 

(Kim,  Lee,  Kang et al., 2008), where authors have attempted to extract geometric 

information on a highway using terrestrial scanned data.  The study has been demonstrated 

on pavement design, and highway geometry extraction using local geometric parameters such 

as normal and data density. Most of these methodologies and frameworks are demonstrated 

on the terrestrial scanned data and their usability for building interiors is limited.  The 

difficulties inherent in the feature reconstruction of interiors are different from the problems 

that come from the extraction of external shapes of buildings, thus they have to be treated 

differently. This is also the reason why model reconstruction and visualization of generic 

indoor scenarios is still a difficult task (Furukawa,  Curless,  Seitz et al., 2009).  

Floor plan extraction from point cloud normally relies on the identification of planar 

surfaces from scan data sets (Budroni and Böhm, 2009; Hähnel,  Burgard and Thrun, 2003; 



63 

 

Johnston and Zakhor, 2008), Hough transforms (Tarsha-Kurdi,  Landes and Grussenmeyer, 

2007) or probability model (Thrun,  Martin,  Liu et al., 2004). Most of these methods extract 

section layouts or floor plans as a by-product of the simplified model reconstruction process. 

These methods are intended to solve a more complex problem than floor plan extraction and 

tend to be computationally demanding, due to the large size of the cumulative data set 

representing multiple objects. This brings out the scope of the proposed work that intends to 

devise post-processors that are directly applicable on the point data sets and simplify them 

while preserving and extracting the desired feature.  

4.4 Data Decimation and Layout Extraction Algorithm 

The proposed algorithm decimates the data sets while retaining the data points representing 

individual features and the basic layout. An important characteristic of this approach is that it 

exploits the regions representing layouts using a measure of planarity and trivial (non-layout) 

point decimation.  

The algorithm works in two distinct stages. In the first stage, the data set is sliced along 

the simplification direction, which can be computed as a normal of the plane fitted to the 

floor point cloud or a user defined value. In the second stage, the sliced data points are 

decimated by retaining the feature points and decimating others and thereby improving 

visibility of the desired features (individual features and section layouts). The data reduction 

is achieved till the interior points are minimized to the desired level and the layout points are 

clearly distinguishable. The following paragraphs define the related terminology and 

elaborate the proposed algorithm. An overview of the algorithm is shown in Figure 4.2.   

The algorithm attempts to access the shape of the scanned object by extracting 2D 

section layouts directly from its 3D point cloud data. The challenge here is to identify the 

points representing the layouts. Thus, the points corresponding to other features are identified 

and adaptively simplified before the section contours are generated. The novelty of the 

proposed algorithm lies in the fact that it works directly on points, does not require any 

intermediate surface model and it handles point data involving multiple objects. The overall 

process requires the user to define certain key terms to achieve the desired results. These key 

terms include a vector direction ( n̂ ), number of simplifying planes (Np),  no. of neighbouring 

points (Kr), average angular deviation threshold (Ψthresold.) of neighbouring distance vectors 
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from a user defined vector ( n̂ ) and the close vicinity region thickness (tv). Other terms which 

are computed indirectly, based on these user defined values, are the overall data size defined 

by point cloud data height (H), reduction ratio (r), slice thickness (t), and the point’s 

importance in terms of the average angular deviation value (Ψavg.). In the following 

paragraphs, the overall process is described.  

 

Figure 4.2:  The overall process of layout extraction algorithm. 
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4.4.1 Slicing a point cloud data set 

The first stage subdivides the point cloud into slices along the user defined direction using 

sectional planes, where the layouts are to be extracted. This subdivision diminishes the global 

influence on the extracted layouts and reduces the required computational effort. A vector 

direction ( n̂ ) is defined by the user either by using two spatial data points or by fitting a 

planar surface to the set of floor data points. The scanned data size along this direction is 

measured as the overall point cloud data height (H) through a bounding box.  

A series of user defined parallel planes (Np) with common normal ( n̂ ) are generated to 

subdivide the overall point cloud data height (H) into slices with ‘t’ as the slice thickness as 

shown in Figure 4.3. The slice thickness (t) is defined as the ratio of data height (H) and the 

number of slices (Np-1) as defined below:  

 
)1-(

=
pN

H
t     (4.1)                                           

The number of planes (Np) used to generate these slices depends upon the complexity of 

the scanned data and the required level of simplification. A large value of ‘Np’ can extract 

more layouts and thus, can represent complex geometries, but will result in less 

simplification. On the other hand, greater simplification can be achieved using fewer planes 

at the cost of losing feature details. A single slice of the pre-defined slice thickness can also 

be used at the desired location along the direction normal ( n̂ ) for single layout extraction. In 

this case, a user determines the location along direction normal to identify an appropriate 

location for layout extraction. The point cloud data set in the vicinity of the simplifying plane 

represents its local shape and can be easily handled to determine the local shape of the 

scanned geometry. 

The number of points in each slice is a representative of the local surface complexities 

and provides a means of selecting the data slice for extracting section layouts. The points in 

each slice along the data height (H) of a typical room scanned data are shown in Figure 4.4, 

which clearly shows that the slice including the ceiling data points have large number of 

points due to the unobstructed viewpoint of the scanner during the data capturing process. 

Further, the slice includes furniture such as table, chairs and other objects laying on the table 
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also thus exhibits large data set. These objects are also responsible for surface occlusion of 

the wall and reduce the captured data sets in its immediate neighboring data slices (occluded 

regions- I and II). It is evident that a relatively less occluded region is most suitable for 

extraction of section layouts.  However, such unobstructed regions may not always be readily 

available and the data has to be adaptively decimated to extract the desired layout. During the 

decimation process, each point is retained or removed based on its contribution towards the 

actual layout. 

 

Figure 4.3:  Data segmentation of point cloud by parallel planes. 

 

Figure 4.4:   The height histogram showing the number of points in each slice. 
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4.4.2 Evaluating point’s importance 

The sliced point cloud includes points, representing different objects in the scanned scene. 

The proposed methodology identifies the layout points from each sliced data.  

The layout points are lying along the vertical directional vector ( n̂ ). A point’s 

importance is computed by measuring its average angular deviation value this directional 

vector ( n̂ ), as shown in Figure 4.5 

 

 

 

 

 

 

 

 

Figure 4.5:   Angular deviation calculations of neighboring vectors. 

A neighborhood searching algorithm (Sankaranarayanan,  Samet and Varshey, 2007) is 

used to identify the  Kr-nearest spatial points (qj) of every data point (pi) in the sliced data set. 

A distance vector (dij=qj-pi) for each of these neighboring points is defined for computing 

their corresponding angular deviation value (Ψij). An average angular deviation value  (Ψavg) 

of each point is computed as cumulative mean of the deviation values of its neighboring data 

points and is a good measure of point's importance to be a layout point. The points with 

angular deviations more than a threshold value (Ψthreshold) represent the points lying in 

horizontal planes and not on the walls, and thus does not represent layouts. Such points can 

be removed during decimation process. This approach will also remove some points from 

vertical wall data especially in regions where wall meets the floor or other horizontal regions. 

However, a large number of data points are retained which are sufficient for extracting 

section layouts. Algorithm 4.1 describes the steps used for computing the point’s importance 

in terms of its angular deviations and achieving the desired data decimation. A controlled set 

of algorithmic parameters also helps in identifying the interior objects during this data 

decimation process as shown in the results (Section 4.5).  
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Algorithm 4.1:    Angular Deviation and Point Reduction algorithm 

Parameters:    N, n̂ , Np 
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end while 

Remove  pi  for which 
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avgΨ  > thresholdΨ  

return Updated Ns,  

 

4.4.3 Projection based data decimation 

The decimation process in the previous step separates the points from the sliced data set, 

which do not lie along the directional vector ( n̂ ). To limit the global impact on the extract 

layouts, only the immediate neighboring points around a simplifying plane are considered. A 

locality distance is defined around each plane from which the points are used for local shape 

extraction. This locality region is defined by a planar vicinity thickness (t), spanning equally  

( 2/± t ) on either side of a slicing plane as shown in Figure 4.6.  
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Figure 4.6:  Vicinity region definition around a section plane. 

The selection of the vicinity region thickness (tv) is a compromise between local shape 

retention and the level of simplification. A very low value of vicinity region thickness fails to 

extract enough points for effective local layout extraction due to under-sampling, whereas a 

large value superimposes a global effect on the extracted layouts and diminishes the basic 

objective of the data simplification process. The maximum value of a vicinity region 

thickness (tv) is denoted as 
max

vt  and it is defined, as follows:  

 
p

v Nμ

H
t =max

   (4.2) 

where Np is the number of planes defined by the user, H is the overall point cloud data height 

and µ a factor that controls the density of the data sets, finally selected for layout extraction. 

All the points in this vicinity region are projected on its corresponding plane along its normal 

plane using a projection operator as shown in Figure 4.7. 

 

Figure 4.7:  Plane with projected points from its predefined close vicinity. 
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The projection operator transforms the spatial data points from the vicinity region to 

coplanar data points in their corresponding simplification plane. The projected point 

(pp(xp,yp,zp) ) is computed on the plane )0=+++( dczbyax for each spatial point (p(x,y,z)) 

in the vicinity region thickness as below:- 

 
222p ++

+z+y+x
-x=x

cba

dcba
a  (4.3)   

222p ++

+z+y+x
-y=y

cba

dcba
b   (4.4)     

222p ++

+z+y+x
-z=z

cba

dcba
c  (4.5)                       

Thus, the data set used to generate the final layout actually corresponds to a fraction of 

the total point cloud data set, which has been adaptively decimated in two stages. 

4.4.4 Section layout extraction 

The projected coplanar points are used to generate the section layout in the desired plane. The 

layout is extracted and initial linear degree curve is generated through progressively 

searching and joining its neighborhood data points and maintaining an appropriate 

connectivity rule. A standard polyline tool in Rhino3D® is customized to generate this section 

layout through multiple coplanar points. This approach connects each point to its closest 

neighborhood points and maintains a connectivity index of 2 for each point. For example, in 

Figure 4.8, point ‘A’ is already connected to ‘C’ on one side. Point ‘A’ finds its nearest 

points. In this case ‘B’ is nearer to ‘A’ than ‘D’, thus, the progressive connectivity approach 

connects ‘A’ to ‘B’ and the maximum connectivity index avoids its connectivity to any other 

point such as ‘D’. Further, point ‘B’ finds the next connectivity point and in the process some 

points like ‘D’ may be omitted. It has been found in this investigation that most of these 

omitted points are redundant and are not the true representation of the local layout contour 

shapes, thus, it is justified to omit them while extracting the approximate local section 

contours. Further, extracted contours are compensated for probable intersection of sharp 

bends.  
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Figure 4.8: Linear contour generation from projected points 

The initial contour expansion in this way may encounter some local edge intersections 

between neighboring segments as shown in Figure 4.9. However, their tendency is generally 

local and global intersections are not encountered due to the high data density and a restricted 

threshold value of the permissible distance (dij) between neighboring data points. The data 

density increases further during the projection stage and it does not allow the contour to cross 

its geometric confidence map (Pauly,  Mitra and Guibas, 2004) and connect to a distant data 

point, thereby avoiding the global intersection situations. Further, few local intersections may 

occur in the extracted contour and small deviations. Although these small deviations can be 

handled effectively with synthetic curve regeneration, yet such intersections are discouraged 

at this stage. The possible local intersections are concurrently identified by constantly 

checking the intersections of reconstructed segments with its preceding s-segments (s=10). In 

case and intersection occurs, such as in Figure 4.9(a), the intersecting contour segments are 

identified and the contour is reset to the last point (D) of the first intersecting segment. Now, 

it omits the previous nearest point –E from the data set and identifies new neighbor-F and 

contour is advanced. Thus, new progressive points are identified and the intersections are 

avoided.  

 

Figure 4.9:  Avoiding self intersections during linear contour generations. 
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4.4.5 Synthetic simplification 

The extracted layouts in the previous stage may be very sharp in certain cases. Although 

these sharp layout are often local and do not correspond to large kinks, these can be 

smoothened with best fitted synthetic curves (cubic B-splines) using less number of points, 

which achieves further data reduction (Figure 4.10). Here, the data can be decimated using a 

reduction ratio (r) that defines the ratio of points used to generate initial and regenerated 

synthetic layouts. 

 

Figure 4.10:  Synthetic curve generation and removal of tiny imperfections. 

Here the intersecting curve can be smoothened with desired reduction ratio. Initial 

intersecting linear curves and sharp synthetic kinks (Figure 4.10 (a)) can be removed using 

intersection checks and synthetic cubic b-spline curve approximation using higher data 

reductions (Figure 4.10 (b)). A similar approach also works for curves with no intersection 

but sharp initial kinks (Figure 4.10 (c)) that can be smoothened with higher point reductions 

and synthetic curve smoothening (Figure 4.10 (d)). 

This type of smoothing and corresponding simplification may not always be required for 

applications involving building interiors. However, it can really facilitate generating complex 

contours and geometric models of organic shapes as demonstrated on facial scanned data by 

the authors (Sareen,  Knopf and Canas, 2009) Essentially, this stage reduces the number of 
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points by removing the points which are (a) not laying in the close vicinity region thickness 

of any plane and (b) points which are omitted during contour generation 

4.5 Results and Discussions 

The proposed layout extraction algorithm is illustrated with a raw scanned data set of a room 

with multiple objects, captured with a FARO® scanner (Model: FS0880). The algorithms 

were developed using web-based PHP language with SQL server data-base. The results of the 

processed points are visualized with a Rhino3D software package and are compiled in the 

following sections. 

4.5.1 Room scan data 

A room scanned data set (Figure 4.11) with 1550035 data points is used to illustrate this 

proposed layout extraction pipeline with different algorithmic parameters. The point cloud 

data set is sliced using four sets of parallel planes Np (20, 30, 40 and 50) and the 

corresponding data set is decimated using proposed angular deviation analysis. The average 

angular deviation value (
i

avgΨ ) used for retaining contour points from each slice, depends 

upon the relative topology of the neighboring points and the type of features around the 

simplification plane. 

 

 

Figure 4.11:  (a) Room view from front (b) Room’s view from back (c) Scanned point cloud data set of 

the room. 

            

(a)          (b)          (c) 
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4.5.2 Data simplification 

Room data decimation is first achieved by segmenting the data set into individual slices, 

reducing the data points using the proposed angular deviations values and then finally 

reducing the resulting data set by defining the vicinity region thickness. A small value of the 

vicinity region is defined using µ=10, which reduces the global effect on the extracted 

contours. In the process, the total data decimation achieved is defined by the overall 

reduction ratio (r). The effectiveness of the proposed methodology is measured in terms of 

the layout point identification and the accuracy of the shape of these extracted contours. The 

point cloud data, slices and different stages of data decimation of a particular layer is shown 

in Figure 4.12. 

The algorithm can be implemented on any slice and it is advisable to select the data slice 

from the less occluded regions (Figure 4.4) for an accurate layout extraction. However, there 

will be cases of occupied building interiors in practice, where less clutter data slices are not 

available. An effective algorithm must be able to compensate such cluttered data set as well. 

So, a relatively complex data slice with maximum number of points is selected to prove the 

effectiveness of the algorithm (Figure 4.12). 

It can be seen from Figure 4.12 (c-d) that the data points in the slice correspond to 

multiple objects (table, reference sphere, phone and computer screen). Points with average 

angular deviation higher than a threshold value are removed during the data decimation 

process. Based on this allowable deviation threshold (Ψthreshold), the decimated points in the 

data slice can be used for effective scene visualization (Figure 4.12(c-e)) or extracting points 

representing section layouts (Figure 4.12(f)). A relatively higher threshold value (Ψthreshold = 

80°-85°) mainly removes the planar data set and the data representing the interior objects and 

furniture pieces are retained, which formulates a quick means of identifying interior objects. 

A further reduction of this angular deviation threshold value removes points from the 

horizontal regions and only retains the data points representing vertical regions. These highly 

decimated points (Figure 4.12(f)) represent the walls and can be used to extract the section 

layouts as the points corresponding to the interior objects (furniture and other individual 

objects) are removed during the simplification process.  
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Figure 4.12:  (a-b) Segmented data slice and (c-f) data set of various data reduction stages.  
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4.5.3 Layout extraction 

The layouts are represented by the boundary data points, which are retained from a very thin 

slice around the parallel plane. Thus all other points lying outside the thin layer (thickness =

max

vt ) around each simplifying plane are removed to decimate the data set further. The 

decimated data set is then projected on the plane and then these projected, coplanar points are 

connected together to generate single degree curve as explained in the Section 4.4.4. e.g. the 

dataset from Figure 4.12 (d) is projected on its corresponding plane and then the coplanar 

data set is used to generate the section layout as shown in Figure 4.13. 

 

Figure 4.13:   (a) Point clouds representing section layouts (b) Layout generated using single degree 

polyline with Rhino
®
3D, and (c) Layout extracted with connectivity index of 2 using improved 

polyline methodology. 

The extracted contour represents the domain layout. Figure 4.13(c) represents the layout 

extracted using the proposed methodology and handles the multiple diversion really well, 

which otherwise would generate multiple local contours at these diversions as shown in 
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Figure 4.13(b). Thus, based on the location of the simplifying plane, the multiple layouts can 

be extracted as shown in Figure 4.14.  

 

Figure 4.14: Extracted layouts from scanned data in user-defined planes and their corresponding reduction 

ratio. 

4.5.4 Discussions 

The results of the proposed algorithm suggest that the proposed methodology is effective for 

both data simplification and layout extraction from complex data set of multiple objects.  The 

algorithm efficiently identifies the point’s importance based on its location and contribution 

towards the layout. Thus, the complex point cloud can easily be decimated to point cloud 

representing the layouts and important features in the point cloud. 

The decimation based on the angular deviation of points from its neighboring point data 

set retains points representing important features in the point clouds. Point data decimation 

does not remove data points based on a constantly changing parameter unlike most other 
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simplification algorithms. Instead, it simplifies data set based on a pre-computed angular 

deviation value and does not require the recursive computation of the point’s importance with 

each removed data point and thus, is computationally very effective. The decimated data set 

gives a good estimation of the objects in the scanned environments and thus provides a 

foundation for identifying and regenerating these objects.  

A highly decimated data set is achieved using a very low value of angular deviation 

value, which is used as a threshold value for point cloud reduction. It is evident from Figure 

4.14 that better layouts are extracted from regions with less cluttered data. Multiple, local and 

premature layouts are often generated from decimated data set from layers exhibiting point 

clouds from multiple objects. A less cluttered region on the other hand, often retains points 

with less occlusion and thus minimum discontinuities and highly accurate section layouts are 

extracted from such data set. Sometimes, the layouts extracted from highly cluttered data set 

with discontinuous data sets are often not closed (Figure 4.14) due to restrictive connectivity 

lengths, which are necessary for avoiding irregular layout extractions. However, the partial 

layout extracted in these sections is also a good representation of the actual scanned data set 

around that plane. Thus, it is necessary to use suitable sliced data for extracting the required 

layout. Figure 4.15 shows two different sliced data sets from the room scan, which are used 

to extract the building layouts. The deviation values that appear in the occluded regions 

(region A, B and C) in this Figure 4.15 (a) figure are due to the absence of the scanned data 

in these regions. Whereas another sliced data Figure 4.15(b), involving relatively less 

occlusions, generate accurate results with maximum deviation of 3mm only. Thus, the 

regions with good data representation are quite accurate.  

 

Figure 4.15:  (a) Extracted layout involving multiple objects with cluttered data and occluded regions and 

(b) Extracted layout from less cluttered data set.  
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Further, it is observed that using a small number of nearest neighborhood points, a 

point’s importance can be computed accurately and thus is an effective approach of data 

simplification and subsequent layout extraction. This is due to the fact that large numbers of 

nearest neighborhood points superimpose a global effect on the angular deviation values, 

hence its average values becomes comparable over a large domain. This low variation in 

average angular deviation value makes it difficult to distinguish feature points effectively.  

It is to be pointed out that the primary objective of this research is to develop an 

effective simplification strategy to minimize the data confusion by avoiding the inclusion of 

non-layout points for extracting the layout. The simplification strategy works directly on the 

points and does not require recursive computation for assessing the point’s importance. The 

simplification strategy can be extended to an interior scenario involving multiple room, 

pathways or industrial spaces. However, extracting their corresponding layouts is a complex 

task and requires advanced graph theory to identify accurate bifurcation for multi-direction 

layout propagation.  

4.6 Concluding Remarks 

The process of converting the point clouds into usable format is a complex, but essential step 

in digitization of the building interiors. The complexity increases manifolds when the 

scanned data represent multiple objects and occluded geometries.  

In this chapter, we have presented a data simplification and layout extraction algorithm 

from a point cloud data set with multiple objects in the scanned scene. The process identifies 

and simplifies the data set by removing non-feature points. The process exploits the fact that 

simple geometries such as planes can be represented with fewer data points and thus can be 

reduced. Reduction of data points from these planar regions retains other critical non-planar 

features, which can be efficiently reconstructed, as required. The approach attempts to 

simplify the point clouds with the intention of retaining the layout points and regenerate the 

layout from this reduced data set.  

The simplification approach reduces the points by removing planar points along a given 

direction. The approach effectively retains the feature points using a computationally 

effective data decimation process due to its non-recursive computational approach. The data 

simplification process is directly applicable on the points and does not require any 



80 

 

intermediate geometric model. A highly decimated data set with this approach is then used to 

generate the layout contours by projection-based contour extraction. The projected data set is 

joined to its nearest neighborhood points by a connectivity rule to extract the layout contour 

in the user defined planes. It has been shown that accurate layouts can be extracted using the 

proposed methodology. These extracted contours need only a fraction of the actual scanned 

data points (about 5-12%). A small vicinity region and smaller neighborhood points (Kr) 

improves the layout extraction performance by reducing the global influence on local shapes. 

The simplification approach is extendable to large data sets of occupied building interiors 

involving multiple rooms and interior structures. 

The data decimation process facilitates a point based simplification and an effective 

layout extraction algorithm from the point cloud. However, some of the features such as 

planar regions along the simplification directions (such as table tops) are lost. Moreover, the 

data decimation process reduces the points from all features based on their angular deviation 

from the simplification direction. In such cases, the data density at these regions may become 

so sparse that extracting corresponding features becomes difficult. Thus, a suitable approach 

of feature extraction is to segment the point cloud into individual object data sets. The next 

chapter compiles few segmentation strategies developed for the point cloud data set of 

occupied building interiors.  

 

 

 

 

 

 

 

 

 



81 

 

CHAPTER 5 COLOR-BASED SEGMENTATION OF POINT CLOUDS 

5.1 Introduction 

Range scanning of large man-made structures, exterior building facades and ill-defined 

interior spaces generates an immense 3D point cloud of spatial coordinate data of discrete 

surface points and, often, the corresponding RGB color information.  The extraction of 

accurate geometric and spatial information from these millions of scattered data points is a 

complex task due to varying geometric complexity, presence of multiple objects in the 

scanned scene and extensive computational demands.   

Segmenting the large point clouds into meaningful clusters reflecting surfaces with 

common characteristics is often the first step [Ning et al., 2009] for applications such as 

reverse engineering, computer graphics, computer vision, as-design-as-built checking and 

virtual reality (VR) modeling of pre-existing interiors. The segmented data clusters greatly 

improve the data usability of such cohesive point clouds. Once properly segmented, it is 

possible to use individual data clusters as the application demands. Each application uses the 

data sets in its own unique way according to its own explicit set of requirements. Thus, 

segmentation strategies of one application may not be applicable to another. For example 

faster computational speed is essential for computer vision applications whereas 

segmentation accuracy is of topmost importance for individual object reconstruction.  

Accurate segmentation of point clouds of building interiors (Budroni and Böhm, 2009; 

Dorninger and Nothegger, 2007; Rabbani,  Heuvel and Vosselman, 2006; Wolfart,  Sequeira,  

Ng et al., 1999) and architectural shapes (Alharthy and Berthel, 2004; Budroni and Böhm, 

2009; Rabbani,  Heuvel and Vosselman, 2006) introduce unique challenges that are often not 

encountered when partitioning range data taken from a single isolated object and building 

exteriors. It is crucial to handle immensely diverse geometric disparities (planar walls as well 

as intricate objects) and data discontinuities due to the presence of multiple, overlapping 

objects in the scanned scene, besides compensating for traditional scanning errors.  

Traditional geometry based approaches tend to over-segment simple surfaces and under-

segment complex shapes that have fine features or details (Zhan,  Liang and Xiao, 2009).  

Moreover, generating geometric derivatives (surface normal and curvature) from the point 
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clouds for region differentiation is a computationally expensive and error-prone task due to 

the vast size and geometric complexity of the point cloud. Inconsistent results are especially 

observed in areas where surfaces from multiple objects with similar geometric properties are 

closely spaced, partially occluded, or overlapped. 

 For buildings and urban scanned data, most current segmentation methods (Alharthy 

and Berthel, 2004; Dorninger and Nothegger, 2007; Rottensteiner,  Trinder,  Clode et al., 

2005) will apply local planar fitting techniques and a priori knowledge of building structure 

to extract flat roofs, walls, floors and ground regions from either the points clouds (Alharthy 

and Berthel, 2004) or triangulate the captured data to generate cumulative surfaces from the 

cloud (Rottensteiner,  Trinder,  Clode et al., 2005).  Unfortunately, only primitive partial 

shape information is obtained from such methods and the results cannot be readily extended 

to the whole scanned scene. To further automate the process, computationally efficient scan-

line based segmentation algorithms (Sithole and Vosselman, 2004; Vosselman,  Gorte,  

Sithole et al., 2004) have been used with some success to identify discontinuities and 

associate similar data points from neighboring regions in the 3D point cloud. These methods 

work well for extracting planar regions from well-structured point clouds and, in few cases, 

have been used to extract information about architectural shapes (Ning,  Zhang,  Wang et al., 

2009), industrial pipes (Vosselman,  Gorte,  Sithole et al., 2004) and trees (Barnea,  Filin and 

Alchanatis, 2007). However, the requirement of highly structured point clouds limits its use 

for clustering range data captured from unstructured point clouds of building interiors. 

Relatively few segmentation methods have been applied successfully to range scans of 

building interiors.  Wolfart et. al (Wolfart,  Sequeira,  Ng et al., 1999) proposed a hybrid 

strategy that performed triangulation during data re-sampling, local surface fitting, and 

discontinuous edge detection to solve the problem of segmenting building interiors. Although 

the technique produced satisfactory results for large planar regions such as walls and 

cabinets, the algorithm could not accurately cluster points that lie on small objects with 

freeform shapes due to inadequate seed points.  To address this problem, Rabbani (Rabbani,  

Heuvel and Vosselman, 2006) used normal residuals to identify reliable seed points in the 

cloud and a normal deviation-based smoothness parameter for region growing.  The method 

was able to successfully extract unique clusters from a scanned industrial environment. The 

computed geometric parameters were, however, not highly reliable and prone to significant 

errors in overlapping regions which lead to data over-segmentation. In contrast, Budroni and 
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Böhm (Budroni and Böhm, 2009) proposed a plane-sweep algorithm for segmenting 3D 

point clouds into planar clusters. The relative advantage of this approach is that it works 

directly on sampled points instead of tessellated surface-based approaches (Rabbani,  Heuvel 

and Vosselman, 2006; Wolfart,  Sequeira,  Ng et al., 1999).  Although effective, the 

technique omits all non-planar data points and, therefore, cannot be used to segment building 

interiors that contain desks, chairs and personal items. 

 Many surface reconstruction methods demonstrated on range data of large civil 

structures and building interiors often exploit known shape or size semantics and generate 

cumulative building models. Wang and Luebke (Wang and Luebke, 2003) generated 

triangulated models of the scanned data by using normal and confidence-level semantics 

along with weighted color and texture coordinates. A cumulative triangulated model can 

enhance the overall visualization of the scanned scene, but it does not permit surface 

segmentation and reconstruction of individual objects in the scene.  Bahmutov et al. 

(Bahmutov,  Popescu and Mudure, 2006) demonstrated a rapid building reconstruction 

method for large structures by using shape semantics such as rectangular cuboids for 

pathways walls. The super-positioning of registered color information on this sparse depth 

map generates photorealistic models with over-simplified geometries. These over-

simplifications often lose critical geometric details. It is, therefore, difficult to have a single 

algorithm that simultaneously handles simple planar shapes and complex, organically shaped 

objects. Furthermore, most geometry based segmentation methods require intermediate 

surface generation (Wolfart,  Sequeira,  Ng et al., 1999) or geometric parameter computation 

(Rabbani,  Heuvel and Vosselman, 2006) which are not reliable if the scanned scene contains 

multiple overlapping objects.  

In this context, there are two major research challenges in segmenting the scanned data 

of building interiors:  (1) developing an algorithm that can handle a broad range of 

geometries from planar walls to complex free-form objects, and (2) selecting a reliable 

measure of similarity between neighboring points assigned to the same cluster or underlying 

surface region.   

To address these challenges, an inherent similarity parameter of the point cloud (color) is 

exploited to form a reliable differentiating parameter for clustering the unified point clouds. 

A key feature of the technique is the application of a robust HSV (Hue, Saturation, Value) 

color perception model rather than the RGB (Red, Green, Blue) sensor values.  This approach 
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enables “color” to be defined by a single parameter called hue, and eliminates shading and 

intensity effects associated with the “dominance of the hue” (saturation) or “color brightness” 

(value) due to variations in room illumination.   

First color is used alone to generate a rapid segmentation algorithm(Sareen,  Knopf and 

Canas, 2010) for quick visualization of the scanned scene and subsequently combined with 

geometric parameters to formulate a robust shape-hierarchy based hierarchical segmentation 

algorithm(Sareen,  Knopf and Canas, 2011) as compiled in the following sections. 

5.2 Colored Point Cloud Acquisition 

The colored data set is generated by combining the spatial data points captured by the 3D 

range senor with their corresponding colored pixels from colored images mapped together in 

the optical plane as explained below. 

5.2.1 Colored range scanning 

The colored point cloud data set is generated by capturing a spatial domain using a stationary 

laser scanner and bracket mounted digital camera as shown in Figure 5.1 
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Figure 5.1:  A schematic diagram of a FARO
®
 scanner with camera mounted bracket. 

The spatial geometry of a given domain is captured in terms of 3D points (x y z) is first 

captured by laser scanner (FARO® LS880) where the laser rays are reflected towards the 
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scanning range by the revolving mirror. These surface points (x y z) are captured in a spatial 

coordinate system with the laser origin as its perspective centre. In this scanning position, the 

bracket-mounted camera is moved to the extreme left (Figure 5.2(a)) so that it does not block 

the scanning path of the laser. Then, the tripod is lowered and bracket is moved to the centre 

to synchronize the coordinate systems (Figure 5.2(b)) of the previously captured point cloud 

data set and colored images that are to be taken by the digital camera (Nikon D70) with a 

fish-eye lens (Nikkor 10.5mm f/2.8G ED). The camera captures the color information in the 

form of multiple, colored images of the scanned scene as shown in Figure 5.3. 

 

 

Figure 5.2:  (a) Scanning position and (b) Colored imaging position of the FARO
®
 scanner. 
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Figure 5.3:  A typical shape capturing process using (a) 3D point clouds and (b) Color information in terms 

of multiple colored images.  
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5.2.2 Colored image mapping 

A panoramic image of the whole scanned scene is generated by combining these individual 

images in an optical plane such that the focal length (fl ) of this image capturing system is 

defined as the shortest distance between its optical (O) and the perspective centre  (Op) as 

shown in Figure 5.4. Subsequently, a transformation model computes the 2D coordinates of 

each spatial data point such as point-p in the same image plane using methodology explained 

by Xu, Ye and Fan (Xu,  Ye and Fan, 2002).   In this manner, each captured spatial data point 

p (x y z) corresponds to a unique point (xa ya) in this optical plane, which coincides with its 

matching pixel position (u, v) in the panoramic colored image. Consequently, the color 

attributes (r g b) of each synchronized pixel is assigned to its corresponding spatial data point 

(x y z) and the colored point cloud data set (x y z r g b) is generated. In order to capture 

accurate color information with minimum intensity distortions, the images are captured 

without enhanced artificial illuminations using a tripod mounted camera. The captured 

images are processed to generate a panoramic view of the scanned domain. This extracted 

panoramic image can be smoothened to remove image distortions before mapping the color 

coordinates to its its corresponding spatial points.  

Figure 5.5 shows (a) the original range scanned data with no color information, (b) the 

panoramic view of the color images of the scanned domain in the optical plane, and (c) the 

resultant colored range scan data. 

 

Figure 5.4:  The principle of generating colored point cloud from point set using FARO
®
 scanner and 

panoramic color image from digital camera. 
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Figure 5.5:  (a) Spatial data set without color information (b) A panoramic colored view of the whole 

room, and (c) Resultant color range scanned data of the room. 

It is to be noted that the color information is transferred from the image to their 

corresponding spatial data points. Thus, even though the colored images may have highly 

detailed information, each pixel color may not be retained in the final data set depending 

upon the spatial data density of the captured data. Thus, generating an initial, dense point 

cloud data set is an absolute necessity. 

5.2.3 Color model conversion 

The red, green and blue (RGB) color model (Figure 5.6 (a)) is extensively used in display 

devices but it does not support a robust color segmentation strategy due to (a) high 

correlation among its three color sub-spaces and (b) its dependency on intensity parameters 

(Zhang and Wang, 2000). A RGB based segmentation strategy (Zhan,  Liang and Xiao, 2009) 

demonstrated on point clouds generates over-segmented data sets and subsequent region 

growth and merging strategies were required to refine the segmentation results. Further, this 

highly correlated RGB colored data set does not provide an intuitive way of selecting initial 

seed point. To avoid these limitations of this color model, it is converted into a more efficient 

hue, saturation and value (HSV) color model (Figure 5.6(b)).  

 

Figure 5.6:  (a) RGB color model cube (b) HSV color model cone.  
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The basic color in the HSV model is characterized by its Hue (H) parameter (Figure 

5.6(b)), whereas, the Saturation (S) and Value (V) represent variations of the same Hue. 

Thus, the points can be clustered based in their Hue similarity, which reduces the 

segmentation complexity due to fewer discriminating parameters. This HSV based 

segmentation strategy handles the usual limitations of RGB color model effectively and 

facilitates a single parametric segmentation approach. The following methodology is used to 

convert the color model from the available RGB to HSV model.  

The conversion process maintains the correspondence between the spatial scanned data 

points and its color information. Thus, each data point (x y z r g b) is converted to its 

corresponding data point (x y z h s v). The processed point cloud is used to achieve the 

segmentation. 

 

Algorithm 5.1:   RGB to HSV Color Model Conversion  

Input : r g b Value (0-255) 

Normalize RGB values from 0-1 

norm_r = (R/255); norm_g = (G/255); norm_v = (B/255); 

Compute: Maximum and Minimum Normalized Value 

Norm_Min  = min ( norm_r, norm_g, norm_b )      

Norm_Max = max( norm_r, norm_g, norm_b )      

del_Max = Norm_Max - Norm_Min                

 

Value (V) = Norm_Max 

If  (Norm_Max = 0)                     

 Hue (h) = 0º; Saturation (s) = 0;                              

else                                     

 S = del_Max / Norm_Max 

for Hue (h)  

Case 1: Norm_Max = norm_R 

h = 60•{(norm_g – norm_b)/del_Max}   

Case 2: Norm_Max = norm_G 

h = 60•{(norm_ b – norm_r)/del_Max}   

Case 3: Norm_Max = norm_B 

h = 60•{(norm_r – norm_g)/del_Max}  

      end for 

 if  h < 0 

  h = 360° + h 

 end if 

end  if 
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5.3 Color-Based Clustering 

The traditional geometry based segmentation algorithms use derived geometric derivatives 

(surface normal and curvature) as differentiating parameters for segmentation. It is 

computationally very expensive to compute these parameters for a large, unified data set of 

building interiors. Many real time applications such as virtual reality modeling, as-design as-

built evaluations, computer vision, and web-based monitoring require a rapid segmentation 

strategy that can accelerate the clustering process so that meaningful data segments are 

quickly identified for better understanding of the scanned scene.  

The clustering process can be speeded up by avoiding the computation of these 

additional geometric attributes such as normals and saving their corresponding computational 

cost (O(n2) using triangulation and O(a•n) through surface fitting, where  a-defines the 

number of neighboring points used for plane approximation). Instead of computing these 

approximated surface properties, an effective approach is to formulate a segmentation 

strategy that uses primary attributes of the point clouds such as color and spatial proximity to 

differentiate object clusters and subsequently, segment them. The computational cost 

required by this methodology (O(n) for structured and O(nlogn) for unstructured data sets) is 

drastically reduced. Hence, a pure color-based segmentation algorithm is investigated as a 

starting point, as discussed in the following section.  

A pure color-based segmentation algorithm formulates clusters from neighboring points 

with similar hues. First of all, rough clusters are quickly segmented based on the hue, which 

are subsequently refined to extract accurate data clusters as shown in Figure 5.7. 

5.3.1 Rough segmentation 

This initial stage extracts data clusters for a specific hue range with limited deviation span for 

user defined seeds. The points are grouped together into a cluster if their Hue deviation (ΔH) 

is within a permissible limit. A point data saturation parameter (Sr), controls the data 

extraction process based on an allowable hue deviation value (Algorithm 5.2). The saturation 

parameter (Sr) is defined as a ratio of the increase in number of extracted points to the 

cumulative extracted points in the previous stage. It has been seen that the number of 

extracted points increases by increasing the permissible angular variation value, however it 

stabilizes (Figure 5.8) at a specific hue deviation value. This maximum permissible angle is 
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denoted by Max_Ang and is defined as the maximum angular span (ΔH) around a specified 

hue (H) value, which constitutes a specific color in the given scanned scene. This approach 

identifies different segments representing specific colors and thus identifies a roughly 

segmented data representing different objects. A saturation criterion keeps a check on the 

segmentation process and avoids the under-segmentation. It is to be noted that Max_Ang can 

be specified externally by the user to any lower value than this computed value. 
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Figure 5.7:  An overview of a pure color-based clustering methodology. 

 

Figure 5.8:  Point cloud stabilization with increased variation in hue value.   
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The point cloud is clustered using the Algorithm 5.2 where the points for a given hue are 

segmented until the corresponding cluster is saturated.  The extracted cluster often includes 

outliers and thus, such clusters need to be refined to extract accurate data clusters with steps 

shown in Algorithm 5.3.  

Algorithm 5.2: Color Based Clustering 

Input : Point cloud (PC)data with color info ( i j x y z h s v)  

             Main Hue seed values in data set  (h1, h 2, h 3..... hn) 

             Permissible Hue Array (Δh 1, Δh 2, Δh3, …… Δhm) 

 

Define:        Cluster for hue h = Ch; Point with Hue h = ph;  

 

Initalize:       nh =size(Ch)=0; $Prevnh = 0; Sr=0.03; $Prev Δh=0; Nh=0; 

 for each Hue Seed h, Do 

             ph 
add  Ch; nh =size(Ch)  

for k = 1 to m 

 for each point  pq  ϵ PC 

  if 
2

Δ
+≤≤

2

Δ
-

mm h
hh

h
h q

;    

                   pq 
add Ch;  nh= nh+1; 

              end if 

end for 

Checking the Data Saturation Condition 

          if   
r

h

hh

N

nn
S≥

$Prev-

∑
   

         $Prev nh = nh;  Nh = Nh+nh; $Prev Δh= Δhm; nH = 0; 

          else Break; 

          end if 

end for 

end for  

return Updated Cluster CH 

 

5.3.2 Cluster refinement 

The rough clusters for a particular Hue represent two type of data sets (a) Outliers or spurious 

data and (b) Rough object clusters. In this refinement stage, spurious data and outliers are 

removed and object’s clusters are refined.  This refinement is achieved using a distance based 

outlier detection and removal process. The saturated regions are extracted using region 

growth approach through neighborhood investigation (Algorithm 5.3). A local density based 

FDNthreshold defines the minimum number of points required within a pre-computed fixed 

average distance (df) based on average data density. The data cluster is extracted by searching 
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neighboring points within a fixed distance (β•df.) using a user defined β. The process ensures 

that the expansion process have sufficient marching seeds to extract large clusters. 

FDNthreshold is also used to compare the data density and detecting outliers. The points with 

the least neighboring point count are defined as outliers and are removed and the remaining 

data points represent data clusters. 

Algorithm 5.3:   Cluster Refinement  

Input : Rough Data Cluster [Ch] for Hue h,  FDNthreshold;   

       nh=size(Ch); Kp-neighboring finding function 
 

       FDNp = No. of neighboring points around a point (p) within a fixed distance(df); 

       [FCh] = final cluster; Distance Factor =β; Average Distance= df 

 

Outlier Removal 

 

for i=1 to nh 

     if  FDNi ≤ FDNthreshold  

     Remove pi; Update [Ch];      

end for 

 

Refined Cluster Extraction 

 

for i=1 to size(Ch) 

          pi add [FCh]; pi  remove [Ch]   

Call Function MngCluster (pi, Ch) 

end for 

Function MngCluster (pi, Ch)  

            
{Kpi}              Kp(pi) 

               for j=1 to size{ Kpi } 

Compute dij =(pj-pi) 

if dij  ≥ β • df
 

pj  
add  [FCh]; pj   

add

 
TempArray;   

pj  
remove [Ch] 

            else Continue 

             end for 

          while TempArray is not empty Do 

                           T=TempArray(1) 

                            Delete TempArray(1) ; Call MngCluster (T, Ch) 

       end while 

            Return;  

5.3.3 Color based segmentation results and discussions 

The proposed color based approach is implemented on a colorized data set of (a) a curvature 

continuous data of a round ball with opposite quadrants characterized by the same color and 

(b) an office interior environment involving multiple objects and a few colored sheets on the 
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walls. Figure 5.9 shows the results of extracted clusters from the ball data (β=1.5, h=120º and 

240º) and Figure 5.10 and  Figure 5.11 shows the rough and refined clusters of the room 

scanned data (h= 0º, 120º, and 240º, β =2, df =1.5cm, FDNthreshold=5, Sr=3%), which are 

extracted from the office scan data using color based rough clustering and subsequent 

refinement by spatial proximity investigation using FDNs, respectively. The wall data is not 

shown in Figure 5.11 to enhance the visual clarity.  

The proposed methodology extracts unique data clusters based on a HSV color model. 

Initial rough clusters, extracted with a large permissible variation in hue component (20-25º), 

and followed by a concise cluster refinement using restricted FDNthreshold, parameters is an 

effective cluster extraction approach. A multiple factor (β) of 1.5-2 extracts large 

homogeneous clusters. Further, unique data clusters can be extracted even from curvature 

continuous regions (quadrants, Figure 5.9) and from geometrically consistent data set (color 

sheets from walls, Figure 5.10). The observed inconsistencies can be refined to some extent 

by removing the outliers (Figure 5.11) in the refinement stage, however, some spurious data 

is also identified in regions with inconsistent color information and lack of color contrasts. 

The extracted data set represents objects which may be further segmented based on 

geometrical properties if required for reverse engineering. However, here the main objective 

was to extract data clusters for quick visualization and scene understanding of the scan 

domains and the proposed approach can be effectively used for such applications.  

This pure color-based clustering algorithm segments the point clouds into individual 

clusters representing individual shaped objects. A robust HSV color model helps in devising 

a hue-based differentiating criterion to formulate non-recursive clustering methodology.  

Although the approach generates clusters representing different hues in the scanned 

scene, there are few limitations of this approach. The approach works better where the 

domain have distinct contrast colors and not grey, black and white regions. Further, areas 

from different objects with similar hue values are often clubbed together into a single cluster 

due to the absence of unique differentiating parameters in such regions e.g. floor and person 

data set. Further, no distinction between simple (planar) and complex (interior objects) 

geometries have been made during the segmentation process. To avoid this total color 

dependence and extract planar as well as complex data clusters from this unified data set, a 

more robust hierarchical approach is proposed as follows. 
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Figure 5.9: Point cloud clustering results of a colored ball (a) Colored ball surface (b) Point cloud data of 

the ball and its segmented results using the proposed algorithm based on (c) Green and (d) 

Blue hue parameters. 
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Figure 5.10:  Point cloud clustering results of a room scan using the proposed algorithm for (1–3) Green 

(4-6) Blue and (7-9) Red hue with corresponding clustering parameters. 
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Figure 5.11:  Refined interior clusters, extracted using the proposed region growth and FDN 

investigation (β=2; Sr=3%, df =1.5cm.) 

5.4 Hierarchical Segmentation Algorithm 

The point cloud in building interiors can be divided into two main categories based on their 

geometric shape complexities: (1) large regions with planar geometries such as walls, floors, 

and ceilings, and (2) small regions representing complex, freeform interior objects. It is 

difficult to develop a single comprehensive clustering algorithm that will satisfactorily 

partition such real-world scenes having multiple objects with vast variety of surface 

complexity. However, dividing the segmentation task into stages can simplify the problem to 

some extent. Further, combining color and geometry characteristics can be used to formulate 

a robust segmentation strategy to handle spatial uncertainties.  

 In the proposed hierarchical segmentation approach, a shape based hierarchy is proposed 

to identify planar and complex data regions in two successive stages. It simultaneously 

exploits the combined color and geometry based segmentation strategies to formulate a 

robust algorithm. In the first hierarchical step, large regions of the acquired data cloud 

representing flat regions are identified using constraints that combine color and local measure 

of planar alignment. The remaining data points are then assigned to individual clusters based 

on local surface normal and hue deviation information. A suitable seed selection strategy and 

cluster expansion method (Sections 5.4.1and 5.4.2) is used to extract accurate data clusters in 

two hierarchical stages (Sections 5.4.3 and 5.4.4).  
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An effective seed selection and cluster expansion process will enable the 3D point cloud 

to be segmented into a simplified, but accurate, representation of the various contiguous 

surfaces that comprise the scanned scene.  Random seed selection followed by location 

optimization (Hoover,  Jean-Baptiste,  Jiang et al., 1996; Wani and Arabnia, 2003) is often 

used to improve the overall segmentation accuracy but this is a very computationally 

expensive process. Selecting too many seed points that lie along transition zones (cluster 

boundaries) and unreliable cluster expansions often leads to over-segmentation. Thus, it is 

essential to devise effective strategies for accurate seeds selection and cluster expansion 

process.  

5.4.1 Seed selection 

The main challenge in selecting appropriate seeds in colorized point clouds is to ensure that 

the identified seed point has the same color and geometric properties as its immediate 

surroundings and it does not lie along a cluster boundary. The seeds can be selected manually 

for large clusters or can be selected automatically for interior objects. 

In this regard, the hue and geometric properties of each seed candidate are compared 

with its Kr-nearest neighbors, and the average deviation from this group is then used to 

determine its suitability as a seed point.  This is accomplished by first computing the average 

hue deviation (Δh) for the selected point.  If the computed value is within an acceptable limit, 

the neighborhood around the identified point is then checked for its geometric disparity using 

the average angular residual value (arp).  This parameter represents an average deviation 

between the normal vectors of the seed point (np) and its Kr-nearest data points (nj) as 

follows: - 
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        (5.1) 

Points with large angular residuals (arp > 30°) often lie on the region boundaries or 

surface edges of building interiors, and are not good candidates for seed points.  Thus, if arp 

is large then another point from same hue set must be picked and checked for its suitability as 

the seed point.  
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In other words, a data point from the colorized 3D cloud is selected as a seed point only 

if exhibits hue (Δh < 10º) and geometric (arp <10°) coherence with its immediate neighbors 

as illustrated in Figure 5.12. The hue parameter of point p1 in Figure 5.12(a) is consistent 

with its surroundings; it lies in a region with significant surface normal deviations and is, 

therefore, not a suitable candidate for a seed point.  However, another point (p2) from the 

same hue region (Figure 5.12(b)) satisfies both hue and geometric deviation constraints and 

can be successfully used as a seed point. To prevent multiple seed selection from the same 

group, the initiated cluster is completed before selecting the next seed.  

A further advantage of a color-based seed selection procedure is that it can initiate 

additional seed points from regions representing different objects having similar surface 

geometry such as a door or art work on the wall. A pure geometry based algorithm will 

combine such segments into a single identified cluster.  In contrast, the proposed similarity 

criterion will not allow the inclusion of points with different hue in the geometrically similar 

regions, which will be available for future seed selection.  

 

 

Figure 5.12:  Selection criterion of initial seed points (a) Bad seed data point (b) Good seed data point. 

5.4.2 Cluster expansion 

The algorithm forms clusters by analyzing the data points within a fixed neighborhood 

distance (df) around the selected seed point for hue and geometric coherence. Those fixed 

distance neighbors (FDNs), that satisfy the similarity constraints are included in the cluster 

and are used as anchor points to investigate subsequent FDNs around them from the 
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remaining data points.  This process continues until expanding cluster is not able to find any 

candidate point to investigate within its FDNs. The clusters are extracted sequentially and the 

process continues until most of the data points are segmented into clusters.  

The fixed neighborhood distance (df ) is defined adaptively for each data cluster based on 

the local data density, which varies due to the relative position of the scanner from the 

scanned surfaces. This  fixed neighborhood distance (df ) is computed as the multiple of 

adaptive average density distance (AADD) and a user defined, non-dimensional Distance 

Factor (DistF), where AADD is defined as the arithmetic mean of distances between the seed 

point and its N-nearest neighbors (d1, d2, d3, ......dN) in the scanned data set as shown in 

Figure 5.13. A suitable distance factor (DistF = 1-2) ensures that the cluster expansion 

process continuously finds sufficient neighboring points within its fixed distance to define 

new anchor points and prevents pre-mature cluster termination and thus, works in sparse and 

dense data regions, alike.  On the other hand, a restricted distance factor (DistF) also prevents 

the cluster expansion over a discontinuous boundary and prevents under-segmentation. For 

example, two probable seed candidates-p1 and p2 in two dissimilar regions (Figure 5.13) 

compute a different value of AADD and their corresponding fixed distance (df). Each cluster 

uses its own fixed distance value computed at its respective seed point. As a result, the 

clusters will be extracted from both these regions irrespective of their spatial density.  

 

Figure 5.13:  Computation of fixed neighborhood distance (df) from local data density defined in terms 

of AADD. 

This color-assisted, geometry-driven methodology is used in two hierarchical stages of 

this algorithm to extract planar (Section 5.4.3) and complex free-form (Section 5.4.4) clusters 

from a colored scanned data set of building interiors as shown in Figure 5.14 and described in 

the following sections.  
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5.4.3 First stage of hierarchical clustering (planar shapes)   

The first stage of the hierarchical clustering algorithm exploits the fact that there are often  

large planar geometries (walls, doors, windows, floors and ceilings) in building interiors, 

therefore identifying these planar regions greatly reduces the volume of data to be analyzed 

in the second stage where clusters associated with multiple-interior objects are extracted.  

Large planar regions are initially identified from the cloud using constraints that combine hue 

and a measure of local planarity called a planar alignment factor (PAF).  

The PAF is a dimensionless parameter that reflects whether a sampled point (pi) in a 

predefined region of the cloud lies on or near a plane fitted through all points in the selected 

region.  This measure enables the clustering algorithm to quickly identify captured coordinate 

points that have been originated from flat interior surfaces such as walls, ceilings or floors.  

The PAF parameter is computed by first fitting a plane through the coordinate points that 

reside within a predefined neighborhood of a selected seed point ps.  A region with a large 

number of neighboring points (Kr) is used to fit the plane and determine the corresponding 

surface normal ( n̂ ).  Each neighboring data point pi (where i = 1, 2, ..., r) is then checked to 

see if it lies on the plane defined by n̂ . This is achieved by looking at the immediate 

neighborhood of pi (Figure 5.15) and determining the cumulative mean ( ∑= ik

i

avg θθ / k ) of the 

angular deviations of coordinate vectors from the ith point to its kth neighbor and the pre-

computed surface normal ( n̂ ).   

The planar alignment factor (PAFi) for point pi is defined as the ratio of the threshold 

angular value ( threshold

avgθ =80°) and the complementary deviation angle (π/2-
i

avgθ ).   

Mathematically, this is given by 

 
)-2/(

θ
= i

avg

threshold

avg

i θπ
PAF  (5.2) 

Points with PAFi ≥ 1 are geometrically consistent with the locally fitted plane defined by 

n̂  and, therefore, can be clustered together during planar region expansion process.  For 

example, a cluster initiated from seed point ps in Figure 5.15 includes points p2 and p3 but 

omits points p4 and p5 
based on their PAFi   < 1.  
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Figure 5.14:  An overview of the overall hierarchical data clustering methodology. 
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Figure 5.15:  (a) Angular deviation calculations of neighboring vectors (b) Data clustering based on 

angular deviation threshold.  

The PAFi parameter on its own will not be able to distinguish between multiple planar 

objects that may overlap (e.g. posters on walls) or lie in close spatial proximity (e.g. planar 

light fixtures).  This under-segmentation problem can be corrected, in part, by using a 

combined hue and geometry-based similarity criteria.  In other words, geometrically 

consistent points (PAFi ≥1) on flat surfaces but with a significantly different hue will not be 

included in the cluster as it grows.   These neglected points will remain available in the cloud 

for subsequent seed selection and/or assignment to another expanding cluster region.  The 

region-growing algorithm include a point ip  in the expanding cluster only if (a) PAFi ≥1 and 

(b) its hue variation is within a threshold value ( thresh ) as described in first hierarchical 

clustering algorithm (Algorithm 5.4). In this manner, unique clusters for doors, windows or 

display posters on the walls, contrasting colored rugs and light panels on the ceiling can also 

be efficiently extracted. 
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Algorithm 5.4:   First hierarchical clustering algorithm (Point data clustering based on PAF             

and hue constraint)  
Parameters:    Point cloud {P}, Seed Points {Ps}, Remaining Points{RP} 

                          Neighboring point finding function thres

avg

thres

prp KKpK θ,h,,),(  
Initiate: Initial Cluster with its seed point. 

for each seed point }P{ ssp  Do 

     }{ s

add

s Cp                                          % (Cluster initiation) 

     Compute Normal Vector n̂
 
from 

rK  -nearest points using plane fitting  

     Remaining Points  
spPRP  }{  

 Call Function MngCluster1( RPnps ,ˆ, ) 

        if size {Cs}< 50;  

 }{}{ RPC add

s 
 
; s++ 

        end if 

end for 

 

Function MngCluster1( RPnps ,ˆ, ) 

      )(}{ s

find

p pK                   
% (Find Kp-neighboring finding function )( sp based on AADD)

 
             for q=1 to size{Kp} 

                call Function PAFCompute (ps, RP, n̂ )  

                    if PAFq ≥ 1  and {(hq-hs) ≤ h
thres

});  

                       }{ s

add

q Cp   
                 

% (Add pq to cluster Cs) 

                       }{RPp remove

q    
            

% (Remove  pq from remaining points RP)
 

                                TempArrayp add

q 
     

% (add pq to a Temporary array for expanding cluster Cs) 

         else Continue 

             end for 

             while TempArray is not empty Do 

    for m=1 to size(TempArray) 

                T=TempArray(1) 

                Delete TempArray(1)               

                  Call MngCluster1(T, RP) 

                  end for 

            end while 

           Return;                           

 

        Function PAFCompute (pi, RP, n̂ ) 

             
0=iθInitiate ;

  )(}{ sp

find

p pKK   
             for j=1 to size{Kp} 

            Compute 
ij pp 
 

                   ij

ij

ij

-pp

n-pp
θ

ˆ•)(
cos= 1-

 
              













≤≤2-

2≤0

ijijij

ijijij

θifθθ

θifθθ

 

                   
ij

iiSum   ;
)(=

p

i

i

avg Ksize

θSum
θ

 

             end for 

                   Planar Alignment Factor (PAFi)

 
i

avg

threshold

avg

θ .2

θ

-
   

              Return;  
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5.4.4 Second stage of hierarchical clustering (complex surfaces and objects)  

The remaining data point set in the 3D cloud represent complex interior objects and, 

therefore, must be assigned to new clusters using robust geometric and hue similarity criteria. 

This is the role of the second stage in the hierarchical clustering process, where normal 

vectors and hue deviations are used to measure the cluster coherence.  

5.4.4.1 Computation of geometric parameters 

To minimize the effect of noise in the data set, an approximated normal vector in̂  is 

computed for each remaining data point pi by fitting a plane through its nearest neighbors.  

However, utilizing the nearest neighbors over the same fixed distance for all points often 

results in erroneous normal vectors due to significant variations in data density. The problem 

is addressed by selecting the neighboring points based on the adaptive average density. 

Thereby points within the adaptive fixed neighboring distance (df) are used to compute point 

normal as shown (Figure 5.16).  This fixed neighboring distance (df) reduces in high density 

zone and vice-versa, which helps in generating consistent point normal for each data point. 

Thus, each remaining point pi∈ [RP] in the cloud has a distinct spatial location (x y z), 

approximated unit normal (nx ny nz), and color information (h s v). 

 

 

Figure 5.16:  Normal vector computation from restricted neighborhood data points. 



104 

 

The approximated surface normal for interior point cloud is shown in Figure 5.17, 

which is used to extract individual clusters in the second hierarchical stage using 

combined hue and normal deviation criteria. 

 

Figure 5.17:  (a) Interior point cloud data and (b) Interior points along with their approximated surface 

normal. 

5.4.4.2 Data clustering based on color and surface normal 

This step extracts coherent clusters using a combined hue and surface normal-based 

similarity constraint. A seed point (ps) initiates a new cluster and expands it by investigating 

its K-nearest neighbors (p1, p2, …..pK) using within the fixed investigating distance (df) 

around the point. The similarity constraint criteria requires the hue ( ≤ thresh ), normal vector 

deviation (≤
thres

normVectorλ ) and the spatially conformity (≤ df) of the data point to be within 

permissible limits for its inclusion in the expanding cluster. The clusters are extracted 

sequentially using the adaptive average density distance (AADD) approach described in 

Section 5.4.2.  Second hierarchical clustering algorithm (Algorithm 5.5) summarizes the 

steps of this hue and geometric similarity based segmentation stage. The results are compared 

with the extracted clusters, when the hue or geometric similarity constraints are implemented 

individually and are compiled in the next section.   
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Algorithm 5.5:   Second hierarchical clustering algorithm (Point data clustering based on 

normal and hue constraint). 

Parameters:  Colored Point cloud data [P] with point normal, Similarity threshold values 
thres

normVector

thres λ ,h  

                       Neighbor finding function )( pK p
  

for each seed point (ps)  

Do 
Initialize:      Cluster region   

      Call Function MngCluster2 (ps, RP) 
        if size Cs < 50;  

 }{}{ RPC add

s 
 
; s++ 

       end if 

end for 

Function MngCluster2( RPps , ) 

     )(}{ sp

find

r pKK              
% (Find Kp-neighboring finding function  )( sp pK  

based on AADD  

      for q=1 to size{Kp} 

              Compute normal Vectors (nq) for each data point pq 

           if (hq  - hs) ≤
thresh  &&  ( )(cos-1

qs
.nnp

 ≤ thres

normVectorλ );  

         }{ s

add

q Cp   
                             

% (Add pq to cluster Cs) 
         }{RPp remove

q    
                        

% (Remove  pq from remaining points RP)
 

         TempArrayp add

q   
               

% (add pq to a Temporary array for expanding cluster Cs) 

           else Continue 

           end if  

     end for 

                     while TempArray is not empty Do 

                for m=1 to size(TempArray) 

                T=TempArray(1) 

                Delete TempArray(1)               

                  Call MngCluster2(T, RP) 

                              end for 

                    end while 

Return; 

 

5.4.5 Hierarchical clustering results and discussions   

The hierarchical clustering algorithm is implemented on the colorized 3D range data of an 

office interior that includes multiple objects such as chairs, tables, computer monitors, a 

statue head and a printer.  In addition, a few colored sheets with different orientations are also 

taped on the flat walls to evaluate the suitability of this method in identifying unique clusters 

from regions with similar surface geometries. The clustered results from each hierarchical 

stage, with different algorithmic parameters are compiled in the following sub-sections.  
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5.4.5.1 Planar shape clustering results 

In the first hierarchical stage, the large planar data clusters (walls, floor and ceiling) are 

extracted by analyzing the planar alignment factors (PAFs) and the permissible hue deviation 

threshold (hthres) from its neighboring points. The surface normal at the selected seed point is 

initially computed by fitting a plane through a large number of neighboring points (
rK = 50) 

using a very tight fit ( rpa  ≤ 10º), which ensures that the seed point is not selected at a 

boundary region. The cluster then grows from the selected seed point by investigating the 

coordinate points in its closest vicinity (DistF = 1.0 - 1.5) using two permissible angular 

deviation (
threshold

avgθ  = 7° and 15°) and hue deviation threshold ( thresh = 15°) constraints.  The 

number of extracted clusters and their corresponding point counts are computed and tabulated 

in Table 5.1. 

Table 5.1: Number of extracted clusters and points in first hierarchical stage using angular deviation and 

hue constraint. 

Points: 385655 

Outliers: 92 

Regions No. of Clusters(Cluster points) % Scanned  data 

 Without Color With Color Without Color With Color 

DistF=1.0;  
threshold

avgθ =7° 

thresh =15° 

1 Floor   1(9594) 1(9741) 2.48 2.52 

2 Ceiling  1(92719) 2(110290) 23.97 28.52 

3 Walls   4(170887) 9(172313) 44.19 44.55 

4 Boundary 1(6574) 1(5121) 1.70 1.32 

5 Interior 1(106973) 1(89282) 27.66 23.09 

DistF =1.5; 
threshold

avgθ =15° 

thresh =15° 

1 Floor   1(11704) 1(13135) 3.03 3.40 

2 Ceiling   1(121170) 3(131839) 31.33 34.09 

3 Walls  4(178068) 10(179422) 46.04 46.39 

4 Boundary  1(4096) 1(2088) 1.06 0.54 

5 Interior Data 1(67052) 1(60263) 17.34 15.58 
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Table 5.2: Clustering results of first hierarchical stage. 

Similarity Criterion  

 DistF =1.0   DistF =1.5 

 Pure Geometry 

( threshold
avgθ =7°) 

Combined Geometry 

and Hue (hthres
 =15°;

threshold
avgθ =7°) 

Pure Geometry  

( threshold
avgθ =15°) 

Combined Geometry and 

Hue (hthres
 =15°; threshold

avgθ

=15°) 
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                 Floor Data         Ceiling Data         Walls data         Boundary Data         Remaining Data 

 

2.48 

23.97  

44.19  

1.70 

27.66 

2.52 

28.52 
44.55 

1.32 

23.09 

3.03 

31.33 
46.04 

1.06 18.54 

3.40 

34.09 
46.39 

0.54 
15.58 

S-1 

S-2 

S-3 
S-4 

S-5 
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Table 5.2 presents a comparison between the clustered results obtained using a pure 

geometry-based approach and the proposed hue and geometry based approach. An initial set 

of seed points extracts the large planar clusters from the floor, walls and ceiling. All interior 

points corresponding to planar regions such as tables are not extracted as no initial seed 

initiates these data clusters. The use of color helps in identifying multiple clusters from the 

planar wall regions and ceiling data (Table 5.2, 2nd column). Further, increasing investigation 

distance (DistF =1.5) helps the expanding cluster to overcome small spatial discontinuities 

and extract large clusters by including doors into wall clusters and light fixtures and air-ducts 

into ceiling (Table 5.2, 3rd column). These are individually segmented using color and 

geometric based segmentation (Table 5.2, 4rd column). The hierarchical approach extracts 

large and multiple planar clusters from its initial point clouds and a small amount (16-28%) is 

carried forward to second stage for further classification. 

5.4.5.2 Complex surface clustering results 

The second hierarchical stage works on the remaining points in the 3D data cloud and 

attempts to extract accurate clusters using normal vector deviation and hue variation 

criterion. Local normal and color coherence forms the basis of similarity analysis in the 

second stage along with spatial coherence and hue deviations. 

For illustrative purposes, the second stage of the clustering process is implemented on 

the remaining data points of the test set (DistF = 1.5, threshold

avgθ = 15° and thresh  = 15°). It uses (a) 

a pure-hue constraint, (b) a normal deviation constraint, and (c) a combined normal deviation 

and hue constraint with an adaptive average density distance (AADD) measure using two 

values of DistF (1.0 and 1.5). The extracted clusters from this second stage are shown in 

Table 5.3. It is to be noted that the segmented colored data sets only represent the extracted 

clusters and have no correspondence to the original hue of the object data.  The first column 

shows the results obtained using the hue variation analysis only, where three values of hue 

thresholds ( thresh = 10°, 15° and 20°) are used. The second column represents the data 

clusters based on the normal vector deviations alone with three normal vector deviation 

thresholds ( thres

normVectorλ =10, 15, 20°) and finally, the third column compiles the results obtained 

by implementing the proposed hue and normal deviation methodology   ( thres

normVectorλ = 10°, 15°, 

20°; 
thresh  = 15°), simultaneously. To facilitate an effective comparison criterion for these 

clustering results, the same initial set of seed points are used in all three cases.  
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Table 5.3: Clustering results of second hierarchical stage. 

 Similarity Criterion 

 Pure Hue  

( thres
normVectorλ =N/A) 

Pure Normal Vector  Deviation              

(
thresh = N/A) 

Combined Color and  Normal 

Vector Deviation (
thresh =15°) 

D
is

tF
=

1
.0

 

 
thresh =10° 

 
thres
normVectorλ  =10° 

 
thres
normVectorλ  =10° 

 
thresh =15° 

thres
normVectorλ  =15° 

 
thres
normVectorλ  =15° 

 
thresh =20° 

 
thres
normVectorλ  =20° 

 
thres
normVectorλ  =20° 

D
is

tF
=

1
.5

 

 
thresh =10° thres

normVectorλ  =10° 

 
thres
normVectorλ  =10° 

 
thresh =15° 

 
thres
normVectorλ  =15° 

 
thres
normVectorλ  =15° 

 
thresh =20° 

 
thres
normVectorλ  =20° 

 
thres
normVectorλ  =20° 
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5.4.5.3 Hierarchical clustering discussions 

It has been demonstrated that the proposed hierarchical approach is effective in extracting 

accurate data clusters from both planar and geometrically complex regions of a scanned data 

set of building interiors. The division of the segmentation exercise into two stages is 

advantageous because a large number of the original scanned points (72 to 84%) correspond 

to planar regions and segmenting these points in the first stage significantly reduces the size 

of the remaining data points for the second segmentation stage. Further, the results show that 

significant improvements in data clustering can be achieved using a combined geometric and 

color similarity constraint, when compared with clusters obtained using a pure color or 

geometry-based approaches. 

The pure geometry based segmentation in the first hierarchical stage groups the points 

based on their local planar alignment factor (PAF) using a permissible angular deviation 

value ( threshold

avgθ ). It is evident from Table 5.1 and Table 5.2 that the pure geometry-based 

approach results in an over-segmented data with numerous clusters. A strict similarity 

constraint in terms of low permissible angular threshold ( threshold

avgθ <7°) generates isolated data 

clusters and a low neighboring distance (DistF ≤1.0) fails to cross small occluded boundaries 

and thus, leads to under-segmentation of floors, doors and intrusions on walls, light fixtures 

and air vents in the ceiling. The clustering inconsistencies can be improved with a higher 

angular threshold value ( threshold

avgθ = 10°-15°) and distance factor (DistF = 1.5).  Unfortunately, 

increasing these parameters tend to combine dissimilar regions and fails to differentiate 

unique hue objects having similar geometries.  

 The combined hue and geometry-based similarity criterion successfully extracts multiple 

planar clusters (Table 5.2) from geometrically similar regions representing colored sheets on 

the wall, light and vent sections in the ceiling and doors in the walls. The additional 

differentiating parameter (hue) allows a larger investigation distance (df), that helps in 

checking more neighboring points for parametric coherence. This prevents over segmentation 

by combining multiple regions, separated by occlusions such as a protruding wall or door 

boundary and generates saturated and large contiguous planar data regions. Although, few of 

these extracted sheet clusters (e.g. S-1, Table 5.2) have missing sharp boundaries, however, it 

is due to the reflective properties and hue uncertainty in these regions, which can be 

improved by accurate capturing of hue parameters during range scanning.  



111 

 

A pure hue-based clustering approach fails in the regions lying very close to the scanner 

(computer table), where the captured data does not have any color information. The absence 

of color generates multiple, over-segmented data clusters representing computer monitor, 

man, printer and dustbin etc. This over-segmentation issue can be improved to some extent 

using large distance factor (DistF) or hue deviation threshold ( thresh = 10°), however, the 

segmentation pattern remains practically similar. Further a relatively higher hue threshold (

thresh =15°-20°) leads to under-segmentation by combining multiple regions. As can be seen 

from Table 5.3, the color-based clustering generates best results with higher DistF (= 1.5) and 

intermediate hue deviation thresholds (hthres=10°-15°). However, the pure hue-based 

approach is not effective in segmenting complex shaped objects and regions with hue 

uncertainty (S=0, V=1; S=0, V=0). Thus, the hue parameter alone cannot robustly extract 

accurate clusters from a multi-object scenario. 

Normal deviation criterion on the other hand (Table 5.3, column 2) extracts refined but 

un-saturated clusters using a lower value of DistF and permissible normal vector deviation 

threshold ( threshold

avgθ ), especially from the regions with lower data density such as a computer 

screen and a statue placed on the table. Increasing the permissible thresholds improves 

clustering accuracy in the region but tends to unite multiple clusters at elevated normal vector 

deviations ( threshold

avgθ =20°).  On the other hand, increasing the DistF value has a lesser impact 

on the cluster extraction efficiency from the sparse data set and cluster unification still 

persists at large angular deviation values, as before.  

The proposed approach generates better segmentation results (Table 5.3, column 3) by 

combining hue as well as normal vector deviation constraints. These dual similarity 

constraints can effectively compensate the geometric uncertainty in regions with multi-

objects and overlapping   regions. Accurate data clusters are extracted even from the sparse 

data regions (computer screen and statue head) around the discontinuous boundaries using a 

restricted investigating distance (DistF=1.0) with limited threshold values ( thres

normVectorλ =15°, 

thresh =10°). Increasing the investigating distance (DistF=1.5) effectively expands the cluster 

to its connected segments (e.g. arm rest of the chair) and as such, extracts cumulative data 

sets for objects, which will be quite effective for pattern recognition and object identification 

applications. It has been observed that a local density-based (DistF=1.0-1.5) investigating 
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distance with low similarity threshold values (
thres

normVectorλ =10º-15º and thresh =10°) is most 

appropriate algorithmic parameters for extracting accurate data clusters without encountering 

any major segmentation inconsistencies. A higher permissible angular deviation value             

(
thres

normVectorλ
 
≥15º) with a greater investigation distance (DistF≥1.5) tends to combine multiple 

regions with poor hues (grays, blacks and white). This is critical at discontinuous boundaries 

where the geometric properties do not change drastically. Hence, it is important to identify 

such discontinuous boundaries, which is addressed in the next chapter. 

It can be stated that the proposed hue and geometry based segmentation methodology is 

very effective in extracting accurate data clusters from point clouds representing multiple 

objects of building interiors. The extracted data clusters are closely associated with the 

object's shape in the scanned scene and therefore can be used for pattern recognition or object 

identification applications. The segmentation thresholds can be controlled to achieve desired 

segmentation level for extracting objects or individual surfaces. However, the approach 

shows some inconsistencies at discontinuous boundaries (computer screen and chair edges, 

Table 5.3) and regions with hue uncertainty (over-exposed colored sheet regions, Table 5.2). 

Thus, it will be beneficial to identify discontinuous boundaries in the point cloud to detect 

occluded geometries. 

5.5 Concluding Remarks 

The initial, pure color based clustering algorithm helps in segmenting the data clusters which 

enhances the scene clarity and helps in quickly identifying the multiple clusters in the 

scanned scene. These clusters are a good representation of the scanned scene and help the 

user to quickly identify the objects present in the scanned scene. However, it works best for a 

scanned scene with contrast colors. It also requires a compensating parameter to ensure that 

multiple regions from different objects are not merged together.  

This geometric complexity based hierarchical clustering approach improves the color 

based algorithm and it can segment the cohesive data sets of occupied building interiors. A 

combined hue and geometry based similarity criterion was used to segment data sets 

representing multi-objects and overlapping regions. This approach instigated an effective 

seed selection strategy and permitted the extraction of accurate date clusters, even from 
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geometrically consistent data regions. The shape based hierarchy was used to extract large 

planar clusters and complex freeform shape clusters in two sequential steps. The first 

hierarchical stage assigned about 72-84% of scanned data to planar clusters using planar 

alignment factors and hue-based constraints and the remaining data points were further 

segmented in the second stage using normal and hue-based approach. The adaptive average 

density distance approach extracted accurate data clusters from dense as well as sparse data 

regions. The availability of this additional hue based similarity criteria helps in investigating 

a greater number of neighboring points with uncertain geometric parameters and extracts 

saturated freeform clusters from geometric similar regions and overlapping regions. A 

suitable set of parameters (DistF=1-1.5; thres

normVectorλ =10º-15º and 
thresh =10°) with adaptive 

average density distance provides a reliable mean to control the level of segmentation. The 

segmented clusters can be used in various subsequent post-processing applications such as 

pattern recognition, object modeling and data simplification. Small clustering inconsistencies 

are observed in the regions involving uncertain hues and discontinuous boundaries.  
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CHAPTER 6  DISCONTINUOUS BOUNDARY DETECTION 

6.1 Introduction 

The occluded data set is an inherent characteristic of the point cloud obtained by scanning 

complex and occupied building interiors with multiple objects and diverse geometries. The 

overlapping geometries in the scanned scene generate large void regions and numerous 

discontinuous sections at the occluded boundaries. Moreover, the lack of known shape 

semantics is deterrent in differentiating overlapping data regions with similar geometries.  

Most existing boundary detection algorithms (Alharthy and Berthel, 2004; Barnea,  Filin 

and Alchanatis, 2007; Rottensteiner,  Trinder,  Clode et al., 2005) are demonstrated on 

exterior point clouds obtained from airborne LIDAR scanning and very few methods 

(Budroni and Böhm, 2009; Ning,  Zhang,  Wang et al., 2009; Vosselman and Dijkman, 2001) 

have addressed issues of point clouds representing multiple objects of building interiors. In 

case of exterior point clouds obtained from airborne scanner, the discontinuous boundaries 

are often extracted through depth analysis of the captured data, which cannot be extended to 

point cloud data set obtained by a stationary scanner used typically in scanning of interior 

buildings, where the scan depth vary continuously all along the domain. 

Discontinuous boundaries are often identified as the border of the void region that are 

not captured during scanning process due to object occlusions, surface characteristics or 

feature complexity. Most of these methods (Borodin,  Novotni and Klein, 2002; Ju, 2004; 

Liepa, 2003; Weyrich,  Pauly,  Heinzle et al., 2004) require the construction of intermediate 

surface models to identify discontinuous boundaries with the main objective of filling holes. 

The identified void regions are often filled by interpolating the surrounding data set.   

Mesh based models (Barequet and Kumar, 1997; Borodin,  Novotni and Klein, 2002; Ju, 

2004; Turk and Levoy, 1994; Weyrich,  Pauly,  Heinzle et al., 2004) are normally used as 

intermediate surface models, where focus is to identify and repair the model to generate 

water tight geometric models. The limiting factor of extending this approach lies in the fact 

that the captured point cloud data set of building interiors represents multiple objects and 

generating models from this cohesive data is significant only if they represent specific objects 

or distinct features. Filling holes and generating models does not help in this case. The data 



115 

 

requires to be converted into building information model (BIM) and thus, an effective 

approach is to identify the occluded boundaries or boundary data directly from the point 

cloud. 

The traditional surface boundary detection algorithms (Sampath and Shan, 2007) 

(Boltcheva,  Bechmann and Thery, 2007; Wei, 2008; Xianfeng,  Xioguang,  Fan et al., 2008) 

mainly exploit geometric characteristics of the scanned data and use their disparity to identify 

region boundaries from a contiguous data set. These approaches use the fact that the 

geometric properties such as surface normal or curvature changes drastically at a region 

boundary. The primary objective of these algorithms is to sub-divide the data set into 

individual segment to facilitate easy surface fitting and model regeneration. Extending these 

geometry-based approaches to identify discontinuous boundaries does not suffice as the 

computed surface properties at a discontinuous boundary are often consistent. The 

discontinuous boundaries in the data set are identified as the continuous edges of the void 

region, identified with in the captured data set. These discontinuous boundaries are composed 

of edges of the triangles, which are not shared by any other triangle (Figure 6.1(a)).  

Computation of such intermediate, approximated surface models from the point cloud 

data set is necessary to identify these discontinuous boundaries; however, it demands 

significant computational cost for unified point cloud of building interiors. Moreover, surface 

modeling from cohesive data set representing multiple objects is neither beneficial nor 

required. Other approaches of identifying surface boundaries use point normal, which 

changes drastically at surface boundaries, but the change is not that rapid at discontinuous 

boundary (Figure 6.1(b)) of the void due to absence of data points on the other side. Such 

voids are often encountered when a scanner captured a domain involving multiple 

overlapping objects (Figure 6.2).  

 

Figure 6.1:  (a) Discontinuous boundary detection from triangulated data set (b) Approximated surface 

normal at point cloud data set. 
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Figure 6.2:  (a) Range scanning of multiple objects (b) Scanning characteristics (occluded boundaries), 

void regions and consistent geometric parameters in discontinuous boundary vicinity. 

Thus, a direct point based algorithm is an effective approach in identifying these 

discontinuous boundaries without generating any intermediate surface model.  This chapter 

proposes a side-ratio constraint methodology to identify the spatial data points at the 

occluded boundaries directly from the point clouds without generating any intermediate 

surface models. The novelty of this proposed algorithm lies in the fact that the boundary data 

points are identified directly from the point cloud data set unlike most other algorithms, 

which needed an intermediate surface model for subsequent surface completion and other 

post-processing tasks. It analyses the progressive scan lines and identifies the boundary data 

points based on their spatial position coherence.  

6.2 Discontinuous Boundary Detection 

Normally, the point cloud obtained by scanning multiple objects simultaneously in a building 

interior environment generates point clouds with discontinuous sections and voids regions. 

These occluded boundaries and voids correspond to the spatial discontinuities in the scanned 

surfaces. Identification of these spatial discontinuities is essential to accurately control the 

growth of the expanding cluster for successful segmentation of cohesive data set of occupied 

building interiors, especially in spatially apart but geometrically similar data patch. Our 

approach attempts to identify these boundary data points by exploiting this positional 

discontinuity of the point cloud of scanning lines progressively. The concept of side-ratio 

constraint is inspired by a work done by Xiang Feng et al. (Xianfeng,  Xioguang,  Fan et al., 

2008), where the dimensional constraint on the sides of the boundary triangles is used to 

extract complex, concave boundaries of a building exterior from aerial point clouds. 
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However, the algorithm proposed in this chapter, works directly on point cloud of building 

interior and does not require any intermediate surface model for its execution.  

6.2.1 Scan-line side ratio constraint algorithm 

The core of this proposed algorithm is to make full use of the inherent properties of the point 

cloud and exploit the positional and topological relationship between points along the scan 

lines. The underlying principle of abrupt variations of range depth at the discontinuous 

boundary is used as a measure of discontinuity. This abrupt depth variation is accessed by 

comparing the distance between two nearest neighbors on either side. It identifies those 

points as discontinuous boundary points that show large neighboring distance disparity. The 

basic steps of this process includes: (1) capturing the point cloud data with their mapped 

positional index in terms of their row/ column index for each data point (2) computing the 

relative dimensional side ratios between immediate neighborhood data points (3) accessing 

the disparity index of each data point and identifying boundary points and finally (4) reining 

discontinuous boundary data points by removing the spurious and outliers in the extracted 

data points. The basic steps are shown in a process flowchart in Figure 6.3. 

The shape acquisition process uses a stationary range scanner to capture the point cloud 

from visible surfaces using the sweeping laser as shown in Figure 6.4(a). The scanner 

captures a fixed number of points from the horizontal and vertical ranges respectively, which, 

if unwrapped on its optical planar surface will form a 2D grid as shown in Figure 6.4(b). The 

total scanning range is captured using mxn-points (m-rows and n-columns). The density 

variation in the mapped grid is due to the varying distances of corresponding surface regions 

from the scanner. The density is maximum at a point nearest to the scanner (centre of the 

wall) and reduces away from this point on either side. Although the data density and its 

corresponding side ratio vary at every point, however, the variation is smooth and thus does 

not indicate discontinuity. A discontinuity is observed only at the point exhibiting a large 

spike in the side ratio. An abrupt change in the range depth or spatial data density signifies 

the boundary point at the discontinuous boundary. Identifying a sudden change from point 

cloud data set representing large buildings is computationally very expensive (O(n3)), 

however the known grid index is quite effective in quickly identifying the probable 

neighbourhood and can help reducing the computationally cost (O(n) for unsorted and O(log 

n) for sorted grid indexes).  
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Figure 6.3:  Flow Chart of the proposed boundary data point extraction algorithm. 

 

Figure 6.4:  (a) Sweeping laser scanning of building interiors (b) Unwrapped domain in the optical plane. 

Each captured data point (x y z) in 3D space corresponds to a particular positional index 

(i, j) in the mapped grid (Figure 6.5(a)), which comes in handy for quick identification of the 

neighboring data points along the sweeping lines. It is to be noted that the Figure 6.5(a) 

shows grid indices only and their corresponding spatial points (x y z) are used to compute the 

Euclidean distance (Figure 6.5(b)). A similar analysis can be performed using depth analysis 

of data points using spherical coordinates; however the overall depth and density will vary 

considerably within the domain and needs to be compensated to formulate a reliable strategy. 

The proposed approach works on a narrow band of data sets and thus it inherently 

compensates for local density variations.  

A given data point can identify its neighboring spatial coordinates (x y z) from their 

corresponding grid indices (i, j) in its adjoining rows and columns using a window as shown 

in Figure 6.5 (for demonstrations purposes, the gradual variation in the scanned data density 

is omitted in this figure), where one point window is used to elaborate the process of 

computing spatial distances of the corresponding neighbors on either side candidate point. 
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Essentially, a large window size is used around a candidate point to identify it as a boundary 

or non-boundary point. The spatial distances between the corresponding neighbors on either 

side of the candidate point are computed and an occluded discontinuity is identified by the 

large ratio of these spatial distances. The window size is reduced and the same process is 

repeated. A candidate is declared as occluded boundary data points if the result converges. A 

large window size facilitates the convergence criterion for a boundary data point, 

compensates the data noise and avoids false occluded boundary point identification. e.g. 

point-A in Figure 6.5(b) is a boundary data point because of high side ratio as the spatial 

distance of its neighboring points on either side of this point varies considerably (distance 

between (i, j)th and (i-1, j-1)th points is exceptionally more than the distance between (i, j)th 

and (i+1, j+1)th points). Thus, point-A signifies the occluded boundary point.  

 

Figure 6.5:  (a) Front view and (b) Isometric view of the captured data from the scan scene of Figure 6.2. 

A side ratio distance is defined as the ratio of the distances that define the spatial 

separation of the proceeding and succeeding data points on the grid. The side-ratios are 

computed for each data points based on the investigation window size. Here w-is the window 

size that defines how many points on each side of the point cloud will be used on the grid to 

investigate the point to be a boundary or a non-boundary point. The side-ratio of a data point 

in an investigation window is defined along the row as follows:- 
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where ),-(),,( jwijid  defines the Euclidean distance between spatial coordinates corresponding to 

(i, j)th and (i-w, j)th grid indices and w varies from its initial window size to 1. Similarly, the 

side-ratio along the column and two lateral sides are computed as follows: 
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The ratios are close to one when computed at a regular point on a local surface. As the 

distance from the scanner increases, the distance between consecutive points also increases, 

however, the variation is gradual and for any given point, the distance between two points on 

a continuous surface are comparable. Such gradual variation generates consistent side ratios. 

However, at discontinuous boundaries, the distances between points on the grid vary abruptly 

and have side ratios considerably higher than the threshold value. Three threshold values 

(SRr, SRc and SRl ) are used to identify these rows, columns and lateral discontinuities. A 

spatial point corresponding to (i, j)- grid indices is a boundary data point if at least one of the 

ratios defined by eqs 6.1-6.4 is more than its corresponding threshold value. 
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        (6.5)                         

or  ( )
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l rorr SR≥,

2

,

1                         (6.6)        

It is to be noted that the above investigation is started with large window (w=5) and the 

size reduced after each calculations. It continues unless the result converges and accurate 

boundary point is identified. The data density (distance between nearest captured data points) 

is dependent on its scanner parameters such as average distance from the scanner (davg.), 

number of scanned points m and n to cover horizontal and vertical scanning ranges, 

respectively. However, the captured side-ratio values are not dependent on these density 

values and are quite consistent in continuous data sets. The constant threshold values (SRr, 

SRc and SRl) identifies discontinuities in the rows, columns or lateral directions, respectively.  



121 

 

The proposed algorithm accesses each data point in the sorted point cloud as a candidate 

for the boundary data point by computing its side ratios from the nearest, complementary 

data points. A boundary-point function computes these ratios with the maximum size of the 

window and reduces the size of the window until the result converges and boundary point is 

identified as shown in Algorithm 6.1. All identified boundary data points are shifted from the 

original point clouds to the boundary data sets.  

Algorithm 6.1:  Occluded boundary data point detection (Side-ratio constraint algorithm) 

Parameters:   Point cloud {P}, side-ratio constraint thresholds { SRr, SRc and SRl }, Scanning 

parameters (m, n)  

                        Investigation window size-w                                                                               

Initiate: Initial Boundary Point Data Cluster {BP}  

Sort:  The index point cloud data {i j x y z h s v} 

 

for i = 1: m   Do 

           for j = 1: n  Do 

               Call Function Boundary-Point (P, w, i, j, SRr, SRc and SRl) 

               if 
jip ,  

is a boundary point ? 

                           
}P{,  remove

jip ; }BP{, add

jip  

              end if 

          end for 

end for
 

 

Function Boundary-Point (P, w, i, j, SRr, SRc and SRl) 

for q= w:1 Do 

Compute Ratios 
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,
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ji

findji

l

ji

l

ji
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ji

r qpξSRSRSRSR  
% (Side-ratio function )( , jiqpξ  

computes four side-ratios  

if  
r

ji

rr SR≥,    or  
c

ji

cr SR≥,   or  ( )
l

ji

l

ji

l rorr SR≥,

2

,

1
  

else q=q+1 

break 

end for 

if q=1 

        Point pi,j is a boundary point 

else  

        Point pi,j is a not a boundary point 

end if  

     

Return 

6.2.2 Outlier detection and boundary refinement 

The proposed side-ratio constraint algorithm identifies boundary data point based on their 

local disparity. As the algorithm is implemented directly on the raw scanned point cloud data 

sets that includes numerous scanning errors due to signal noise, multiple regions and surface 

characteristics. Thus, there are instances where incorrect boundary data points are identified 

from such erroneous point cloud data sets. Identifying and removing such flaws is essential to 
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improve the reliability of the proposed algorithm. These incorrectly identified boundary data 

points often represent sparse density and thus can be identified as density based outliers. The 

overall process of this density based outlier detection algorithm is presented in Algorithm 

6.2.  

Algorithm 6.2 :  Refining discontinuous boundary data points (Density-based outlier detection 

algorithm) 

Parameters:     Point cloud [P], Boundary point data cluster [BP], Scanning parameters (m, n),  

                        Density threshold nthreshold                                                                                

Initiate: Initial Boundary Point Data Cluster [BPrefined]=[BP] and average point distance davg. = 0; 

 

for every p(i, j) ϵ [[P]-[BP]] Do 

              Compute 

                     d1=d(i, j), (i-1, j-1);  d2=d(i, j), (i, j-1);  d3=d(i, j), (i +1, j-1);  d4=d(i, j), (i+1, j);   

                     d5=d(i, j), (i+1, j+1);  d6=d(i, j), (i, j+1);  d7=d(i, j), (i-1, j+1);  d8=d(i, j), (i-1, j);   

 

              Initiate nnb=0; 

Call Function Average Distance (davg.,d1, d2, d3, d4, d5, d6, d7, d8, nnb) 

end for 

 

for each p(i, j) ϵ [BP] Do 

            
  )( ),( jir

find

k pKN 
     

    %   where )(K ),( jir p
 
is a  K-nearest neighborhood points around p  

             [NN]=[Nk]  

             for  a=1:size [Nk] 

                   if  
aji ppd ,),(

 ≥ γ.davg.       %    
rji ppd ,),(

is the spatial distance between p and its a
th

 neighbors  

                                                       %   γ is a multiple factor 

                        ap-]NN[=]NN[                       

                 end if 

             end for  

            if size(NN) ≤ nthreshold 

                      ),(]BP[]BP[ jirefinedrefined p   

                      ),(+]P[=]P[ jip   

                      Update {BP} 

           end if  

end for 

 

Function Average Distance (davg.,d1, d2, d3, d4, d5, d6, d7, d8, nnb) 

               for q=1:8 

                         if dq ≠ 0 

                                 nnb = nnb+1; 

                         else 

                                nnb = nnb ; 

                         end if 

               end for 

                  
nb

q

qavg

avg
n

dd

d








8

1

.

.
 

Return davg. 
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 Each identified boundary point from the side-ratio constraint algorithm is analysed based 

on the data density in its local vicinity. The sparse data points are outliers and are removed. 

The local data density is computed first in terms of number of neighboring points within a 

pre-defined investigation distance (df), which is computed as a multiple-γ of an average 

distance (davg.) between data points in the continuous region. The points having lower 

neighboring point count in that region are outliers and are removed from the identified 

boundary point data set [BP] and thus, a refined point cloud data set [BPrefined] representing 

discontinuous boundary is extracted.  

6.3 Result and Discussions 

The proposed algorithm is implemented on the point cloud data set of building interiors. An 

office space (Figure 6.6) is first scanned using FERO® scanner using specific mxn data 

points. Essentially, there is a one-to-one correspondence between each (i, j) pixel (Figure 

6.6(a)) and its corresponding spatial coordinate (Figure 6.6(b)). The side ratios are computed 

based on the Euclidean distances of its local neighboring points. These ratios are computed 

for each spatial data point, where the neighborhood information is identified from grid 

indices. 

 

Figure 6.6:  Scanned point cloud data representing an office room (402x963).  

6.3.1 Side-ratio constraint and boundary data points extraction 

The captured point cloud data of an office room (Figure 6.6) is used to elaborate the process 

and results. Converged side-ratios are computed for each data point from its neighboring 

points. These side-ratios along rows, columns and lateral direction are shown in Figure 6.7, 

where the isometric views (Figure 6.7(a)) represent the vertical height as the side ratio at its 
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corresponding grid index (i, j). Figure 6.7(b) shows the top view with color grid indices 

reprinting occluding boundary indices. Once these indices are identified, their corresponding 

spatial data points (x y z) are separated from the point cloud and are identified as occluded 

boundary data points.  

 

(a)          (b) 

Figure 6.7:  Side-Ratios ( ji

rSR , , ji

cSR , , ji

lSR ,

1
 and ji

lSR ,

2
) of the point grid (mxn) of the scanned data of an 

office room. 
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The vertical direction shows the value of the actual side-ratios. The colors show the 

normalized local deviations from the unwrapped grid. Some of the point with noisy 

neighborhood points generates very large reduction ratios, which increases the span of the 

vertical axis and makes it difficult to differentiate the lower values of reduction ratios in the 

plot. Thus, a restricted value of this maximum reduction ratio is used for plotting the 

variations.  It can be seen from these graphs that the although the higher side ratios     ( ji

rSR , ,

ji

cSR , , ji

lSR ,

1
 and ji

lSR ,

2
) give good indication of the location index (i j)) of the surface 

discontinuities. In this case, outliers may be avoided with suitable selection of the threshold 

values and subsequent outlier compensation.  

A suitable threshold value of these side-ratios provide the location grid indices (i j) of 

the spatial points on the discontinuous boundary. Figure 6.8 compiles the identified boundary 

data points with different threshold values implemented on the lateral side-ratios. It can be 

seen from this figure that the side ratios with a suitable value of threshold can extract 

accurate boundary data points. However some data points from the continuous regions are 

also extracted as boundary data points. The data points identified as circular rings are due to 

the varying data density, which is observed as the surface region moves away from the 

scanner and data density reduces. Further, the points representing the ceiling vents are 

extracted only in Figure 6.8(a) where a sharp variation identifies points on surface 

discontinuity, which otherwise is a contiguous surface with occasional abrupt changes. This 

situation leads to the micro-discontinuity and thus are identified with small side-ratio 

threshold (low ζ ). Such inconsistencies are considerably reduced and the accuracy of the 

identified boundaries is significantly improved with the increase in the threshold value 

(Figure 6.8 (b, c and d)).  
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Figure 6.8:  Original point cloud data and Identified boundary data points with different lateral side-ratio 

constraints with ζ = 5, 7.5, 10 and 15. 

6.3.2 Density based boundary refinement 

Boundary data points are accurately identified using side-ratio constraint algorithm with 

higher threshold. It takes care of the spurious data points from regions with higher data 

density variations and abrupt changes in the surface properties. However, some random 
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points are identified as boundary points due to data noise and other surface characteristics. 

The extracted data points are further improved by removing outliers to extract accurate 

discontinuous boundaries. Figure 6.9 shows the results of the refined data points identified at 

the discontinuous boundary after the density based outlier detection approach is 

implemented.  

 

Figure 6.9:  Refined boundary data points obtained using density-based outlier detection (nthreshold=4). 

The density-based refinement removes the spurious data points and generates accurate 

boundary data points (Figure 6.9). The local effect of varying data density in the point cloud 

is minimized as the points corresponding to circular rings are reduced (Figure 6.9(a-c)). It can 

also be seen from Figure 6.9(c) and (d) that the points corresponding to the two distinct edges 

of the computer monitor are accurately extracted. The discontinuous boundary data points at 

the far-end of the vertical scanning range (nmax) are also extracted as the circular pattern, 

which is partially captured at the table and the floor. Additionally, the multiple points from 
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the boundary data sets are also reduced considerably.  It can be concluded from the analysis 

that an effective approach of extracting accurate boundary data points is to avoid very low 

value of side-ratios (ζ=10-15), where the spurious data points are removed by density based 

outliers.  

There are few portions in the refined data sets such as section S1 and S2 in Figure 6.9(d), 

where the refining process seems to work ineffectively. However, these regions can be seen 

from an alternative view-point (Figure 6.10) that in these data set regions, discontinuous 

boundaries are accurately identified. It is very clear from the figure that this data set shows 

discontinuous boundaries of different parts of the chair (chair arm, the car seat and the back) 

and different parts of the occluded regions i.e. wall and floor (Figure 6.10 (a)). Further 

multiple boundary data points in section S2 represent different objects such as cabinetry, wall, 

side wall and the back wall (Figure 6.10(b)). Hence, it can be concluded that the proposed 

initial boundary point extraction and subsequent refinement process is effective, even in this 

dense area representing multiple objects.  

 

Figure 6.10:  Detailed views of section S1 and S2 from different view point. 

6.4 Concluding Remarks 

Occluded boundary point identification in point clouds representing multiple objects is an 

essential pre-processing step. This is especially critical for accurate representation of voids 

and discontinuous boundaries in the point cloud. It is essential to generate an effective 
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framework for application involving data registration, segmentation and geometric modeling. 

The proposed side-ratio methodology extracts the boundary data points directly from point 

clouds, which categorize each data point as an occluded boundary or non-boundary data point 

based on side ratios from its neighbors. The neighborhood relationship is effectively 

measured from the sorted point cloud data and exploiting the grid index of the scanned data 

sets. It is observed that the inconsistent data densities due to the varying scanner distance can 

be compensated by using higher thresholds of the side ratios (ζ=10-15). Further, the occluded 

boundary data cluster is refined by removing the spurious data points that are generated due 

to signal noise, varying data densities and non-homogeneous surface properties. The 

refinement process relies on an average density based outlier detection approach, which 

removes the sparse data points from the boundary data cluster. The refined boundary points 

represent an accurate occluded boundary, which can be effectively used in various post-

processing applications involving region segmentation, pattern recognition and data 

simplification. 
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CHAPTER 7 INFORMATION MODEL EXTRACTION 

7.1 Introduction 

Building information models of large civil structures from their corresponding point cloud 

have become an important tool for designers, modelers and engineers to identify, extract and 

communicate geometric, topological and spatial information with others. These BIM models 

help to investigate the impact of any change in modeling, renovations and architectural 

modifications on a scanned domain. These models provide engineers with effective means to 

understand a complex scanned scene with informative point clouds representing something 

more than mere spatial positions. It helps in evaluating the scanned structures in terms of its 

as-built as-design evaluation, layout extraction, historical site documentation, freeway 

redesign, tunnel modeling and creating geographical information system (GIS). 

A set of information models developed in this research transforms the raw point cloud 

data into a usable format (geometric features, meaningful clusters, and other shape attributes) 

with additional information. The BIM specifications are critically dependent on the 

application-specific domain and the usability of the information. However, its applicability 

cannot be generalized to multiple applications and an explicit information model is required 

for a given application. Besides, reliable information models can only be generated if the 

scanned data set is captured accurately in the first place. The research presented here focuses 

on these two critical steps of developing effective information models from point clouds: (1) 

capturing accurate spatial geometry and (2) developing adaptive information models. 

Accurate spatial form can be captured using effective scan planning, which generates a 

huge point cloud with minimum scanning inconsistencies and representing everything in the 

scan scene.  A descriptive scanning methodology is devised to improve the accuracy of the 

captured data so that reliable information models can be developed from the data set. Further, 

the information model developed in this research extracts section layouts and data clusters 

which are representative of the objects lying within the scanned scene. The overall research 

(methodologies and developed algorithms) carried out in this thesis and their probable 

applications are shown in Figure 7.1 and described in the following sections. 
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Figure 7.1:  The methodologies and algorithms developed and their probable applications. 

7.2 Simplification and Layout Extraction Applications 

The first information model extracted from accurately captured point cloud data is the section 

layout. During the process, the point cloud data set is also simplified using a contour based 

simplification methodology. The simplification strategy removes points adaptively based on 

the local geometric complexity i.e. more number of points are removed from the planar 

region and less number of points are removed from geometrically complex regions. Thus, 

certain elements, features and objects are visible in the simplified scanned scene. The layouts 

are extracted using a slice of point cloud along a given direction and thus, based on its 

location, the extracted layout can be used to compute the geometric parameters such as area, 

volume etc. Another location of layout slice can produce the layouts representing the 

openings in the walls corresponding to the doors or windows. This information model can be 

used in the following applications.  
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7.2.1 Scene visualization 

One of the most critical characteristic of 3D scanning of building interiors with multiple 

objects is that captured point cloud often corresponds to multiple objects with data density 

having no direct correlation with the geometric complexities of the objects. Here, simple 

(geometries) as well as complex (freeform) surfaces are captured coherently. Thus, the point 

cloud is overly populated in planar regions and it does not help to distinguish the features in 

the scanned scene. Thus, a simplification strategy that can directly focus on important 

features and extract them directly from the point cloud, is quite beneficial. It not only extract 

the desired feature (layout in this case), but the simplified data set helps in visualizing the 

scanned scene accurately. For example, Figure 7.2 shows the scanned scene, a data slice and 

the simplified data slice. 

The original point cloud data (Figure 7.2(a)) is very dense and its visualization does not 

yield any information about the objects present in the scanned scene. The regions are over-

populated in some regions and under-populated in others. The scanner’s settings can be 

adjusted to capture large number of points to avoid under-populated regions. However, this 

also increases the number of points at the simplified region and the visualization becomes 

even worse. It is really difficult to identify the points representing the interior objects. The 

point cloud simplification strategy proposed in this research helps in reducing the internal 

points as shown in Figure 7.2. Here the sliced point cloud is decimated to reduce the point 

cloud in such a way that the point cloud corresponding to internal objects is retained.  The 

resultant slice point cloud (Figure 7.2 (c) and (d)) shows the objects are clearly identifiable 

and the scene visualization is greatly improved. This facilitates a reliable means to devise 

effective strategies for CAD modeling and virtual reality application through reverse 

engineering or pattern recognition. It is to be noted that the approach is purely based on the 

point cloud where the point cloud is simplified and visualization is improved without 

generating any intermediate models or derived geometric components. 

Figure 7.2 (d) retains points corresponding to the reference spheres, shelves, monitor, 

telephone and the boundary data point of the tables. This decimated data set can not only be 

used to identify the number of objects lying in the scanned scene, but can also be used to 

formulate effective post-processing strategies to model them. The proposed simplification 
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strategy also extracts layouts from the point cloud data set, which can be used for numerous 

applications as described below. 

 

Figure 7.2:  Data simplification and better scanned scene visualization. 
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7.2.2 Geometric parameter estimation 

The layouts extracted from the simplified point cloud data set can be used to estimate the 

geometric parameters including dimensions, areas and volumes. The extracted shapes provide 

a direct means of measuring the dimensional details of the length, width or any other 

dimensional parameter of the scanned objects. Subsequently, other geometric properties can 

be derived from these dimensional parameters. The layout extracted from the sliced point 

cloud is shown in Figure 7.3 that gives an accurate estimation of the geometric parameters as 

compiled in Table 7.1. In fact, the area computed from the scanned point cloud is an accurate 

estimate of room because it does not compute it directly by multiplying length and width and 

takes into account the small variations, protrusions or recesses in the walls.  

 

Figure 7.3:  The sliced data set, computation of geometric parameters and extracted parameters. 
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Table 7.1: The estimated and manually measured physical parameters and percentage variations 

Parameters Estimated  Value %  variation 

 From Scanned Data Manually Measured  

Max. Length (m) 4.662 4.664 0.043 
Max. Width (m) 3.655 3.655 0 
Max. Height (m) 3.379 3.381 0.050 
Area (m2) 16.51 17.04 3.110 
Volume (m3) 56.029 57.636 2.788 

 

The low variation in the dimensional parameters (length, width and height) is an 

indicative of capturing accuracy of the scanner. The variation in areas and volume is more as 

the one computed through manually measurements does not take into account the variation 

along the span and uses measured length, width and height to estimate the area and volume 

values. However, the values estimated from the scanned data are more realistic. In case of 

area computation, the protruded regions due to pillars and wall sections reduce the internal 

area of the room, which is the exact representation of the corresponding parameter. 

Moreover, the slice position used to extract the layout for area computation can be altered to 

better suit the visibility of the dimensional parameters. The volume on the other hand, 

reduces at the inward protrusions of the wall sections and outwards protrusions of floor 

section and hence it is actually close to the real value.  

7.2.3 Emergency route planning 

The extracted contours can also be used to compute the emergency path/route planning. All 

path planning applications need the section layouts with sufficient information regarding the 

opening in the layouts for an object/ robot to move around.  

As the proposed algorithm extracts the section layouts from data slice, the location of the 

slice can be adjusted to extract the section layout with desired sectional properties. One slice 

can generate the section layout with closed boundaries (Figure 7.3(c)) and thereby can be 

used to compute geometric properties (area). Similarly, another slice from the point cloud can 

be used to generate the section with recesses (Figure 7.4(d)). The recesses so computed in the 

extracted layout can be subsequently exploited geometrically and the path or route planning 

algorithms can be developed for mobile or evacuation applications. Figure 7.4 shows the 

slice selected from the point cloud of room scan and their corresponding section layout with 
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door opening. Although this figure shows a section layout of a single room, the methodology 

is extendable to point cloud captured from multiple locations and registered together, where 

multiple layouts extracted from the different scan positions can be registered together to 

combine the overall floor layout. This layout is then used to develop reliable route/path plan. 

 

 

Figure 7.4:  Layout extraction with openings for path/route planning. 

7.3 Segmentation and Occluded Boundary Detection Applications 

The information model obtained from the color-based, hierarchical segmentation and 

occluded boundary identification help in segregating point clouds into small, meaningful 

clusters that can be used in numerous applications as discussed below.  
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7.3.1 Generating multi-level virtual scenes 

The point cloud captured in the scanning process corresponds to a significant amount of data 

and rich source of information. However, this information is to be extracted from the point 

cloud using suitable post processing strategies. Their suitability largely depends on the 

application for which the information is to be used.  

The algorithmic parameters of the proposed hierarchical segmentation algorithm can be 

adjusted to extract varying level of data clusters (Figure 7.5) details and subsequently create 

multi-level virtual models of the scanned scenes.  

The first segmentation level extracts large clusters which are representative of the 

simplest geometric form of the scanned scene consisting of planar regions and internal data 

sets. The planar clusters extracted in this case represent the walls, floor and ceiling using 

geometric differentiation parameter (level I). The data set representing occupied interiors is 

not processed and it acts like a single cluster. The level suffices if the requirement demands 

very simple representation of the point cloud. 

The combined color and geometric segmentation approach further segments the large 

planar clusters into smaller data clusters. This level segregates the points representing 

multiple objects in planar regions (level II) in the first hierarchical stage. Thus, this superior 

information model provides a means of identifying these multiple objects, which can be used 

to create virtual models of desired details. 

The interior point cloud is difficult to subdivide into accurate individual clusters using 

pure geometric differentiation criterion (level I for 2nd hierarchical segmentation stage). Even 

with optimum algorithmic parameters, the extracted clusters are often incomplete, 

unsaturated and primitive in shape. The algorithmic parameters of the combined hue and 

geometric effectively extract accurate clusters from the point cloud. The value of these 

algorithmic parameters controls the level of information models and the details of the point 

clusters. A suitable set of parameters for the 2nd hierarchal segmentation stage (hue deviation 

threshold (hthres), geometric threshold (
i

avgθ , 
threshold

avgθ ), neighboring investigation distance 

(DistF and df)) are used for extracting accurate segments from the data set. Although not 

completely saturated, it gives a fairly accurate representation of the shape and size of object 

extracted in scanned scene (level II). 
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Figure 7.5:  A hierarchy-based multi-level segmentation models using geometric and color based 

segmentation criteria and algorithmic parameters.  

A relatively relaxed geometric threshold along with small hue deviation constraints 

combines similar hue clusters and generate unsaturated data clusters (level III), which are 

representative of the individual objects in the scanned scene. Selection of multiple seed 
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extracts additional data clusters from the data objects such as side rests for chairs. The 

extracted data clusters are effective for individual object identification in the scanned scene 

and formulate an accurate visual model. 

Further, the individual object clusters can be subdivided into its constituent surfaces 

(level IV and V) so that if required, surfaces can be fitted to this segregated point cloud for 

actual geometric modeling of individual surfaces to complete the virtual model. However, the 

geometric accuracy of the extracted model greatly depends on the actual captured point cloud 

density in this region and the completeness of the data set of a given model. The point cloud 

representing the hidden or overlapping surfaces is often not available and hence, a complete 

surface model of all interior objects cannot be generated. However, based on the level of 

information, the extracted models can be regenerated or matched to its individual surfaces 

and objects.  

This multi-level information models transforms the cumulative point cloud into desired 

format that can be directly used to generate their corresponding virtual reality model. 

7.3.2 Object Identification/inspection/regeneration. 

The first level information model (first stage) can help in generating primitive model of the 

scanned shape of the scanned scene through piecewise integration of planar regions. This can 

be used to compute section layout and other primitive shape information in the first stage. 

The level-II information model of the first stage segregates the planar regions into its 

constituent objects and can help in identifying planar objects such as table, ceiling light, 

doors and window.  

The information model generated by segmenting the point cloud in the second 

hierarchical stage represents points from level-I (unsaturated disjoint regions) to level-II 

(representative objects) to level III(saturated objects) and to other levels representing 

individual surface geometries. As the output of this step is pure point cloud with its color and 

spatial information alone and no intermediate geometric model approximation, the resultant 

models are bound to provide and accurate representation of the objects. 

The point cloud data set can be used to identify objects either through pattern 

recognition, objects matching or object reconstruction.  The first two approaches leads to 
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good results especially in single scan scenario as the point cloud representing each object is 

often not complete and have missing surfaces.  

The segmented data can also be used for investigating as-built as design investigation. It 

is easy to match the segmented data to its corresponding features in the scanned scene instead 

of using the whole data set. This approach is relatively less demanding on the computational 

power due to its data handling strategy, where only an individual feature, individual object is 

considered at a time.  

Finally, the extracted data clusters can be further subdivided or approximated for shape 

for geometric model regeneration. The segmentation facilitates small data clusters 

representing special feature or object and thus can be used to generate one object at a time to 

complete the overall geometric model of the scanned scene. 

7.4 Concluding Remarks 

The information models developed in this research can be used to simplify the post-

processing of the point clouds of large building interiors and transform the un-informative, 

cumulative point clouds into a usable format.  

Direct point-based, data slice-driven simplification strategy helps in generating a 

visualization model for the scanned scene providing a quick means of understanding the 

domain complexity. The same methodology is extended for extracting sections layouts, 

where the proposed algorithm allows the generation of application specific layouts. Its 

algorithmic parameters can be changed to compute both closed as well as open layouts for 

applications involving the computation of geometric parameters and planning the emergency 

routes or mobile paths, which can be used in large number of application scenarios.  

The color-based, hierarchical segmentation and occluded boundary detection algorithms 

provide a reliable means of segregating the cumulative point cloud into multiple, manageable 

and informative clusters. The extracted clusters are very accurate and the algorithmic 

parameters can be controlled to preserve varying level of surface details of the objects, which 

can be used to generate a simple representative model, exact visual model or complex 

geometric model, as desired.  
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Review of Algorithms 

In this thesis, a scan planning methodology enabling accurate 3D acquisition and several 

post-processing algorithms generating information models for occupied building interiors 

were presented. The main focus was to develop a framework for efficient shape acquisition, 

information definition, feature identification and the development of information models. The 

proposed methodologies and algorithms are illustrated on data set of building interiors. 

However, the core algorithms are versatile for use in variety of similar applications such as 

tunnel scanning, sub-ways, narrow pathways and over-bridge etc. The FARO range scanner 

and a digital camera are used to capture the point cloud and the color parameters, 

respectively. The developed algorithms are purely point based and do not require an 

intermediate surface model during implementation.  

The research investigated the limitations of scanning large and occupied building 

interiors and identified scanning and physical parameters of the domain that contributes to 

scan data inconsistencies. These inconsistencies and the domain’s physical parameters are 

mapped and the criticality of density variation is identified in terms of domain’s length/width 

ratio. A density based scan planning methodology is proposed that ensures coherent scan 

density in the captured data. This consistent scanned data could be used for post-processing 

applications without encountering density based issues such as incorrect geometric parameter 

computation, voids regions identification and erroneous data segmentation.  

 The proposed slice-based simplification was capable of generating representative virtual 

model, where all the objects are clearly identifiable in the simplified data set. The same 

algorithm is extended to extract the section layouts from the point cloud directly. The 

algorithmic parameters and the data slices were used to extract the section layout as desired. 

Desired information can be extracted based on the location of the data slice used to extract 

section layout. In fact, the same methodology can extract section layout for computation of 

geometric parameters (length, width, area) and sections for path planning, by changing the 

location of the simplifying plane and data slices.  
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The color-based, geometry-assisted segmentation and occluded boundary detection 

algorithms transform the cumulative point cloud into effective information models. A robust 

HSV color model was used to formulate reliable Hue-based segmentation criterion by 

minimizing the differentiating dependency on intensity to some extent. A rapid, hue-based 

segmentation algorithm does not require the additional, higher order geometric parameters 

(normal and curvature) and can quickly segment the point cloud. However, the presence of 

color in the scanned domain is an absolute necessity in this case. Therefore, a more robust, 

color-based, geometry-assisted hierarchical segmentation algorithm is proposed that can 

work even in the absence of a color/hue. It uses a shape based hierarchical approach that 

ensures that the segmentation parameters are suitable for both simple (planar) and complex 

freeform (interior objects) regions. 

8.2 Novel Features of the Proposed Work 

The novel features of the proposed 3D scanning methodology and information extraction 

algorithms are described below.  

8.2.1 Density-based scanning methodology 

The proposed approach addresses an important issue of digitization process to avoid 

inconsistent data density captured in the scanned scene. The tendency of capturing 

inconsistencies increases with large linear domains and stationary scanners. In this case, the 

proposed methodology provides a feasible solution.  The proposed scanning methodology 

identifies the factors responsible for inconsistent densities and defines a data density. It then 

generates a practical scanning methodology that ensures that the variation in the captured 

data density is within a reasonable limit, which will guarantee that the computed parameters 

from the captured data are reliable for effective post-processing.  

A high density data set is always beneficial. However, it is often very time consuming to 

capture such high density point cloud using higher scanning resolution. A significant amount 

of time can be saved by capturing the domain shape using multi-scan methodology, where 

multiple, relatively less time consuming scans can be combined to generate high density 

point cloud. In this thesis, a systematic scan planning methodology is presented for large 

linear domains.  
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The approach uses domain’s prominent geometric parameters and computes number of 

scans required to capture the whole domain while ensuring that the data density is within a 

desired level. The method defines the restricted density value based on the feature size, shape 

capturing capability or the limited density variation range desired in the final data set.  The 

method provides a systematic means of planning the point cloud acquisition. 

An analytical methodology formulates the mathematical relationships for computing the 

consistent scanning range for each stationary scanner for a given density condition. The 

effectiveness of the proposed scanning methodology is demonstrated on a long, narrow 

corridor by generating a consistent density data set. A restricted data density distance (dalw) 

and low incident angle (θl ) are necessary to capture and register multiple scans in narrow 

spaces with small scanner distance (D). The occluded regions can be effectively captured by 

placing the scanner in front of these regions and thereby reducing incident angle and 

corresponding surface occlusions. The scanning flaws corresponding to the surface 

characteristics can be partially improved by multiple scanning of a given domain. The 

scanning methodology not only works on building interiors, but it also works on any large 

linear domain such as an exterior building facets and long corridors.  

8.2.2 Simplification and layout extraction algorithm 

The novel contribution of this layout extraction and simplification algorithms lies in the fact 

that it works directly on point clouds and can compensate multiple objects and occluded 

geometries in the scanned scene.  

The simplification algorithm identifies and simplifies the data set by removing non-

feature points. The process exploits the fact that simple geometries such as planes can be 

represented with fewer data points and thus can be reduced. Reduction of data points from 

these planar regions retains other critical non-planar features, which can be efficiently 

reconstructed as desired. The approach attempts to simplify the point clouds with the 

intention of retaining the layout points and regenerating the layout from this reduced data set. 

The approach computes point’s importance using a computationally effective, non-recursive 

approach. The data simplification process is directly applicable on the points and does not 

require any intermediate geometric model.  
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A decimated data set generated with this approach is then used to generate the layout 

contours by projection-based contour extraction. The approach requires a fraction of the total 

point cloud to compute the section layout. Further, positioning the simplification plane and 

data slices can generate close or open section layouts for dimensional parameters and route 

planning applications, respectively.  

8.2.3 Segmentation algorithms 

The typical characteristics of point cloud representing occupied building interiors are: (1) 

vast geometric diversity ranging from planar regions to complex freeform objects and (2) 

geometric uncertainty due to region overlapping and presence of multiple objects. The 

proposed algorithm successfully tackled these issues using a novel color-based, geometry-

assisted, hierarchical approach that extracts both simple as well as complex freeform object 

point cloud using robust similarity criteria.  

A pure-hue based segmentation algorithm was initially presented for achieving rapid 

clustering of the point cloud. This approach uses spatial conformity and hue coherence to 

extract data clusters and does not require the computation of any intermediate parameter to 

reliably segment the data set. Although the results were promising, its dependency on pure 

color limits it use in colored environments only and therefore, the approach is extended by 

combing color and geometry to formulate robust differentiating parameters.  

A combined hue and geometry based similarity criterion ensures accurate segmentation 

in geometrically uncertain regions (corresponding to multiple objects or overlapping 

regions). This combined approach instigated an effective seed selection strategy and 

permitted the extraction of accurate data clusters, even from geometrically consistent data 

regions. The shape based hierarchy was used to extract large planar clusters and complex 

freeform shape clusters in two sequential steps. The first hierarchical stage assigned about 

72-84% of scanned data to planar clusters using planar alignment factors and hue-based 

constraints and the remaining data points were further segmented in the second stage using 

normal and hue-based approach. The adaptive average density distance approach extracted 

accurate data clusters from dense as well as sparse data regions. Further, the additional hue 

based similarity helped with investigating a greater number of neighboring points with 

uncertain geometric parameters and extracts saturated freeform clusters from geometric 
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similar and overlapping regions. A suitable set of algorithmic parameters with adaptive 

average density distance can control the segmentation level from objects to individual 

surfaces. The segmented clusters can be used in various subsequent post-processing 

applications such as pattern recognition, object modeling and data simplification. Small 

clustering inconsistencies are observed in the regions involving uncertain hues and 

discontinuous boundaries.  

8.2.4 Discontinuous boundary detection algorithm 

Occluded boundary point identification in point clouds representing multiple objects is an 

essential pre-processing step. The proposed side-ratio methodology extracts the 

discontinuous boundary data points directly from point clouds by exploiting their location 

index. The neighborhood relationship is effectively measured from the sorted point cloud 

data and exploiting the grid index of the scanned data sets. The occluded boundary data 

cluster is refined by removing the spurious data points that are generated due to signal noise, 

varying data densities and non-homogeneous surface properties. The refinement process 

relies on an average density based outlier detection approach, which removes the sparse data 

points from the boundary data cluster. The refined boundary points represent an accurate 

occluded boundary, which can be effectively used in various post-processing applications 

involving region segmentation, pattern recognition and data simplification. 

8.3 Limitations and Current Work 

The scan planning methodology presented in this thesis is devised for narrow and long linear 

domains, which experience large density variations. Specific practical scenarios and the 

dimensional parameters of the domains are enlisted that can benefit from this proposed 

methodology. The planning parameters are computed and the results are demonstrated. This 

methodology is applicable as long as the domain can be approximated using multiple linear 

sections along the path with each section having acceptable linearity. However, the scope of 

this methodology is limited to slender domains such as tunnels, sub-ways, building pathways 

and slightly curved corridors. Further, this method is affected by the user defined scanner 

positions and capturing accuracy of common references, which is currently controlled though 
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scan planning guidelines that may not work in all interior applications with diverse domain 

shapes.  

The simplification and layout extraction algorithm has been demonstrated on single scan 

data sets of building interiors. The application diversity of this algorithm is also demonstrated 

on freeform data set such as facial scans. A systematic plan is suggested to extend the 

proposed layout extraction algorithm to registered point clouds obtained from multiple scan 

positions. However, the present version lacks the robustness in handling connectivity issues 

at regions where data bifurcates in multiple directions. For example a protrusion on the wall, 

multiple intersecting regions and common walls from adjacent scans. The present approach 

suggests the extraction of a layout from each point cloud individually before generating 

another one from different point cloud that are to be merged together, which require accurate 

scanner positioning for merging data sets and extracting layouts effectively. 

Two hue-based segmentation algorithms have been designed and implemented for this 

specific application domain of building interiors. The pure-hue based algorithm is fast and 

effective on the data set where the scanned domain exhibits contrast colors to form a 

successful segmentation strategy. This algorithm helps in quickly visualizing the objects 

present in the scanned scene. However, the approach does not work in domains lacking 

distinctive color attributes. The hierarchical segmentation algorithm formulates a shape 

adaptive segmentation criterion to extract planar as well as complex interior objects. It uses a 

shape based hierarchy to define segmentation parameters and compensates for color and 

geometric uncertainty by formulating a robust geometry based, color assisted differentiating 

parameters. The approach identifies accurate data clusters from both sparse as well as dense 

point cloud data set. The current approach requires user defined seed points in the first 

hierarchical stage for extracting large planar clusters, which can be automated in the future. 

Further, the planar alignment factor used to extract the large planar clusters will not work for 

non-planar walls and curved ceilings, limiting its applicability to traditional buildings. The 

segmentation parameters in the first hierarchical stage can be improved to cover complex 

domains with severe shape deviations from the planar domains. Further, a convergence 

criterion for the second stage seed selection process should be defined so that only finite data 

clusters are extracted from the point clouds.  

Lastly, the proposed occluded boundary detection algorithm works on the data set with 

the known grid indices. In the absence of these indices in the point cloud, the approach does 
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not work directly on the points and the computation of additional geometric properties is 

required to identify and segment the occluded boundaries.  

8.4 Future Work 

The research work presented in this thesis demonstrates an effective system paradigm of 

capturing and post-processing the scanned data of occupied building interiors. The objective 

of developing density-based scanning methodology and other information extraction 

algorithms is to transform the spurious and uninformative point clouds into usable 

information models. This research can be extended to make these information extraction 

algorithms more intuitive, robust and computationally efficient so that interactive virtual 

models can be generated from point cloud data. 

The inputs and the outputs of the current algorithms are often the text files representing 

spatial points, algorithmic parameters and processed results. The resultant point clouds are 

subsequently viewed in visualization tool such as Meshlab and Rhino3D®.  This approach 

leaves little leverage for on-the-fly changes to the algorithmic parameters and makes them 

non-interactive. Such interactive modifications of the algorithmic parameters are especially 

useful to control multiple and interdependent parameters and obtain optimum solutions. 

Ideally, a GUI interface with interactive sliders for the selecting algorithmic parameters and 

visualization framework for viewing the processed results in real time will help in improving 

the usability of these algorithms. Such GUIs can be developed using standard application 

programming interfaces (APIs) such OpenGL. This will not only help in selecting the 

optimum algorithmic parameters but also give an effective user-interface to the overall 

project. 

The interactive visualization also demands an effective implementation of the algorithms 

in terms of computational efficiency. The implementation of algorithms was currently done 

in Microsoft® Visual Studio® using C++ and Matlab. During the implementation of the 

proposed algorithms, more emphasis could have been given on making them computationally 

efficient. e.g. higher order geometric parameters (surface normal at a point) could be 

computed through more efficient eigen decomposition of the k-neighborhood point surface 

patch than the standard local plane approximation. The speed and interactivity of these 

developed algorithms can be further enhanced using efficient open project platform such as 
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such as Point Cloud Library (PCL) (Rusu and Cousins, 2011), where the standard set of 

algorithms can be used to pre-process (data registration, point cloud filtering for noise and 

scanning imperfections), basic feature extraction (neighborhood identifications and geometric 

features computations) and direct visualization (point cloud rendering). The implementation 

speed of these algorithms can be further increased through parallel computing using 

multithreading and multi-core data processing.  

The algorithms can further be improved by reducing the total number of user defined 

variables either by grouping them or converting some of them into derived variables. The 

current scan planning methodology focused on critical shape attributes of slender domains 

that leads to high variation in data density. Although, it is difficult to formulate a 

comprehensive scan planning methodology covering all possible domain shapes, it would be 

interesting to categorize major domains of building interior environments and devising 

corresponding scanning guidelines.  

Certain algorithmic parameters like planar alignment factor lacks intuitiveness when 

implemented in non-traditional scenario. Although it works fine with the wall lying 

perpendicular to the floor, but if the walls are at an inclined angle, it is difficult to achieve the 

same level of accuracy and hence, this aspect can be investigated in future research to 

develop a more intuitive definition for planar data extractions irrespective of its directions. 

The hue based seed selection strategy in the second hierarchical stage works effectively in 

point clouds with distinctive colors and additional geometric properties to compare and check 

the suitability the selected seed. However, in the absence of hue, the seed selection process 

occasionally diverges and a recursive process is required to identify good clusters. Thus, the 

seed selection mechanism can be improved for its robustness, in the absence of contrast 

colors in the point cloud. It would also be useful to understand the effect of varying 

algorithmic parameters such as Kr and Np on data simplification and subsequent layout 

extraction. 

The HSV color models have been successfully used to formulate an effective 

segmentation strategy when used in conjunction with geometry-based differentiating 

parameters. The inconsistent results in over-exposed areas can further be investigated using 

illumination invariant color models (Chong,  Gortler and Zickler, 2008; Song,  Ge,  Qi et al., 

2010) and texture based segmentation (Zheng,  Sang,  Liu et al., 2010). Alternatively, 

advanced geometric parameters such as curvatures can be used in addition to neighborhood 
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proximity and point normal to formulate an even better segmentation strategy for point 

clouds, especially in the regions with higher geometric uncertainty.  

8.5 Final Remarks 

An effective scan planning methodology and novel information extraction models are 

proposed in this research. The proposed technique provides accurate acquisition of the 

captured geometry using density-based scanning methodology, which forms the basis of 

reliable information model extraction during post processing of the captured data. The 

information models so created, can be used to create virtual models of the scanned scenes 

with interactive visualization, geometric modeling and individual object  

It is imperative to develop the algorithms presented in this thesis further to make them 

more robust and generalized for wide variety of applications domains. It will be useful to 

either integrate the develop algorithms to the standard software packages or develop a stand-

alone visualization tools to improve the interactivity of the information models extracted in 

this research.  

In conclusion, this research work helped in understanding several aspects of 3D scanning 

and information extraction challenges of occupied building interiors. The proposed work has 

improved the information modeling pipeline by devising an effective scan planning 

methodology and novel algorithms for data simplification, layout extraction, data 

segmentation and occluded boundary detection.  
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APPENDIX- A 

The equations used in Section 4, are computed by the following mathematical formulations. 

The angular scanning resolution is defined as the minimum angle , between two 

consecutive rays, that are emitted circumferentially from the scanner, such that 

N
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  , where N = total number of circumferential points 

 So 11 tan xDd      

 The value of dn as shown in Figure 3.3 can be computed as compiled below: 
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 The allowable consistent scanning range (Ln) is recursively computed by comparing 

this density distance (dn) with the three cases of allowable data density distance (dalw) as 

compiled below. 

Case I: dalw = Constant == ξ• feature size 

The permissible density distance is defined as a user defined value. Maximum value of Ln is 

computed for given values of D, N and f, with this restricted density condition as follows:  
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Case II: dalw = f D  

For this condition of density condition (dalw=f D), consistent scanning range (Ln) is computed 

for given values of D, N and f, by reducing Eqn. (A.1) to:  
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Case III: dalw= md1 = mx1 

If maximum value of Ln is computed for given values of D, N and m, with a restricted 

condition of 
11 mxmddalw  ,  then the Eqn. (A.1) reduces to:  
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The permissible linear scanning range (Xn), and total number of scans (nscans) can be 

computed as follows 
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