176 research outputs found

    Segmentation of VOI from multidimensional dynamic PET images by integrating spatial and temporal features

    Get PDF
    Author name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information Engineering2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation

    Get PDF
    Author name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information Engineering2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Feature-driven Volume Visualization of Medical Imaging Data

    Get PDF
    Direct volume rendering (DVR) is a volume visualization technique that has been proved to be a very powerful tool in many scientific visualization domains. Diagnostic medical imaging is one such domain in which DVR provides new capabilities for the analysis of complex cases and improves the efficiency of image interpretation workflows. However, the full potential of DVR in the medical domain has not yet been realized. A major obstacle for a better integration of DVR in the medical domain is the time-consuming process to optimize the rendering parameters that are needed to generate diagnostically relevant visualizations in which the important features that are hidden in image volumes are clearly displayed, such as shape and spatial localization of tumors, its relationship with adjacent structures, and temporal changes in the tumors. In current workflows, clinicians must manually specify the transfer function (TF), view-point (camera), clipping planes, and other visual parameters. Another obstacle for the adoption of DVR to the medical domain is the ever increasing volume of imaging data. The advancement of imaging acquisition techniques has led to a rapid expansion in the size of the data, in the forms of higher resolutions, temporal imaging acquisition to track treatment responses over time, and an increase in the number of imaging modalities that are used for a single procedure. The manual specification of the rendering parameters under these circumstances is very challenging. This thesis proposes a set of innovative methods that visualize important features in multi-dimensional and multi-modality medical images by automatically or semi-automatically optimizing the rendering parameters. Our methods enable visualizations necessary for the diagnostic procedure in which 2D slice of interest (SOI) can be augmented with 3D anatomical contextual information to provide accurate spatial localization of 2D features in the SOI; the rendering parameters are automatically computed to guarantee the visibility of 3D features; and changes in 3D features can be tracked in temporal data under the constraint of consistent contextual information. We also present a method for the efficient computation of visibility histograms (VHs) using adaptive binning, which allows our optimal DVR to be automated and visualized in real-time. We evaluated our methods by producing visualizations for a variety of clinically relevant scenarios and imaging data sets. We also examined the computational performance of our methods for these scenarios

    Feature-driven Volume Visualization of Medical Imaging Data

    Get PDF
    Direct volume rendering (DVR) is a volume visualization technique that has been proved to be a very powerful tool in many scientific visualization domains. Diagnostic medical imaging is one such domain in which DVR provides new capabilities for the analysis of complex cases and improves the efficiency of image interpretation workflows. However, the full potential of DVR in the medical domain has not yet been realized. A major obstacle for a better integration of DVR in the medical domain is the time-consuming process to optimize the rendering parameters that are needed to generate diagnostically relevant visualizations in which the important features that are hidden in image volumes are clearly displayed, such as shape and spatial localization of tumors, its relationship with adjacent structures, and temporal changes in the tumors. In current workflows, clinicians must manually specify the transfer function (TF), view-point (camera), clipping planes, and other visual parameters. Another obstacle for the adoption of DVR to the medical domain is the ever increasing volume of imaging data. The advancement of imaging acquisition techniques has led to a rapid expansion in the size of the data, in the forms of higher resolutions, temporal imaging acquisition to track treatment responses over time, and an increase in the number of imaging modalities that are used for a single procedure. The manual specification of the rendering parameters under these circumstances is very challenging. This thesis proposes a set of innovative methods that visualize important features in multi-dimensional and multi-modality medical images by automatically or semi-automatically optimizing the rendering parameters. Our methods enable visualizations necessary for the diagnostic procedure in which 2D slice of interest (SOI) can be augmented with 3D anatomical contextual information to provide accurate spatial localization of 2D features in the SOI; the rendering parameters are automatically computed to guarantee the visibility of 3D features; and changes in 3D features can be tracked in temporal data under the constraint of consistent contextual information. We also present a method for the efficient computation of visibility histograms (VHs) using adaptive binning, which allows our optimal DVR to be automated and visualized in real-time. We evaluated our methods by producing visualizations for a variety of clinically relevant scenarios and imaging data sets. We also examined the computational performance of our methods for these scenarios

    Investigation of intra-tumour heterogeneity to identify texture features to characterise and quantify neoplastic lesions on imaging

    Get PDF
    The aim of this work was to further our knowledge of using imaging data to discover image derived biomarkers and other information about the imaged tumour. Using scans obtained from multiple centres to discover and validate the models has advanced earlier research and provided a platform for further larger centre prospective studies. This work consists of two major studies which are describe separately: STUDY 1: NSCLC Purpose The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for risk stratification of non-small-cell lung cancer (NSCLC). Patients and methods Pre-therapy PET scans from 358 Stage I–III NSCLC patients scheduled for radical radiotherapy/chemoradiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. Using a semiautomatic threshold method to segment the primary tumors, radiomics predictive classifiers were derived from a training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis allowed data dimension reduction and radiomics feature vector (FV) discovery. Multivariable analysis was performed to establish the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent validation set of 204 patients, and a further independent set of 21 (TESTI) patients. Results Of 358 patients, 249 died within the follow-up period [median 22 (range 0–85) months]. From each primary tumor, 665 three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discovered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest to multi-center studies, invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the validation cohort (N = 204, p = 0.00465; HR = 1.61, 95% CI 1.16–2.24). In the TESTI cohort, a smaller cohort that presented with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N = 21, p = 0.501). In contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any prognostic information. Conclusion PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy. STUDY 2: Ovarian Cancer Purpose The 5-year survival of epithelial ovarian cancer is approximately 35-40%, prompting the need to develop additional methods such as biomarkers for personalised treatment. Patient and Methods 657 texture features were extracted from the CT scans of 364 untreated EOC patients. A 4-texture feature ‘Radiomic Prognostic Vector (RPV)’ was developed using machine learning methods on the training set. Results The RPV was able to identify the 5% of patients with the worst prognosis, significantly improving established prognostic methods and was further validated in two independent, multi-centre cohorts. In addition, the genetic, transcriptomic and proteomic analysis from two independent datasets demonstrated that stromal and DNA damage response pathways are activated in RPV-stratified tumours. Conclusion RPV could be used to guide personalised therapy of EOC. Overall, the two large datasets of different imaging modalities have increased our knowledge of texture analysis, improving the models currently available and provided us with more areas with which to implement these tools in the clinical setting.Open Acces

    Potentials and caveats of AI in Hybrid Imaging

    Get PDF
    State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research
    corecore