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Abstract	
	

The	 aim	 of	 this	 work	 was	 to	 further	 our	 knowledge	 of	 using	 imaging	 data	 to	

discover	 image	 derived	 biomarkers	 and	 other	 information	 about	 the	 imaged	

tumour.		Using	scans	obtained	from	multiple	centres	to	discover	and	validate	the	

models	has	advanced	earlier	research	and	provided	a	platform	for	further	larger	

centre	 prospective	 studies.	 This	work	 consists	 of	 two	major	 studies	which	 are	

describe	separately:	

STUDY	1:	NSCLC	

Purpose	 The	 aim	 of	 this	 multi-center	 study	 was	 to	 discover	 and	 validate	

radiomics	classifiers	as	 image-derived	biomarkers	for	risk	stratification	of	non-

small-cell	lung	cancer	(NSCLC).		

Patients	 and	 methods	 Pre-therapy	 PET	 scans	 from	 358	 Stage	 I–III	 NSCLC	

patients	 scheduled	 for	 radical	 radiotherapy/chemoradiotherapy	 acquired	

between	 October	 2008	 and	 December	 2013	 were	 included	 in	 this	 seven-

institution	 study.	 Using	 a	 semiautomatic	 threshold	 method	 to	 segment	 the	

primary	tumors,	radiomics	predictive	classifiers	were	derived	from	a	training	set	

of	133	scans	using	TexLAB	v2.	Least	absolute	shrinkage	and	selection	operator	

(LASSO)	 regression	 analysis	 allowed	 data	 dimension	 reduction	 and	 radiomics	

feature	vector	(FV)	discovery.	Multivariable	analysis	was	performed	to	establish	

the	relationship	between	FV,	stage	and	overall	survival	(OS).	Performance	of	the	

optimal	 FV	was	 tested	 in	 an	 independent	 validation	 set	 of	 204	 patients,	 and	 a	

further	independent	set	of	21	(TESTI)	patients.	
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Results	Of	358	patients,	249	died	within	the	follow-up	period	[median	22	(range	

0–85)	 months].	 From	 each	 primary	 tumor,	 665	 three-dimensional	 radiomics	

features	 from	 each	 of	 seven	 gray	 levels	 were	 extracted.	 The	 most	 predictive	

feature	vector	discovered	 (FVX)	was	 independent	of	known	prognostic	 factors,	

such	as	stage	and	tumor	volume,	and	of	interest	to	multi-center	studies,	invariant	

to	 the	type	of	PET/CT	manufacturer.	Using	the	median	cut-off,	FVX	predicted	a	

14-month	survival	difference	in	the	validation	cohort	(N	=	204,	p	=	0.00465;	HR	

=	1.61,	95%	CI	1.16–2.24).	In	the	TESTI	cohort,	a	smaller	cohort	that	presented	

with	unusually	poor	survival	of	stage	I	cancers,	FVX	correctly	indicated	a	lack	of	

survival	 difference	 (N	 =	 21,	 p	 =	 0.501).	 In	 contrast	 to	 the	 radiomics	 classifier,	

clinically	routine	PET	variables	including	SUVmax,	SUVmean	and	SUVpeak	lacked	any	

prognostic	information.	

Conclusion	PET-based	radiomics	classifiers	derived	from	routine	pre-treatment	

imaging	possess	intrinsic	prognostic	information	for	risk	stratification	of	NSCLC	

patients	to	radiotherapy/chemo-radiotherapy.	

	

STUDY	2:	Ovarian	Cancer	

Purpose	 The	 5-year	 survival	 of	 epithelial	 ovarian	 cancer	 is	 approximately	 35-

40%,	prompting	the	need	to	develop	additional	methods	such	as	biomarkers	for	

personalised	treatment.		

Patient	and	Methods	657	texture	features	were	extracted	from	the	CT	scans	of	

364	 untreated	 EOC	 patients.	 A	 4-texture	 feature	 ‘Radiomic	 Prognostic	 Vector	

(RPV)’	was	developed	using	machine	learning	methods	on	the	training	set.		

Results	 The	 RPV	 was	 able	 to	 identify	 the	 5%	 of	 patients	 with	 the	 worst	

prognosis,	 significantly	 improving	 established	 prognostic	 methods	 and	 was	
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further	 validated	 in	 two	 independent,	 multi-centre	 cohorts.	 In	 addition,	 the	

genetic,	 transcriptomic	 and	proteomic	 analysis	 from	 two	 independent	datasets	

demonstrated	that	stromal	and	DNA	damage	response	pathways	are	activated	in	

RPV-stratified	tumours.		

Conclusion	RPV	could	be	used	to	guide	personalised	therapy	of	EOC.	

	

Overall,	 the	 two	 large	 datasets	 of	 different	 imaging	modalities	 have	 increased	

our	knowledge	of	texture	analysis,	improving	the	models	currently	available	and	

provided	us	with	more	areas	with	which	to	implement	these	tools	in	the	clinical	

setting.	
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Thesis	Contribution	
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In	the	ovarian	cancer	project,	I	was	involved	in	the	initial	outline	of	the	project.	

All	of	the	patients	in	our	centre	who	had	tissue	were	explored	to	see	if	they	had	

pre-treatment	CT	scans.	This	was	performed	by	myself,	and	I	downloaded	the	CT	

scans	 from	 the	 hospital	 and	 curated	 this	 data.	 I	 performed	 the	majority	 of	 the	

segmentations	for	the	primary	tumours	and	peritoneal	metastasis	and	nearly	all	

the	 semantic	 data	 was	 collected	 by	 myself	 in	 combination	 with	 a	 consultant	

radiologist.	 	 I	performed	 the	 texture	analysis	on	 this	data	set.	 I	also	performed	

analysis	 on	 the	 CT	 scanner	 data	 and	patient	 data	 including	 histology	 type,	 etc.	

The	inter-observer	correlation	involved	myself.	I	helped	in	the	analysis	when	the	

proteomic,	mRNA	and	texture	analysis	was	collected.	I	was	also	involved	in	the	

interpretation	of	 the	data	and	write-up	of	 the	paper	of	 the	eventual	paper	 that	

was	accepted.		
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Preface	
	

Cancer	 is	a	heterogeneous	entity	that	will	affect	half	of	 the	UK	population	born	

after	1960	in	some	form	(UK,	2016,	Ahmad	et	al.,	2015,	CRUK,	2017).	The	most	

common	 types	 differ	 between	 the	 sexes,	 with	 the	 5-year	 survival	 for	 some	

cancers	varying	from	98%	in	testicular	cancer	to	1%	for	pancreatic	cancer	(UK,	

2016,	CRUK,	2017).	

Currently,	imaging	plays	a	clear	role	in	the	detection,	visualisation	of	the	spread	

of	 cancer	 and	 response	 to	 treatment.	 The	 workhorses	 of	 the	 imaging	 world	

include	CT,	PET	and	MRI,	which	are	used	in	diagnosing	and	measuring	treatment	

response.	There	 is	a	common	misconception	 that	as	 the	role	of	 imaging	 is	well	

established,	 there	 is	 limited	 potential	 for	 radiology	 to	 provide	 any	 additional	

information.	However,	 if	 these	 images	captured	relevant,	 reliable	and	objective	

information,	it	may	be	possible	in	the	future	to	stratify	patients	on	an	individual	

level,	 with	 the	 potential	 of	 discerning	 the	 underlying	 cancer	 biology	 and	 help	

improve	 treatment	 effectiveness.	 Furthermore,	 imaging	 may	 aid	 personalised	

therapeutic	choice,	treatment	monitoring	and	cost-effectiveness.			

	

There	 is	 a	 big	 drive	 to	 translate	 personalised	 or	 precision	 medicine	 into	 the	

clinical	 setting.	 These	 are	 ‘individualised’	 treatments	 tailored	 specifically	 to	

certain	 tumour	 characteristics.	 For	 example,	 Erlotinib	 and	Gefitinib	 specifically	

target	 EGFR	 mutations	 in	 the	 adenocarcinoma	 subtype	 of	 non-small	 cell	 lung	

cancer	(Lynch	et	al.,	2010,	Pirker	et	al.,	2009).	However,	 it	 is	 important	to	note	

that	 adenocarcinomas	 represent	 approximately	 half	 of	 all	 NSCLCs	 and	 the	
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frequency	of	this	mutation	varies	between	geographical	locations,	and	has	been	

estimated	 to	 be	 between	 12-47%	 (Midha	 et	 al.,	 2015).	 Other	 potential	

biomarkers	 have	 failed	 because	 of	 the	 variability	 of	 the	 predictive	 indicators	

(Patani	et	al.,	2013,	Sölétormos	et	al.,	2016,	Waterton	and	Pylkkanen,	2012).		

	

Currently,	we	are	on	the	cusp	of	a	wave,	where	“big	data”	incorporating	clinical,	

genetic,	proteomic	and	imaging	features	have	the	potential	to	discover	clinically	

useful	biomarkers	for	promising	therapies	(Noor	et	al.,	2015).	The	big	advantage	

of	 imaging	 is	 its	 non-invasive	 nature,	 which	 allows	 repeated	 whole	 tumour	

imaging	 at	 baseline	 and	 at	 regular	 intervals	 (Gillies	 et	 al.,	 2016).	 In	 clinical	

practice,	 invasive	 biopsy	 and	 molecular	 profiling	 monitor	 tumours.	 However,	

due	to	the	spatial	and	temporal	limits	of	biopsy	(Sved	et	al.,	2004),	the	complete	

state	of	the	tumour	fails	to	be	captured.	Disadvantages	of	biopsies	are	plenitude	

and	 include	 the	 occasional	 necessity	 of	 repeats,	 the	 possibility	 of	 improper	

sampling,	 expense	 and	 the	 potential	 of	 complications.	 Despite	 this,	 biopsy	

remains	 the	 best	method	 of	 tumour	 sampling	 currently	 available.	 The	 imaging	

phenotype	 may	 contain	 a	 wealth	 of	 information,	 including	 details	 of	 the	

underlying	genotype	(Segal	et	al.,	2007),	 (Yang	et	al.,	2003,	Diehn	et	al.,	2008).	

The	 tumour	 environment	 may	 also	 provide	 additional	 information	 that	 is	

currently	 not	 utilised,	 and	 this	may	 have	 a	 therapeutic	 potential	 (Gillies	 et	 al.,	

2016).	Tumours	exhibit	strong	phenotypic	differences	such	as	necrotic	cores	that	

are	 apparent	 on	 imaging.	 Thus,	 imaging	 with	 its	 ease	 of	 access	 has	 a	 large	

potential	for	precision	medicine	(Giardino	et	al.,	2017).		
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Following	the	initial	use	of	texture	analysis,	or	radiomics,	by	El	Naqa	in	2009	(El	

Naqa	 et	 al.,	 2009),	 there	 has	 been	 increasing	 interest	 in	 this	 area	 and	with	 an	

increasing	number	of	publications.		

	

The	 motivations	 for	 this	 thesis	 were	 to	 add,	 and	 significantly	 advance,	 our	

knowledge	of	texture	analysis,	so	that	can	we	could	accurately	and	consistently	

describe	 spatial	 and	statistical	 complexity.	The	development	of	 these	 tools	will	

measure	the	extent	of	the	heterogeneity,	attempt	to	predict	survival	and	examine	

the	underlying	reasons	for	this.		

	

	

Outline	of	the	Thesis		

Section	 1.2	 of	 this	 chapter	 will	 provide	 an	 introduction	 to	 cancer	 and	 intra-

tumour	heterogeneity.	The	role	of	 intra-tumour	heterogeneity	and	the	need	for	

quantitative	 methods	 for	 whole	 tumour	 examination	 will	 be	 detailed.	 The	

imaging	modalities	of	PET	and	CT	will	be	introduced.	The	main	applications	and	

current	methods	of	quantification	in	oncology	will	be	discussed.	Current	clinical	

practices	are	also	briefly	outlined.		

	

Chapter	2	is	a	literature	review	of	PET	and	CT	quantification	beyond	its	current	

clinical	use.	There	 is	a	detailed	overview	of	 texture	analysis,	 segmentation	and	

texture	 feature	 selection	 methods	 used	 in	 this	 study.	 Chapter	 3	 presents	 the	

hypothesis,	 aims,	 objectives	 and	 scope	 of	 this	 thesis.	 Chapter	 4	 outlines	 the	
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methods	 firstly	 for	 the	 NSCLC	 section	 and	 then	 for	 the	 Ovarian	 cancer	 study.	

Chapter	 5	 presents	 the	 results	 for	 the	 NSCLC	 study.	 	 This	 is	 sub-divided	 as	

follows:	Section	5.1	will	focus	on	the	selection	of	the	scans	from	different	centres.	

Section	 5.2	will	 showcase	 the	 clinical	 differences	 and	 similarities	 between	 the	

centres	participating	in	the	study.	Section	5.3	will	outline	the	differences	in	the	

scanners	 between	 the	 centres.	 Section	 5.4	 will	 demonstrate	 the	 results	 of	 the	

PET	 features	and	 texture	analysis	 linked	with	 survival.	 Section	5.5	will	use	 the	

accumulated	database	 used	 to	 test	 other	 published	 studies	 on	 texture	 analysis	

with	the	accumulated	dataset	acting	as	an	independent	validation	set.	Chapter	6	

will	 discuss	 the	 results	 of	 the	 NSCLC	 findings	 and	 also	 the	 limitations	 in	 the	

context	 of	 the	 current	 published	data.	 	 Chapter	7	 represents	 the	 second	major	

oncology	 section	 of	 this	 thesis.	 An	 outline	 is	 presented	 on	 the	 use	 of	 texture	

analysis	on	pre-operative	CT	scans	with	patients	with	ovarian	masses	with	links	

to	genomic,	proteomic	and	clinical	markers.		There	is	also	a	section	on	using	the	

pre-operative	 scans	 to	 assess	 for	 peritoneal	 spread	 and	 compare	 them	 with	

surgical	 findings.	 	Chapter	8	discusses	 the	 findings,	with	 important	 sections	on	

limitations	and	prospective	work.		The	thesis	is	concluded	in	chapter	9.		

	

Thesis	contributions	and	software	developed		

Thesis	contributions	

To	my	knowledge,	 the	work	presented	 in	Texture	Analysis	 in	FDG-PET	 in	non-

small	cell	lung	cancer	is	one	of	the	largest	multi-centre	studies	of	its	type.	It	is	the	

first	 to	 incorporate	 wavelet	 transformations	 and	 fractal	 dimensions	 in	 PET	



Software	developed																																
	
	

32	

images.	This	study	has	one	of	the	largest	numbers	of	texture	features	to	date.	It	is	

also	amongst	the	first	to	use	machine	learning	to	select	the	texture	features	and	

link	 these	 with	 survival.	 It	 has	 used	 the	 large	 dataset	 to	 interrogate	 previous	

published	work	that	was	developed	with	much	smaller	datasets.		

	

The	ovarian	cancer	texture	project	is	one	of	the	first	texture	analysis	study	on	CT	

for	 this	 particular	 cancer	 type	 which	 links	 the	 clinical	 outcomes	 with	 texture,	

semantic	features	and	also	with	underlying	RNA	and	protein	sequences.		

	

Software	developed	

TexLAB	1.0	was	developed	in	the	Cancer	Imaging	Centre	by	Dr	Julien	Willaime	as	

part	 of	 his	 PhD,	 utilising	 a	 MATLAB	 toolbox	 and	 graphical	 user	 interface	 for	

texture	 analysis.	 TexLAB	 2.0	 was	 a	 significant	 upgrade	 of	 this	 software	 by	 Dr	

Andrew	Thornton.	Changes	included	the	modification	of	existing	texture	features	

and	 the	 addition	 of	 further	 texture	 features	 to	 include	 fractal	 dimensions	 and	

wavelet	 transformations,	 which	 increased	 the	 47	 features	 of	 the	 previous	

software	to	665	features.	The	latest	software	update	permitted	batch	calculation,	

which	 significantly	 reduced	 the	 computation	 time	 from	weeks	 to	minutes.	 The	

ability	to	perform	texture	analysis	on	CT	images	was	also	added.	The	output	was	

designed	to	facilitate	statistical	analyses.		

	 	



1	Background																																
	
	

33	

1	Background	
	

In	 this	 section,	 an	 explanation	 of	 the	 background	 of	 the	 research	 is	 given.	 An	

outline	of	the	biological	basis	of	cancer,	the	possible	causes	of	heterogeneity,	and	

a	brief	overview	of	the	roles	of	oncology	and	clinical	imaging	are	given.	

1.1	Biological	basis	of	cancer	and	heterogeneity	

Tumours	 demonstrate	 heterogeneity,	 which	 reflect	 underlying	 cellularity,	

necrosis,	 proliferation,	 neo-vascularity	 and	 hypoxia	 (Gerlinger	 and	 Swanton,	

2010,	Marusyk	et	al.,	2012).		These	phenotypes	are	postulated	manifestations	of	

a	 host	 of	 underlying	 genetic	 and	 local	 environmental	 effects	 (Gerlinger	 and	

Swanton,	2010,	Gerlinger	et	al.,	2012).	The	presence	of	heterogeneity	is	thought	

to	confer	drug	resistance,	treatment	failure	and	metastatic	spread	(Fisher	et	al.,	

2013).	 This	 may	 explain	 why	 patients	 with	 the	 same	 histological	 subtype	 of	

tumour	and	stage	respond	differently	to	the	same	treatment	and	have	different	

survival	outcomes.		

	

Current	methods	 to	 investigate	 heterogeneity	 utilise	 invasive	methods	 such	 as	

resection	 or	 biopsy,	 which	 have	 their	 own	 limitations	 regarding	 safety	

(Rodriguez	and	Terris,	1998,	Abhishek	and	Khunger,	2015,	Tøndel	et	al.,	2012).	A	

potential	 issue	 that	 could	 arise	 is	 whether	 the	 biopsy	 accurately	 represents	

heterogeneity.	Furthermore,	the	nature	of	the	tumour	changes	during	the	course	

of	 the	 treatment,	 which	 would	 require	 multiple	 biopsies	 to	 determine	 these	

changes.	Currently,	imaging	identifies	the	sites	of	disease,	stage	and	response	to	

treatment	by	assessing	morphological	changes.	
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1.1.1	Hallmarks	of	cancer	

In	2000,	Hanahan	and	Weinberg	(Hanahan	and	Weinberg,	2000)	proposed	that	

six	 biological	 traits	 characterised	 cancer:	 sustained	 cell	 proliferation,	 infinite	

replication	 potential,	 resistance	 to	 cell	 death,	 angiogenesis,	 and	 invasion	 and	

metastases.	 Malignant	 cells	 evade	 normal	 cell	 control	 mechanisms	 and	

proliferate	autonomously	of	their	environment.	The	exact	mechanisms	by	which	

cancers	 escape	 normal	 controls	 are	 unique	 to	 each	 tumour	 type.	 In	 2011,	

Hanahan	and	Weinberg	(Hanahan	and	Weinberg,	2011)	added	genetic	instability	

and	inflammation	as	two	further	factors	to	their	landmark	paper.		

	

1.1.2	Multi-scale	extent	of	biological	heterogeneity	in	cancer	

Cancer	 is	 a	 multifaceted,	 dynamic	 and	 wide-ranging	 process,	 varying	 across	

spatial	 and	 temporal	 scales	 (Gillies	 et	 al.,	 2010).	 Tumour	 heterogeneity	 is	

displayed	at	both	macroscopic	and	microscopic	environments	(Basu	et	al.,	2011,	

Marusyk	 and	 Polyak,	 2010).	 At	 the	 population	 level,	 some	molecular	 subtypes	

have	been	recognised	to	be	important	in	specific	cancers.	For	example,	in	breast	

cancer,	 the	 hormone	 dependency	 for	 the	 oestrogen	 receptor	 alpha	 (ERα),	

progesterone	 receptor	 (PgR)	 and	 human	 epidermal	 growth	 factor	 receptor	 2	

(HER2)	 expressions	 have	 been	 acknowledged	 as	 key	 markers	 for	 stratifying	

cancer	 subtype	 at	 diagnosis	 (Patani	 et	 al.,	 2013).	 However,	 to	 complicate	

matters,	there	are	reports	that	a	low	concordance	exists	between	the	expression	

of	molecular	biomarkers	measured	at	primary	and	metastatic	sites	for	a	range	of	
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cancers	(Marusyk	and	Polyak,	2010).	Due	to	this	heterogeneity	between	distant	

lesions,	differences	in	response	to	therapy	have	been	demonstrated	(Kenny	et	al.,	

2007).		

1.1.3	Intra-tumour	biological	heterogeneity	

Individual	lesions	in	each	patient	are	composed	of	a	heterogeneous	pool	of	cells	

(e.g.	 cancer	 cells,	 immune,	 inflammatory	 cells,	 stroma,	 vascular	 structures,	 etc.	

(Diaz-Cano,	 2012)).	 Virtually	 all	 tumour	 types	 display	 intra-tumour	

heterogeneity.	These	manifest	through	phenotypic	expressions	such	as	diversity	

of	cell	morphology,	the	unequal	expression	of	receptors	and	the	inhomogeneity	

of	the	tumour	microenvironment	(Marusyk	and	Polyak,	2010).	Different	regions	

of	 the	 same	 tumour	 display	 different	 degrees	 of	 vasculature,	 hypoxia,	

metabolism,	 and	 proliferation	 (Hanahan	 and	 Weinberg,	 2011).	 Gerlinger	

(Gerlinger	 et	 al.,	 2012)	 demonstrated	 the	 spatial	 nature	 of	 this	 heterogeneity,	

demonstrating	that	different	regions	of	the	same	tumour	(renal	cell	carcinoma)	

contained	distinct	genetic	properties	and/or	genetic	expressions	associated	with	

favourable	or	unfavourable	prognosis.		

	

The	 reasons	 for	 intra-tumour	 heterogeneity	 are	 likely	 multitude	 and	 are	 still	

poorly	understood.	Different	theories	have	been	postulated	to	explain	the	cause	

of	this.	The	“clonal	evolution”	(Nowell,	1976)	and	the	“stem-cell”	theory	concept	

(Visvader	and	Lindeman,	2008)	have	proposed	different	evolutions	 in	 terms	of	

inheritable	 traits	 and	 local	 changes	 (Marusyk	 and	 Polyak,	 2010,	 Campbell	 and	

Polyak,	 2007).	 The	 “clonal	 evolution”	 concept	 postulates	 that	 tumour	
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progression	 follows	 localised	 Darwinian	 processes	where	 small	 portions	 of	 all	

mutations	affecting	the	cancerous	cell	population	in	a	tumour	region	are	selected	

and	 passed	 onto	 subsequent	 generations.	 The	 other	 view,	 termed	 the	 “cancer	

stem-cell”	 theory	postulates	 that	 a	 select	 few	 cells	within	 tumours	 acquire	 the	

ability	 to	 proliferate	 infinitely	 and	 thus	 drive	 tumour	 progression.	 This	 theory	

suggests	that	intra-tumour	heterogeneity	is	a	non-inherited	characteristic	due	to	

differentiated	 daughter	 cells.	 More	 recently,	 theories	 involving	 tumour	 cell	

plasticity	have	been	suggested	(Gerlinger	et	al.,	2012).	This	phenotypic	plasticity	

concept	suggests	that	cancer	cells	have	different	“stem-cell	 like”	potentials	 that	

are	influenced	by	their	local	microenvironment	(Marusyk	and	Polyak,	2010,	Park	

et	al.,	2000,	Smalley	et	al.,	2005).	

1.2	 Clinical	 oncology:	 strategies,	 therapies	 and	 clinical	

endpoints	

1.2.1	Cancer	management	strategies	

1.2.1.1	Cancer	staging		

Cancer	staging	consists	of	assessing	the	extent	and	development	of	the	cancer	in	

the	 body	 (Detterbeck	 et	 al.,	 2013).	 Clinicians	 use	 cancer	 staging	 in	 treatment	

planning	to	aid	prognosis.	It	is	also	used	as	a	framework	to	interpret	treatment	

outcome,	 as	well	 as	 providing	multi-centre	 comparisons.	 Staging	 is	 unique	 for	

each	 tumour	 type.	And	different	 assessment	 systems	are	used.	Two	 commonly	

used	 methods	 are	 the	 Tumour	 Node	 Metastasis	 (TNM)	 and	 American	 Joint	

Committee	on	Cancer	(AJCC).	The	TNM	is	a	standard	method	accepted	across	the	
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world	(Union	for	International	Cancer	Control,	2013).	The	AJCC	method	is	based	

on	the	TNM.	Briefly,	these	two	classification	methods	describe:	

• The	primary	tumour	(T)	e.g.	T0:	not	visible,	Tis:	carcinoma	in	situ,	T1-4:	

size	and/or	extent	of	the	tumour;	

• Lymph	 node	 (N)	 involvement,	 e.g.	 N0:	 no	 nodal	 involvement,	 N1-N3:	

nodal	involvement	(number	and	size);	

• Metastasis	(M)	e.g.	M0:	no	metastasis	and	M1:	metastasis.	

For	each	grouping	there	is	also	an	X	to	denote	unknown.	

	

The	 TNM	 is	 then	 given	 an	 overall	 score	 (from	 I	 to	 IV),	 which	 indicates	 the	

severity	of	the	cancer,	also	known	as	the	overall	staging	grouping:	

• Stage	0:	isolated	tumour	(carcinoma	in	situ)	

• Stage	I:	cancer	isolated	to	specific	area;	

• Stage	 II	 and	 III:	 locally	 advanced	 cancer	 with	 lymph	 node	 involvement	

(specific	classification	depends	on	cancer	type).	

• Stage	IV:	cancer	that	has	spread	to	another	organ	(s)	

The	 staging	process	 is	 performed	using	physical	 examination,	 imaging	 (X-rays,	

CT,	MRI,	 PET),	 laboratory	 tests	 (e.g.	 Blood,	 urine,	 other	 fluids),	 pathology	 (e.g.	

biopsy)	 and	 surgical	 reports.	 The	 staging	 process	 often	 occurs	 before	 surgery	

using	 clinical	 examinations,	 also	 known	 as	 clinical	 staging.	 After	 surgery,	 a	

pathological	 staging	 is	 sometimes	 likely.	However,	 these	 two	classifications	are	

kept	 separate,	 as	 the	 two	 are	 performed	 under	 different	 conditions	 and	 times	

(e.g.	 when	 tissue	 from	 neo-adjuvant	 therapy	 is	 used	 before	 resection	 of	 the	

tumour	and	pathological	staging).		
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The	 guidelines	 for	 lung	 cancer	 staging	 for	 this	 thesis	 were	 taken	 from	 the	 7th	

edition	of	TNM	in	Lung	Cancer	of	the	International	Association	for	the	Study	of	

Lung	Cancer	(IASLC)	Staging	Committee	in	2009.	There	has	been	a	recent	update	

of	the	staging	in	the	8th	edition	(Goldstraw	et	al.,	2016),	but	these	are	very	recent	

and	were	published	after	the	collection	and	analysis	of	the	data.	

	

Gynaecological	 cancers	are	assessed	by	 the	FIGO	(Fédération	 Internationale	de	

Gynécologie	et	d’Obstétrique)	system.	In	general,	there	are	five	stages:	

Stage	0:	Carcinoma	in	situ	

Stage	I:	confined	to	the	organ	of	origin	

Stage	II:	Invasion	of	surrounding	organs	or	tissue	

Stage	III:	spread	to	distant	nodes	or	tissue	within	the	pelvis	

Stage	IV:	distant	metastasis	(es).	 	

The	most	recent	staging	system	is	from	2014	(Prat	and	Oncology,	2015).	

	

1.2.1.2	Tumour	grading		

Tumour	grading	is	a	classification	of	cells	based	on	the	appearance	of	the	tissues	

under	 a	 microscope	 (pathological	 examination).	 It	 indicates	 the	 degree	 of	

differentiation	of	different	cancer	cells	 from	their	original	cells.	 It	 is	sometimes	

called	 the	pathological	 grading	of	 tumours.	Grading	varies	across	 cancer	 types.	
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The	 guidelines	 issued	 by	 the	 AJCC	 to	 grade	 tumours	 are	 as	 follows	 (National	

Cancer	Institute,	2013b).	

• GX:	cannot	be	assessed	(indeterminate	grade);	

• G1:	well	differentiated	(low	grade);	

• G2:	modestly	differentiated	(intermediate	grade);	

• G3:	poorly	differentiated	(high	grade);	

• G4:	undifferentiated	(high	grade).	

	

1.2.1.3	Very	brief	overview	of	cancer	therapies		

There	are	many	different	 types	of	cancer	 treatment.	These	are	broadly	divided	

into	 radical	 for	 curative	 intent	 and	 palliative	 for	 symptomatic	 relief.	 The	main	

active	treatment	options	include	surgery,	chemotherapy,	radiotherapy,	hormone	

therapy	and	biological	therapy	(Research,	2016).		

	

Treatment	 options	 depend	 on	 a	 host	 of	 factors,	 including	 the	 availability	 of	

treatment,	 the	 spread	of	 the	 lesion,	 the	grade	of	 the	 lesion(s)	and	 the	patient’s	

overall	wellbeing	and	co-morbidities.	These	are	discussed	in	a	multi-disciplinary	

meeting	 in	 conjunction	 with	 doctors	 of	 different	 specialties	 such	 as	 surgeons,	

pathologists,	oncologists	and	radiologists.	
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Treatment	options	differ	 through	 the	course	of	 therapy,	with	radiotherapy	and	

chemotherapy	 sometimes	 given	 before	 (neo-adjuvant)	 or	 after	 (adjuvant)	

surgery.		

1.2.1.4	The	role	of	Imaging		

Currently	imaging	plays	a	key	role	in	the	diagnosis	and	staging	of	tumours.	It	is	

also	used	extensively	for	the	follow	up	of	cancers	during	and	after	the	course	of	

treatment	 (O'Connor	 et	 al.,	 2016).	 For	 clinical	 trials,	 RESIST	 is	 used	 to	 assess	

tumour	size	or	burden	on	images.			

	

PET	uses	semi-quantitative	methods	of	metabolic	activity,	such	as	the	maximum	

(SUVmax),	mean	(SUVmean)	standardised	uptake	values	amongst	others	 including	

the	Total	Lesion	Glycolysis	(TLG)	(Wahl	et	al.,	2009).		These	have	shown	value	as	

biomarkers,	although	there	are	conflicting	data	on	the	outcome	(Vansteenkiste	et	

al.,	1999,	Okereke	et	al.,	2009,	Machtay	et	al.,	2013).			

1.2.1.5	Clinical	and	pathological	endpoints		

Predictive	 and	 prognostic	markers	 are	 used	 for	 clinical	management	 and	 new	

drug	selection	(Wahl	et	al.,	2009).	One	of	the	main	variables	taken	into	account	is	

the	change	in	size	over	the	course	of	treatment.	Methods	that	have	implemented	

previously	 in	 the	 research	 environment	 include	 World	 Health	 Organisation	

(WHO)	criteria	in	1981	and	two	versions	of	the	Response	Evaluation	Criteria	in	

Solid	Tumours	(RECIST)	criteria	(Eisenhauer	et	al.,	2009,	Therasse	et	al.,	2000).		
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In	 February	 2000,	 an	 international	 collaboration	 between	 the	 European	

Organisation	 for	 Research	 and	 Treatment	 of	 Cancer	 (EORTC),	 National	 Cancer	

Institute	and	the	National	Cancer	Trials	group	jointly	published	guidelines.	The	

initial	 guidelines,	 version	 1.0	 (James	 et	 al.,	 1999,	 Therasse	 et	 al.,	 2000)	 were	

updated	 in	2009,	 version	1.1,	 (Eisenhauer	 et	 al.,	 2009).	 In	brief,	 the	 guidelines	

include	recommendations	for	measuring	lesions,	including	the	minimum	size	to	

be	 included.	 Initially,	 in	 version	 1.0,	 a	 recommendation	 of	 a	 maximum	 of	 10	

‘target	 lesions’	 per	 patient	 (and	 5	 per	 organ),	 was	 made.	 In	 version	 1.1,	 this	

figure	 was	 revised	 down	 to	 a	 total	 of	 5	 target	 lesions	 per	 patient	 with	 a	

maximum	of	2	per	organ.	Other	lesions,	outside	the	criteria,	so-called	non-target	

lesions,	were	visually	assessed	to	indicate	the	overall	response.		

	

Very	briefly,	the	change	in	the	target	lesions	determines	the	response.	There	are	

four	 possible	 outcomes:	 complete	 response	 (CR),	 partial	 response	 (PR),	

progressive	disease	(PD)	and	stable	disease	(SD).	A	complete	response	denotes	

the	disappearance	of	all	lesions	and	pathological	lymph	nodes	to	less	than	10mm	

in	 the	 short	 axis;	 partial	 response	 (PR)	 is	 the	 reduction	 in	 the	 sum	 of	 the	

diameters	 of	 the	 target	 lesions	 by	more	 than	 30%	 (compared	with	 the	 nadir);	

progressive	disease	(PD)	is	the	increase	in	the	sum	of	the	diameters	of	the	target	

lesions	by	20%	(compared	with	the	baseline)	or	the	appearance	of	new	lesions.	

Stable	 disease	 (SD)	 is	 used	 for	 any	 changes	 between	 30%	 decrease	 and	 20%	

increase.	 The	 RECIST	 criteria	 are	 purely	 based	 on	 anatomical	 measurements	

(Hayes	 et	 al.,	 2016).	 However,	 a	 reduction	 in	 tumour	 volume	 does	 not	 always	

occur	and	 is	not	 relevant	 in	 the	use	of	new	cytostatic	 therapies	 (Michaelis	and	
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Ratain,	2006,	Nishino	et	al.,	2013).	Moreover,	there	is	the	potential	of	impeding	

chances	 of	 survival	 in	 patients	 who	 are	 not	 responding	 to	 conventional	

treatment	 by	 delaying	 a	 change	 in	 therapeutic	 strategy	 whilst	 receiving	

treatment	with	potential	toxic	side	effects	(Kenny	et	al.,	2007).	

	

Assessing	metabolic	tumour	response	using	18F-FDG	PET	has	been	suggested	as	

an	 addition	 to	 RECIST,	 as	 this	 method	 has	 had	 some	 success	 as	 a	 potential	

biomarker	of	 treatment	outcome	 (Wahl	 et	 al.,	 2009).	 Interim	PET	studies	after	

two	cycles	of	treatment	have	been	used	clinically	in	the	assessment	of	all	types	of	

lymphoma	 as	 part	 of	 the	 Deauville	 criteria	 since	 2009	 (Gallamini	 et	 al.,	 2014,	

Barrington	 et	 al.,	 2014).	 There	 are,	 however,	 some	problems	 in	 other	 tumours	

and	although	the	reduction	of	tumour	uptake	after	the	first	few	cycles	of	therapy	

has	been	shown	to	predict	tumour	response	(Avril	et	al.,	2009,	Wahl	et	al.,	2009),	

the	lack	of	standardisation	has	resulted	in	poor	uptake	in	the	clinical	context	for	

functional	 assessment	 for	 other	 tumour	 types	 (Eisenhauer	 et	 al.,	 2009).	 	 No	

consensus	has	been	established	with	regards	 to	 timing	of	post	 treatment	scans	

or	the	threshold	of	reduction	(Avril	et	al.,	2009).		

	

Further	work	in	this	area	has	elucidated	that	the	uptake	of	tracer	 is	dependent	

on	 the	 therapeutic	 agent	 (Avril	 et	 al.,	 2009)	 and	 choice	 of	 administration	

protocol	(Schneider-Kolsky	et	al.,	2010).		There	are	also	criticisms	of	this	method	

to	assess	therapy	response	due	to	its	non-specific	nature	(Brindle,	2008).	Other	

imaging	 probes	 have	 been	 developed	 that	 are	 insensitive	 to	 inflammation	 and	
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target	cell	proliferation,	such	as	18F	FLT	(Kenny	et	al.,	2007)	or	hypoxia	(Weber,	

2006).	 A	 comprehensive	 review	 of	 non	 18-FDG	 probes	 that	 have	 been	

investigated	 in	 both	 pre-clinical	 and	 clinical	 trials	 is	 given	 here	 (Kenny	 et	 al.,	

2007,	Alam	et	al.,	2015).	

	

1.3	 Consequences	 of	 biological	 heterogeneity	 in	 cancer	

treatment	and	monitoring	

1.3.1	 Towards	 more	 specific	 targeted	 therapies	 and	 current	

challenges	

Personalised	 medicine	 is	 a	 term	 used	 for	 specific	 treatments	 tailored	 to	

individuals	based	on	the	tumour’s	genetic	profile	(Stricker	et	al.,	2011,	Maughan,	

2017).	Many	targeted	 therapies	have	been	successful	as	second-line	 in	 treating	

tumours	when	systemic	chemotherapy	has	 failed,	 including	 in	adenocarcinoma	

subtypes	 of	 non-small	 cell	 lung	 cancer	 (Lim	 et	 al.,	 2017),	 renal	 cell	 (He	 et	 al.,	

2017),	 hepatocellular	 (Galun	 et	 al.,	 2017),	 neuroendocrine	 (Cidon,	 2017),	

melanoma(de	Unamuno	Bustos	et	al.,	2017)	amongst	others	(Longo,	2012).		

	

However,	 even	 the	 use	 of	 genetic	 and	 phenotypic	 profiling	 to	 develop	 more	

specific	 tumour	 classification	 into	 subtypes	 (e.g.	 in	oestrogen	 receptor	positive	

or	negative	breast	cancer)	has	not	yielded	adequate	targeted	therapy	(Basu	et	al.,	

2011,	Patel	et	al.,	2011).	Examples	of	therapies	with	limited	efficacy	include	the	

use	of	epidermal	growth	factor	receptor	(EGFR1/HER1)	inhibitors	in	non-small	
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cell	lung	cancer	(NSCLC),	head	and	neck	and	colorectal	cancer	with	low	response	

rates	 between	 5	 and	 15%	 (Patel	 et	 al.,	 2011,	 Fukuoka	 et	 al.,	 2003).	 Similarly,	

erlotinib,	gefitinib	and	more	afatinib	(Keating,	2014)	are	 tyrosine	kinase	(TK1)	

inhibitors	have	only	shown	a	10%	response	rate	in	treating	non-selected	NSCLC	

patients,	 where	 the	 overexpression	 of	 the	 EGFR	 was	 not	 associated	 with	

therapeutic	response	(Patel	et	al.,	2011).	Sub-selecting	patients	exhibiting	EGFR	

mutations	yielded	better	results	(Landi	and	Cappuzzo,	2011,	Janku	et	al.,	2010).	

For	 example,	 never	 smokers	 were	 more	 likely	 to	 respond	 to	 these	 two	

aforementioned	 drugs	 than	 smokers	 (Linardou	 et	 al.,	 2009).	 	 A	 more	 recent	

study	demonstrated	response	rates	of	between	50-63%	in	afatinib	 in	advanced	

stage	 non-small	 cell	 adenocarcinoma	 patients	 some	 of	 whom	 harboured	 non-

classical	EGFR	receptor	mutations	 (Shen	et	al.,	 2017).	On	 the	other	hand	K-ras	

oncogene	 mutations	 are	 more	 frequent	 in	 the	 elderly	 and	 heavy	 smokers	

(Subramanian	 and	 Govindan,	 2008).	 	 New	 breast	 cancer	 subgroups	 were	

discovered	 and	 validated	 by	 Curtis	 (Curtis	 et	 al.,	 2012)	 based	 on	 extensive	

genomic	analyses	between	clinical	outcomes.		

	

Two	major	 factors	that	have	challenged	biomarker	development	and	treatment	

response	are	genetic	 instability	and	 intra-tumour	heterogeneity	 (Stricker	et	al.,	

2011).	 Current	 diagnostic	 techniques	 such	 as	 single	 biopsies	 and	 microarray	

sampling	 may	 underestimate	 biological	 heterogeneity	 because	 the	 localised	

nature	 may	 not	 be	 representative	 of	 the	 entire	 tumour	 (Gillies	 et	 al.,	 2010,	

Gerlinger	 et	 al.,	 2012,	 Patel	 et	 al.,	 2011),	whereby	 necrotic	 regions	 differ	 from	

hypoxic	 and	 highly	 vascular	 areas.	 Thus,	 there	 is	 the	 possibility	 that	 these	
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techniques	 may	 introduce	 potential	 bias	 and	 errors	 during	 diagnosis,	

classification	and	prognosis	(Patel	et	al.,	2011,	Stricker	et	al.,	2011).	

	

Silva	(Silva	and	Gatenby,	2010)	found	in	a	study	that	even	the	smallest	detected	

lesions	 (around	 1cm3),	 containing	 around	 109	cells,	may	 harbour	 intra-tumour	

heterogeneity	 due	 to	 genetic	 stability.	 This	 study	was	modelled	 on	 two	 cancer	

populations	 of	 the	 lesions,	 one	 located	 in	 the	 inner	 core	 of	 the	 lesion	 and	 the	

second	located	on	the	outside.	The	former	was	characterised	by	a	more	hypoxic,	

less	proliferative	and	an	acidic	environment.	These	characteristics	were	thought	

to	confer	resistance	to	chemotherapy.	The	second	population	was	located	on	the	

outer	 rim	 of	 the	 lesion	 and	 was	 better	 vascularised.	 This	 had	 a	 more	 chemo-

sensitive	 profile.	 Two	 different	 types	 of	 therapy	 were	 used:	 chemotherapy	 to	

target	 the	outer	rim	and	a	glucose	competitor	to	deprive	cells	of	glucose	 in	the	

centre.	 The	 study	 found	 that	 using	 the	 glucose	 competitor	 followed	 by	

chemotherapy	 was	 the	 most	 optimal	 treatment	 method.	 The	 mutations	 that	

developed	during	the	course	of	the	treatment	were	not	explored.	

	

1.3.2	 Biological	 heterogeneity:	 a	 dynamic	 and	 adaptive	

landscape	

Just	characterising	biological	intra-tumour	heterogeneity	is	not	sufficient.	One	of	

the	challenges	beyond	this	is	to	identify	which	imaging	characteristics	or	events	

drive	cancer	growth	and	which	ones	merely	demonstrate	the	effects	of	treatment	

or	other	drivers	(Yap	et	al.,	2012).	Increasingly,	the	literature	has	demonstrated	
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that	 genetic	 instability	 allied	 with	 intra-tumour	 heterogeneity	 favour	

mechanisms	of	drug	resistance	and	the	natural	selection	of	fitter	resistant	clones	

in	 response	 to	 targeted	 therapy	 and/or	 cytotoxic	 therapies	 (Gerlinger	 and	

Swanton,	 2010,	 Gatenby	 and	 Vincent,	 2003).	 This	 ability	 to	 adapt	 to	 targeted	

therapy	has	been	shown	as	early	as	the	first	cycle	of	therapy	(Patel	et	al.,	2011).	

Additionally,	 the	 distribution	 of	 cytotoxic	 drugs	 into	 the	 targeted	 region	 is	

hindered	 by	 poor	 and	 disorganised	 vascularity,	 slowly	 proliferating	 cells	 and	

acidic	 environments	 (Minchinton	 and	 Tannock,	 2006).	 Thus,	 studies	 have	

demonstrated	that	the	sensitivity	of	cancer	cells	to	therapy	is	varied,	due	in	part	

to	 intra-tumour	 heterogeneity	 (Gatenby	 and	 Vincent,	 2003).	 This	 invariably	

makes	 accurate	 response	 assessment	 to	 new	 therapies	 difficult	 to	 evaluate.	 In	

addition,	the	underlying	mechanisms	responsible	for	progression	and	treatment	

failure	or	conversely	treatment	success	are	also	incompletely	elucidated	(Yap	et	

al.,	2012,	Moiseenko	et	al.,	2017).	

	

1.3.3	Capturing	biological	heterogeneity	

New	methods	are	required	to	assess	and	quantify	intra-tumour	heterogeneity	at	

the	 global	 or	 whole	 tumour	 level.	 This	 will	 allow	 better	 understanding	 of	 the	

complexity	of	cancer	and,	thus,	the	reasons	for	response	or	resistance	(Alizadeh	

et	al.,	2015).		As	alluded	to	earlier,	current	diagnostic	techniques	such	as	biopsies	

and	microarray	sampling	may	not	be	representative	of	the	whole	tumour	in	the	

case	of	heterogeneous	lesions.	An	increasing	number	of	studies	have	proposed	a	

role	for	non-invasive	imaging	methods	(Gillies	et	al.,	2010,	Basu	et	al.,	2011,	Patel	

et	 al.,	 2011,	 Phelps,	 2000,	 Heinzmann	 et	 al.,	 2017),	 through	 the	 adoption	 of	
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newly-developed	 quantification	 methods	 (Tomasi	 et	 al.,	 2012,	 Asselin	 et	 al.,	

2012,	Hectors	et	al.,	2017,	Perdigones	and	Murtaza,	2017).	

1.3.4	Imaging	cancer	using	Positron	Emission	Tomography	

Imaging	modalities	permit	the	non-invasive	detection,	staging	and	monitoring	of	

cancerous	lesions.	Anatomical	and	functional	methods	used	in	both	clinical	and	

academic	 settings	 include	 Computed	 Tomography	 (CT),	 Magnetic	 Resonance	

Imaging	 (MRI),	 Ultrasound	 (US),	 Positron	 Emission	 Tomography	 (PET)	 and	

Single	Photon	Emission	Computed	Tomography	(SPECT).	PET	is	a	very	sensitive	

functional	imaging	method	that	permits	the	study	of	in	vivo	biological	processes	

at	 cellular	 and	 subcellular	 levels.	The	 technique	 incorporates	 the	 injection	of	 a	

negligible	 amount	 of	 a	 radioactive	 compound	 (pico-	 to	 femtomoles/gram)	 into	

the	 bloodstream	 to	 study	 certain	 biological	 processes	 without	 perturbing	 it	

(Phelps,	 2000).	 PET	 imaging	 has	 been	 used	 in	 diverse	 areas	 from	 preclinical	

animal	 models,	 in	 the	 clinic	 and	 within	 the	 pharmaceutical	 and	 biological	

industry	for	drug	discovery	(Cherry,	2006).	Clinically,	18F-FDG	PET	has	been	used	

in	the	detection,	diagnosis,	staging	and	follow-up	of	patients	(Heinzmann	et	al.,	

2017).		

	

1.3.4.1	Nuclear	Physics	and	Positron	Emission	Tomography	

1.3.4.1.1	Positron	emission	and	radioactive	decay	detection		

PET	detects	the	indirect	decay	of	positrons	that	has	been	injected	into	the	blood	

(Cherry,	2006,	Phelps,	2000).	A	positron	is	a	particle	with	the	same	mass	as	an	
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electron	but	with	 the	opposite	charge,	 thus	 it	 is	known	as	an	antiparticle	of	an	

electron.	 This	 particle	 is	 emitted	 when	 proton-rich	 radiolabelled	 compounds	

undergo	radioactive	decay.	They	travel	a	few	millimetres	in	tissue	and	when	they	

encounter	an	electron,	this	encounter	results	in	annihilation	giving	off	511keV	in	

opposing	directions.	In	the	PET	scanner,	detectors	are	arranged	in	several	rings	

that	 are	 equipped	with	 an	 electronic	 circuit	 of	 coincidence.	 The	 recording	 of	 a	

decay	event	occurs	when	two	gamma	photons	are	detected	simultaneously	in	a	

line	 of	 response	 by	 scintillators.	 	 The	 characteristics	 of	 the	 detectors	 and	

electronics	 determine	 the	 energy	 resolution	 and	 maximum	 count	 rate.	 	 The	

recorded	 radioactive	 events	 can	 be	 due	 to	 true	 position	 emission,	 “Compton”	

scatter	 events	 due	 to	 the	 deviation	 of	 the	 photons’	 trajectory,	 or	 random	

coincidences.	 	 Other	 factors	 coming	 into	 play	 include	 the	 photoelectric	 energy	

and	 the	 non-detection	 of	 an	 event.	 Fortunately,	 methods	 exist	 to	 counter	 the	

scatter	and	random	coincidences	(Cheng	et	al.,	2011)	in	PET.		

	

1.3.4.1.2	Image	reconstruction	and	corrections		

The	acquisition	of	PET	images	can	be	performed	in	static	or	dynamic	modes.	The	

reconstructed	 algorithm	 used	 is	 usually	 filtered	 back	 projection	 (FBP)	 or	

iterative	 (e.g.	 ordered	 subset	 expectation	 maximisation	 	 (OSEM))	 methods	

(Alessio	 and	Kidnahan,	 2006).	 There	 are	many	 factors	 that	 need	 to	 be	 applied	

prior	 to	 image	 analysis.	 These	 include	 photon	 attenuation	 corrections	 using	 a	

density	 map	 from	 a	 CT	 scan	 (which	 is	 the	 common	 method	 nowadays)	 or	 a	

transmission	 PET	 scan.	 This	 corrects	 for	 scattered	 radiation	 and	 random	

coincidences	 (Paans	 and	 van	Waarde,	 2002).	 Additional	 corrections	 for	 partial	
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volume	 effects	 (Section	 1.3.4.1.3)	 and	 motion	 (Section	 1.3.4.1.4)	 can	 also	 be	

applied.	Further	considerations	include	time	of	flight	(Prieto	et	al.,	2015)	and	the	

different	 methods	 for	 attenuation	 correction	 encountered	 in	 PET-MRI	 (Muzic	

and	DiFilippo,	2014,	Shah	and	Huang,	2015).	

1.3.4.1.3	Partial	volume	effects	and	corrections		

Partial	volume	effects	(PVEs)	can	influence	the	image	appearance	and	can	result	

in	contaminations	(or	 'spill-over')	of	 tracer	activity	between	regions	and	slices,	

such	 as	 the	 target	 region,	 background,	 and	 other	 organs	 (Rousset	 et	 al.,	 2007,	

Soret	 et	 al.,	 2007,	 Kjell	 et	 al.,	 2012).	 	 There	 are	 two	 concurrent	 effects	 taking	

place	at	the	target	level:	spill	out	and	spill	in	effects.	The	former	consists	of	loss	

of	 apparent	 activity	 in	 the	 target	 to	 background.	 The	 latter,	 spill	 in,	 is	 the	

contamination	 of	 the	 lesions	 activity	 by	 background	 activity	 (Rousset	 et	 al.,	

2007).	For	example,	in	the	case	of	an	tracer	avid	lesion	on	a	background	of	very	

low	activity,	the	PVEs	are	mainly	“spill-out”	effects	which	increase	in	the	lesion	

size	 and	 subsequent	 lower	 apparent	 radiotracer	 uptake	 (Rousset	 et	 al.,	 2007).	

Also,	in	lesions	with	necrotic	centres,	PVEs	may	indicate	that	there	is	more	viable	

tissue	 than	 actually	 present.	 PVEs	 contribute	 greatly	 to	 the	 characteristic	

fuzziness	 of	 final	 reconstructed	 images.	 This	 is	 due	 mainly	 to	 finite	 spatial	

resolution	of	PET	images.	The	final	images	have	low	spatial	resolution	due	to	the	

uncertainty	between	the	exact	location	of	radioactive	decay	events	relative	to	the	

corresponding	detected	annihilation,	the	size	of	the	detector,	the	electronics	and	

mode	 of	 acquisition	 (2D	 versus	 3D)	 (Rousset	 et	 al.,	 2007).	 These	 effects	 are	

modelled	by	a	point-spread	function	(PSF)	attributed	to	the	scanner.	
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Another	cause	of	PVEs,	is	known	as	"tissue-fraction	effect",	which	is	introduced	

to	 digital	 images,	 independently	 of	 the	 system’s	 resolution,	 when	 quantising	

intensities	onto	the	grid	of	the	matrix	(Rousset	et	al.,	2007).	This	discretisation	

method	can	generate	a	range	of	intensities	between	adjoining	structures	within	

individual	voxels.	This	effect	is	generally	ignored	when	correcting	for	PVE	in	PET	

and	most	algorithms	focus	primarily	on	the	PSF	of	the	system	(Erlandsson	et	al.,	

2012).	 	 Soret	 et	 al	 (2007)	 explored	 these	 effects	 and	 demonstrated	 that	 this	

‘tissue-fraction	 effect’	 could	 result	 in	 a	 decrease	 in	 the	 standardized	 uptake	

volume	when	increasing	the	pixel	width.	In	his	paper,	a	7%	reduction	in	SUV	was	

seen	when	the	pixel	width	was	increased	from	4	to	6	mm.		

	

PVEs	 are	 complicated	 to	 correct	 for	 because	 they	 are	 dependent	 on	 a	 host	 of	

other	parameters	that	are	not	and	cannot	be	controlled	for	such	as	tumour	size,	

shape,	 target	 to	 background	 ratios,	 etc.	 (Soret	 et	 al.,	 2007).	 Unfortunately,	 the	

spill	 in	 and	 spill	 out	 effects	 do	 not	 cancel	 each	 other	 out	 and	 it	 is	 difficult	 to	

predict	 how	 much	 the	 pixels	 are	 affected.	 In	 addition,	 PVEs	 are	 modified	 by	

reconstruction	methods	and	parameters	(e.g.	number	of	subsets	and	iterations)	

(Rousset	 et	 al.,	 2007).	 Further	 PVEs	 can	 be	 introduced	 in	 post	 imaging	

processing	when	using	the	Gaussian	kernel,	which	reduces	the	noise	level.	

	

There	 have	 been	 many	 attempts	 to	 correct	 for	 PVEs,	 named	 partial	 volume	

correction	 (PVC),	 but	 none	of	 these	have	been	 standardised	 (Erlandsson	 et	 al.,	

2012).	 Some	 of	 the	 strategies	 suggested	 include	 pre-	 and	 post-reconstruction	

methods	 on	 a	 regional	 or	 voxel	 level.	 In	 pre-reconstruction,	 multiple	 indices	
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called	 recovery	 coefficients	 (RC)	 are	 calculated	 experimentally	 taking	 into	

account	 the	 lesion	 size,	 shape	 and	 location	 to	 correct	 for	 radiotracer	 uptake	

distortion	 (Hoffman	 et	 al.,	 1979).	 These	 have	 been	 subsequently	 developed	

further	to	take	into	account	the	background	uptake	of	the	tracer	(Kessler	et	al.,	

1984).	Another	method	known	as	the	Geometric	Transfer	Matrix	(GTM)	has	been	

used	 to	 account	 for	 the	 contribution	 of	 several	 tissues.	 In	 our	 lab,	 we	 have	

developed	the	fractal	method	(Willaime	et	al.,	2014).		

	

At	the	voxel	level,	many	approaches	for	PVE	correction	have	been	proposed.	The	

most	widely	used	of	these	is	the	deconvolution	method	that	corrects	for	the	PSF	

of	the	system.	The	advantage	of	this	over	other	methods	 is	the	 lack	of	need	for	

additional	 information	 such	 as	 anatomy,	 etc.,	 however,	 estimating	 the	 PSF	

accurately	 becomes	 the	 critical	 point.	 In	 reconstruction,	 these	methods	 lead	 to	

the	generation	of	artefacts	and	noise	amplification	that	need	to	be	corrected	for.	

Although,	 the	 PSF	 can	 vary	 in	 space,	 in	 reality	 this	 PSF	 can	 be	 assumed	 to	 be	

invariant	if	the	preliminary	data	is	corrected	for	variations	in	the	performance	of	

the	 detectors	 (Erlandsson	 et	 al.,	 2012).	 Other	 approaches	 included	 wavelet-

based	ones	 that	 led	 to	high-resolution	details	 incorporated	 into	 low-resolution	

images	 yielding	 interesting	 results	 (Boussion	 et	 al.,	 2006).	 Other	 enhanced	

results	have	been	seen	when	PVC	methods	have	been	incorporated	into	the	PET	

reconstruction	 e.g.	 non-collinearity,	 positron	 range,	 intercrystal	 scattering,	 and	

penetration	effects	(Rousset	et	al.,	2007).	
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1.3.4.1.4	Motion	Correction		

Further	 PVEs	 are	 introduced	 due	 to	 motion,	 patient	 movement,	 cardiac	 and	

respiratory	 effects	 (Erlandsson	 et	 al.,	 2012).	 There	 are	 motion	 correction	

methods	 using	 external	 devices	 to	 track	 breathing	 signal	 (Nehmeh	 and	 Erdi,	

2008).	Unfortunately,	 the	 signal	 to	noise	 ratio	 (SNR)	 is	 very	 low	as	 only	 a	 few	

images	 are	 used	 to	 reconstruct	 the	 images.	 Post-reconstruction	 algorithms,	

known	 as	 reconstruction	 transform-average	 methods	 (RTA)	 (Tsoumpas	 et	 al.,	

2011),	have	been	proposed	 to	make	use	of	 all	 statistics	 ((Visvikis	et	 al.,	 2006).	

The	 way	 this	 methods	 works	 is	 to	 discretise	 the	 events	 into	 discrete	 gated	

frames	(within	which	motion	is	minimal)	and	using	an	optical	flow	technique	to	

register	 and	 re-align	 the	 images	 and	 average	 the	 transformed	gates	 to	 recover	

motion-corrected	 images.	 Anatomical	 imaging	 has	 also	 been	 suggested	 to	

incorporate	the	motion	of	the	heart,	lungs	and	other	organs.		

1.3.4.2	Molecular	imaging	probes	in	PET		

PET	 radiotracers	 are	 composed	 of	 compounds	 that	 have	 the	 biological	

component	of	interest	(e.g.	protein,	nucleic	acid,	antibody,	or	drug)	radiolabelled	

with	 a	 radioisotope	 element	 (commonly	 15O,	 18F,	 11C,	 13N).	 	 The	 subsequent	

images	display	the	concentration	of	the	radiotracer	in	kBq/mL	in	tissues	(Phelps,	

2000).	 In	 practice,	 the	 design	 and	 production	 of	 imaging	 probes	 require	

intensive	research	and	sophisticated	procedures.		

	

18F-FDG	 (18F-fluorodeoxyglucose),	 an	 analogue	 of	 glucose,	 is	 the	 most	 widely	

used	PET	tracer.	Since	its	discovery	in	the	1970s	(Fowler	and	Ido,	2002),	its	use	
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has	become	widespread.	In	the	field	of	Oncology,	it	works	on	the	Warburg	effect	

(Gatenby	and	Gillies,	2004),	whereby	tumours	have	very	high	rates	of	glycolysis.	

FDG	follows	the	same	initial	pathway	as	glucose	but	it	is	trapped	after	the	initial	

phosphorylation	 step.	 The	 amount	 of	 radiotracer	 retained	 by	 cells	 is	

proportional	 to	 the	 rate	of	glycolysis	 (Phelps,	2000).	 Its	 role	 in	cancer	 imaging	

includes	 detection	 of	 primary	 tumours,	 nodes,	 and	 metastases,	 for	 staging,	

assessing	 response	 and	 detecting	 recurrence	 (Papathanassiou	 et	 al.,	 2009).	

There	are	some	drawbacks,	however,	 including	lower	sensitivity	and	specificity	

in	tumours	with	 low	glucose	utilisation.	 	Normal	high	FDG	activity	 is	seen	with	

the	 brain	 and	 kidneys,	 and	 also	 in	 non-oncological	 process	 including	

inflammation	 and	 infection	 (Ertay	 et	 al.,	 2017).	 	 Quantitative	 comparisons	

between	patients	are	not	possible,	due	to	the	variability	between	the	uptake	of	

the	radiotracer	and	measurement	settings	(Brindle,	2008).		

	

More	specific	PET	biomarkers	have	been	developed	for	imaging	cancer	biological	

functions	including	cell	proliferation,	angiogenesis,	etc.		For	example	11C-carbon-

choline	 and	 18F-fluoro-choline	 (18F-FCH)	 have	 been	 used	 to	 investigate	

membrane	 lipid	 synthesis,	 18F-fluoroestradiol	 (18F-FES)	 for	 imaging	 oestrogen	

receptor	 expression,	 18F-fluoro-galacto-RGD	 and	 18F-fluciclatide	 as	 markers	 of	

metastases	 and	 angiogenesis,	 18F-fluoromisonidazole	 (18F-FMISO)	 and	 62Cu-

diacetylbis(N4-methylthiosemicarbazone)	 (62Cu-ATSM)	 for	 monitoring	 hypoxia	

and	 18F-fluorothymidine	 (18F-FLT)	 as	 a	 measure	 of	 cell	 proliferation	

(Papathanassiou	et	al.,	2009)	(Kenny	et	al.,	2007)	(Weber,	2006,	Contractor	and	

Aboagye,	 2009)).	 These	 tracers	 have	 as	 yet	 only	 had	 limited	 clinical	 impact	

(Alam	et	al.,	2015).	
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1.3.4.3	 Applications	 of	 PET	 in	 oncology	 and	 quantification	
methods		

1.3.4.3.1	SUV	measurements		
	

Methods	to	quantify	radiotracer	uptake	in	neoplastic	lesions	have	been	proposed	

with	 the	 goal	 of	 differentiating	 between	 tissue	 types	 (e.g.	 malignant/benign),	

deriving	prognostic	indices,	monitoring	treatment	response	and	measuring	early	

response	 to	 therapy.	 For	 example,	 semi-quantitative	 analyses	 have	 enhanced	

visual	 assessment	 and	 helped	 distinguish	 between	 benign	 and	 malignant	

pathologies,	and	reduced	inter-observer	variability	(Avril	et	al.,	2009).	The	most	

commonly	used	index	is	the	standardised	uptake	value	(SUV).	It	is	a	normalised	

measure	of	the	concentration	of	radiotracer	in	tissue	(kBq/mL)	and	is	corrected	

for	the	injected	dose	of	radiotracer	(MBq)	and	usually	the	body	weight	(BW)	of	

the	patient,	with	body	surface	area	(BSA),	or	 lean	body	mass	(LBM)	sometimes	

incorporated	 (Thie,	 2004).	 	 There	 has	 been	 some	 promise	 in	 using	 SUV	 for	

monitoring	 early	 therapy	 response	 prior	 to	 anatomical	 changes	 (Wahl	 et	 al.,	

2009,	Kwee	et	al.,	2010).	

1.3.4.3.2	Limitations	of	current	quantification	methods		
	

Unfortunately,	SUV	parameters	have	not	been	universally	adopted	due	to	several	

reasons.	 Firstly,	 there	 is	 an	 absence	 of	 a	 widely	 accepted	 cut-off	 between	

malignant	and	benign	 lesions,	 the	SUVBW	is	very	susceptible	to	patient	body	fat	

(Zasadny	and	Wahl,	1993);	(Sugawara	et	al.,	1999,	Boellaard,	2009),	 the	timing	

of	 scanning	 post	 injection,	 patient	 plasma	 glucose	 levels,	 and	 post	 imaging	

reconstructions	 have	 a	 strong	 impact	 on	 the	 SUV	 values	 (Keyes,	 1995).	 There	
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have	been	efforts	to	standardise	protocols	across	centres	to	permit	multi-centre	

comparisons	 (Lasnon	 et	 al.,	 2017,	 Skougaard	 et	 al.,	 2013),	 however,	 the	 SUV	

indices	remain	strongly	dependent	on	physical	factors	such	as	the	limited	spatial	

resolution	of	the	scanner	(PVEs)	and	noise	(Karakatsanis	et	al.,	2015).	Due	to	the	

influence	 of	 the	 neighbouring	 structures,	 the	 mean	 SUV	 can	 be	 affected.	 The	

SUVmax,	 the	 value	 of	 the	 single	 most	 intense	 voxel,	 has	 been	 suggested	 as	 a	

method	to	overcome	this	limitation	but	this	is	strongly	sensitive	to	noise.	SUVpeak,	

which	is	the	average	of	SUV	with	a	small	volume	of	interest,	has	been	suggested	

as	 an	 alternative	method	 (Wahl	 et	 al,	 2009).	 However,	 the	 volume	 of	 interest	

differs	 between	 centres	 and	 different	 definitions	 associated	 with	 treatment	

response	 have	 hindered	 adoption	 of	 this	 parameter	 (Vanderhoek	 et	 al.,	 2012).	

Furthermore,	the	complexity	of	the	intra-tumour	heterogeneity,	with	regions	of	

differential	uptake,	is	not	captured	by	these	SUV	parameters.		

	

With	this	is	mind,	there	has	been	a	suggestion	that	medical	images	may	contain	

more	 information	 than	 can	 be	 perceived	 visually,	 giving	 birth	 to	 the	 field	 of	

“radiomics”	(Lambin	et	al.,	2012,	Kumar	et	al.,	2012).	Although	imaging	provides	

a	wealth	 of	 anatomical,	 and	 functional	 data,	 this	 could	 be	 expanded	 to	 include	

metabolic,	protein	and	genomic	data	(Lambin	et	al.,	2012,	O'Connor	et	al.,	2016).	

In	 an	 era	 of	 personalised	medicine,	 additional	 features	 extracted	 from	medical	

imaging	could	 include	1)	more	accurate	response	variables,	and	2)	 information	

linked	 to	genetic	 and	molecular	biochemical	pathology	 (Chicklore	et	 al.,	 2013).		

Segal	(Segal	et	al.,	2007)	demonstrated	that	28	imaging	features	from	CT	scans,	

including	 heterogeneity	 scores,	 predicted	 78%	 of	 gene	 expression	 in	 primary	

hepatocellular	carcinoma.	In	addition,	Diehn	(Diehn	et	al.,	2008)	was	able	to	link	
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MRI	imaging	with	underlying	genomic	data	in	glioblastoma	multiforme.	Further	

to	 this,	 Aerts	 et	 al.	 (Aerts	 et	 al.,	 2014b)	 were	 able	 to	 extract	 440	 radiomic	

features	from	1019	CT	scans	of	non-small	cell	lung	and	head	and	neck	cancer	to	

develop	 a	 prognostic	 model	 which	 was	 linked	 to	 underlying	 genetic	 patterns.	

The	 potential	 for	 this	 method	 to	 capture	 imaging	 descriptors	 with	 tumour	

variability	 may	 be	 critical	 in	 predicting	 tumour	 response,	 assisting	 clinical	

management	in	addition	to	the	methods	currently	used.	In	addition,	these	tools	

could	 be	 useful	 for	 the	 development	 and	 assessment	 of	 new-targeted	 drugs	

((Schneider-Kolsky	et	al.,	2010).	

	
1.3.5	Imaging	using	CT	
	

The	 other	 imaging	 modality	 incorporated	 in	 this	 study	 is	 Computerised	

Tomography	(CT).	CT	uses	x-rays	and	overcomes	the	limitations	of	superposition	

and	 conspicuity,	 inefficient	 x-ray	 absorption,	 etc.	 found	 in	 conventional	

radiography	(Goldman,	2007).	There	has	been	great	innovation	of	CT	technology	

due	to	technological	advancement,	clinical	needs	and	faster	computation	times.	

The	 images	 are	 reconstructed	 either	 by	 filtered	 back	 projection	 or	 iterative	

reconstruction	(Goldman,	2007).		In	the	course	of	the	last	decade,	there	has	been	

a	marked	reduction	in	slice	thickness	due	to	improved	detector	technology.	The	

imaging	 in	 CT	 provides	 good	 spatial	 resolution	 and	 anatomical	 accuracy.	 It	 is	

used	 in	 combination	 with	 PET	 for	 attenuation	 correction	 and	 anatomical	

accuracy.	
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1.4	Background	to	Texture	Analysis	

In	this	section,	a	brief	introduction	to	existing	texture	analysis	methods	is	given.	

The	statistical,	fractal	and	wavelet	techniques	that	were	selected	to	analyse	and	

characterise	intra-tumour	heterogeneity	are	further	elaborated.	A	background	to	

the	previous	work	done	in	this	field	is	also	provided.		

1.4.1	Texture	Analysis		

1.4.1.1	Introduction		

Visual	 texture	 is	 an	 innate	 and	 qualitative	 concept	 that	 has	 not	 been	 uniquely	

defined.		Different	authors	have	adapted	a	definition	depending	on	their	field	of	

application	(Haralick	et	al.,	1973,	He	and	Li,	1991).	The	perceived	texture	of	an	

object	is	similar	to	that	experienced	when	one	touches	it.	The	irregularities	of	the	

surface,	 its	 prominence	 and	magnitude	 give	 the	object	 a	 characteristic	 identity	

when	 compared	 with	 other	 objects	 (Julesz,	 1975).	 The	 visual	 texture	 is	 thus	

made	up	of	intensity	variations	of	the	visual	object,	spatial	organisation,	and	the	

rate	at	which	this	is	distributed	throughout	the	object.	

	

Visual	texture	variations	can	be	both	a	nuisance,	in	the	process	of	segmenting	an	

object	 in	 a	 region	 of	 interest,	 or	 a	means	 to	 characterising	 and	 differentiating	

between	 natural	 objects.	 In	 this	 way,	 we	 consider,	 the	 spatial	 variation	 of	

intensities	at	scales	many	times	smaller	 than	the	object	of	 interest	(Petrou	and	

García	Sevilla,	2006).	Texture	is	generally	scale	independent.		

Various	 texture	 analysis	 methods	 and	 descriptors	 have	 been	 used	 to	 analyse	

images	by	classifying	them	and	also	to	segment	regions	of	interest.	Examples	in	
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research	 include	 remote	 sensing,	 document	 processing,	 automated	 inspection	

and	medical	image	analysis.		

	

Different	 researchers	 and	 techniques	 have	 incorporated	 and	 	 	 emphasised	

different	aspects	of	 texture	analysis.	These	 include	model-based,	 statistical	and	

geometrical	methods	(Haralick,	1979,	Castellano	et	al.,	2004).	

1.4.1.2	Model-based	texture	analysis	approaches		

Model-based	 methods	 use	 a	 model	 with	 descriptions	 of	 the	 intensities	 of	 the	

voxels.	 The	 values	 of	 the	model	 parameters	 extracted	 are	used	 to	quantify	 the	

texture	 of	 the	 object	 of	 interest.	 Model-based	 texture	 techniques	 include	

autoregressive	models,	random	field	models	(such	as	Markov	random	field)	and	

fractals	 (Lopes	 and	 Betrouni,	 2009).	 	 Markov	 random	 fields	 state	 that	 each	

volxel’s	 intensity	 in	 the	 region/volume	 of	 interest	 is	 dependent	 only	 on	 the	

intensities	of	 its	neighbours.	Thus,	 coefficients	obtained	 for	 course	 texture	will	

be	similar,	whereas	they	will	differ	widely	for	fine	textures.		Fractals	are	a	class	

of	 mathematical	 objects	 that	 are	 termed	 ‘self-similar’	 at	 all	 scales	 of	

measurement.	This	was	 introduced	to	characterise	the	complexity	of	objects	so	

that	 they	 overcame	 the	 limitations	 of	 traditional	 Euclidean	 geometry	

(Mandelbrot,	 1982).	 In	 practical	 terms,	 this	 assumption	 is	 limited	 by	 the	

resolution	and	size	of	the	images.	In	order	to	compute	the	fractal	dimensions	of	

binary	and	gray-level	 images,	 several	 techniques	have	been	developed,	 such	as	

box-counting,	 fractional	 Brownian	 motion	 and	 area	 measurement	 methods	

(Lopes	and	Betrouni,	2009).	



1.4.1.3	Geometrical	and	structural	texture	analysis	methods																																
	
	

59	

1.4.1.3	Geometrical	and	structural	texture	analysis	methods		

Another	 approach	 mentioned	 in	 the	 literature,	 termed	 structural	 methods,	

surmises	 that	 visual	 texture	 is	made	up	 of	 primitives	with	 specific	 shapes	 and	

other	properties	and	these	follow	certain	placement	rules	or	other	criterion.	The	

use	 of	 these	 technique	 is	 only	 suitable	 if	 the	 texture	 contains	 regular	 patterns	

(Petrou	and	García	Sevilla,	2006).	Geometrical	approaches	aim	to	detect	textural	

patterns	prior	to	texture	analysis	using	statistical	or	placement	rule	methods.		

1.4.1.4	Signal	processing	methods		

Signal	processing	and	transforms	represent	a	range	of	techniques	for	performing	

texture	 analysis.	 The	 texture	 content	 can	 be	 characterised	 in	 terms	 of	 the	

number	of	edges:	with	fine	texture	associated	with	a	high	number	of	edges	and	

course	 texture	 associated	with	 fewer	 edges.	 	 Edge	 detection	 is	 achieved	 using	

spatial	 filtering	 methods	 (such	 as	 Robert’s	 and	 Laplacian	 operators).	 Another	

way	to	describe	texture	is	in	terms	of	the	frequency	content:	finer	objects	contain	

higher	 spatial	 frequency	 intensity	 variation	 whereas	 the	 opposite	 is	 true	 in	

courser	 objects.	 	 Methods	 include	 the	 Fourier	 transform	 and	 more	 powerful	

techniques	 that	retain	spatial	 information	(such	as	Gabor	 filtering	and	Wavelet	

transforms).	

1.4.1.5	Statistical	texture	analysis	approaches		

Textural	 images	 are	 intrinsically	 linked	 to	 two	 elements:	 the	 set	 of	 intensities	

(“gray-levels”)	 and	 their	 spatial	 organisation.	 	 Statistical	 texture	 methods	 are	

based	on	the	distribution	of	the	spatial	orientation	of	gray-levels	in	images	using	

higher	moments.	First	order	statistics	(FOS)	consider	the	properties	of	individual	
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voxels	whereas	higher	 order	 statistics	 consider	 the	 relationship	between	pairs	

(second	 order	 statistics)	 or	 larger	 groups	 of	 voxels’	 intensities	 (higher	 order	

statistics).	 FOS	 generates	 gray-level	 distribution	 summary	 statistics	 (e.g.	Mean,	

mode,	median,	standard	deviation,	skewness,	etc.).	FOS	uses	the	whole	volume	of	

interest	 and	 does	 not	 provide	 specific	 inter-voxel	 relationships.	 	 The	

arrangement	 of	 the	 paired	 voxels’	 gray-level	 intensities	 is	 characterised	 used	

Gray-level	 Co-occurrence	 Matrix	 (GLCM)	 method	 was	 initially	 developed	 by	

Haralick	 in	1973	(Haralick	et	al.,	1973)	 for	the	characterisation	of	2D	synthetic	

aperture	radar	images	of	various	sandstone	scenes.	Higher	order	methods	have	

been	developed	to	characterise	the	relationship	between	three	voxels	and	higher	

such	as	the	Gray-level	Run	Length	Matrix	(GLRLM)	(Galloway,	1975),	Gray-level	

Size	 Zone	 Matrix	 (GLSZM)	 (Thibault	 et	 al.,	 2009),	 Neighbourhood	 Gray	 Tone	

Difference	Matrix	(NGTDM)	(Amadasun	and	R,	1989).	

	

In	 the	 work	 presented	 in	 this	 thesis	 statistical	 texture	 analysis	 methods	 and	

wavelets	were	 used	 to	 characterise	 intra-tumour	 heterogeneity	 in	 PET	 and	CT	

imaging.	

1.4.1.5.1	Gray-level	Quantisation	

The	initial	step	of	statistical	analysis	is	to	normalise	the	imaging	intensities	into	

smaller	 numbers	 of	 gray-scale.	 The	 most	 common	 method	 used	 is	 uniform	

quantification,	which	bins	or	discretises	the	range	of	the	original	intensity	into	a	

number	of	discrete	intervals	(termed	gray-levels).	The	formula	is	as	follows:		
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!!"#$ = !" − 1
!!"# − !!"#

! − !!"# + 0.5	

Where	 I	 is	 the	 raw	 intensity	 of	 a	 voxel	 in	 the	 image,	 Ng	 is	 the	 number	 of	

quantisation	levels	used	for	normalising	the	intensities	in	the	Volume	of	Interest	

(VOI),	 Imax	 and	 Imin	 are	 the	minimum	and	maximising	 intensities	 in	 the	original	

VOI,	and	[x]	 is	 the	greatest	 integer	no	 larger	than	x	(floor	 function).	Adding	0.5	

ensures	that	the	intensity	is	rounded	to	the	nearest	integer.	

	

Other	 normalisation	 techniques	 such	 as	 the	 histogram	 equalisation,	 Gaussian	

and	 log	 transforms	 have	 also	 been	 utilised	 (Clausi,	 2002).	 There	 is	 a	 critical	

trade-off	 between	 the	 choosing	 the	 gray-level	 scale	 that	 is	 a	 trade-off	 between	

retrieving	 relevant	 textural	 information	whilst	 reducing	 the	noise	 in	 the	 image	

and	preserving	relevant	information	content.	In	Clausi’s	paper	(Clausi,	2002),	he	

showed	 that	 the	 gray-level	 parameter	 maximising	 the	 differences	 between	

classes	 of	 images	 are	 feature-dependent	 although	 in	 other	 studies,	 unique	

parameters	are	used.		

	

There	 has	 been	 some	 interest	 in	 texture	 analysis	 of	 PET	 data.	 Orlhac	 et	 al.	

(Orlhac	et	al.,	2014)	demonstrated	that	the	methods	used	to	calculate	the	texture	

indices	 substantially	 impacts	 on	 the	 eventual	 texture	 result.	 In	 addition,	 gray-

level	quantification	below	32	gray-levels	has	a	false	correlation	with	the	SUV.	A	

further	study,	by	Hatt	(Hatt	et	al.,	2015)	demonstrated	that	the	correlation	with	

volume	was	affected	by	 the	quantisation	 level	used.	The	gray-levels	used	 in	by	

Hatt	varied	from	4-256	gray-levels.		
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The	issue	with	CT	is	different	and	the	normalisation	step	is	carried	out	over	25	

Hounsfield	units.	This	is	the	only	normalisation	carried	out	as	per	the	Aerts	et	al.	

study	(Aerts	et	al.,	2014a).	

1.4.1.5.2	First	Order	Statistics	(FOS)	

This	set	of	features	is	derived	from	intensity	distributions	of	radiotracer	uptake	

in	lesion	to	measure	the	variability	of	intra-tumour	uptake.	It	is	independent	of	

gray-level	quantisation.		

1.4.1.5.3	Gray-Level	Co-Occurrence	Matrix	(GLCM)	method		

Haralick	developed	the	Gray-Level	Co-Occurrence	Matrix	in	his	landmark	paper	

in	1973	(Haralick	et	al.,	1973).	It	was	created	as	a	tool	to	categorise	aerial	images	

of	sandstone.	The	GLCM	model	developed	in	this	work	relies	on	this	paper	and	

extends	 it	 to	 the	3D	space.	Haralick’s	proposed	methodology	was	to	generate	a	

matrix	with	dimensions	equivalent	to	the	number	of	occurrences	between	every	

pixel	in	the	image.	Fourteen	features	were	then	calculated	from	this	matrix	and	

were	designed	to	quantify	features	that	humans	understand	such	as	coarseness	

or	smoothness.		

Consider	an	image	with	four	levels	of	pixel	intensity.	The	corresponding	GLCM	

will	be	4x4	matrix	wherein	the	number	of	occasions	a	given	pixel	pair	occur	are	

tabulated	(Figure	1.1)	
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Figure	1.1	Generating	the	co-occurrence	matrix.	(left)	The	symmetrical	gray-

level	co-occurrence	matrix	tabulating	pixel	pairs	in	the	0°.	(right)	The	matrix	is	

then	normalised	by	the	sum	of	the	contents.		

Figure	1.2	The	image	and	the	GLCM.	A	sample	image	with	4	gray-levels	(left)	

and	the	4	2D	directions	of	the	pixels	relationships	from	the	measurement	pixel	

(right).	

	

The	given	examples	represent	the	GLCM	derived	from	the	example	image	in	

the	0°	direction.	Both	the	X	and	Y-axis	represent	the	gray-level	of	one	of	the	

pixels	 in	 the	pair.	For	example,	pixels	of	 intensity	1	and	2	exist	adjacent	 to	

each	 other,	 horizontally,	 on	 two	 occasions.	 In	 a	 2D	 image,	 there	 are	 four	

directions	 available	 with	 the	 reference	 in	 the	 centre,	 covering	 the	 entire	

imaging	 space.	 An	 additional	 consideration	 is	 the	 pixel	 distance	 used	 in	
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establishing	pixel	pairs.	 In	this	example,	as	well	as	the	GLCMs	implemented	

in	 this	 thesis,	 a	 pixel	 distance	 of	 one	 is	 used.	 Note	 that	 the	 GLCM	 is	

symmetric	 in	 order	 to	 account	 for	 pixel	 relationships	 in	 the	 opposite	

directions.	After	4	GLCMS	are	derived,	one	 for	each	direction,	 the	matrix	 is	

normalised	 by	 the	 sum	 of	 the	 contents.	 This	 step	 allows	 for	 easier	

interpretation	of	the	features	derived	from	the	GLCM.	

Haralick’s	 paper	 detailed	 the	 GLCM	methodology	 for	 2D	 images,	 however,	

tomographic	 medical	 imaging	 including	 multiple	 slices	 comprise	 of	 a	 3D	

volume.	 Co-occurrence	 matrixes	 were	 created	 in	 3D	 by	 extending	 the	

directions	from	4	to	13	(Fig	1.3)	

	

	

Figure	 1.3	 	 Converting	 the	 Haralick	 features	 into	 three-dimensions.	

Thirteen	directions	of	pixel	pairs	to	account	for	a	volumetric	GLCM.		
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Symmetry	 ensures	 that	 the	 entire	 volume	 is	 accounted	 for,	 totalling	 26	

directions.	 Therefore,	 13	 normalised	GLCMs	 are	 produced	 for	 a	 single	 volume.	

This	is	followed	by	an	averaging	step.	

		

Another	 method	 used	 by	 Hatt	 et	 al.	 (Hatt	 et	 al.,	 2015)	 was	 a	 single	 matrix	

accounting	 for	 all	13	directions	 simultaneously	without	an	averaging	 step.	The	

argument	 given	was	 that	 the	 first	method	 averaged	 fewer	matrices	 potentially	

leading	to	information	loss	and	reduction	of	the	effect	of	the	residual	noise	from	

the	quantisation	process.	 	However,	 there	was	a	very	high	correlation	between	

the	two	methods	using	Spearman	Rank	correlation	(between	r=	0.82	and	0.91)	

given	in	the	same	paper.	

	

Haralick	 presented	 14	 local,	 2nd	 order	 texture	 features	 extracted	 from	 each	

directional	GLCM.	The	Aert’s	paper	(Aerts	et	al.,	2014a)	increased	this	to	23	and	

this	is	the	number	incorporated	in	this	thesis.	

	

1.4.1.5.4	GLRLM	

The	gray-level	run	length	matrix	(GLRLM)	presented	by	Galloway	in	1975	is	an	

additional	 texture	matrix	 similar	 to	 the	GLCM,	but	 represents	 lengths	of	 pixels	

instead	 of	 pairs	 (Galloway,	 1975).	 Each	 Gray-level	 run	 consists	 of	 a	 series	 of	

pixels	of	uniform	intensity	directed	along	a	linear	path.	A	length	can	be	as	short	

as	a	single	pixel,	or	as	long	as	the	image	allows.	As	in	the	GLCM,	run	lengths	are	
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calculated	 throughout	 the	 volume	 according	 to	 the	 thirteen	 angles	 previously	

designated.	As	 runs	 of	 any	 length	may	be	 considered,	 symmetry	 is	 inherent	 to	

the	matrix.	Generally,	fine	textures	tend	to	have	many	small	runs	of	similar	pixel	

intensities	 while	 coarse	 textures	 contain	 longer	 runs	 of	 varying	 intensities.	

GLRLM	 features	emphasise	 regional	 information	 instead	of	 the	highly	 localised	

information	 of	 the	 GLCM.	 From	 the	 GLRLM,	 it	 can	 be	 determined	 if	 the	 image	

contains	long	or	short	lengths	of	high	or	low	intensity	gray-levels.		

	

The	formation	of	the	GLRLM	is	similar	to	the	GLCM	matrix	in	that	they	are	both	

dependent	on	the	number	of	gray-levels	present,	which	is	designated	along	the	

vertical	axis.		

	

The	other	 component	 is	 the	 length	of	 the	gray-level	 intensity	designated	along	

the	horizontal	axis.	For	each	intensity	level	along	the	vertical	axis,	the	number	of	

occurrences	for	a	given	length	of	runs	is	tabulated	in	the	matrix	(Figure	1.4).	

	

Figure	 1.4	 The	 Run	 Length	Matrix.	 (left)	A	 sample	 image	 containing	4	gray-

levels	and	(right)	the	corresponding	run	length	matrix	in	the	0°	direction.	
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Pixels	of	intensity	1	occur	once	in	a	length	of	4	pixels,	once	in	a	length	of	2	pixels,	

and	once	in	which	there	is	a	single	pixel	present.	This	tabulation	is	performed	in	

all	directions,	producing	13	matrices,	as	in	the	GLCM.	

	

Eleven	 regional,	 high	 order	 texture	 features	 are	 derived	 from	 the	 GLRLM	

describing	features	of	the	image	(Tang,	1998).		Features	describe	the	prevalence	

of	shorter	lengths,	representing	fine	structure,	or	longer	lengths,	correlating	with	

coarseness.	Other	features	describe	the	distribution	of	pixels	based	on	intensity,	

or	various	combinations	of	lengths	and	pixel	intensities.		

	

1.4.1.5.5	GLSZM	

The	GLSZM	represents	another	texture	algorithm	similar	to	the	GLRLM.	Instead	

of	 calculating	 lengths	 of	 pixels,	 however,	 the	GLSZM	permits	 the	 calculation	 of	

zones	of	uniform	pixels	in	an	image	(Thibault	et	al.,	2009).	In	a	2D	image,	a	zone	

consists	of	any	adjacent	pixel	in	the	image.	This	model	was	extended	to	a	volume	

by	 finding	groups	of	uniform	pixel	 in	 each	of	 the	26	available	directions	 in	3D	

space.	 The	matrix	 tabulates	 the	 occurrence	 of	 gray-levels	 grouped	 by	 zones	 of	

any	size.	As	with	the	GLRLM,	the	GLSZM	characterises	regional	texture	features.	

As	the	zones	were	directionally	independent	however,	only	a	single	matrix	was	

produced	(Figure	1.5	).		
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Figure	1.5	The	GLSZM.	(left)A	sample	image	containing	4	gray-levels	and	(right)	

the	corresponding	size	zone	matrix.	

	

The	 GLSZM	 is	 similar	 to	 the	 GLRLM	 in	 both	 design	 and	 purpose.	 11	 regional	

higher	order	 features	derived	 from	GLRLM	are	applied	 to	 the	GLSZM,	with	 the	

zones	 substituted	 for	 the	 run	 lengths	 (see	 Appendix	 B).	 Analysing	 the	

distributions	 of	 uniform	 volumes	 of	 pixels	 within	 an	 image	 is	 perhaps	 more	

intuitive	 than	 extracting	 lengths	 from	 the	 volumes.	 A	 homogenous	 image	may	

have	a	more	uniform	distribution	of	zones	while	a	homogenous	image	may	have	

a	high	variation	in	zones.		

	

1.4.1.5.6	NGTDM	

Previous	 algorithms	 described	 pairs	 or	 groupings	 of	 pixels	 and	 extracted	

features	 reflecting	 characteristics	 resembling	what	 our	 own	visual	 perceptions	

may	 be.	 The	 NGTDM	 represents	 a	 more	 complex	 set	 of	 features.	 Instead	 of	

grouping	 pixels	 based	 on	 intensity,	 the	 NGTDM	 takes	 an	 average	 of	 the	

surrounding	 pixel	 neighbours	 in	 order	 to	 determine	 the	 variation	 in	 texture	
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(Amadasun	 and	 R,	 1989).	 In	 other	 words,	 this	 texture	 analysis	 approach	

examines	 changes	 in	 intensity	 between	 the	 target	 pixel	 and	 the	 surrounding	

neighbours.	 The	 relationship	between	 the	 averaged	neighbourhood	values	 and	

the	target	values	of	the	target	pixel,	can	be	small	or	large	differences,	and	reflect	

the	texture	of	an	image.	Originally,	the	NGTDM	was	proposed	for	2D	images.	The	

functional	form	of	the	NGTDM	is	presented	as	

! ! =  ! − !! 	

Where	!! = !
!!! !(! +!, ! + !)!

!!!!
!
!!!! 	

(m,n)	≠	(k,l)	

W	is	a	normalisation	factor	to	account	for	the	neighbourhood	size.	

W	=	(2! + 1)!	

d	 represents	 the	 distance	 away	 from	 the	 centre	 pixel	 to	 the	 neighbourhood	

pixels.	 In	this	study,	d	=	1.	For	each	intensity	level,	the	surrounding	neighbours	

with	respect	 to	 the	centre	pixel	of	 those	 intensities	are	added,	normalised,	and	

then	compounded.	This	is	explained	in	the	following	figure	(Figure	1.6).	
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Figure	1.6	The	NGTDM.	A	sample	 image	with	4	gray-levels.	The	box	 indicates	

the	neighbourhood	surrounding	a	single	pixel.	

	

In	the	designated	area	of	this	 image,	the	centre	pixel	has	a	value	of	3.	The	total	

value	of	the	neighbours	is	12.	In	this	pixel,	!! 	=	!"! .	There	are	two	pixels	of	value	3	

in	this	image	however.	The	NGTDM	entry	s(3)	=	 3−  !"! +	 3−  !"! 	=	2.625.	This	

is	performed	for	every	 intensity	 level.	The	 length	of	 the	matrix	depends	on	the	

number	of	gray-levels	in	the	image.		

	

The	NGTDM	was	extended	to	3D	in	this	work.	Extending	this	matrix	to	3D	is	not	

presented	 in	 the	 literature;	 however,	 it	 was	 a	 fairly	 straightforward	 process	

following	the	logic	of	the	algorithm.	In	the	calculation	of	the	matrix,	the	number	

of	 available	 neighbours	 is	 26	 instead	 of	 8,	 accounting	 for	 the	 area	 of	 a	 cube	

surrounding	the	centre	pixel.	The	3D	weighting	factor	becomes	W	=	(2! + 1)!.		
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Since	 the	 calculation	 is	directionally	 independent,	 only	one	matrix	 is	produced	

for	a	3D	volume.	The	features	presented	in	the	original	paper	were	created	for	a	

2D	 image.	 Certain	 changes	 must	 be	 applied	 to	 account	 for	 3D	 space,	 most	 of	

which	substitute	the	2D	weighting	for	a	3D	factor.	There	are	5	local,	high	order	

features	derived	from	the	NGTDM.		

1.4.1.5.7	Wavelets	

Wavelet	 transform	 effectively	 decouples	 textural	 information	 by	 decomposing	

the	 original	 image,	 in	 a	 similar	 manner	 to	 Fourier	 analysis,	 in	 low–	 and	 high	

frequencies.	 In	 this	 study	 a	 discrete,	 one-level	 and	 undecimated	 three-

dimensional	 wavelet	 transform	 was	 applied	 to	 each	 image,	 decomposing	 the	

original	 image.	 Consider	 L	 and	 H	 to	 be	 a	 low-pass	 (i.e.	 a	 scaling)	 and,	

respectively,	 a	 high-pass	 (i.e.	 a	 wavelet)	 function,	 and	 the	 wavelet	

decompositions	of	X	to	be	labelled	as	XLLL,	XLLH,	XLHL,	XHLL,	XHLH,	XHHL	and	XHHH.	For	

example,	 XLLH	 is	 then	 interpreted	 as	 the	 high-pass	 sub	 band,	 resulting	 from	

directional	filtering	of	X	with	a	low-pass	filter	along	x-direction,	a	low	pass	filter	

along	y-direction	and	a	high-pass	filter	along	the	z-direction	and	is	written	as:	

!""# !, !, ℎ =  ! ! ! ! ! ! !(! + !, ! + !, ! + !)
!!

!!!

!!

!!!

!!

!!!
	

Where	 NL	 is	 the	 length	 of	 filter	 L	 and	 NH	 is	 the	 length	 of	 filter	 H.	 The	 other	

decompositions	 are	 constructed	 in	 a	 similar	manner,	 applying	 their	 respective	

ordering	of	 low	or	high-pass	 filtering	 in	x,	 y,	 and	z-direction.	 Since	 the	applied	

wavelet	decomposition	 is	undecimated,	 this	 is	 shift	 invariant.	Because	of	 these	

properties,	 the	 original	 tumour	 delineation	 of	 the	 gross	 tumour	 volume	 (GTV)	
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can	 be	 applied	 directly	 to	 the	 decomposition	 after	 wavelet	 transform.	 In	 the	

current	thesis	“Coiflet	1”	wavelet	was	applied	on	the	original	CT	images.		

	

	

Figure	 1.7	 Schematic	 of	 the	 undecimated	 three-dimensional	 wavelet	

transform	 applied	 to	 each	 image.	 The	 original	 image	 X	 is	 fitered	 into	 8	

decompositions,	 by	 directional	 low-pass	 (i.e.	 a	 scaling)	 and	 high-pass	 (i.e.	 a	

wavelet)	filtering:	XLLL,	XLLH,	XLHL,	XHLL,	XHLH,	XHHL	and	XHHH.		
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1.5	Textural	feature	analysis		

So	in	summary,	in	this	thesis,	a	total	of	665	image	descriptors	are	computed.	The	

features	were	 derived	 from:	 FOS,	 GLCM,	GLRLM,	GLSZM,	NGTDM,	 Fractals	 and	

wavelets.	 The	 radiotracer	 concentration	 for	 each	 primary	 tumour	 was	

normalised	prior	to	texture	characterisation	for	a	 large	number	of	quantisation	

levels:	4,	8,	16,	32,	64,	128,	256gl.	This	was	a	necessary	step	prior	to	applying	the	

texture	analysis.	

	

Table	1.1	Overview	of	the	change	in	texture	features.	A	Comparison	between	

the	early	generation	software	to	the	new	generation	software.	

TexLAB	1.0	 TexLAB	2.0	

First	order	statistics	(FOS)	(12)	 First	order	statistics	(FOS)	(15)	

Grey-level	co-occurrence	matrix	

(GLCM)	(17)	

Grey-level	co-occurrence	matrix	

(GLCM)	(23)	

Grey-level	size	zone	matrix	(GLSZM)	

(13)	

Grey-level	size	zone	matrix	(GLSZM)	

(13)	

Neighbourhood	grey-	tone	difference	

matrix	(NGTDM)	(5)	

Neighbourhood	grey-	tone	difference	

matrix	(NGTDM)	(5)	

	 Size	and	Shape	SNS)	(8)	

	 Gray-Level	Run	Length	Matrix	

(GLRLM)	(11)	

	 Fractal	Dimension	(FD)	(6)	
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Table	1.2	List	of	computed	 image	descriptors.	The	texture	features	with	full	

equations	and	explanation	are	detailed	in	Appendix	B.	

Technique	(Total	number)	 Features	

First	order	statistics	(FOS)	

(15)	

Coefficient	of	Variation	

Mean	

Median	

Mode	

Standard	Deviation	

Minimum	

Maximum	

Range	

Skewness	

Kurtosis	

Mean	Absolute	Deviation	

Root	mean	square	

Area	under	the	Curve	

Entropy	

	 Wavelet	transformation	x8	

Total	number	of	features	=	47	 Total	number	of	features	=665	
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Energy	

Grey-level	co-occurrence	

matrix	(GLCM)	(23)	

Variance	

Correlation	

Information	Measure	of	Correlation	1)		

Information	Measure	of	Correlation	2)		

Cluster	Shade	

Cluster	Prominence	

Angular	Second	Moment	

Maximum	Probability	

Entropy	

Contrast	

Dissimilarity	

Homogeneity	

Sum	Average	

Sum	Variance	

Sum	Entropy	

Difference	in	Variance	

Difference	entropy	

Autocorrelation	

Cluster	Tendency	
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Homogeneity	1	

Inverse	Difference	Moment	Normalised	

Inverse	Difference	Normalised	

Inverse	Variance	

Grey-level	size	zone	matrix	

(GLSZM)	(13)	

Small	Zone	Emphasis	

Large	Zone	Emphasis	

Grey-level	Non	Uniformity	

Size	zone	Non	uniformity	

Zone	Percentage	

Zone	Low	grey-level	Emphasis	

Zone	Low	grey-level	Emphasis	

Small	Zone	Low	grey	level	Zone	Emphasis		

Small	Zone	High	grey	level	Zone	Emphasis		

Large	Zone	Low	grey	level	Emphasis	

Large	Zone	High	grey	level	Emphasis		

Grey	Level	Variance		

Size-Zone	Variance		

Neighborhood	grey-	tone	

difference	matrix	(NGTDM)	

(5)	

Coarseness	

Contrast	

Busyness	

Complex	
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Strength	

Size	and	Shape	SNS)	(8)	 Volume	

Area	

Surface	to	volume	ratio	

Sphericity	

Spherical	disproportion	

Compactness	1	

Compactness	2	

Maximum	3d	diameter	

Grey-Level	Run	Length	

Matrix	(GLRLM)	(11)	

Short	Run	Emphasis	

Long	Run	Emphasis	

Grey-Level	Non-Uniformity	

Run	Length	Non-Uniformity	

Run	Percentage	

Low	Grey-Level	Run	Emphasis	

High	Grey	Level	Run	Emphasis	

Short	Run	Low	Grey	Level	Emphasis	

Short	Run	High	Grey	Level	Emphasis	

Long	Run	Low	Grey	Level	Emphasis	

Long	Run	High	Grey	Level	Emphasis	
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Fractal	Dimension	(FD)	(6)	 Mean	

Standard	deviation	

Variance	

Lacunarity	

Maximum	

Minimum	

Wavelet	transformation	x8	 As	above	with	8	filters	

Total	number	of	features	

=665	

	

	

	
In	 the	 following	 chapter,	 there	 is	 a	 review	 of	 the	 literature	 and	 the	 growing	

evidence	 that	 demonstrate	 the	 potential	 for	 using	 such	 approaches	 to	

characterise	 and	 quantify	 intra-tumour	 heterogeneity	 in	 PET	 imaging.	 The	

limitations	of	PET	quantification	are	also	discussed.	
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Chapter	 2	 –	 Literature	 reviews,	 Aims	 and	 Objectives,	 and	

Methods	

A	systematic	literature	review	was	undertaken	to	find	previous	work	on	texture	

analysis	of	CT	and/or	PET.	MEDLINE	(date	range:	1950-2016)	and	ISIS	Web	of	

Science	 (Date	 Range:	 1970-2016)	 were	 interrogated	 using	 the	 terms	 listed	 in	

Appendix	A1.	The	systematic	review	question	was	as	follows:	

The	search	was	last	run	on	17/11/2016	(MEDLINE	and	Web	of	Science)	using	

the	following	search	terms	and	combination:	

	

(variability	OR		heteroge*	OR	descriptor	OR	spatial	OR	feature)	

AND	

(characteri*	OR	quantificat*)	

AND		

(PET	OR	“Positron	Emission	Tomography”	OR	CT	OR	“Computerised	

Tomography”)	AND	(cancer	OR	lesion	OR	oncolog*	OR	neoplasm*	OR	tumour*)	

	

Inclusion	criteria	were:	

• The	focus	was	on	quantification	methodologies	of	the	radiotracer	uptake	

variability	 in	 PET	 beyond	 the	 use	 of	 SUV	 metrics	 and	 variability	 in	

attenuation	in	CT	oncology		

• They	addressed	issues	related	to	quantification	in	CT	and	PET	imaging.		
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Studies	were	excluded	if:	

• PET	 radiotracer	 uptake	 characterisation	 or	 quantification	 was	 not	

examined	and	only	briefly	mentioned.	

• Only	detectability	issues	in	PET	were	studied.	

• Quantification	procedures	were	exclusively	carried	out	for	evaluating	and	

validating	scanners’	performance	or	correction	algorithms;	

• The	variability	in	PET	radiotracer	uptake	was	not	addressed;	

• Texture	analysis	 in	other	modalities	such	as	MRI,	 radiographs,	histology	

images	or	ultrasound.	

• The	disease	studied	was	not	cancer.	

The	 literature	 review	 revealed	 that	 there	 have	 been	 different	 approaches	 in	

characterising	tumour	variability.	After	selecting	the	relevant	papers	(Appendix	

A2),	studies	could	be	further	categorised	as	follows:		

	

(i)	Studies	that	used	image	analysis	methods	to	characterise	and	quantify	intra-

tumour	heterogeneity	(N	=	43);		

	

(ii)	 Studies	 correlating	 inter-tumour	 variability	 across	 PET	 radiotracers	 or	 CT,	

imaging	modalities,	or	techniques	(e.g.	after	surgical	resection)	(N	=23);		

	

(iii)	Studies	investigating	techniques	to	segment/delineate	the	tumour	(N=6).	

	

Within	 the	 scope	 of	 this	 thesis,	 given	 the	 large	 amount	 of	work	 carried	 out	 in	

each	of	these	categories,	the	focus	in	this	chapter	has	been	on	the	use	of	 image	
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descriptors	 to	 characterise	 and	 quantify	 the	 spatial	 and	 intensity	 variability	 in	

PET	 radiotracer	 uptake	 and	 CT	 attenuation	 in	 oncology.	 The	 studies	 and	 their	

limitations	will	be	outlined.	 	Further	brief	discussions	of	 (ii)	and	(iii),	 although	

essential	 to	 the	 field,	 will	 be	 briefly	 discussed	 here	 and	 in	 the	 discussion	 in	

Chapter	5.	

	

A	total	of	43	papers	relating	to	the	quantification	of	intra-tumour	variability	and	

heterogeneity	 in	 the	 PET	 signal	 and	 CT	 attenuation	 were	 retrieved.	 Overall,	

within	the	last	few	years,	different	methods,	incorporating	heterogeneity	of	PET	

intensity	 and	 spatial	 distribution	 and	 CT	 attenuation	 differences	 have	 been	

proposed.	 These	 include	 model-based,	 statistical	 methods	 and/or	 approaches	

comparing	 the	 local	 spatial	 uptake	 of	 successive	 scans.	 	 In	 the	 subsequent	

paragraphs,	a	review	of	these	is	made.	

	

2.1	 Literature	 review:	 descriptors	 of	 intra-tumour	 PET	

radiotracer	uptake	

2.1.1	Model	based	techniques	

In	 2003,	 O’Sullivan	 et	 al.	 (O'Sullivan	 et	 al.,	 2003)	 developed	 a	 model-based	

technique,	 in	 particular	 a	 heterogeneity	 index,	 to	 differentiate	 between	 the	

deviation	of	local	intra-tumour	spatial	uptake	of	PET	radiotracer	and	the	uptake	

in	 similarly	 sized	 homogenously	 filled	 ellipsoid	 phantoms.	 This	 homogenous	

object	model	was	fitted	to	real	data	and	gradient	intensities	to	account	for	PVEs	

in	 PET	 imaging.	 	 This	 heterogeneity	 index	 was	 then	 used	 to	 predict	 clinical	

outcome	in	238-treatment	naïve	sarcoma	patients,	who	were	scanned	with	18F-
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FDG	 PET,	 prior	 to	 treatment	 with	 neo-adjuvant	 chemotherapy	 or	 surgical	

resection	 (Eary	 et	 al.,	 2008).	 The	 researchers	 found	 that	 their	 elliptical	 index	

(HE)	was	a	strong	independent	predictor	of	patient	survival.		

	

A	major	limitation	of	the	study	was	the	use	of	ellipsoid	models	for	homogenous	

lesions.	A	second	limitation	was	this	model	was	not	spatially	varied	and	poorly	

imitated	 the	 ground	 truth.	 The	 authors	 also	 admitted	 that	 the	 model	 poorly	

reflected	the	presence	of	necrosis,	which	is	known	to	be	associated	with	higher-

grade	sarcomas.		

Beyond	 this	 work,	 the	 same	 group	 addressed	 the	 limitations	 of	 shape	 by	

employing	 an	 independent	 delineation	 step	 to	 define	 realistic	 tumour	

boundaries.	The	external	boundary	was	accounted	for	by	a	set	of	contours,	which	

were	then	defined	for	filling	the	lesion	with	a	gradient	of	intensities.	The	authors	

developed	 a	 new	descriptor,	 termed	 the	 surface	 heterogeneity	 (HS),	 similar	 to	

HE	(except	for	the	definition	of	the	set	of	contours).		In	addition	to	this,	a	further	

index	 for	 the	 contours	 was	 derived,	 HG,	 which	 took	 into	 account	 the	 more	

elliptical	distance	of	the	boundary	from	the	centre.	These	parameters	were	then	

compared	with	 the	 results	 of	 the	 previous	method	 in	 a	 group	 of	 179	 sarcoma	

patients.	They	found	that	HS	and	HE	were	strongly	correlated	with	each	other.	In	

addition,	HS	obtained	minimal	further	information	in	a	multivariate	model	when	

controlling	for	HE.	However,	the	authors	did	find	that	the	risk	of	death	associated	

with	one	standard	deviation	from	these	variables	was	significantly	greater	in	HS	

than	for	HE	(71.7%	vs	36.2%).	Further	statistical	analysis	suggested	that	HS	was	

the	strongest	predictor	of	survival	for	this	group	of	sarcoma	patients.	O’Sullivan	
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et	 al.	 (O'Sullivan	 et	 al.,	 2011)	 further	 developed	 this	 work	 by	 incorporating	

global	 deviations	 from	 the	 model	 PET	 radiotracer	 uptake	 with	 intra-tumour	

heterogeneity,	representing	necrosis,	and	thought	that	this	represented	different	

stages	of	heterogeneity	development.		

	

Another	 model-based	 technique	 derived	 from	 fractal	 analysis	 was	 proposed	

(Dimitrakopoulou-Strauss	 et	 al.,	 2002)	 to	 use	 time	 activity	 curves	 (TACs)	 to	

differentiate	different	tissues	in	dynamic	PET	imaging.		Fractal	Dimensions	(FD)	

quantify	complexity	across	scales	of	measurement,	and	was	applied	in	this	study	

as	an	index	of	space-filling	property	of	the	TACs	in	a	2D	plane.		

They	demonstrated	promising	methods	by	utilising	this	method	to	classify	bone	

lesions	 to	either	benign	or	malignant,	with	a	sensitivity	of	71.9%,	specificity	of	

81.6%	 and	 accuracy	 of	 77.1%.	 The	 combination	 of	 the	 FD	 with	 the	 SUVs	 and	

kinetic	parameters	 further	 improved	 the	results.	 	 In	addition,	a	 combination	of	

kinetic	parameters	were	linked	with	short	and	long-term	survival	(set	at	1	year)	

in	metastatic	colorectal	cancer	(Dimitrakopoulou-Strauss	et	al.,	2004).	

	

FD	had	an	accuracy	of	88.9%	when	discriminating	between	primary	 colorectal	

tumours	 compared	with	normal	 tissue	 (Strauss	et	 al.,	 2007).	 	However,	FD	did	

not	 discriminate	 between	 short-	 and	 long-term	 survival	 in	 advanced	 NSCLC	

(Dimitrakopoulou-Strauss	et	al.,	2007),	although	there	were	only	42	metastatic	

lesions	in	14	patients	in	this	study	and	accurate	conclusions	cannot	be	made.	In	a	

further	study	with	50	patients	with	soft	tissue	sarcoma	metastasis,	FD	failed	to	

predict	response	to	chemotherapy	(Schmitt	et	al.,	2011).	
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A	major	 drawback	 to	 this	method	 is	 that	 FD	 is	 derived	 solely	 from	 a	 graph	 of	

mean	radiotracer	uptake	at	successive	time	points,	failing	to	account	for	spatial	

radiotracer	heterogeneity.	Also,	the	method	is	very	sensitive	to	the	imaging	pre-

processing	and	noise	levels.		

	

Using	a	different	methodology,	Brooks	and	Grigsby	(Brooks	and	Grigsby,	2013b)	

proposed	an	index	of	 intra-tumour	heterogeneity	derived	from	the	deviation	of	

average	 measure	 of	 voxel	 intensity	 from	 the	 smoothest	 intensity	 transition	

between	any	to	voxels	in	a	VOI.	The	research	found	some	association	with	their	

metric	 to	 clinicians’	 ranking	 of	 heterogeneity	 and	 they	 found	 that	 some	

associations	were	significant	 (p<	0.05,	Spearman	Rank).	The	strengths	of	 these	

associations	 were,	 however,	 not	 reported.	 There	 was	 also	 extensive	 pre-

processing	of	the	imaging	prior	to	using	their	metric,	which	may	have	introduced	

bias.	Only	 the	 largest	 cross-sectional	 image	was	used	and	 the	whole	 tumour	 in	

3D	was	not	assessed.			

	

In	a	further	development	of	their	work,	Brooks	and	Grigsby	(Brooks	and	Grigsby,	

2013a)	modified	their	metric	 to	account	 for	 lesions	with	complex	shapes.	 	This	

modification	worked	by	ignoring	the	distance	between	two	voxels	in	a	line	that	

were	separated	by	some	background,	and	 instead	considered	 that	 these	voxels	

were	 neighbours.	 	 Although	 this	 approach	 may	 be	 justified	 for	 characterising	

tumours	 with	 necrotic	 cores,	 the	 example	 given	 by	 the	 authors	 should	 be	

interpreted	 cautiously.	 	 The	method	was	 illustrated	 on	 a	 spherical	 object	with	



																																
	
	

85	

decreasing	 intensity	values	 from	the	centre	 to	 the	object’s	border.	Briefly,	 they	

found	 that	 the	 increasing	 number	 of	 decimations	 reflected	 the	 increasingly	

complex	nature	of	the	tumour	and	heterogeneity.	However,	they	later	found	that	

this	metric	correlated	strongly	with	volume	and	did	not	predict	the	lymph	node	

involvement	in	increasingly	complex	cervical	cancer	primaries.		

	

2.1.2	Texture	analysis	methods		

Texture	 analysis,	 a	 non-invasive	 post-processing	 technique,	 permits	 the	

assessment	 of	 the	 variability	 within	 the	 whole	 tumour	 and	 any	metastases	 to	

quantify	grey-level	differences	between	voxels	(Willaime	et	al.,	2013,	Castellano	

et	 al.,	 2004).	 This	 technique	 detects	 differences	 over	 and	 above	 visual	

perceptibility	(Tixier	et	al.,	2014,	Miller	et	al.,	2003)	and	provides	heterogeneity	

information	beyond	that	available	from	a	solitary	histological	sample.		

	

A	variety	of	methods	have	been	used	to	produce	textural	parameters,	 including	

statistics-based,	 model-based	 and	 transform-based	 methods	 (Castellano	 et	 al.,	

2004).	The	most	commonly	used	method	in	the	literature	has	been	the	statistics-

based	model,	which	 categorises	 different	 texture	 features	 into	 first-order	 (one	

voxel),	 second-order	 (two	 voxels)	 and	 higher-order	 (three	 or	 more	 voxels)	

statistics.	First	order	statistical	differences	are	calculated	by	comparing	voxels	in	

the	whole	volume	of	 interest	and	result	 in	 features	such	as	the	mean,	standard	

deviation,	uniformity,	entropy	(the	randomness	of	the	values	within	the	voxels),	

kurtosis	or	skewness	(Willaime	et	al.,	2013).	Furthermore,	complex	second	order	

statistical	 analyses	 between	 neighbouring	 voxels	 known	 as	 normalised	 grey-
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level	values	in	the	co-occurrence	matrix	(GLCM)	(Haralick	et	al.,	1973)	can	also	

be	 examined.	 The	 calculations	 include	 the	 frequency	 of	 finding	 a	 voxel	 i	 in	

relation	 to	 its	 neighbourhood	 voxel	 j.	 These	 include	 measures	 such	 as	 local	

homogeneity,	 dissimilarity,	 neighbourhood	 entropy	 and	 correlation.	 Further	

second	order	statistics	are	derived	from	the	grey-level	size	zone	matrix	(GLSZM)	

look	at	clusters	of	homogeneity	(Thibault	et	al.,	2009).	Further	regional	features	

such	 as	 run-length	 and	 run-length	 variability	 are	 calculated	 from	 voxel	

alignment	 in	 a	 specified	 direction	 (Castellano	 et	 al.,	 2004,	 Galloway,	 1975).	

Additionally,	 higher	 order	 statistics	 can	 quantify	 the	 coarseness	 or	 roughness,	

busyness,	 contrast	 or	 complexity	 (Amadasun	 and	 R,	 1989).	 These	 utilise	 the	

neighbourhood	grey-tone	(intensity)	differences	matrices	(NGTDM).	
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Table	2.1	PET	texture	analysis	studies	of	all	tum
our	types-Selected	studies	

Author	
Year	

Tum
our	type	

N
o.	

patients	

Prospective/	

retrospective	

Quantization	

level	

Segm
entation	

Texture	

features	used	

Findings	

Kidd	et	al	

((Kidd	and	

Grigsby,	

2008)	

2008	
Cervix	

72	
Retrospective	

N
ot	

m
entioned	

40-80%
	

adaptive	

Derivative	of	

volum
e	

threshold	

function	

Change	in	volum
e	over	

tim
e	tum

our	threshold	

significantly	

associated	w
ith	

tum
our	response	to	

radiation	and	pelvic	

recurrence.	M
TV,	and	

texture	significant	in	

m
ultivariate	analysis	

for	pelvic	recurrence	

El	N
aqa	et	

al.	(El	N
aqa	

et	al.,	

2009)	

2009	
Cervix	

H
ead	&

	neck	

(H
	&
	N
)	

14	cervix	

9	head	&
	

neck	

Retrospective	
Used	a	non-

uniform
	

quantization	

m
ethod	

(square	

root)	

although	

40%
	

threshold	

Intensity	

volum
e	

histogram
	

Texture	

based	

features	

(Energy,	

Just	for	texture:	

Post	radiotherapy	

outcom
e	at	3	m

onths	

(responder	vs	non-

responder):	AUC	

Energy>Entropy>local	

hom
ogeneity>contrast	
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value	used	

not	stated.	

Contrast,	

Local	

hom
ogeneity,	

Entropy)	

Shape-based	

features	

(Eccentricity,	

Euler	

num
ber,	

Solidity	and	

Extent)	

	Post-radiotherapy	

outcom
e	for	H

&
N
	

(Responder	vs	N
on	

Responder):		

AUC	Local	

hom
ogeneity	>	

contrast	>	Entropy	>	

Energy	

	

Tixier	et	al.	

(Tixier	et	

al.,	2011)	

2011	
Oesophageal	

41	
Retrospective	

64	
Fuzzy	local	

area	Bayesian	

(FLAB)	

FOS	(7),	

GLCM
	(6),	

Run-length	

(11),	size	

zone	(11),	

N
GTDM

	(3)	

Therapy-response	

prediction	(Responder	

vs.	N
on	Responder):	

AUC	(texture)	>	

AUC(SUV)		

Brooks,	

Grigsby,	

2011	

(Brooks	

2011	
Sam

e	as	Kidd	et	al.,	2008	
Retracts	previous	

findings,	stating	that	

the	findings	are	m
erely	

a	surrogate	for	tum
our	
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and	

Grigsby,	

2011)	

volum
e.	

Vaidya	et	

al.		(Vaidya	

et	al.,	

2012)	

2011	
N
SCLC	

27	
Retrospective	

N
ot	stated	

M
anual	

Energy	

Contrast	

Entropy	

Local	

hom
ogeneity	

Texture	features	did	

not	correlate	w
ith	

local	or	loco-regional	

recurrence.	

Yang	et	al.	

(Yang	et	al.,	

2013)	

2013	
Cervix	

	

20	
Retrospective		

Pre-

treatm
ent,	2,	

4	and	3	

m
onths	post	

treatm
ent	

8	
40%

	

threshold	

Gray-level	

run	length	

(11	features)	

Gray-level	

size	zone	(11)	

Correlation	w
ith	the	

changes	in	tum
our	

heterogeneity	during	

therapy:	Gray	level	run	

length:	1)	H
igh	gray-

level	runs-em
phasis,	

2)	Short	runs	high	

gray-level	em
phasis,	

3)	Long	runs	high	

gray-levels	em
phasis.	

Gray-level	zone	size:	

4)	H
igh	gray-level	

zones	em
phasis,	5)	
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Short	zone	low
	gray	

level	em
phasis,	6)	

Large	zone	low
	gray-

level	em
phasis,	SUV

m
ax ,	

SUV
m
ean 	in	the	

com
plete	m

etabolic	

response	group	but	

not	w
ith	the	partial	

response	or	new
	

disease	group.	

Tan	et	al.	

(Tan	et	al.,	

2013)	

2013	
Oesophageal	

20	
Retrospective,	

pre	and	post	

treatm
ent	

N
ot	stated	

Sem
i-	

autom
ated	

using	cut-off	

of	>2.5	SUV	

FOS	(9),	

GLCM
	(9),	

Geom
etry	

features	(15)	

Prediction	of	

pathologic	response	

texture	features	better	

than	SUV	for	

responders.	

Dong	et	al.	

(Dong	et	

al.,	2013)	

2013	
Oesophageal	

40	
Retrospective	

	
Sem

i-	

autom
ated	

using	cut-off	

of	>2.5	SUV	

Energy	

Entropy	

Correlation	w
ith	T	and	

N
	stage:	r	(entropy)	>	r	

(energy)	>	r	(SUV
m
ax ).	

Prediction	of	advanced	

stage	([Ia-IIb]	vs.	[IIIa-

IV]):	entropy	only	
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Cheng	et	al.	

(Cheng	et	

al.,	2013)		

2013	
Oro-

pharyngeal		

70	
Retrospective	

4,	8,	16,	32,	

64	

Sem
i-

autom
ated	

using	cut-off	

of	>2.5	SUV	

GLCM
	(7),	

N
GTDM

	(5)	

M
ultivariate	analysis	

show
ed	that	age,	

tum
our	TLG,	and	

uniform
ity	w

ere	

independently	

associated	w
ith	

progression-free	

survival	(PFS)	and	

disease-specific	

survival	(DSS).	TLG,	

uniform
ity	

significantly	

associated	w
ith	overall	

survival	(OS).		

Bagci	et	al.	

(Bagci	et	

al.,	2013)	

2013	
Various	

30	
	

N
ot	

specified	

Autom
ated	

Random
	

W
alk	Im

age	

Segm
entation	

H
om

ogeneity;	

entropy;	

energy;	run	

indices	

Prediction	of	patient	

outcom
e	or	variation	

in	uptake	region	

characteristics:	

entropy,	SRE	(Short	

run	em
phasis)	

Cook	et	al.		
2013	

N
SCLC	

53	
Retrospective	

N
ot	stated	

M
anual	

Coarseness	
Therapy	response:	
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(Cook	et	al.,	

2013)	

Contrast	

Busyness	

Com
plexity	

RECIST	responders	

had	low
er	coarseness,	

higher	contrast	and	

busyness	vs	non-

responders.	H
igh	

coarseness	associated	

w
ith	low

er	PFS,	LPFS	

and	OS.	H
igher	

contrast	and	busyness	

associated	w
ith	longer	

LPFS	and	PFS.	

W
in	et	al.		

(W
in	et	al.,	

2013)	

2013	
N
SCLC	

56	

feasibility	

66	

validation	

Feasibility:	

Retrospective	

Validation:	

Prospective	

N
ot	stated	

42%
	

autom
ated	

segm
entation	

Entropy	(N
ot	

H
aralick	or	

first	order	

statistic)	

Entropy	significant	in	

the	validation	set	but	

not	on	m
ultivariate	

analysis.	

Brooks,	

Grigsby,	

2013	

(Brooks	

and	

Grigsby,	

2013	
Pre-

treatm
ent	

Cervix	

85	
Retrospective	

N
ot	stated	

40%
	

threshold	

Sphericity	

Extent	

Shannon	

entropy	

Accrued	

deviation	

N
o	texture	correlation	

betw
een	node	positive	

and	negative	in	stage	

2B	patients.	
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2013a)	
from

	the	

sm
oothest	

gradients	

Kidd	et	al.,	

2013	(Kidd	

et	al.,	

2013)	

2013	
Cervix	

25	
Retrospective:	

Pre-

treatm
ent,	2,	

4	and	3	

m
onths	post	

treatm
ent	

	
M
TV:	40%

	

threshold	

40-80%
	

adaptive	to	

obtain	the	

derivative	

Derivative	of	

volum
e	

threshold	

function	

SUV
m
ax 	

M
TV	

W
eek	4	SUV

m
ax 	and	

FDG
hetero ,	pre-

treatm
ent	M

TV	and	

FDG
hetero 	w

ere	all	

significantly	

associated	w
ith	post-

treatm
ent	PET	

response.	

Yang	et	al.,	

2013	(Yang	

et	al.,	

2013)	

2013	
Cervix	

20	
Retrospective:	

Pre-

treatm
ent,	2,	

4	and	3	

m
onths	post	

treatm
ent	

8	
40%

	

threshold	

Gray-level	

run	length	

(11	features)	

Gray-level	

size	zone	(11)	

Correlation	w
ith	the	

changes	in	tum
our	

heterogeneity	during	

therapy:	H
GRE,	

SRH
GE,	LRH

GE,	H
GZE,	

SZH
GE,	LZH

GE,	SUV
m
ax ,	

SUV
m
ean 	in	the	

com
plete	m

etabolic	

response	group	but	

not	w
ith	the	partial	
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response	or	new
	

disease	group.	

Tixier	et	al.	

(Tixier	et	

al.,	2014)	

2014	
N
SCLC	

101	
Retrospective	

64	
FLAB	(Fuzzy	

local	area	

Bayesian)	

Visual	

Entropy	

Dissim
ilarity	

H
om

ogeneity	

Size	zone	

hom
ogeneity	

Zone	

percentage	

H
igh	Intensity	

em
phasis	

(H
IE)	

M
oderate	correlation	

betw
een	the	visual	&

	

quantitative	analysis.	

H
igher	heterogeneity:	

local	and	regional	

texture	features	

(except	H
IE)	

associated	w
ith	poorer	

prognosis	(OS).	In	

m
ultivariate	analysis	

stage,	M
TV	and	texture	

(except	H
IE)	w

ere	

significant.	PFS	w
as	

significant	in	M
TV,	

TLG,	texture	(except	

H
IE)	

Brooks,	

Grigsby,	

2014	

2014	
Cervical	

cancer	

70	
Retrospective	

Pre-treatm
ent	

8	
40%

	adaptive	

threshold	

Entropy	
Entropy	5	tim

es	m
ore	

sensitive	to	tum
our	

volum
es	less	than	
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(Brooks	

and	

Grigsby,	

2014)	

45cm
3		

Orlhac	et	

al,	2015	

(Orlhac	et	

al.,	2015)	

2015	
N
SCLC	

48	
Retrospective	

different	
adaptive	

FOS	

GLCM
	

GSZLM
	

Absolute	resam
pling	

perform
ed	better	than	

relative	resam
pling	in	

differentiating	

m
alignancy	from

	

norm
al	tissue.	

Pyka	et	al.,	

2015	

(Pyka	et	al.,	

2015)	

2015	
N
SCLC	

45	
Retrospective,		

Pretreatm
ent,	

T1	or	T2	

received	

prim
ary	

stereotactic	

radiation	

therapy	

64	
2.5	

isocontours	

of	SUV	

GLCM
	

N
GTDM

	

Entropy	(H
R	7.48,	

p=0.16)	on	a	

m
ultivariate	analysis	

significant	for	disease	

specific	survival.		

			

Lovinfosse	

et	al.,	2016	

(Lovinfosse	

2016	
N
SCLC	

63	
Retrospective,	

Treated	w
ith	

stereotactic	

N
ot	stated	

FLAB	(Fuzzy	

local	area	

Bayesian)	

13	global,	

local	and	

regional	

Univariate	analysis	

dissim
ilarity	(D)	w

as	

associated	w
ith	DSS	
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et	al.,	

2016)		

body	

radiation	

therapy	

	

(H
R = 0.822,	P = 0.037),	

m
ultivariate	analysis,	

dissim
ilarity	

significantly	

associated	w
ith	DSS	

(H
R = 0.822,	P = 0.037)	

and	w
ith	DFS	

(H
R = 0.834,	P < 0.01).	

Vallieres	et	

al.,	2017	

(Vallieres	

et	al.,	

2017)	

2017	
H
ead	and	

neck	cancer	

300		
	

Retrospective	
8,	16,	32	and	
64	
	

31%
	Draw

n	

on	CT	and	

transferred	

onto	PET,	

69%
	draw

n	

on	CT	using	

softw
are	

1615	

radiom
ic	

features	

(quantifying	

tum
our	im

age	

intensity,	

shape,	

texture)	

	

Predictive	m
odels	

developed	using	

random
	forests	and	

im
balance-adjustm

ent	

strategies	and	tested	

on	independent	

datasets.		AUC	on	tw
o	

datasets	w
ere	0.69	and	

0.86	

		

N
akajo	et	

2017	
Thym

ic	
34	

Retrospective	
Unknow

n	
Unknow

n	
4	features	

H
igh	risk	tum

ours	had	
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al.,	2017	

(N
akajo	et	

al.,	2017)	

	

epithelial	

tum
ours	

(entropy,	

hom
ogeneity,	

intensity	

variability	

and	size	zone	

variability	

higher	entropy,	p=	

0.038,	intensity	

variability,	p	=	0.041	

and	size	zone	

variability,	p=0.045.	

AUC	Area	under	the	curve,	SUV	Standard	uptake	value,	N
SCLC	N

on	sm
all	cell	lung	cancer,	PFS	progression	free	survival,	LPFS	local	

progression	free	survival,	OS	overall	survival,	M
TV	m

etabolic	tum
our	volum

e,	TLG	total	lesion	glycolysis,	H
GRE	H

igh	grey-level	runs	

em
phasis,	SRH

GE	Short	runs	low
	grey-level	em

phasis,	LRH
GE	Long	runs	high	grey-level	em

phasis,	H
GZE	high	grey-level	zone	em

phasis,	

SZH
GE	Short-zone	high	grey	level	em

phasis,	LZH
GE	Large	zones	high	grey-level.	DSS	Disease	specific	survival.	
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Table	2.2	CT	texture	analysis	studies	of	all	tum
our	types-Selected	studies	

Author	
Year	

Tum
our	type	

N
o.	

patient

s	

Prospective/	

retrospective	

Quantization	

level	

Segm
entation	

Texture	

features	

used	

Findings	

Al-Kadi,	

W
atson,	2009	

(Al-Kadi	and	

W
atson,	2008)	

2009	
Lung	cancer	

15	
Retrospective	

	
Sem

i-

autom
ated	

Fractals	
Quantitative	

classification	of	the	

lacunarity	

dem
onstrated	83%

	

accuracy	in	

distinguishing	

betw
een	early	and	

late	stage	tum
ours.	

M
iles	et	al.,	

2009	(M
iles	et	

al.,	2009)	

2009	
Colorectal	

cancer	

48	
Retrospective	

	
Sem

i-

autom
ated	

Brightness	

and	

uniform
ity	

Phantom
	and	

clinical	evaluation.	

Pixels	betw
een	2	

and	12	pixels	w
ide	

com
pared.	CT	

uniform
ity	10	to	12	

pixels	had	the	least	

variability	and	best	
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predictor	of	patient	

survival	(p<0.005)		

Ganeshan	et	al.,	

2010	

(Ganeshan	et	

al.,	2010a)	

2010	
N
SCLC	

17	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

M
ean	Grey	

intensity	

(M
GI),	

entropy	(E),	

uniform
ity	

(U)	

Course	texture	

features	correlated	

w
ith	tum

our	

SUV
m
ax ,	fine	tum

our	

features	correlated	

w
ith	tum

our	stage	

(kappa	of	0.7	for	

tum
ours	above	

stage	2	(p=0.0001).	

Goh	et	al.,	2011	

(Goh	et	al.,	

2011)	

2011	
Renal	cell	

carcinom
a	

39	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy	

Uniform
ity	

Baseline	and	after	2	

treatm
ent	cycles	

w
ith	tyrosine	

kinase	inhibitor.	

Tum
our	entropy	

decreased	by	3-

45%
	and	uniform

ity	

increased	by	5-

21%
.	Significant	

difference	in	



Treated	w
ith	stereotactic	body	radiation	therapy																																

		

100	

uniform
ity	in	KM

	

curve	(p=0.008	vs	

p=0.267)	and	Cox	

regression	

dem
onstrated	that	

uniform
ity	w

as	

independent	

predictor	of	tim
e	to	

progression	(OR	

4.02,	95%
	CI	1.52-

10.65,	p=0.005)	

H
unter	et	al.,	

2012	(H
unter	

et	al.,	2012)	

2012	
N
SCLC	

25	
Retrospective	

	
M
anual	and	

then	in-house	

deform
able	

im
age	

registration	

GTV,	im
age	

histogram
,	

absolute	

gradient,	co-

occurrence	

m
atrix	and	

run-length	

m
atrix	

Different	m
odels	

tested,	strong	

responders	

(norm
alized	end	of	

treatm
ent	GTV	less	

than	m
edian)	TPR	

0.66	(O.60-0.75),	

FPR	0.36	(0.31-0.4),	

classification	

accuracy	64.8%
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(60-68%
),	p=	0.118	

(0.055-0.215)	

Ganeshan	et	al.,	

2012	

(Ganeshan	et	

al.,	2012)	

2012	
Oesophageal	

Cancer	

21	
Retrospective	

Fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy	(E)	

Uniform
ity	

(U)	

U	(r=0.75,	

p<0.0001)	and	E	

(r=0.75,	p	<0.0001)	

on	unenhanced	CT	

correlated	w
ith	

SUV
m
ean .	Coarse	

uniform
ity	

independent	

predictor	of	

survival	OR=4.45	

(95%
	CI:	1.08-18.4,	

p=0.039)	

Zhang	et	al.,	

2013	(Zhang	et	

al.,	2013)	

2013	
Locally	

advanced	

squam
ous	cell	

carcinom
a	of	

the	head	and	

neck	w
ho	

w
ere	

72	
Retrospective	

Fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy	

Skew
ness	

Prim
ary	m

ass	

entropy	and	

skew
ness	

associated	w
ith	

overall	survival,	in	

m
ultivariate	cox	

regression	prim
ary	
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previously	

treated	w
ith	

induction	

cisplatin,	5-

fluorouracil,	

and	docetaxel  

(TPF)	

chem
otherapy	

	

m
ass	size,	N

	stage	

and	skew
ness	w

ere	

independently	

associated	w
ith	

overall	survival.	

N
g	et	al,	2013	

(N
g	et	al.,	

2013b)	

2013	
Colorectal	

cancer	

55	
Retrospective	

Fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy	(E)	

Uniform
ity	

(U)	

Entropy	and	

Uniform
ity	w

ere	

m
easured	at	

different	filtration	

levels	and	largest	

cross	sectional	area	

w
as	com

pared	w
ith	

w
hole	tum

our	

volum
e	on	contrast	

enhanced	CT.	There	

w
as	a	difference	in	

U	and	E	at	all	filters,	
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and	the	w
hole	

tum
our	analysis	

appeared	m
ore	

representative	of	

tum
our	

heterogeneity	

N
g	et	al,	2013	

(N
g	et	al.,	

2013a)	

2013	
Colorectal	

cancer	

55	
Retrospective	

Fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy,	

uniform
ity,	

kurtosis,	

skew
ness,	

and	

standard	

deviation	of	

the	pixel	

distribution	

histogram
	

	

Fine	texture	

features	above	and	

below
	their	

respective	optim
al	

cutoffs	w
ere	

associated	w
ith	

poorer	prognosis,	

and	w
ere	

independent	of	each	

other	on	Cox	

regression	and	

stage.		

Aerts	et	al.,	

2014	(Aerts	et	

al.,	2014b)	

2014	
N
SCLC	and	

H
ead	and	

neck	(422	

1019	
Retrospective	

	
	

440	features	

including	

intensity,	

Developed	a	4	

feature	texture	

signature	w
hich	
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training)	and	

(3	

independent	

validation	

sets)	

shape,	

texture	and	

w
avelet	

w
as	highly	

significant	w
hen	

tested	in	the	

independent	lung	

and	head	and	neck	

cancer	datasets	

Yip	et	al.,	2014	

(Yip	et	al.,	

2014)	

2014	
Oesophageal	

36	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy,	

uniform
ity,	

m
ean	gray-

level	

intensity,	

kurtosis,	

standard	

deviation	of	

the	

histogram
	

and	

skew
ness	

Post-treatm
ent	

m
edium

	entropy	

(OS	33.2	vs	11.7	

m
onths,	p=0002),	

coarse	entropy	(OS	

33.2	vs	11.7,	

p=0.0002)	and	

m
edium

	uniform
ity	

(OS	33.2	vs	11.7,	

p=0.0002)	w
ere	

associated	w
ith	

im
proved	survival.	

Rem
ained	

significant	w
hen	

adjusted	for	age	and	
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stage.	Pre-

treatm
ent	entropy	

and	uniform
ity	

perform
ed	better	

than	m
orphological	

assessm
ent	for	

m
axim

al	w
all	

thickness	(AUC	0.77	

vs	0.49,	p=0.0005)	

and	0.80	vs	0.49,	

p=0.0003)	

Balagurunathan	

et	al.,	2014	

(Balagurunatha

n	et	al.,	2014)	

2014	
N
SCLC	

32	
Retrospective	

	
Sem

i-

autom
atic	3D	

region	

grow
ing	

algorithm
s	

219	

including	

size,	shape,	

texture,	

w
avelet	

Unenhanced	CT	

scanned	15	m
inutes	

apart	dem
onstrated	

42	features	that	

w
ere	reproducible	

(>/=0.95),	w
hich	

w
ere	also	predictive	

of	radiological	

prognosis.	

Knogler	t	al.,	
2014	

H
odgkin’s	

29	
Retrospective	

	
	

Run	length	
Texture	features	
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2014	(Knogler	

et	al.,	2014)	

Lym
phom

a	
w
ere	able	to	

identify	com
plete	

response	w
ith	the	

sam
e	accuracy	as	

CT	but	w
ith	higher	

specificity	and	the	

com
bination	of	CT	

and	texture	features	

had	the	highest	

accuracy,	sensitivity	

and	specificity.	

Yip	et	al.,	2015	

(Yip	et	al.,	

2015)	

2015	
Oesophageal	

31	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

M
ean	grey-

level	

intensity,	

Entropy,	

uniform
ity,	

kurtosis,	

skew
ness,	

standard	

deviation	of	

histogram
	

Pre-treatm
ent	and	

post-treatm
ent	

standard	deviation	

of	the	histogram
	

show
ed	borderline	

association	w
ith	

pathological	

tum
our	response.	

Change	in	skew
ness	

w
as	associated	w

ith	
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im
proved	survival.	

H
ayano	et	al.,	

2015	(H
ayano	

et	al.,	2015)	

2015	
Soft	tissue	

sarcom
a	

20	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

	
Positive	correlation	

of	m
ean	of	positive	

pixels	w
ith	

m
icrovessel	

density.	Entropy	

positively	

correlated	w
ith	

VEGF	receptor.	

Tian	et	al.,	2015	

(Tian	et	al.,	

2015)		

2015	
Soft	tissue	

sarcom
a	

20	
Retrospective	

	
	

Arterial	peak	

enhancem
en

t	tim
e,	m

ean	

of	positive	

pixels		

CT	perfusion	at	

baseline,	2	and	8	

w
eeks	post	

treatm
ent	w

ith	

neoadjuvant	

bevacizum
ab	and	

radiotherapy.	

Significant	

correlation	of	m
ean	

of	positive	pixels	

w
ith	necrosis	in	

surgical	specim
en	
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Lubner	et	al.,	

2015	(Lubner	

et	al.,	2015)	

2015	
H
epatic	

m
etastases	

from
	

colorectal	

cancer	

77	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

	
entropy,	

kurtosis,	

skew
ness,	

m
ean,	m

ean	

positive	

pixels	

(M
PP),	and	

standard	

deviation	

(SD)	of	pixel	

distribution	

histogram
	

	

Entropy,	M
PP	and	

SD	at	m
edium

	

filtration	

significantly	

associated	w
ith	

tum
our	grade.	

Skew
ness	negative	

associated	w
ith	

KRAS	m
utation.	

Entropy	at	coarse	

filtration	associated	

w
ith	overall	

survival	(H
R	0.65,	

95%
	CI	0.44-0.95,	

p=0.03).	Sim
ilar	

results	for	2D	and	

3D	analysis	

M
attonen	et	al,	

2015	

(M
attonen	et	

al.,	2015)	

2015	
Post	

treatm
ent	

lung	cancer	

treated	w
ith	

24	
Retrospective	

	
M
anually	

delineated	

Entropy	
Entropy	had	an	area	

under	the	curve	of	

0.7	to	0.73	to	

predict	recurrence	
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stereotactic	

ablative	

radiotherapy	

(SABR)	

com
pared	w

ith	

radiation	induced	

lung	injury.	

Lubner	et	al.,	

2016	(Lubner	

et	al.,	2016)	

2016	
Renal	cell	

carcinom
a	

157	
	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

Entropy,	

kurtosis,	

skew
ness,	

m
ean,	m

ean	

of	positive	

pixels,	and	

SD	of	pixel	

distribution	

histogram
	

	

Pretreatm
ent	

tum
our	texture	

analysis	correlated	

w
ith	histology	

(entropy	w
ith	clear	

cell	histology	and	

papillary	cell	type).	

Entropy,	SD	and	

M
PP	w

ere	

associated	w
ith	

nuclear	grade.	SD,	

M
PP	and	entropy	

w
ere	associated	

w
ith	tim

e	to	disease	

recurrence	and	

death	due	to	

disease.		



Treated	w
ith	stereotactic	body	radiation	therapy																																

		

110	

Ahn	et	al.,	2016	

(Ahn	et	al.,	

2016)	

2016	
Liver	

m
etastases	

from
	

colorectal	

cancer	

235	

(145	

training	

and	90	

validati

on)		

	
Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

M
ean	grey-

level	

intensity	

(M
ean),	

standard	

deviation,	

entropy,	

m
ean	of	

positive	

pixels	

(M
PP),	

skew
ness,	

and	kurtosis	

	

Low
er	skew

ness,	

higher	m
ean	

attenuation	and	

narrow
er	SD	in	the	

training	set	w
ere	

independently	

associated	w
ith	

response	to	

chem
otherapy.	On	

the	validation	set	

low
er	skew

ness	

AUC=0.797)	and	

narrow
er	SD	

(AUC=0.785)	

show
ed	good	

perform
ance.	These	

tw
o	w

ere	invariant	

to	scanner.		

Zhang	et	al.,	

2017	(Zhang	et	

al.,	2017)	

2017	
H
igh	(H

G)	and	

low
-grade	

(LG)	

105	H
G	

and	16	

LG	

	
Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

M
ean	grey-

level	

intensity	

Low
-grade	

urothelial	cancers	

had	low
er	m

ean,	
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urothelial	

cancer	

(M
ean),	

standard	

deviation,	

entropy,	

m
ean	of	

positive	

pixels	

(M
PP),	

skew
ness,	

and	kurtosis	

	

entropy	and	M
PP	

on	unenhanced	and	

enhanced	im
ages	

and	low
er	SD	on	

enhanced	im
ages.	

The	highest	AUC	

w
as	w

ith	a	fine	

scale	w
ith	AUC	of	

0.779	(sensitivity	

72.2%
,	specificity	0f	

84.9%
	and	accuracy	

83.1%
)	

Sacconi	et	al.,	

2017	(Sacconi	

et	al.,	2017)	

2017	
N
SCLC	

68	
Retrospective	

Used	fine	to	

course	detail	

(1.0-2.5)	

Sem
i-

autom
ated	

M
ean	grey-

level	

intensity	

(M
ean),	

standard	

deviation,	

entropy,	

m
ean	of	

positive	

M
ean	(p=0.0001),	

standard	deviation	

9	p=0.0001),	and	

skew
ness		(p=0.	

0.0459)	w
ere	found	

to	have	significant	

correlation	w
ith	

EGFR	m
utation	

(p=0.0001;	
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pixels	

(M
PP),	

skew
ness,	

and	kurtosis	

	

p=0.0001; entropy	

correlated	w
ith	OS	

(r=0.2708;	

p=0.0329).	

TPR=true	positive	rate,	FPR=false	positive	rate;	OS	Overall	survival	
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2.2	PET	Texture	studies	
	

Since	El	Naqa	et	al	((El	Naqa	et	al.,	2009))	first		used	texture	analysis	to	quantify	

intra-tumour	 PET	 heterogeneity,	 a	 number	 of	 studies	 have	 been	 published	

demonstrating	the	predictive	and	prognostic	power	of	various	statistical	texture	

analysis	methods	 computed	 on	 baseline	 18F-FDG	PET	 images	 (Table	 2.1).	 	 The	

PET	 texture	 features	 have	 also	 been	 combined	 with	 CT	 descriptors	 (Yu	 et	 al.,	

2009a,	Yu	et	 al.,	 2009b,	Vaidya	et	 al.,	 2012).	The	 textural	descriptors	 (listed	 in	

the	Appendix	B)	employed	in	these	studies	include	statistics	based	texture.		

	

El	Naqa	 (El	Naqa	et	 al.,	 2009)	 implemented	 texture-,	 shape-based	 features	and	

cumulative	 SUV-volume	 derived	 	 (CSH)	 curves	 to	 predict	 treatment	 outcomes.	

They	 tested	 their	methods	 on	 two	 tumour	 groups	 imaged	with	 18FDG	PET:	 14	

subjects	with	 cervix	 cancer	 and	 9	 subjects	with	 head	 and	 neck	 cancer.	 	 In	 the	

cervix	dataset,	 individual	features	were	able	to	predict	disease	persistence.	The	

texture	 features	 were	 correlated	 with	 overall	 survival	 in	 the	 head	 and	 neck	

dataset.	 In	 addition,	 a	 receiver	 operator	 curve	 (ROC)	 analysis	 on	 a	 subset	 of	

texture	features	on	a	multivariate	analysis	to	predict	treatment	failure	revealed	

that	 texture	 features	 performed	 the	 best	 followed	 by	 CSH	 features.	 A	

combination	 of	 the	 best	 individual	 descriptors	 led	 to	 an	 area	 under	 the	 ROC	

curve	 of	 0.76	with	 the	 predominant	 contribution	 from	 the	 textural	 descriptor.		

Further	 univariate	 analysis,	 shape	 and	 CSH	 descriptors	 demonstrated	 the	

strongest	correlation	with	clinical	outcome	for	the	head	and	neck	cancer	dataset.	

From	this	study	the	conclusion	was	drawn	that	class	features	(volume-,	shape-,	
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or	 texture-based)	 predominate	 and	 this	 may	 depend	 on	 tumour	 or	 end-point	

selection.	This	proof	of	concept	study	was	very	important	for	introducing	texture	

analysis	to	medical	images,	although,	the	small	size	of	the	datasets	precludes	the	

conclusions	 reached,	especially	on	multivariate	analysis.	The	shape	descriptors	

may	also	suffer	from	being	extra	sensitive	to	the	mode	of	delineation	and	other	

factors	that	influence	shape	(such	as	motion	and	PVEs).	

	

Yu	et	al	(Yu	et	al.,	2009a,	Yu	et	al.,	2009b)	used	another	method	to	incorporate	

both	 PET	 and	 CT	 data	 to	 derive	 parametric	 textural	 features.	 These	 features	

were	tested	against	tissue	grade	to	derive	tumour	targets.	Manual	and	threshold	

methods	 for	 segmentation	were	 compared.	 Their	 proposed	method	performed	

well	compared	with	manual	delineation	but	comparison	with	ground	truth	data	

was	not	made.	

	

Further	research	(Galavis	et	al.,	2010)	was	carried	out	to	investigate	the	effect	of	

PET	reconstruction	parameters	on	 the	 texture	 techniques	 (FOS,	GLCM,	GLRLM,	

GLSZM	 and	 NGTDM)	 on	 scans	 of	 20	 subjects	 with	 various	 tumour	 types.	 The	

same	scanner	and	protocol	(time	after	 injection)	was	used.	 	Data	acquisition	 in	

both	2D	mode	(OSEM	reconstruction:	14	subsets,	2	and	4	 iterations)	and	in	3D	

mode	 (reconstructed	 using	 iterative-Vue	 Point	 in	 2	 and	 4	 iterations)	 was	

performed.		Results	were	computed	across	various	matrix	size	(using	128	x	128	

and	256	x	256	pixels)	and	post	reconstruction	filtration	(3,	4,	5mm	full	width	at	

half	 maximum	 [FWHM]).	 	 After	 computing	 texture	 features	 across	 these	

parameters,	 and	 found	 that	 some	 texture	 features	 were	 invariant	 across	

reconstructions,	 some	 had	 intermediate	 variability	 (classified	 here	 as	 between	
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10	 and	 25%)	 and	 a	 third	 group	 had	 a	 large	 amount	 of	 variability	 (more	 than	

30%).	

Tixier	et	al.	(Tixier	et	al.,	2011)	furthered	research	into	this	 field	by	comparing	

the	 performance	 of	 38	 statistical	 texture	 features,	 computed	 on	 pre-treatment	

18F-FDG	 PET	 images,	 to	 differentiate	 chemo-therapy	 response.	 Using	 RECIST	

criteria,	 a	 total	 of	 41	 patients,	 were	 classified	 as	 complete-,	 partial-	 or	 non-

responders	 a	 month	 after	 completion	 of	 treatment.	 Using	 PET	 parameters,	

SUVmean	 and	 SUVmax	 were	 able	 to	 discriminate	 between	 complete	 versus	 both	

partial	 and	 non-responders.	 SUVpeak	 was	 narrowly	 significant	 to	 differentiate	

between	all	three	groups	(p=0.045,	Kruskall-Wallis	test).	Some	textural	features	

were	good	predictors	of	response	to	treatment	at	baseline,	including	GLCMEntropy	

(p=0.0006),	 NGTDMCoarseness	 (p=	 0.0002),	 as	 well	 as	 GLSZMIntensity	 variability	

(p=0.0002).	 Texture	 features	 were	 also	 more	 sensitive	 (76-92%)	 than	 SUV	

measurements.	 In	 a	 follow-up	 study,	 the	 authors	 studied	 the	 repeatability	 of	

First	 Order	 Statistics	 and	 texture	 features	 derived	 from	 GLCM	 and	 GLSZM	

matrices	 in	 pre-treatment	 18F-FDG	 PETs	 of	 16	 oesophageal	 cancer	 patients	

scanned	within	 2	 to	 7	 days	 of	 each	 other.	 They	 showed	 that	 there	 was	much	

variability	between	the	features	and	classified	the	variations	 into	three	groups:	

small	 variations	 of	 less	 than	 ±30%	 (e.g.	 GLCMEntropy,	 GLCMHomogeneity	 and	

GLCMDissimilarity);	 medium	 variations	 of	 around	 ±50%	 (e.g.	 GLCMContrast,	

FOSSkewness)	and	large	variations	of	more	than	±100%	(e.g.	GLSZMSmall	Area	Emphasis).	

	

Further	 studies	have	 investigated	 texture	analysis	 in	 18F-FDG	PET	oesophageal	

cancers.	Dong	et	al	(Dong	et	al.,	2013)	compared	two	GLCM	features	at	baseline	

with	 histological	 grade	 and	 stage	 (both	 TNM	 and	 AJCC)	 in	 40	 oesophageal	
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squamous	 cell	 carcinoma	 patients.	Moderate	 associations	were	 found	 between	

tumour	stage	and	GLCMEntropy	 (rs	=	0.69,	p	<	0.001,	Spearman	Correlation)	and	

GLCMEnergy	 (rs	 =	 –	 0.47,	 p	 =	 0.002).	 	 Weak	 associations	 were	 found	 between	

SUVmax	and	tumour	stage	(rs	=	0.39,	p	=	0.013),	Node	stage	and	GLCMEntropy	(rs	=	

0.50,	p	=	0.001),	Node	stage	and	GLCMEnergy	 (–	0.41,	p	=	0.008),	as	well	as	with	

SUVmax	 (rs	 =	 0.33,	 p	 =	 0.04).	 The	 study	 design	 did	 not	 state	 whether	 their	

methods	 enhanced	 or	 complemented	 current	 clinical	 methods.	 A	 better	 study	

design	 would	 have	 compared	 outcomes	 using	 established	 predictive	 or	

prognostic	 factors.	 The	 stage	 system	 has	 been	 developed	 using	 thousands	 of	

patients	and	no	advantage	can	be	gained	by	using	such	a	small	cohort	to	develop	

a	texture	model.		

	

Tan	 and	 co-workers	 (Tan	 et	 al.,	 2013)	 proposed	 a	 model	 based	 on	 intensity-,	

shape-,	 textural-	 and	 geometric-based	 features	 on	 20	 patients’	 pre-,	 post-	

treatment	and	difference	(pre-	minus	post-treatment)	18F-FDG	PET	images.	192	

features	were	tested	on	their	discrimination	between	response	groups	using	the	

area	under	 the	ROC	curve	and	Mann-Whitney	U-Test.	The	descriptors	with	 the	

highest	area	under	the	ROC	were	selected.	A	major	limitation	of	this	study	is	the	

small	 number	 of	 patients	 included	 which	 increases	 the	 likelihood	 of	 a	 type	 1	

error.	 Another	 limitation	 was	 that	 the	 texture	 features	 were	 not	 investigated	

through	a	repeatability	study.		

	

Vaidya	et	al.	 (Vaidya	et	al.,	2012)	combined	18F-FDG	PET	and	CT	 feature-based	

metrics	for	tumour	assessment	in	NSCLC.	A	total	of	32	texture	features,	selected	

from	a	mixture	of	first	order	statistics,	GLCM,	CSH	and	PET	from	27	pre-therapy	
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scans	were	 obtained.	 The	 statistical	 framework	was	 similar	 to	 that	 detailed	 in	

previous	 work	 (El	 Naqa	 et	 al.,	 2009)	 and	 used	 univariate	 Spearman	 Rank	

correlation	for	predicting	treatment	outcome	to	radiotherapy.	Clinical	endpoints	

included	the	development	of	recurrence	within	the	radiation	field	and	chest.	The	

authors	 found	 that	 CSH	 best	 predicted	 clinical	 outcome	 on	 the	 univariate	

analysis	but	the	strength	of	the	individual	correlations	were	weak	(from	0.12	to	

0.37).	There	was	slight	improvement	using	bivariate	logistic	regression	including	

two	 CSH	 volume	 indices:	 V80	 on	 PET	 and	 V70	 measured	 on	 CT	 images.	 Vx,	

derived	 from	 cumulative	 SUV-volume	 histogram,	 represented	 the	 sub-tumour	

with	voxels	having	at	least	x%	intensity	of	the	maximum	intensity	in	the	VOI.	The	

bivariate	model	 led	to	rs	=	0.4854	(p=0.0067)	and	rs	=	0.5908	(p	=	0.0013)	for	

the	 two	 respective	 clinical	 endpoints.	 There	 was	 weak	 association	 between	

GLCM	textural	 features	and	clinical	endpoints	 (<0.3),	which	was	not	significant	

on	 univariate	 analysis.	 After	 correcting	 for	 motion,	 there	 was	 only	 a	 slight	

improvement.	However,	 on	 careful	 observation	of	 the	 results,	 the	 results	were	

not	borne	out	and	only	weak	associations	were	demonstrated.	For	the	remainder	

of	 the	 descriptors,	 the	 associations	 post	motion	 correction	weakened	 or	 were	

unchanged.	 Thus,	 it	 is	 still	 unclear	 whether	 motion	 correction	 improves	 the	

relation	to	clinical	outcome.		

	

George	 et	 al.	 (George	 et	 al.,	 2012)	 used	 a	 different	 method,	 in	 a	 study	 of	 15	

metastatic	 colorectal	 cancer	 patients,	 where	 they	 used	 a	 subspace-based	

framework	to	predict	outcome	and	used	textural	analysis	of	primary	and	nodal	

lesions.	They	 found	 that	 texture	analysis	enhanced	 the	predictive	power	of	 the	

analysis	compared	with	traditional	quantification	indices.		
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Cook	 and	 co-workers	 (Cook	 et	 al.,	 2013)	 applied	 the	 NGTDM	 only	 to	 53	 pre-

treatment	 18F-FDG	 PET	 scan	 in	 NSCLC	 undergoing	 radical	 radiotherapy.	

Responses	 to	 treatment	 at	 12	 weeks	 using	 the	 RECIST	 criteria	 and	 survival	

outcome,	 namely	 local	 progression	 free	 (LPFS),	 progression	 free	 (PFS)	 and	

overall	 (OS),	 were	 used	 as	 outcome	 measures.	 The	 authors	 found	 lower	

NGTDMCoarseness	 (p=	 0.004),	 higher	 NGTDMContrast	 (p=0.044)	 and	 higher	

NGTDMBusyness	(p=0.002)	in	non-responders	compared	with	responsive	patients.	

The	other	NGTDM	texture	 feature,	Complexity,	 and	SUV	measurements	did	not	

predict	tumour	response.	In	addition,	NGTDMCoarseness	was	found	to	independently	

predict	 on	 multivariate	 analysis,	 while	 NGTDMContrast	 and	 NGTDMBusyness	 were	

associated	 with	 PFS	 and	 LPFS.	 The	 number	 of	 gray-level	 discretisation	 was	 not	

mentioned,	making	it	very	difficult	to	verify	or	replicate	these	findings.		The	use	of	

the	 same	 texture	 features	 for	 predictive	 and	 prognostic	 outcomes	 could	

potentially	be	a	fallacy.	In	addition,	the	lack	of	further	testing	of	these	features	on	

an	independent	dataset	is	another	shortcoming.		

	

In	 a	 break	 from	 the	 described	 texture	 features,	 Salamon	 et	 al.	 (Salamon	 et	 al.,	

2013),	used	the	ratio	of	SUVmax	to	SUVmean.	They	compared	this	with	the	SUVmax	

in	a	group	of	50	patients	with	peripheral	nerve	sheath	tumours.	Using	this	semi-

quantitative	 index,	 a	 significant	 difference	 was	 found	 between	 benign	 and	

malignant	 tumours	 (p=0.0002).	 However,	 there	 was	 a	 greater	 differentiation	

using	the	SUVmax	alone	(p=0.001)	and	the	malignant	tumours	were	significantly	

bigger	 (p	 <	 0.0001).	 Thus,	 the	 proposed	 differences	 may	 not	 be	 due	 to	



Treated	with	stereotactic	body	radiation	therapy		 	
	

119	

heterogeneity	 but	 rather	 the	 lesion	 size	 and	 noise.	 The	 choice	 of	 using	 the	

SUVmax/SUVmean	was	also	not	given.		

	

Yang	et	al.	(Yang	et	al.,	2013)	extended	the	use	of	texture	analysis	by	following	it	

up	over	the	course	of	treatment	in	20	cervical	cancer	patients	treated	with	radio-

chemotherapy.	 Patients	 were	 scanned	 pre-treatment	 (baseline),	 two	 and	 four	

weeks	 after	 the	 onset	 of	 therapy	 and	 after	 the	 completion	 of	 therapy.	 The	

authors	found	that	regions	of	high	uptake	decreased	significantly	over	the	course	

of	 treatment	 in	complete	responders	(p	<	0.001),	 ie.	 the	tumours	became	more	

homogenous.	Also,	 the	pre-treatment	 scan	was	 the	most	accurate	 in	predicting	

outcome.	 By	 contrast,	 the	 SUV	 indices	 decreased	 in	 both	 response	 and	 non-

response	groups	from	baseline	up	to	four	weeks	post	treatment	commencement.	

The	results	from	both	GLCM	and	GLSZM	matrices	were	broadly	similar.		

	

Soussan	et	al.	(Soussan	et	al.,	2014)	investigated	3	texture	features,	GLRLMHGLRE,	

GLCMEntropy	and	GLCMHomogeneity,	and	PET	features	to	investigate	associations	with	

prognostically	 poor	 indices	 in	 54	 18F-FDG	 PET	 pre-treatment	 breast	 cancer	

patients.	 	 GLRLMHGLRE	 were	 higher	 in	 oestrogen	 and	 progesterone	 negative	

receptors	 in	 high-grade	 tumours.	 The	 PET	parameters	were	 unable	 to	 identify	

HER-2	 positive	 tumours,	 however,	 SUVmax	did	correlate	with	 Ki-67	 (p<0.0004).	

Multivariate	analysis	demonstrated	 that	GLRLMHGLRE	was	associated	with	 triple	

negative	breast	cancer.	Combining	this	texture	feature	with	SUVmax	increased	the	

area	under	 the	curve	compared	with	SUVmax	alone	 in	 identifying	triple	negative	

breast	 cancer.	The	major	 fallacy	 in	 this	 study	was	 the	 small	number	and	 there	

were	only	13	triple	negative	tumours	in	the	whole	sample.		
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In	2017,	Vallieres	(Vallieres	et	al.,	2017)	evaluated	the	usage	of	texture	analysis	

to	 predict	 treatment	 outcomes	 and	 prognosis	 in	 head	 and	 neck	 cancer.	 1615	

texture	 features	 were	 extracted	 from	 pre-treatment	 PET	 and	 CT	 scans	 of	 300	

patients.	Using	random	forests	and	imbalance-adjustment	strategies	using	two	of	

four	cohorts,	they	developed	a	prediction	and	prognostic	model	that	was	tested	

in	the	remaining	two	cohorts	with	results	AUCs	of	0.69	and	0.86	for	prediction	

and	Kaplan	Meier	curves	demonstrating	survival	differences	(depending	on	the	

Random	Forest	 thresholds	 and	 local	 and	 regional	metastases).	 The	 strength	 of	

this	 study	 was	 that	 they	 had	 a	 large	 cohort	 and	 they	 tested	 their	 findings	 on	

independent	datasets.	They	also	developed	their	model	and	combined	them	with	

existing	 clinical	 factors	 demonstrating	 the	 additional	 benefit	 of	 PET	 and	 CT	

texture	features.	A	major	drawback	to	this	methodology	was	that	there	were	too	

many	features	and	insufficient	events	(both	recurrence	and	death)	to	include	all	

of	these	in	their	analysis.	

	

In	summary,	texture	analysis	and	PET	parameters	have	been	used	for	a	number	

of	 tumour	types	using	a	variety	of	methods	and	different	statistical	 techniques.	

The	outcomes	have	been	different:	with	some	linking	to	stage,	PET	parameters,	

treatment	outcome	and	survival.	Furthermore,	the	techniques	have	been	applied	

to	many	 different	 imaging	 protocols	 (such	 as	 scanner	 type	 and	 reconstruction	

algorithms)	and	cancer	types	in	different	institutions.	It	is	difficult	to	apply	direct	

comparisons	 due	 to	 the	 resolution	 dependent	 nature	 of	 texture	 analysis.	More	
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studies	 with	 larger,	 cross-centre	 sites	 may	 help	 in	 answering	 some	 of	 these	

questions.		

2.2.1	CT	texture	studies	

In	CT	texture	analysis,	developments	have	paralleled	those	of	the	developments	

of	PET	scan.	An	early	 study	by	 (Al-Kadi	and	Watson,	2008)	used	 fractals	 in	15	

lung	cancer	patients	 to	differentiate	between	early	and	 late	stage	disease	 in	an	

early	proof	of	concept	study.	There	was	83.3%	accuracy	 in	distinction	between	

the	two	groups.		

	

A	further	texture	study	on	48	colorectal	cancer	patients	with	hepatic	metastases	

and	 phantoms	 used	 the	 texture	 features	 of	 brightness	 and	 uniformity	 pixels	

between	2	 and	12	 size.	 They	 found	 that	 the	 largest	 pixel	 sizes	 correlated	with	

patient	survival.	 	They	also	 found	that	CT	hepatic	perfusion	was	not	associated	

with	 survival.	 	 Although	 this	 was	 an	 early	 study,	 no	 subsequent	 studies	 using	

these	findings	on	a	validation	set	were	performed.		

	

The	 majority	 of	 texture	 analysis	 on	 CT	 has	 been	 performed	 using	 TexRAD,	 a	

propriety	 software	 (Ganeshan	 et	 al.,	 2010b)	 that	 looks	 at	 certain	 2nd	 order	

statistics	and	uses	 filtering	 (Laplacian	of	Gaussian)	of	 fine,	medium	and	course	

detail.	 There	 have	 many	 studies	 (Table	 2.3)	 using	 this	 software,	 for	 example,	

looking	at	NSCLC	with	clinical	and	PET	parameters	(Ganeshan	et	al.,	2010a),	RCC	

response	 prediction	 with	 tyrosine	 kinase	 inhibitors	 (Goh	 et	 al.,	 2011),	

oesophageal	 carcinoma	 and	 survival	 (Ganeshan	 et	 al.,	 2010a),	 previously	

chemotherapy	 treated	head	 and	neck	 cancer	 and	 survival	 (Zhang	 et	 al.,	 2013),	
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colorectal	cancer	and	survival	(Ng	et	al.,	2013a),	Hodgkins	lymphoma	CT	texture	

response	compared	with	CT	(Knogler	et	al.,	2014),	soft	tissue	sarcoma	with	VEGF	

receptor	correlation	(Hayano	et	al.,	2015)	and	response	assessment	(Tian	et	al.,	

2015).	 These	 studies	 have	 all	 been	 small	 studies	 with	 less	 than	 100	 patients	

performed	retrospectively.	The	predictive	and	prognostic	texture	features	were	

different	even	for	the	same	tumour	type.	No	validation	studies	were	performed	

on	 independent	 datasets.	 Larger	 datasets	 on	 157	 patients	 with	 renal	 cell	

carcinoma	 ((Lubner	 et	 al.,	 2016)	 and	 235	 (145	 training	 and	 90	 validation)	

cororectal	 patients	 with	 hepatic	 metastasis	 (Ahn	 et	 al.,	 2016)	 have	 also	 been	

performed.		

	

Using	the	previously	described	statistical	method	to	define	texture,	Aerts	(Aerts	

et	al.,	2014b)	have	the	largest	study		to	date,	with	1019	patients	in	total,		using	a	

422	patient	NSCLC	training	set	and	testing	on	3	independent	validation	datasets,	

two	of	which	were	NSCLC	and	one	which	was	head	and	neck	cancer.	A	4-feature	

texture	analysis	was	found	to	be	highly	significant	in	predicting	prognosis	in	all	

the	datasets.	One	of	the	shortcomings	of	this	study	was	that	a	test	re-test	dataset	

was	 used	 to	 develop	 the	 robustness	 of	 440	 texture	 features	 and	 this	 was	

unenhanced	CT	only	(Balagurunathan	et	al.,	2014).		

	

2.3.1	Quantifying	the	spatial	extent	of	PET	radiotracer	uptake:	

total	lesion	activity		

The	 total	 lesion	 glycolysis	 (TLG)	 has	 been	 proposed	 as	 an	 additional	 index	 to	

quantify	 the	 distribution	 of	 radiotracer	 uptake	 in	 PET	 imaging	 (Larson	 and	
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Schoder,	2009,	Hatt	et	al.,	2011a,	Larson	et	al.,	1999,	Willaime	et	al.,	2014).	The	

calculation	is	relatively	straightforward,	simply	being	the	product	of	the	SUVmean	

and	metabolic	tumour	volume.	It	is	also	known	as	total	lesion	metabolic	activity	

(TLA)	 and	 total	 proliferative	 volume	 (TPV)	 (Hatt	 et	 al.,	 2010a).	 The	 lack	 of	

standardisation	 across	 centres	 has	 resulted	 in	 numerous	 names	 for	 the	 same	

measure,	and	this	is	also	true	for	texture	features	(Orlhac	et	al.,	2014).	

The	 measure	 was	 first	 introduced	 by	 Larson	 et	 al	 (Larson	 et	 al.,	 1999)	 who	

evaluated	 this	 feature	when	 looking	 at	 percentage	 change	 in	 different	 cancers	

that	were	 treated	with	chemotherapy.	The	response	assessment	was	evaluated	

by	a	group	of	experts.		

	

Hatt	et	al.	 	(Hatt	et	al.,	2010b)	studied	the	repeatability	and	reproducibility	of	a	

range	 of	 PET	 features,	 including	 the	 metabolic	 tumour	 length	 (MTL),	 mean	

tumour	 volume	 (MTV)	 and	 total	 lesion	 glycolysis	 (TLG)	 on	 an	 18F-FDG	

oesophageal	 dataset	 and	 an	 18F-FLT	 PET	 breast	 cancer	 dataset.	 Lesions	 were	

segmented	 using	 different	methods,	 including	 fixed	 and	 adaptive	 thresholding,	

fuzzy	C-means	and	fuzzy	locally	adaptive	Bayesian	(FLAB)	(Hatt	et	al.,	2009).	The	

repeatability	results	(multiple	delineation	of	the	same	lesion)	yielded	variability	

below	 5%	 for	 automatic	 methods	 (adaptive	 thresholding,	 fuzzy	 C-means	 and	

FLAB)	and	from	5	to	35%	for	manual	delineation.	In	this	study,	Hatt	et	al.	(Hatt	et	

al.,	2011a)	studied	the	accuracy	of	TLG,	tumour	volume	and	longitudinal	length,	

to	 discriminate	between	 three	 groups	of	 patients	with	 oesophageal	 cancer	 (13	

non-responders,	25	partial	 responders	and	12	complete	responders).	From	the	

baseline	 18F-FDG	 PET	 imaging,	 patients	were	 assessed	 for	 treatment	 response	



2.3.1	Quantifying	the	spatial	extent	of	PET	radiotracer	uptake:	total	lesion	activity	 	 	
	

124	

post	 therapy	 using	 the	 RECIST	 criteria	 on	 CT	 imaging.	 	 Two	 different	

segmentation	 techniques	 were	 used	 for	 comparison,	 the	 adaptive	 threshold	

method	 and	 the	 automatic	 FLB	 algorithm.	The	 SUVmean,	 SUVmax	 and	 SUVpeak	did	

not	discriminate	between	the	three	response	groups.	On	the	contrary,	the	other	

PET	 discriminators	 (MTL,	 MTV,	 TLG)	 predicted	 response	 on	 baseline	 18F-FDG	

PET	 scans.	 Sensitivity	 was	 75%	 and	 specificity	 above	 85%,	 yielding	markedly	

better	 results	 than	 SUV	measurements.	 	 Segmentation	 did	 not	 influence	 these	

results.	 The	 only	 other	measure	 that	 differentiated	 between	 these	 groups	was	

the	 AJCC	 stage.	 The	 authors	 combined	 SUVmean,	 which	 by	 itself	 was	 not	

significant,	with	TLG	and	TL,	which	produced	a	stronger	discrimination	between	

response	 groups	 than	 using	 TL	 separately.	 Again,	 the	 segmentation	 did	 not	

change	the	ability	of	TL,	TV	and	TLG	to	distinguish	between	the	groups.			

	

The	authors	 further	studied	the	prognostic	value	of	 the	 image	descriptors	with	

regards	to	survival	in	a	pre-treatment	18F-FDG	PET	in	oesophageal	cancer	(Hatt	

et	al.,	2011b).		They	found	that	SUV	measurements	(SUVmean,	SUVmax	and	SUVpeak)	

did	 not	 significantly	 predict	 overall	 survival.	 TV,	 TL	 and	 TLG,	 however,	 were	

significantly	prognostic	but	not	when	tested	in	a	multivariate	analysis.		

	

The	 authors	 noted	 that	 FLAB	 performed	 better	 than	 the	 adaptive	 threshold	

technique	 with	 higher	 sensitivity,	 specificity,	 and	 area	 under	 the	 curve	 with	

smaller	confidence	intervals.	 It	should	be	noted	that	the	same	group	developed	

the	 FLAB	 segmentation	 method.	 The	 method	 had	 to	 be	 adapted	 when	 it	 was	

shown	 that	 the	method	 could	 not	 differentiate	 heterogeneity	well,	 simply	 two	
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classes	 (the	 background	 and	 foreground).	 The	 FLAB	method	 has	 subsequently	

been	 improved	 to	 take	 into	account	a	 further	 class,	named	3-FLAB	 (Hatt	 et	 al.,	

2010a).	The	3-FLAB	was	compared	with	other	automatic	segmentation	methods	

in	 31	 NSCLC	 patients	 in	 a	 separate	 institution,	 which	 found	 that	 it	 performed	

worse	compared	with	the	other	methods	tested	(Markel	et	al.,	2013).	

	

Further	 studies	 by	 the	 same	 group	 (Hatt	 et	 al.,	 2013a),	 demonstrated	 that	

percentage	change	in	TLG,	imaged	at	baseline	and	after	two	cycles	of	treatment	

with	 neo-adjuvant	 chemotherapy,	 was	 a	 stronger	 predictor	 of	 histopathologic	

response	compared	with	SUVmean	percentage	change.	 	Furthermore,	 they	 found	

that	correcting	for	PVEs	significantly	impacted	the	feature	values	of	baseline	18F-

FDG	PET,	however,	it	did	not	impact	on	the	predictive	values	(Hatt	et	al.,	2013b).	

Hatt	 (Hatt	 et	 al.,	 2013c)	 and	Groheax	 (Groheux	 et	 al.,	 2013)	 both	 showed	 that	

TLG	was	a	strong	predictor	of	response	in	rectal	and	breast	cancers,	respectively	

imaged	at	baseline	and	after	two	cycles	of	neo-adjuvant	chemotherapy.	However,	

neither	 demonstrated	 that	 TLG	was	 associated	with	 treatment	 outcome	 based	

solely	on	the	baseline	images.		

	

Mertens	(Mertens	et	al.,	2012)	derived	an	index	related	to	total	lesion	glycolysis,	

named	 standardised	 added	metabolic	 activity	 (SAM).	 The	 advantage	 over	 TLG	

was	that	it	was	easier	to	derive,			allowed	for	partial	volume	corrections,	and	did	

not	rely	on	thresholding	methods.	The	method	consists	of	drawing	two	volumes	

of	interest		(VOI)	around	the	target.	The	first	region	(VOI1)	includes	all	the	voxels	

including	 background	 voxels	 contaminated	 by	 spillover.	 The	 second	 region	
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(VOI2)	 includes	 some	 surrounding	 background	 activity	 and	 is	 drawn	 around	

VOI1.	The	mean	background	 intensity	 is	 then	estimated	by	 taking	 into	account	

voxels	 belonging	 to	VOI2	 and	outside	VOI1	 (that	 is	 the	difference	between	 the	

two).	 Finally,	 the	 mean	 background	 activity	 is	 subtracted	 from	 the	 voxels’	

intensities	in	VOI1,	which	are	then	summed	to	obtain	the	SAM	index.	Validation	

was	performed	using	phantoms	of	differing	sizes	that	were	filled	with	different	

target	to	background	activity.	The	influence	of	scanning	time	on	the	SAM	index	

was	 assessed	 in	 15	 subjects	 with	 primary	 squamous	 cell	 cancer.	 Further,	 the	

index	change	following	chemotherapy	was	studied	in	19	patients	with	metastatic	

colorectal	carcinoma.	The	authors	stated	that	the	expected	SAM	index	had	very	

good	accuracy	in	homogenous	backgrounds	(≥	85%),	independent	of	lesion	size.	

They	 found	 that	 scan	 duration	 (from	 1	 to	 10	 minutes)	 did	 not	 impact	

significantly	on	the	results	with	squamous	cell	cancer.	In	their	small	cohort,	SAM	

discriminated	 between	 8	 responders	 and	 11	 non-responders	 (p=0.001).	

Percentage	change	in	SAM	was	very	high	(99%)	but	these	findings	would	need	to	

be	confirmed	in	larger	datasets.		

	

Mertens	 (Mertens	 et	 al.,	 2013)	 then	 applied	 SAM	 to	 response	 assessment	 in	

metastatic	 colorectal	 liver	 patients.	 They	 discovered	 that	 both	 percentage	

changes	in	SUVmax	and	SAM	were	prognostic	factors	for	PFS	and	OS.	The	authors	

stated	 that	 the	 SAM	 corresponds	 to	 excess	metabolic	 uptake	 due	 to	 the	 lesion	

over	 the	 background	 rather	 than	 the	 TLG.	 The	 authors	 stated	 that	 this	

methodology	was	undertaken	as	the	tumour	tissue	develops	over	normal	tissue.	

However,	in	reality,	tumours	develop	with	a	mixture	of	tumour	cells	mixed	with	
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normal	cells,	stroma,	etc.	and	this	method	could	possibly	exclude	some	of	this.	In	

addition,	 PVEs	 will	 affect	 lesions’	 voxels	 depending	 on	 their	 location,	 tumour	

size,	 shape	 and	 Target	 to	 Background	 Ratio	 (TBR)	 due	 to	 the	 limited	 spatial	

resolution	of	the	scanner	as	well	as	the	tissue	fraction	effect.	The	simple	method	

used	 in	 this	 technique	 is	 unlikely	 to	 accurately	 reflect	 this.	 	 SAM	 makes	 the	

assumption	that	the	lesion	metabolism	is	dependent	on	background	metabolism.	

However,	it	is	possible	for	the	same	lesion	embedded	in	a	region	where	there	are	

two	or	possibly	more	background	tissue	mean	activities.	If	it	assumed	that	PVEs	

are	not	affected,	 the	TLG	 index,	which	would	be	 identical	 for	 the	 lesion	 in	both	

background	 tissues,	 SAM	 indices	would	 be	 a	 function	 of	 the	mean	background	

tissue	activity.		

	

Therefore,	SAM	could	be	appealing	due	to	its	simplicity	and	ability	to	account	for	

PVEs,	 it	 is	a	different	approach	from	other	PET	quantifications	tools	 in	that	the	

background	activity	impacts	on	the	absolute	values	calculated.		

	

Thus	currently,	 there	 is	no	gold	standard	to	measure	disease	extent	using	PET.	

Robust	 tools	 that	 are	 capable	 of	 segmenting	 heterogeneous	 lesions	 may	 be	

preferred.		

	

2.3.2	Cumulative	SUV-volume	Histogram	(CSH)	curve		

Kidd	and	Grigsby	(Kidd	and	Grigsby,	2008)	first	proposed	the	use	of	a	cumulative	

SUV-volume	histogram	(CSH)	curve	 to	quantify	 the	 intra-tumour	heterogeneity	

of	 18F-FDG	 PET.	 This	 is	 also	 known	 as	 the	 intensity-volume	 histogram,	 or	
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volume-threshold	 curve.	 This	 method	 plots	 a	 graph	 to	 represent	 the	 lesion	

volume	 of	 an	 intensity	 threshold	 as	 a	 function	 of	 the	maximum	 uptake	 in	 the	

lesion.	 The	 graph	 is	 an	 adaptation	 of	 the	 dose-volume	 histogram	 used	 in	

radiotherapy.	The	derivative	dV/dT)	of	the	volume-intensity	threshold	was	used	

as	 a	 functional	 index	 of	 heterogeneity	 (HET).	 They	 tested	 this	 method	 on	 72	

patients	with	 cervical	 cancer	 and	 demonstrated	 that	 HET	was	 associated	with	

radiotherapy	 response	 (p=0.02),	 as	 well	 as	 risk	 of	 recurrence	 (p=0.002).	

However,	 they	 also	 found	 a	 strong	 correlation	between	HET	and	 lesion	 size	 in	

the	 PET	 image	 derived	 from	 thresholding	 segmentation	 approach	 (r2=0.88,	

Spearman	Rank).	

	

In	 addition,	 lesion	 size	 was	 a	 stronger	 predictor	 of	 disease	 recurrence	

(p=0.0003)	 than	 the	 heterogeneity	metric	 (p=0.0035).	 Subsequently,	 the	 same	

group	criticised	their	findings	(Brooks	and	Grigsby,	2011)	that	their	metric	was	

non-spatial	 and	 was	 directly	 proportional	 to	 the	 lesion	 size.	 Indeed,	 Hoang	

confirmed	this	(Hoang	et	al.,	2013)	by	using	the	original	heterogeneity	metric	on	

40	 patients	 with	 nasopharyngeal	 carcinoma	 and	 found	 a	 very	 high	 linear	

correlation	 between	 the	 heterogeneity	 index	 and	 lesion	 size	 (r	 =	 -	 0.98,	

Spearman).		

	

El	 Naqa	 et	 al	 (El	 Naqa	 et	 al.,	 2009)	 derived	 additional	 intensity	 and	 volume	

indices	 from	 the	 CSH	 based	 on	 volume	 and	 intensity	 thresholds.	 Their	 CSH	

features	 had	 the	 second	 highest	 predictive	 power	 (after	 texture	 analysis)	 in	

terms	of	therapy	failure	risk.		
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Van	Velden	et	al.	(van	Velden	et	al.,	2011)	furthered	earlier	work	by	introducing	

the	 area	 under	 the	 curve	 (AUC)	 as	 an	 index	 to	 the	 cumulative	 SUV	 volume	

histogram	 (AUC-CSH).	 They	 then	 evaluated	 this	method	 on	PET	 simulations	 of	

lung	lesions	(accounting	for	attenuation	and	resolution	effects),	simulating	both	

spatially	homogenous	and	heterogeneous	(core	and	rim)	intra-tumour	responses	

to	treatment	whilst	varying	SUVs	and	tumour	size.	Furthermore,	they	proceeded	

to	 demonstrate	 their	 method	 on	 four	 clinical	 cases,	 demonstrating	 that	 lower	

AUC-CSH	 was	 associated	 with	 greater	 heterogeneity	 using	 simulations	 and	

clinical	data.	Although,	this	was	a	good	proof	of	concept	study,	further	work	with	

test-retest	and	larger	validation	sets	are	required.		

	

The	CSH	and	its	derivative	have	been	promising	but	have	not	been	validated	or	

shown	 to	 have	 clinical	 usefulness.	 As	 with	 all	 the	 metrics	 mentioned,	 larger	

independent	datasets	are	 required	 to	 show	their	potential	utility.	The	need	 for	

this	is	to	prevent	published	work	being	non-informative	in	future	studies.	

2.3.3	Assessing	local	tumour	changes	using	PET	imaging		

Other	groups	have	investigated	the	direct	comparison	of	successive	PET	scans	at	

the	voxel-level	on	intra-tumour	uptake	and	assessed	local	response	to	treatment.	

This	required	the	accurate	registration	of	successive	PET	scans	using	anatomical	

images	(eg.	CT).	Necib	et	al.	(Necib	et	al.,	2008)	used	a	method	which	computed	

the	difference	between	 two	 successive	PET	 scans	which	were	 registered	using	

the	 CT	 component.	 A	 graph	 of	 the	 subtracted	 voxels	 against	 the	 radiotracer	
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uptake	of	the	same	voxel	 in	the	original	scan	was	obtained.	The	authors	used	a	

mixed	Gaussian	model	with	Expectation-Maximisation	(EM)	to	classify	the	voxels	

into	the	following	four	groups:	noise,	physiological	change	other	than	in	tumour,	

tumour	 voxels	 responding	 to	 therapy,	 and	 tumour	 voxels	 corresponding	 to	

tumour	progression.	The	final	step	involved	setting	the	groups	corresponding	to	

noise	and	physiological	change	to	zero.	This	had	the	effect	of	displaying	only	the	

voxels	representing	change	in	SUV	to	be	displayed.		

	

The	 feasibility	 of	 this	 approach	was	 tested	 on	 8	 lung	 tumours	 of	 two	 patients	

(Necib	 et	 al.,	 2008).	 An	 extra	 assessment	 of	 the	 performance	 of	 this	 approach	

was	tested	in	28	metabolic	colorectal	cancer	patients	(Necib	et	al.,	2011).	In	total,	

there	were	78	lesions,	which	included	primary,	liver,	lung,	peritoneal	and	other	

metastases.	 	 RECIST	 criterion	was	used	 to	 assess	 response.	Global	 descriptors,	

such	as	percentage	 change	 in	volume,	 SUVmax,	 SUVmean,	were	also	used	and	 the	

method	was	compared	with	another	response	assessment	method	based	on	the	

guidelines	of	the	EORTC	(Young	et	al.,	1999).	They	published	that	the	technique	

had	100%	sensitivity	and	53%	specificity	compared	with	85%	and	52%	for	the	

EORTC-based	classification,	respectively.	A	major	advantage	of	this	method	was	

the	 possibility	 of	 generating	 a	 map,	 which	 the	 heterogeneity	 of	 local	 intra-

tumour	 treatment	 response	was	 visualised	 and	 further,	 quantified.	 An	 obvious	

limitation	 is	 the	 introduction	 of	 errors	 due	 to	 incorrect	 registration	 due	 to	

motion	 and	 patient	 positioning.	 The	 parametric	 method	 did	 yield	 promising	

results	 in	 detecting	 response	 but	 a	 few	 non-responders	 were	 incorrectly	
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classified	 as	 responders.	 Clinically,	 it	 is	 more	 useful	 to	 detect	 non-responders	

earlier.		

	

Schreibmann	 (Schreibmann	 et	 al.,	 2013)	 used	 a	 similar	 approach,	 employing	

PET/CT	deformable	 registration,	 to	 correct	 for	anatomical	differences	between	

scans.	The	researchers	used	a	level-set	framework	for	grouping	voxels	within	the	

lesion	 associated	 with	 an	 increase	 or	 reduction	 in	 radiotracer	 uptake	 across	

successive	 scans.	 	The	method	was	assessed	using	81	 18F-FDG	PET/CT	of	head	

and	 neck	 cancer	 patients	 treated	 with	 chemo-radiotherapy.	 The	 authors	

highlighted	a	 level-set	approach	to	 filter	out	signal	changes	outside	the	tumour	

on	 the	 basis	 of	 spatial	 and	 intensity	 information	 compared	 with	 simple	

thresholding.		There	was	however	a	very	unsatisfactory	visual	assessment	in	the	

validation	method,	which,	precludes	the	ability	to	accurately	compare	its	results	

with	other	methods.		

	

Further	developments	are	needed	to	include	tumour	heterogeneity	assessment.	
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Chapter	3	Hypothesis,	Research	Questions,	Aims	and	Objectives		

3.1	Hypothesis	

Texture	 analysis	 on	 the	 imaging	 of	 untreated	 cancers	 can	 characterise	 and	

quantify	lesions	to	provide	prognostic	data.		

	

3.2	Aims	and	Objectives	(scope	of	the	thesis)	

Different	 methods	 and	 approaches	 have	 investigated	 the	 complexity	 of	 PET	

radiotracer	uptake	 in	neoplastic	 lesions.	However,	 image	descriptors	have	only	

been	applied	to	the	biological	function	of	glucose	metabolism.	Different	tumours	

have	 been	 investigated	 including	 sarcoma,	 cervix,	 head	 and	 neck,	 colorectal,	

breast,	 oesophageal	 and	 NSCLC.	 Study	 findings	 have	 been	 promising	 in	

suggesting	that	image-based	descriptors	might	provide	additional	predictive	and	

prognostic	information	over	and	beyond	that	is	currently	available.		

	

Questions	 remain	 regarding	 repeatability	 and	 the	 impact	 of	 other	 PET	

reconstruction	 parameters.	 	 PVEs	 have	 been	 identified	 as	 a	 potential	 factor.	

Questions	 remain	 regarding	 tumours	with	necrotic	 centres	 that	may	be	 falsely	

attributed	as	having	more	viable	tissue	than	there	is	present	or	having	an	active	

part	that	may	appear	less	aggressive	than	it	is	(Soret	et	al.,	2007).	The	resultant	

appearance	 on	 PET	 would	 be	 affected	 by	 the	 resolution-dependent	 image	

metrics	used	to	characterise	heterogeneity	(chapter	4).	Metrics	such	as	TLG	are	

also	 affected	by	 resolution	 through	PVEs	 (Hatt,	 2012).	 It	 is	 hoped	 that	 despite	
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this,	 the	 quantification	 process	 may	 capture	 the	 extent	 of	 radiotracer	 uptake,	

despite	it	being	different	between	the	rim	and	core.		

	

The	 aim	 of	 this	 thesis	 is	 to	 characterise	 and	 quantify	 spatial	 properties	 and	

variability	 in	 PET	 radiotracer	 uptake	 in	 neoplastic	 lesions.	 The	 work	 will	 be	

further	extended	to	CT	and	incorporate	underlying	genetic	changes	and	semantic	

features.	 Robust	 quantification	 methods	 in	 oncology	 imaging	 are	 critical	 in	

providing	clinicians	with	tools	that	will	have	an	impact	on	their	daily	practice,	so	

that	 they	 can	 detect	 earlier	 recurrence,	 allow	 for	 quicker	 identification	 of	

recurrence	and	resistance	and	also	personalise	treatment.	

	

The	specific	objectives	of	this	thesis	were:		

	

• To	 explore	 whether	 robust	 image	 descriptors	 gained	 from	 different	

scanners	 and	 from	 multiple	 centres	 can	 truly	 capture	 biological	

heterogeneity	(at	the	whole	tumour	level)	using	PET	and	CT	imaging.		The	

previous	section	(chapter	1)	presented	the	image	descriptors.		Within	the	

scope	 of	 this	 thesis,	 the	 biological	 processes	 investigated	 are	 limited	 to	

NSCLC	assessed	using	18F-FDG	PET	and	CT	of	ovarian	cancer.	

	

• The	results	are	presented	in	Chapter	5.	The	differences	attributed	to	the	

texture	 features	 from	 the	 different	 scanners	 will	 be	 explored.	 The	

performance	of	these	descriptors	will	be	compared	with	existing	clinical	

measures	and	SUV	indices.		
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• To	use	 the	database	 that	has	been	acquired	 to	evaluate	 the	 literature	 to	

interrogate	previous	studies.		

	

• To	advance	 tumour	quantification	by	 combining	attenuation	and	 spatial	

descriptors	 in	CT,	and	comparing	with	semantic	 features,	molecular	and	

proteomic	data.	 	
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Chapter	4	–	Methods	for	the	dataset		

4.1	Introduction		
	

In	 this	 chapter,	 an	 outline	 of	 the	 selection	 for	 the	 dataset	 for	 the	 NSCLC	 and	

ovarian	cancer	texture	analysis	is	provided.		The	inclusion	and	exclusion	criteria	

for	the	scans	are	outlined.	The	methods	are	also	detailed.	

	

4.1.2	Materials	and	Methods		

4.1.2.1	The	Lung	Cancer	Dataset		
	

The	 18F-FDG	 PET	 dataset	 is	 outlined	 below.	 The	 exclusions	 are	 also	 outlined.	

From	 535	 initial	 patients,	 358	were	 selected	 (this	 is	 discussed	 in	 detail	 in	 the	

following	chapter).	The	study	focused	on	the	prognosis	as	opposed	to	treatment	

prediction	and	so	the	individual	treatment	for	each	patient	is	not	stressed	(Law	

and	Miles,	 2013).	 The	 information	 for	 the	 treatment	 given	 to	 the	 patients	 has	

only	 partially	 been	 obtained,	 which	 is	 due	 to	 the	 multi-centred	 retrospective	

nature	 of	 this	 study,	 as	 information	 loss	 invariably	 occurs.	 	 Other	 pieces	 of	

information	that	would	have	been	useful	and	have	shown	to	provide	prognostic	

information	 are	performance	 status	 (Karnofsky	 or	ECOG	 classification),	weight	

loss	 (e.g.,	 >	 5%)	 and	 systemic	 inflammation	 (C-reactive	 protein	 or	 modified	

Glasgow	Prognostic	Score)	(Lee	et	al.,	2008,	Detterbeck	et	al.,	2013,	Alberg	et	al.,	

2013).	Again,	these	data	were	not	obtained.		

The	inclusion	criteria:		

• Scanned	between	October	2008	to	December	2013	
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• histological	subtypes:	squamous	cell,	adenocarcinoma	or	non-small	cell	

lung	cancer	

• staging	PET	available	for	review	

• patient	had	received	external	beam	radiotherapy	+/platinum	based	

chemotherapy	

• Size	of	tumour	>5ml	(Soussan	et	al.,	2014)	

• Follow-up	and	date	of	death	available	

	

Exclusion	criteria:	

• Follow	up	scans	not	available	

• Metastatic	disease	(to	fulfil	the	M	criteria	on	the	TNM)	present	

• Not	non	small	cell	lung	cancer	

• Too	small	(<5ml	tumour	volume)	

• No	scan	available	

• Primary	not	visualised	

• No	clinical	details	

4.1.2.2	Outcomes		
	

As	the	patient	data	were	collected	from	various	centres,	there	was	a	need	to	limit	

follow-up	 imaging	 bias,	 and	 thus	 only	 the	 overall	 survival	 data	 was	 obtained.	

Follow-up	 imaging	 bias	 occurs	 when	 treated	 patients	 have	 a	 reoccurrence	

detected	when	they	are	reimaged	or	are	only	reimaged	if	symptomatic,	and	thus	

a	 more	 frequent	 follow-up	 imaging	 rate	 (Wang,	 2015)	 will	 detect	 more	

recurrences.	 For	 lung	 cancer,	 overall	 survival	 (i.e.	 date	 of	 death)	 is	 relatively	
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straightforward	to	collect	because	the	five-year	survival	is	poor.	In	addition,	the	

focus	of	this	study	is	on	prognosis	rather	than	prediction	and	is	thus	treatment	

independent.	The	exact	cause	of	death	was	not	determined	as	this	was	difficult	to	

obtain	from	the	various	participating	organisations.	Thus,	for	the	purpose	of	this	

study,	 the	 overall	 survival	 or	 date	 of	 death	was	 from	any	 cause,	 even	 if	 it	was	

unrelated	to	lung	cancer.		

	

Overall	 survival	 was	 defined	 as	 number	 of	 months	 from	 commencement	 of	

treatment	to	date	of	death.	Patients	who	were	alive	were	censored	at	last	follow-

up.	

4.1.2.3	Ethics	and	participating	centres		

This	 retrospective	 observational	 study	 evaluated	 the	 relationship	 between	

texture	 features	 of	 pre-treatment	 PET-CT	 scans	 and	 survival	 outcomes	 in	

patients	diagnosed	with	non-small	cell	 lung	cancer	(NSCLC).	Institutional	ethics	

agreement	(14HH1908)	was	obtained.		

	

Scans	from	7	separate	centres	were	obtained:	

	

• Imperial	College	Healthcare	NHS	Trust,	London	

• Kings	College	(St	Thomas’	Hospital),	London	

• The	Royal	Marsden	Hospital,	London.	

• Leeds	(St.	James’	University	Hospital).	

• Mount	Vernon	Hospital,	Northwood,	London.	
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• Cancer	Imaging	Archive	(https://public.cancerimagingarchive.net/ncia/login.jsf)	

Databases	LUAD	and	LUSC.	Last	accessed	30/6/2015.	

• University	Hospital,	Nottingham		

	

The	 division	 of	 the	 scans	 from	 the	 different	 centres	 to	 make	 the	 training,	

validation	and	test	sets	are	outlined	in	Figure	4.2.	

	

4.1.2.4	Image	acquisition	and	reconstruction	

	

Image	 acquisition	 was	 performed	 on	 different	 scanners	 with	 different	

reconstruction	protocols.		

	

The	 following	 describes	 the	 imaging	 protocol	 at	 Imperial:	 18F-FDG	 PET/CT	

imaging	was	performed	on	a	Siemens	Biograph	64	PET/CT	scanner	(Siemens	AG,	

Erlangen,	Germany)	following	the	standard	protocols	at	Imperial.	After	6	hours	

of	 fasting,	patients	 first	underwent	an	unenhanced	CT	from	the	base	of	skull	 to	

upper	 thighs	 for	 the	purpose	of	attenuation	correction	 (50mAs/slice). 400MBq	

of	18F-FDG	(mean	393.1	MBq,	range	306-454)	were	then	injected	intravenously	

(plasma	glucose	level	was	<	11	mmol/L	at	the	time	of	FDG	injection).	Emission	

data	 were	 acquired	 for	 3	 minutes	 per	 bed	 position	 after	 a	 60-minute	 uptake	

period	(mean	60.9,	range	58-68	minutes).	The	CT	parameters	were	120	KVp,	50	

mAs,	pitch	0.8,	5	mm	slices	with	3	mm	separation.	 	 Images	were	reconstructed	

using	ordered	subset	expectation	maximization	with	4	iterations,	8	subsets	and	a	
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Gaussian	filter	of	5mm	FWHM.	The	images	were	attenuation-corrected	using	the	

CT	data. 	

	

The	imaging	acquisitions	in	the	other	institutions	were	obtained	from	the	DICOM	

headers	 from	the	scans.	 	For	more	details	of	 the	Kings	dataset	please	see	Cook	

(Cook	et	al.,	2013).	

	

4.1.2.5	Comparing	the	datasets	
	

As	 the	 datasets	 were	 obtained	 from	 different	 centres,	 it	 was	 important	 to	

investigate	the	differences	between	them	and	to	account	for	them	to	ensure	the	

differences	in	texture	analysis	are	due	to	the	underlying	histology	and	not	due	to	

scanner	 or	 clinical	 details.	 The	 differences	 included	 an	 investigation	 into	 the	

following:	 1.	 Differences	 in	 clinical	 information	 between	 the	 centres	 including	

age,	 sex,	 tumour,	 histology	 and	 stage	 2.	 Differences	 between	 the	 machine	

manufacturer,	model,	matrix	and	slice	thickness	as	it	has	been	demonstrated	that	

these	can	cause	a	difference	in	the	texture	readout	(Kumar	et	al.,	2012,	Leijenaar	

et	al.,	2015).		

	

4.1.2.6	PET	analysis	

Central	analyses	of	all	PET/CT	data	were	conducted	at	Imperial	College	London	

by	 a	 semi-automated	 adaptive	 threshold	 method.	 The	 primary	 tumour	 was	

delineated	 using	 an	 initial	 threshold	 of	 40%	of	 the	 SUVmax	 on	 semi-automated	
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software	 (Hermes	 Gold3;	 Hermes	 Medical	 Solutions	 Ltd,	 London,	 UK),	 as	

previously	described	(Uto	et	al.,	2010,	Cook	et	al.,	2013).	In	cases	where	the	40%	

threshold	 did	 not	 clearly	 encompass	 the	 entire	 tumour,	 the	 threshold	 was	

lowered	 (Biehl	 et	 al.,	 2006).	All	 segmentation	was	made	by	 the	 same	operator	

who	was	a	radiologist	with	4	years’	of	experience	with	tumour	delineation.	The	

operator	made	adjustments	if	the	incorrect	areas	were	included	or	excluded	by	

the	automated	software.	The	SUVmean,	SUVmax,	SUVpeak,	metabolic	tumour	volume	

(MTV)	 and	 total	 lesion	 glycolysis	 (SUVmean	 x	 MTV)(TLG)	 were	 recorded.	 The	

minimum	size	of	the	volume	of	interest	(VOI)	was	selected	as	5mls,	according	to	

Soussan	 (Soussan	 et	 al.,	 2014).	 The	 same	 volumes	 of	 interest	 (VOIs)	 were	

extracted	and	used	on	the	radiomics	software.			

	

To	assess	 the	 intra-	and	 inter-observer	variability	of	 the	segmentation	method,	

18	 random	 patients	 were	 selected	 and	 segmentation	 of	 the	 tumour	 was	

performed	(at	128	gray-levels)	while	blinded	to	the	original	results	and	clinical	

data.	 The	 two	 different	 observers	 had	 6	 and	 10	 years’	 experience	 of	 tumour	

delineation.	 Lymph	 nodes	 or	 metastases	 were	 excluded	 from	 the	 statistical	

analyses	because	they	are	biologically	different	from	primary	tumours.		

	

4.1.2.7	MatLAB	Transfer	

The	 VOIs,	 defined	 by	 the	 aforementioned	 semi-automatic	 segmentation	 were	

extracted	as	Cartesian	co-ordinates.	In-house	software	was	developed	and	used	

to	convert	the	VOIs	so	that	they	could	be	implemented	on	MatLAB.		The	VOIs	and	
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the	 PET	 scans	 were	 used	 as	 input	 for	 the	 in-house	 textural	 analysis	 software	

package	 (TexLAB	 2.0),	 developed	 on	MATLAB	 2015b	 (Mathworks	 Inc.,	 Natick,	

Massachusetts,	USA).	SUVs	were	calculated	for	each	voxel	of	the	VOIs.	

	

4.1.2.8	Radiomics	analysis	

Radiomics	analysis	was	performed	at	seven	different	quantisation/gray	levels	–	

4,	8,	16,	32,	64	128	and	256	 -	on	TexLAB	2.0.	From	each	primary	 tumour,	660	

radiomic	features	(Section	1.6	and	Appendix	B)	were	extracted	from	segmented	

VOIs	using	local,	regional,	global,	fractal	and	wavelet	techniques.	These	included	

intensity	features,	shape	features	and	texture	features	(gray	level	co-occurrence	

matrix	and	gray	level	run	length	matrix,	Neighbourhood	Gray	Difference	Matrix)	

with	 or	 without	 wavelet	 transformation	 as	 previously	 reported	 (Aerts	 et	 al.,	

2014a,	Willaime	et	al.,	2013).	Radiomics	features	were	determined	from	133	PET	

scans	(Training	set)	using	TexLAB	2.0.	

	

4.1.2.9	Feature	selection	and	radiomics	signature	discovery	

It	was	important	to	reduce	the	total	number	of	features	for	prediction	purposes	

in	order	to	avoid	over-fitting	and	 instead	 learn	the	true	basis	of	a	decision.	We	

initially	 identified	highly	correlated	features	 for	elimination	using	heatmaps,	as	

highly	 correlated	 features	 suggested	 that	 some	 feature	 reduction	 could	 be	

undertaken	without	information	loss.	Heatmaps	were	created	in	the	R	software	

(http://www.r-project.org/;	version	3.03	Vienna,	Austria).		

	



4.1.2.9	Feature	selection	and	radiomics	signature	discovery	 	 	
	

142	

Initially	individual	texture	features	from	the	FOS	and	GLCM	matrix	were	used	to	

test	 the	 training,	 validation	 and	 test	 set.	 The	 optimal	 extracted	 features	 were	

used	to	create	a	composite	feature	and	this	was	tested	on	the	different	sets	and	

on	multivariate	analysis	using	stage.		

	

From	 the	 660	 sets	 of	 features	 at	 each	 gray-level,	 we	 used	 Least-Absolute-

Shrinkage-and-Selection-Operator	 (LASSO)	 regression	 analysis	 for	 data	

dimension	 reduction	 and	 radiomics	 feature	 vector	 (composite	 feature)	

discovery.	LASSO	is	a	form	of	penalised	regression	used	to	reduce	the	problem	of	

multi-collinearity.	 Briefly,	 the	 non-contributory	 variables	 were	 assigned	 zero-

weighting	 and	 numerous	 iterations	 were	 performed	 to	 link	 the	 non-zero	

contributory	 variables	 to	 the	 chosen	 clinical	 outcome	 (in	 this	 example,	 overall	

survival)	 (Tibshirani,	1997).	Analyses	were	conducted	with	 the	R	software	and	

the	packages	in	R	used	for	our	analysis	are	indicated	in	Supplemental	Material.	

Two-sided	statistical	significance	levels	were	used	and	P	≤	0.05	was	considered	

statistically	significant.	SPSS	version	22	(SPPs	v22,	IBM,	New	York,	US)	was	used	

for	interclass	correlation	and	2-way	ANOVA.		

 

The	most	predictive	feature	vectors	(FVX)	were	computed	by	linear	combination	

of	 selected	 statistical	 features	weighted	 by	 their	 respective	 coefficients	 and	 by	

comparison	 with	 overall	 survival	 (OS).	 	 Survival	 curves	 were	 plotted	 using	

Kaplan	 Meier	 (KM)	 methods,	 stage-specific	 or	 median	 values	 in	 the	 case	 of	

feature	 vecture,	 termed	 FVX.	 The	 Kaplan	 Meier	 curves	 were	 created	 suing	

median	 and	 the	 best	 cut-off	 on	 the	 receiver	 operator	 curve	 from	 the	 median	
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survival	 (Youden’s	 J).	The	 survival	 curves	were	evaluated	using	a	 log-rank	 test	

(Cox	 Regression).	 Multivariate	 analysis	 of	 the	 FVX,	 stage	 and	 volume	 were	

compared	with	 each	other	using	 a	 stepwise	backward	procedure	 to	determine	

significantly	 independent	 survival	 indicators.	 P	 values	 of	 less	 than	 0.05	 were	

considered	 statistically	 significant,	 and	 95%	 confidence	 intervals	 were	

calculated.		

	

4.1.3.10	Independent	validation	and	Testing	

Performance	of	the	optimal	FV	(FVX)	and	stage	were	tested	by	comparison	to	OS	

in	an	independent	validation	set	of	204	patients,	and	a	further	independent	set	of	

21	(TESTI)	patients.		Similar	survival	comparisons	were	made	with	routine	PET	

variables	 including	 SUVmean,	 SUVmax,	 SUVpeak	 and	 TLG.	 An	 overview	 of	 the	

methods	are	given	in	Figures	4.1	and	4.2.	

	

4.1.3.11	Statistical	analyses		

Statistical	 analyses	 have	 been	 detailed	 above.	 The	 analysis	 was	 performed	 on	

SPSS	for	Windows	version	22	(IBM,	Chicago,	IL,	USA);	interclass	correlation	and	

2-way	ANOVA	were	used.	

	

The	 Principal	 Component	 Analysis	 (PCA)	 analysis	 was	 performed	 using	

‘devtools’	 and	 ‘ggbiplot’	 and	 ‘vqv’	 packages.	 ‘The	 ‘gplots’	 package	was	 used	 to	

draw	heatmaps	with	a	Spearman	Correlation.	 	LASSO	binary	 logistic	regression	
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and	Kaplan	Meier	curves	were	performed	using	the	‘doParallel’,	‘Matrix’	‘glmnet	

2.0-5’,	packages	using	statistical	language	R	(version	3.03,	Vienna,	Austria).			

	

	

Figure	4.1	Overview	of	the	texture	analysis	process:		

A)	The	images	are	obtained	from	PET	and	are	segmented,	b)	the	imaging	analysis	

software	 utilises	 the	 segmentation	 to	 develop	 different	matrices,	 c)	 the	 output	

for	 various	 texture	 features	 at	 different	 grey	 levels	 is	 obtained,	 d)	 these	 are	

linked	with	clinical	features	such	as	survival.	
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Figure	4.2	Overview	of	 the	number	of	different	number	of	scans	obtained	

from	the	various	centres.		

Overview	of	the	texture	analysis	process:	a)	The	images	obtained	from	PET	and	

are	 segmented,	 b)	 the	 imaging	 analysis	 software	 utilises	 the	 segmentation	 to	

develop	different	matrices,	c)	the	output	for	various	texture	features	at	different	

gray	levels	is	obtained,	d)	these	are	linked	with	clinical	features	such	as	survival,	

e)	Overview	centres	contributing	to	the	study	and	how	the	data	were	randomly	

divided	 into	 training,	 validation	 or	 independent	 test	 set.	 The	 Nottingham	 data	

were	 assigned	 as	 the	 independent	 test	 set,	 TEST1.	 TCIA	 The	 Cancer	 Imaging	

Archive.	

	

4.1.3.12	Comparison	with	previous	literature	
	

There	 literature	 on	 use	 of	 texture	 analysis	 for	 imaging	 is	 substantial.	

Unfortunately,	 the	small	datasets	utilised	and	 lack	of	validation	has	meant	 that	

there	 is	 a	 high	 likelihood	 of	 type	 1	 errors.	 Using	 the	 published	 literature	 on	

	 Nottingham 
N	=	21 

TEST1 
N	=	21 

	

Validation 
N	=	204 



4.2	Statistical	analyses	over	the	course	of	the	PhD	 	 	
	

146	

texture	 analysis	 and	 prognosis,	 the	 current	 dataset	 was	 used	 to	 verify	 if	 the	

results,	when	FVX’s	from	other	studies	were	used,	are	valid.	Papers	on	different	

tumour	types	and	modalities	were	also	included.	

4.2	Statistical	analyses	over	the	course	of	the	PhD	

4.2.1	Change	of	course	as	the	research	progressed		
	

The	development	of	the	final	methods	presented	in	this	thesis	has	been	built	on	

earlier	work	that	was	undertaken	at	the	beginning	of	the	research.	An	overview	

of	this	is	presented	in	Figure	4.3.	The	initial	results	(not	presented)	did	give	very	

promising	insights	but	the	use	of	small	numbers	and	the	statistical	use	of	(PCA)	

were	 felt	 to	 be	 non-reproducible	 in	 larger	 studies.	 Thus,	 a	 change	 in	 direction	

occurred	 where	 larger	 datasets,	 including	 multiple	 centres	 and	 the	 use	 of	

emerging	 statistical	 techniques	 of	 machine	 learning	 including	 penalised	

regression	 was	 pursued.	 In	 addition,	 there	 was	 a	 parallel	 development	 of	

improving	the	texture	analysis	software	with	increasing	numbers	of	features	as	

more	 publications	 were	 released.	 In	 addition,	 further	 information	 became	

available	with	 regards	 to	 the	 limits	of	earlier	published	studies	 in	 terms	of	 the	

minimal	size	of	the	primary	and	which	gray-level	quantisation	were	most	useful.	
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4.3	Ovarian	Study	Aim	of	Study	
	

The	aim	of	this	study	is	to	investigate	if	radiomics	and	CT	semantic	data	correlate	

with	the	underlying	biology	using	proteomic	and	molecular	information.	

4.3.1	Ovarian	masses	dataset	

4.3.1.1	Ovarian	masses	Patients	
	
Ovarian	 cancer	 affects	 around	 7000	women	 in	 the	UK	 alone	 (2017)	 and	 has	 a	

poor	 prognosis	 as	 it	 presents	 late	 and	 is	 often	 disseminated	 at	 presentation.	

There	 is	a	high	relapse	rate	and	a	ten-year	survival	of	only	35%.	In	addition	to	

the	 late	 stage	 at	 presentation,	 suboptimal	 de-bulking	 and	 chemotherapy	

resistance	are	cited	as	possible	causes	for	this	poor	survival	(Noer	et	al.,	2017).	

Although	 several	 clinical	 and	 biochemical	 biomarkers	 (such	 as	 CA125,	

kallikreins,	 etc)	 (Sölétormos	 et	 al.,	 2016)	 (Oikonomopoulou	 et	 al.,	 2008)	 have	

been	 suggested	 as	 possible	 predictive/prognostic	 markers,	 none	 have	 crossed	

into	routine	clinical	use	in	the	clinical	environment	(O'Connor	et	al.,	2016).		

	

4.3.1.2	Outcomes	
	

All	the	patients	included	used	in	this	study	underwent	their	surgery	at	Imperial	

College	Healthcare	NHS	Trust.	The	patients	had	their	CT	imaging	either	at	their	

referring	 centres	 or	 at	 Imperial	 College	 Healthcare	 NHS	 Trust.	 Because	 the	

scanners	 used	 in	 the	 study	 were	 from	 different	 manufacturers	 and	 often	 had	

different	matrices	 and	 slice	 thickness,	we	 investigated	 the	 effect	 of	 this	 on	 the	

texture	parameters.		
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4.3.1.2.1	Clinical	follow-up	

Patients	were	followed	up	regularly	at	the	end	of	their	treatment	with	CA-125	

and	clinical	assessment	every	three	months	for	the	first	two	years	and	then	six	

monthly	thereafter.	Imaging	in	the	form	of	CT/MRI	was	ordered	if	there	was	any	

abnormality	in	the	above	examinations.	An	isolated	increase	in	the	CA-125	was	

not	regarded	as	a	recurrence.	

	

4.3.1.3	Computerised	tomography	Imaging	

4.3.1.3.1	Computerised	tomography	schedules	
	

The	patients	had	 their	preoperative	scans	either	at	 their	host	 institutions	or	at	

Imperial	 College	 NHS	 Trust.	 The	 patients	 were	 excluded	 if	 a	 pre-operative	 CT	

scan	was	 not	 performed	 prior	 to	 the	 operation.	 Non-contrast	 scans	 were	 also	

excluded.	

	

The	different	centres	that	were	part	of	the	gynaecological	network	as	part	of	this	

study	were	as	follows	(known	as	the	Hammersmith	cohort,	HH):	

	

Internal:	

Imperial	

1. Charing	Cross	Hospital,	Fulham	Palace	Road,	London	W6	8RF	

2. Hammersmith	Hospital,	Du	Cane	Road,	Shepherd’s	Bush,	London	W12	

0HS	
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3. St	Mary’s	Hospital,	Praed	Street,	London	W2	1NY.	

	

External	

1. Alliance	Medical,	136	Harley	St,	Marylebone,	London	W1G	7JZ	

2. BMI	Chiltern,	London	Road,	Great	Missenden	HP16	0EN	

3. Clementine	Churchill,	Sudbury	Hill,	Harrow	HA1	3RX	

4. Derriford	Hospital,	Derriford	Road,	Crownhill,	Plymouth	PL6	8DH	

5. Ealing	Hospital,	Uxbridge	Road,	Southall,	UB1	3HW	

6. Heatherwood	Hospital,	High	Street,	Ascot	SL5	8AA	

7. Hillingdon	Hospital,	Pield	Heath	Road,	Uxbridge	UB8	3NN	

8. Lancashire	Teaching	Hospital,	Sharoe	Green	Lane	North,	Fulwood,	

Preston	PR2	9HT	

9. Lister	Hospital,	Coreys	Mill	Lane,	Stevenage	SG1	4AB	

10. Mount	Vernon,	Paul	Strickland	Scanner	Centre,	Rickmansworth	Road,	

Northwood	HA6	2RN	

11. Northwest	London	Hospitals:		Central	Middlesex	Hospital,	Acton	Lane,	

London	NW10	7NS	and	Northwick	Park	Hospital,	Watford	Road,	Harrow	

HA1	3UJ.	

12. Royal	Shrewsbury,	Mytton	Oak	Road,	Shrewsbury,	SY3	8XQ.	

13. St	George’s	Hospital,	Blackshaw	Road,	London,	SW17	0QT	

14. University	Hospital	Wales,	Eastern	Ave,	Cardiff	CF14	4XW	
	

15. West	Middlesex,	Twickenham	Road,	Isleworth,	TW7	6AF	

16. Wellington	Hospital,	8A	Wellington	Place,	London	NW8	9LE	

17. Wexham	Park	Hospital,	Wexham,	Slough	SL2	4HL	
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18. Velindre	Hospital,	Velindre	Road,	Cardiff	CF14	2TL.	

	

The	inclusion	criteria	and	exclusion	criteria	were	as	follows:	

• Age	range	18-99	

• All	ovarian	histological	subtypes	including	benign,	borderline	and	

invasive	malignant;		

• Staging	CT	available	for	review;		

• Staging	CT	with	contrast	in	the	portal	venous	phase	

• Primary	visualised	with	no	obscuration	

• All	patient	had	received	surgery	

Exclusion:	

• Age	outside	18-99	

• CT	not	performed.	

• Ct	available	is	for	recurrent	disease	

• Follow	up	data	not	available	

• Not	high	grade	serous	pathology	

• Received	neo-adjuvant	therapy	prior	to	surgery	

	

External	Set	

The	same	criteria	were	also	applied	to	the	validation	set	which	was	completely	

independent	 and	 was	 obtained	 via	 a	 public	 database	 TCGA	 ovarian	

(http://www.cancerimagingarchive.net/;	last	accessed	June	2016).		
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4.3.1.3.2	Final	numbers	

4.3.1.3.2.1	Training	and	validation	sets	
	

There	 were	 three	 datasets	 in	 the	 final	 used	 in	 the	 final	 analysis.	 The	

Hammersmith	 cohort	was	 split	 into	 training	 and	 validation	 sets	 and	 the	 TCGA	

was	used	as	a	further	validation	set.		

	

4.3.1.4	Image	acquisition	and	reconstruction	
	

Different	scanners	with	different	reconstruction	protocols	were	used	to	perform	

image	acquisition	of	the	archived	data.		

	

An	example	of	the	CT	acquisition	protocol	at	St	Marys	Hospital	was	as	follows:	

The	 CT	 was	 acquired	 using	 a	 256-slice	 MDCT	 system	 (Phillips	 ICT	 Brilliance;	

Phillips	Healthcare,	Best,	Netherlands)	with	a	collimation	of	64	x	0.625	mm	and	a	

reconstruction	thickness	of	1mm.	A	voltage	of	120	kV	and	180	mAs	was	used	for	

patients	 who	 were	 normal	 sized.	 90	 ml	 of	 intravenous	 contrast	 containing	

400mg	 l-1	 Iodine	 (Iomeron-400;	 Bracco,	 Milan,	 Italy)	 was	 administered	 via	 a	

peripheral	cannula	and	triggered	to	scan	with	a	region	of	interest	over	the	portal	

vein	(at	70	seconds).		

	

Within	Imperial	College	NHS	Healthcare	Trust	there	were	at	least	three	different	

manufacturers	 of	 CT	 scans	 and	 various	 different	 models.	 All	 scans	 were	 only	
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selected	 if	 they	were	acquired	with	contrast	enhancement	 in	 the	portal	venous	

phase.	

	

The	imaging	acquisitions	in	the	other	institutions	were	obtained	from	the	DICOM	

headers	from	the	scans	(see	the	results	chapter	5).	

	
4.3.2	Segmentation	
	

The	 DICOM	 images	 were	 imported	 into	 ITK	 snap	 Version	 3.2,	 2015	 retrieved	

from	 http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3.	

(Yushkevich	 et	 al.,	 2006).	 Two	 radiologists	 who	 had	 at	 least	 four	 years’	

experience	 of	 tumour	 delineation	 manually	 outlined	 the	 primary	 tumour(s),	

metastases,	and	mesenteric	fat.	Then,	an	experienced	radiologist,	with	more	than	

fifteen	 years’	 worth	 of	 gynaecological	 imaging	 experience,	 checked	 all	 the	

segmentations	(Figure	4.4).	

	

The	 entire	 primary	 mass	 was	 included	 in	 the	 segmentation.	 If	 there	 were	

bilateral	adnexal	masses,	both	were	included	separately	in	the	final	analysis.	The	

entire	 primary	 mass	 including	 cystic,	 solid	 and	 calcified	 components	 were	

included.	Ascites	was	excluded.	The	segmentations	only	included	tissue	that	was	

considered	 highly	 likely	 to	 be	 cancer	 by	 the	 expert	 reader	 and	 doubtful	 areas	

were	not	included.		
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Figure	 4.4	 An	 example	 of	 segmentation	 performed	 on	 the	 segmentation	

software.		

The	tumour	is	visualised	in	three	planes	and	a	3D	model	is	also	created.	

	

4.3.3	Methods	detailed:	inter-observer	variability	
	

Two	radiologists	carried	out	the	initial	segmentation	of	the	primary	tumours	and	

metastatic	lesions.	To	assess	the	stability	of	the	segmentation,	30	scans	from	the	

TCGA	 dataset	 were	 randomly	 selected	 and	 the	 primary	 tumours	 were	 re-

segmented	by	both	observers,	both	of	whom	were	blinded	to	the	clinical	details	

and	segmentations	of	the	other.		

	
	
	 	



4.3.1.4	Image	acquisition	and	reconstruction	 	 	
	

	

155	

4.3.4	CT	Proforma	and	Peritoneal	Cancer	index	(PCI)	
	

Furthermore,	 all	 the	 CT	 scans	 were	 re-read	 and	 a	 proforma	 was	 used	 with	 a	

standardised	 report	 to	 describe	 the	 primary	 tumour	 and	 extent	 of	 the	

metastases.	(Appendix	E1	and	E2).	

	

Another	 section	 of	 this	 included	 the	 peritoneal	 cancer	 index	 to	 delineate	 the	

extent	 of	 the	 disease	 on	 CT	 and	 compare	 this	with	 surgical	 findings.	 This	was	

originally	developed	 in	colorectal	cancer	(Gilly	et	al.,	2006).	This	compared	the	

spread	 of	 peritoneal	 disease	 on	 CT	 and	 at	 surgery	 and	 linked	 it	 to	 prognosis.		

This	index	was	extended	to	ovarian	cancer.	Please	see	Appendix	E1	and	E2.	

	

Patient	 demographics,	 tumour	 related	 characteristics	 and	 follow	 up	 data	were	

obtained	from	the	hospital	records.	Three	radiologists	(with	5,	5	and	16	years’	of	

experience	 in	 gynaecological	 imaging	 tumour	 delineation)	 independently	

reviewed	 and	 anonymised	 preoperative	 CT	 scans	 and	 reached	 a	 consensus	 on	

the	PCI	score	being	blinded	to	any	clinical	or	outcome	information.		

	

The	 CT-PCI	 score	 was	 calculated	 using	 only	 the	 peritoneal	 disease	 that	 was	

visualised	(the	primary	tumour(s)	and	 lymph	node	disease	were	not	 included).	

The	abdomen	was	into	13	regions,	initially	proposed	by	Sugarbaker	(Jacquet	and	

Sugarbaker,	 1996)	 (Appendix	 E2).	 Anatomical	 regions	 were	 adapted	 for	 CT,	

using	 the	 ribs	 and	 iliac	 crests	 as	 anatomical	 landmarks:	 above	 the	 ribs	 were	

sections	1,	2	and	3;	between	ribs	and	 iliac	crests	were	sections	0,	4	and	8;	and	
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below	iliac	crests	were	sections	5,	6	and	7	(see	Appendix	E2).	The	small	bowel,	

an	area	known	to	be	difficult	to	be	certain	of	involvement,	was	only	described	as	

involved	 if	 there	was	 reasonable	 confidence	 of	 involvement.	 Each	 section	was	

considered	 independently	 of	 any	 adjacent	 section;	 thus,	 if	 the	 omental	

involvement	 straddled	 between	 different	 sections,	 each	 section	 was	 scored	

separately	 in	 order	 to	 reflect	 the	 burden	 of	 disease.	 The	 score	 for	 each	 region	

was	assessed	as	follows:	0	=	no	disease;	1	=	largest	peritoneal	nodule		<0.5	cm;	2	

=	 largest	 nodule	 between	 0.5	 and	 5	 cm;	 3	 =	 biggest	 nodule	 was	 >5	 cm	 or	 if	

confluent	disease	was	present.	The	total	CT-PCI	was	obtained	by	totalling	up	the	

score	of	each	region.	

		

The	correlation	between	the	CT-PCI	and	surgical	outcome	was	performed	using	

logistic	regression	and	Receiving	Operator	Characteristic	(ROC)	curve	analysis.		

	

The	 CT-PCI	 was	 correlated	 with	 OS	 and	 PFS	 in	 two	 different	 independent	

analyses:	 the	 first	 considered	 the	absolute	value	of	CT-PCI	 and	 the	 second	one	

considered	the	regions	of	involvement,	independently	by	the	value	of	CT-PCI.	For	

the	first	analysis	patients	were	divided	into	5	groups	based	on	the	value	of	 the	

CT-PCI	score:	1)	CT-PCI=0;	2)	CT-PCI	between	1	and	5;	3)	CT-PCI	between	6	and	

10;	4)	CT-PCI	between	11	and	20;	5)	CT-PCI	more	than	20.	OS	and	PFS	of	these	

groups	were	analysed	using	Kaplan-Meier	estimator	for	univariate	analysis	and	

Cox-regression	 model	 for	 multivariable	 analysis	 (also	 considering	 age,	 stage,	

histology	and	residual	disease	after	surgery).	For	the	second	part	of	the	analysis,	

patients	 were	 divided	 into	 4	 groups	 on	 the	 basis	 of	 the	 abdominal	 region	

involved	by	cancer:	group	1)	no	detectable	disease;	group	2)	involvement	only	of	
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the	lower	region	(region	5,	6	and	7);	group	3)	involvement	of	any	upper	region	

but	excluding	the	bowel	(region	0,	1,	2,	3,	4	and	8);	group	4)	involvement	of	the	

bowel	(region	9,	10,	11	and	12).	

	

If	 the	 necessary	 information	 for	 statistical	 analysis	 were	 not	 available,	 the	

patient	was	excluded	from	that	specific	analysis.	

	

4.3.5	Genomic	and	Proteomic	Studies	
	

The	 proteomic	 (Hennessy	 et	 al.,	 2010)	 	 and	 targeted	RNA	 (Leong	 et	 al.,	 2015)	

sequencing	were	performed	by	another	laboratory	and	are	beyond	the	scope	of	

this	thesis	to	describe	the	methods	implemented.		

	

4.3.6	Implementation	
	

The	VOIs	defined	by	the	aforementioned	manual	segmentation	were	used	as	an	

input	 for	 the	 in-house	 textural	 analysis	 software	 package	 (TexLAB	 2.0),	

developed	 on	 MATLAB	 2015b	 (Mathworks	 Inc.,	 Natick,	 Massachusetts,	 USA).		

Using	 the	methodology	developed	by	Aerts	 (Aerts	 et	 al.,	 2014a),	 the	 gray-level	

normalisation	led	to	a	single	value,	which	made	further	statistics	easier	relative	

to	those	of	PET.		
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4.3.7	Unsupervised	clustering	and	texture	signature	discovery	
	

An	analysis	was	carried	out	at	first	using	principal	component	analysis	to	see	if	

there	was	any	batch	effect,	that	is,	variability	between	the	manufacturer,	model	

and	 slice	 thickness	 from	 the	 different	 centres.	 Then	 a	 simple	 spectral	 cluster	

analysis	 using	 the	 radiomic	 data	 from	 those	 patients	 with	 both	 radiomic	 and	

genomic	 copy-number	 data	 available	 was	 performed	 to	 see	 if	 there	 was	 any	

diagnostic	 or	 prognostic	 potential.	 A	 hierarchical	 clustering	 dendrogram	 was	

used	to	group	patients	 into	three	clusters;	patients	 in	a	given	cluster	 tended	to	

share	radiomic	profiles.		

	

The	 number	 of	 genes	 affected	 by	 the	 copy-number	 alteration	 (CNA)	 was	

calculated	 for	 each	 tumour	 and	 the	 distribution	 of	 the	 logarithm	 of	 these	

numbers	could	be	compared	from	patients	from	each	of	these	clusters.	

	

A	 Kaplan	 Meier	 curve	 was	 drawn	 to	 determine	 progression	 free	 and	 overall	

survival	 using	 the	 ‘survival’	 package	 in	 R.	 	 The	 statistical	 significance	 of	 the	

survival	difference	between	the	three	clusters	was	calculated	using	the	log-rank	

test	in	the	‘survdiff’	function.		

	

Survival	difference	was	also	tested	between	the	different	slice	thicknesses.	When	

the	slice	thickness	demonstrated	differences,	further	comparison	was	made	with	

known	prognostic	indicators,	such	as	the	presence	of	ascites	(as	determined	on	

CT)	 and	 the	 stage	 as	 determined	 at	 surgery.	 Two	 subsequent	 groups	 were	
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determined	and	these	were	compared	using	known	clinical	markers,	namely	CA-

125	blood	tumour	marker,	and	also	stage.		

	

Unsupervised	 hierarchical	 clustering	 of	 the	 radiomic	 profiles	 was	 performed	

using	‘hclut’	and	‘cutree’	 in	R.	 	 	The	raw	radiomic	data	was	scaled	by	mean	and	

centred.	 Pearson	 correlation-based	distance	 and	 complete	 linkage	was	 used	 to	

obtain	 the	 final	 clusters.	 A	 repeat	 of	 the	 clustering	 analysis	 using	 Euclidean’s	

diatnace	was	performed	to	conform	the	resulting	clusters.		

	

Least	 absolute	 shrinkage	 and	 selection	 operator	 (LASSO)	 analysis	 was	

performed	 to	 build	 a	 prognostic	model	 for	 overall	 survival	 using	 the	 radiomic	

data.	 The	 training	 set	 was	 first	 selected	 and	 a	 prognostic	 model	 of	 overall	

survival	was	generated	adjusting	for	stage,	slice	thickness	and	residual	disease.		

It	 was	 not	 possible	 to	 decide	 which	 side	 was	 more	 related	 to	 prognosis	 in	

bilateral	 tumours,	 and	 the	 differences	 between	 the	 two	 were	 found	 to	 be	

minimal,	both	tumours	were	included	in	the	model-building	stage.		The	radiomic	

features	with	 a	 false	 discovery	 rate	 of	 less	 than	5%	were	used	 as	 an	 input	 for	

LASSO	regression	using	 the	glmnet	package	 in	R.	The	 ‘Cox’	model	was	selected	

with	 ten-fold	 cross	 validation	 performed	 to	 select	 the	minimum	 lamba	 for	 the	

minimum	cross-validation	error	using	cv.glmnet.		

	

The	result	was	a	four-texture	feature	with	coefficient	weightings	that	were	used	

to	 calculate	 a	 predictive	 Radiomic	 Prognostic	 Vector	 (RPV).	 Subsequesnt	

continuous	 Cox	 regression	 and	 Kaplan-Meyer	 analysis	 with	 PFS	 and	 OS	 were	
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then	 calculated.	 	 With	 patients	 with	 bilateral	 tumours,	 the	 higher	 RPV	 was	

selected	as	it	performed	better	than	the	lower	RPV.	Kmeans	clustering	to	applied	to	

split	 the	 resulting	 RPVs	 into	 three	 subgroups	 (Low	 risk:	 min-0.0950,	 Medium	

risk:	0.0950-0.658,	High	risk:	0.658-max).	The	same	criteria	were	applied	to	the	

two	validation	sets.	Only	cases	with	complete	clinical	information	(stage,	age	and	

post	 operative	 residual	 disease)	 and	 slice	 thickness	 were	 included	 in	 the	

multivariable	Cox	regression	analysis.	

	

For	generating	the	gene	expression	prognostic	value,	a	similar	method	was	used	

with	 modifications.	 From	 the	 TCGA	 study	 [https://genome-cancer.ucsc.edu/)	

and	 TCGA	 data	 portal	 [https://cancergenome.nih.gov/),	 the	 gene	 expression	

profile	 from	 the	 Affymatrix	 HT	 human	 Genome	 U133a	 (Level	 2)	 and	 Agilent	

244K	custom	gene	expression	G4502A_07_3	(Level	3)	were	downloaded.		The	list	

of	genes	that	correlated	with	the	RPV		(FDR	<0.25	for	Affymatrix	and	FDR	<	0.1	

for	Agilent)	was	generated	using	Spearman	correlation.	The	subsequent	list	was	

used	to	perform	feature	selection	and	linear	regression	with	the	RPV.		

	

4.3.8	Statistical	analyses	
	

Statistical	 analysis	 was	 performed	 on	 SPSS	 for	 Windows	 version	 22	 (IBM,	

Chicago,	 IL,	 USA)	 and	 LASSO	 penalised	 regression	 (using	 glmnet)	 statistical	

language	R	(version	3.03,	Vienna,	Austria).	 	Multiple	testing	was	corrected	with	

False	Discovery	Rate	(FDR)	method.		
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Chapter	5-Results	NSCLC	Study	1:	selection	of	the	scans	
	

5.1	Chapter	overview	
	

In	 this	 chapter,	 the	 following	 are	 described:	 first	 of	 all,	 the	 number	 of	 scans	

selected	 for	 each	 institution	 and	 the	 reasons	 for	 the	 exclusions	 are	 given.	

Secondly,	 the	different	 thresholds	 for	 the	segmentations	are	given.	Thirdly,	 the	

segmentation	 method	 is	 scrutinised	 with	 intra-	 and	 inter-observer	 variability	

examined.	

	

5.2	Inclusion	and	exclusion	of	scans	from	the	different	centres	
	

For	the	separate	institutes,	exclusions	and	final	numbers	(Table	5.1):	

1.	Imperial	

112	patients	were	initially	identified	who	underwent	radiotherapy	and	had	pre-

treatment	PET	scans.	12	were	excluded	due	to	the	incorrect	pathology	(small	cell	

cancer).	 1	 was	 excluded	 due	 to	 the	 presence	 of	 M	 (metastatic)	 disease.	 20	

patients	were	 excluded	 because	 the	 size	 of	 the	 primary	 tumour	was	 less	 than	

5mls.	79	were	selected.	
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2.	Kings	

Of	the	53	from	this	centre,	1	was	excluded	because	no	scan	was	available	and	4	

had	primary	tumours	that	were	less	than	5mls	volume.		48	were	elected	for	the	

further	analysis.	

	

3.	Leeds	

Of	 the	105	patients	 identified	 from	this	centre,	13	were	excluded	because	 they	

had	 metastatic	 disease	 and	 27	 were	 too	 small.	 2	 were	 excluded	 because	 the	

primary	was	not	visualised.		The	final	number	was	63.	

	

4.	Marsden	

Of	the	91	patients,	10	had	tumours	that	were	too	small,	22	had	scans	that	were	

not	available	and	4	where	the	primary	was	not	visualised.	55	were	selected	for	

further	analysis.		

	

5.	TCGA	

From	 the	 two	 subdirectories	 of	 LUAD	 and	 LUSC,	 29	 patients	 were	 selected	 in	

which	1	was	excluded	due	to	metastasis	and	6	because	the	primary	was	less	than	

5mls.	The	final	number	was	22.	
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6.	Mount	Vernon	

Of	 102	 patients,	 4	 were	 excluded	 due	 as	 not	 NSCLC,	 9	 were	 too	 small,	 5	 no	

tumour	 was	 visualised,	 11	 with	 no	 clinical	 details	 or	 histology	 and	 3	 had	

metastases.		The	final	number	was	70.		

	
7.	Nottingham	

Of	 43	 patients	 initially	 selected	 15	were	 excluded,	 as	 no	 scans	were	 available.	

One	was	 too	small	 and	6	were	excluded	on	 the	basis	of	 their	 treatment,	which	

was	either	palliative	or	surgical	from	the	outset.	

	

Final	numbers	

535	 patients	 were	 originally	 identified	 and	 of	 these,	 (with	 percentages	 in	

brackets),	16	were	excluded	due	 to	 the	 incorrect	pathology	(9.0%),	metastases	

18	 (10.2%),	 77	 that	 were	 too	 small	 (43.5%),	 scan	 not	 available	 38	 (21.5	 %),	

tumour	 not	 visualised	 11	 (6.2%),	 no	 clinical	 details	 11	 (6.2	 %).	 177	 were	

excluded	 (33.0%)	 to	 give	 the	 final	 number	 of	 358	 (Figure	 5.1).	 As	 no	 clinical	

details	were	 known	 at	 the	 time	 of	 selecting	 the	 suitable	 scans,	 deliberate	 bias	

was	 not	 introduced.	 An	 overview	 of	 this	 is	 provided	 in	 Figure	 5.1.	 Table	 5.2	

provides	information	of	the	treatment	regimes	for	those	that	were	available	and	

provided	by	the	different	centres.	
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Table	5.1	The	reasons	for	exclusions	for	scans	from	different	centres	

	 Imp

erial	

Kings	 Leeds	 Mars

den	

TCGA	 Notti

ngha

m	

Moun

t	

Verno

n	

Total	

Original	

number	

112	 53	 105	 91	 29	 43	 102	 535	

Wrong	

histology	

12	 	 	 	 	 	 4	 16	

Metastatic	 1	 	 13	 	 1	 	 3	 18	

Too	small	 20	 4	 27	 10	 6	 1	 9	 77	

No	scan	

available	

	 1	 	 22	 	 15	 	 38	

Primary	

not	

visualised	

	 	 2	 4	 	 	 5	 11	

No	clinical	

details	

	 	 	 	 	 	 11	 11	

Different	

treatment	

	 	 	 	 	 6	 	 6	

Total	

excluded	

33	 5	 42	 36	 7	 22	 32	 177	

Total	

included	

79	 48	 63	 55	 22	 21	 70	 358	
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Figure	 5.1	 Overview	 demonstrating	 the	 selection	 of	 the	 final	 number	 of	

scans	

	

	

Too	small	

N=77	(43.5%)	

Incorrect	Pathology	

N=	16	(9.0%)	

Metastases	

N=	18	(10.2	%)	

PET	Scans	unavailable	

N=	23	(21.5%)	

(1)	Proven	Lung	cancer	by	

biopsy	

No	clinical	

details/follow-up	

N=11	(6.2%)	

Tumour	not	

visualised	

N=11	(6.2%)	

Selected	for	texture	analysis	

N=	337	(68.5%)	

(2)	Selected	for	segmentation	

N=	424	(86.2%)	
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Table	5.2	The	treatment	for	each	of	the	known	centres.	All	patients	included	

in	 the	 study	 received	 radiotherapy.	 The	 information	 for	 concurrent	

chemotherapy	if	it	was	given,	is	only	partially	available	and	is	described	above.	

5.3	Segmentation	
	

The	segmentation	for	all	the	scans	were	performed	by	a	single	observer	with	4	

years’	 experience	 of	 tumour	 delineation.	 The	 method	 used	 was	 an	 adaptive	

threshold	 method	 and	 the	 different	 segmentation	 thresholds	 are	 given	 below	

(Table	5.3).	

	 	

	 Imperial	 Kings	 Marsden	 Nottingham	

Total	number	 79	 48	 55	 21	

Radiotherapy	

(number,	%)	

79	(100)	 48	(100)	 55	(100)	 21	(100)	

Median	dose	

(range)	

55	(55-66)	 64	(55-64)	 64	(55-64)	 55	(50-66)	

Chemotherapy	

(number,	%)	

43	(54)	 48	(100)	 34	(61.8)	 Unknown	

but	at	least	

4	

Number	of	

cycles	

completed	

4	(range	1-6)	 4	(range,	1-6)	 4	(range,	1-

6)	

Unclear	

Unknown	had	

chemo	

(number,	%)	

10	(12.7)	 0	 3	(5.5)	 17	(81)	
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Table	5.3	The	different	thresholds	for	all	the	scans	used	in	this	study.		

The	highest	threshold	was	around	40%	and	the	next	highest	threshold	was	30%.		

Together	these	accounted	for	75.4%	of	all	the	thresholds.	9.5%	required	manual	

adjustment.	

	

	  

Threshold	 All	(%)	

10%	 3	(0.8)	

12%	 1	(0.3)	

15%	 18	(5)	

19%	 1	(0.3)	

20%	 47	(13.1)	

25%	 14	(3.9)	

30%	 99	(27.7)	

35%	 3	(0.8)	

40%	 171	(47.8)	

50%	 1	(0.3)	

Manual	adjustment	made	 34	(9.5)	

Total	 358	
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5.3.1	Intra	and	inter-observer	variability	
	

There	was	very	high	intra-	and	inter-observer	variability	in	the	texture	features.	

The	results	are	demonstrated	in	the	Table	5.4	and	5.5.	The	individual	breakdown	

of	the	texture	features	is	given	separately.	

Table	5.4.	Overview	of	intra-observer	variability.		

0.2-0.4	 fair	 agreement,	 0.4-0.6	 moderate,	 0.6-0.8	 substantial	 and	 >0.8	 almost	

perfect	agreement	(Matthews,	2002).	

	 	

Texture	features	 ICC	 95%	CI	

FOS	 0.97	 0.94-0.99	

GLCM	 0.82	 0.69-0.90	

GLSZM	 0.93	 0.85-0.97	

NGTDM	 0.91	 0.80-0.96	

PET	 1	 0.99-1	

Overall	Texture	 0.90	 0.62-0.93	

Texture	+	PET		 0.92	 0.85-0.96	
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Table	5.5.	Overview	of	inter-observer	variability.		

Using	ICC	with	breakdown	between	observers	with	repeated	measures	ANOVA.	

Obs	 =	 observer.	 A	 higher	 score	 means	 a	 higher	 correlation.	 0.2-0.4	 fair	

agreement,	 0.4-0.6	 moderate,	 0.6-0.8	 substantial	 and	 >0.8	 almost	 perfect	

agreement.(Matthews,	2002)	

	

There	 was	 an	 overall	 intra-observer	 variability	 of	 0.9	 when	 using	 texture	

features	 and	 0.92	 when	 adding	 PET	 features.	 The	 overall	 inter-observer	

variability	was	0.86	for	the	texture	features	and	0.88	when	PET	parameters	were	

added.	There	were	some	features	that	were	the	same	for	all	observers.	The	FOS	

Texture	

feature	class	

Average	

ICC	

95%	CI	 Obs	1	vs	

obs	2	

P	value	

Obs	1	vs	

obs	3	

P	value	

Obs	2	vs	

obs	3	

P	value	

FOS	 0.93	 0.84-0.97	 0.81	 0.80	 0.95	

GLCM	 0.90	 0.79-0.96	 0.85	 0.94	 0.79	

GLSZM	 0.81	 0.60-0.93	 0.96	 0.94	 0.99	

NGTDM	 0.80	 0.23-0.87	 0.80	 0.76	 0.76	

PET	 0.99	 0.98-1	 0.92	 0.41	 1	

Total	 Texture	

features	

0.86	 0.62-0.93	 0.85	 0.86	 0.87	

Total	texture	

features	+	PET	

0.88	 0.69-0.94	 0.87	 0.77	 0.90	
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and	PET	parameters	in	both	intra-	and	inter-observer	groups	demonstrated	very	

high	correlation.		

Thus,	 in	 conclusion	 of	 this	 chapter,	 an	 outline	 of	 the	 reasons	 for	 the	 final	

numbers	has	been	given.	An	overview	of	the	segmentations	performed	used.	The	

intra-	 and	 inter-observer	 results	 provide	 justification	 for	 further	 analyses,	 as	

there	is	high	agreement.	

5.4		Results	II:	Comparison	between	the	different	centres		

5.4.1	Overview	
	

The	clinical	details	of	the	seven	centres	are	provided	(Table	5.1).	It	can	be	seen	

that	 the	 age	 ranges	 and	 other	 clinical	 variables	 are	 broadly	 similar.	 After	 this,	

some	 of	 the	 clinical	 data	were	 used	 in	 various	 figures	 to	 show	 how	 the	 stage	

(Section	 5.4.2.1),	 histology	 (Section	 5.4.3)	 and	 volume	 (Section	 5.4.4)	 compare	

between	different	centres	and	with	survival.	

	

5.4.2	Comparing	the	datasets:	individual	centres	

The	clinical	information	from	the	seven	centres	is	detailed	in	Table	5.6.	It	can	be	

seen	that	the	majority	of	the	patients	were	male.	The	median	age	was	around	the	

late	 60s.	 The	 majority	 of	 the	 cases	 (62.0%)	 were	 of	 Stage	 3.	 This	 is	

understandable	in	terms	of	how	late	the	cancer	usually	presents	and	the	fact	that	

all	the	patients	in	this	study	had	radiotherapy,	which	is	given	to	locally	advanced	

tumours.	 The	median	 overall	 survival	 was	 22	months	 and	 almost	 70%	 of	 the	

patients	in	this	study	died	(Table	5.6).		
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3)	
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3)	

	

(32.3-
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5.4.2.1	Comparing	the	datasets:	Overall	Survival	
	

The	survival	of	the	different	centres	has	been	plotted	in	a	Kaplan-Meier	curve	

(Fig	5.2)	to	show	that	generally	the	survival	differences	between	the	different	

centres	were	similar.	This	will	be	expanded	in	later	in	this	chapter.		

	

	

Figure	5.2	KM	curve	for	the	survival	of	all	the	different	centres.	There	was	

no	significant	difference	with	a	p=0.691.	KCL=Kings	

	

To	 further	 expound	 on	 the	 above	 figure,	 the	 median	 survival	 between	 the	

different	 centres	 is	 provided	 below	 (Table	 5.7).	 Median	 survival	 does	 differ	

between	 the	centres	and	so	 the	use	of	 randomly	mixing	 the	groups	 to	create	a	

training	set	would	be	justified.		
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Table	5.7	Table	to	demonstrate	the	different	median	survival	and	the	range	

Centre	 Median	Survival	 Range	(95%	CI)	

Imperial	 27	 (23-34)	

Kings		 26	 (21-37)	

Leeds	 21	 (16-39)	

Marsden	 29	 (23-37)	

NIH	 32	 (12-NA)	

Mount	Vernon	 21	 (17-31)	

Nottingham	 23	 (14-NA)	

 

NA	=		Not	reached.		
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5.4.3	Comparing	the	datasets:	Histology	
	

The	majority	of	the	subtype	of	NSCLC	in	the	study	was	squamous	cell	carcinoma	

(Figure	5.3).	Some	tumours	could	not	be	classified	further	into	adenocarcinoma	

and	squamous	cell	carcinoma	and	were	labeled	as	nos.	-	not	otherwise	specified.		

 

	

Figure	5.3	Histological	subtype	and	survival.		

Histological	Subtype:	1=	squamous	cell,	2	=	adenocarcinoma,	3=	NSCLC,	nos	(not	

otherwise	 specified),	 4	 =	 other	 or	 mixed.	 For	 the	 record:	 group	 4.	 Other	

comprised	of	10	large	cell	tumours	and	2	mixed	squamous-adeno	carcinomas.	

	

The	survival	curves	from	the	different	subtypes	of	tumours	were	broadly	similar	

except	for	group	4	(Figure	5.3).	Overall,	there	was	no	significance.	However,	the	
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small	 group	 4	was	 vastly	 different	 from	 the	 others	 (although	much	 smaller	 in	

number)	and	another	KM	curve	was	done	with	this	group	excluded.			

	

Figure	 5.4	 Histological	 subtype	 and	 survive	 with	 group	 4	 excluded.	

Histological	Subtype:	1=	squamous	cell,	2	=	adenocarcinoma,	3=	NSCLC	

	

In	 the	 above-corrected	 KM	 curve	 (Figure	 5.4),	 the	 removal	 of	 group	 4,	

demonstrates	that	there	is	no	significant	difference	between	histological	subtype	

and	 survival.	 This	 is	 important	 in	 terms	 of	 texture,	 as	 it	will	 be	 shown	 in	 due	

course	 that	 the	 texture	 features	 and	 traditional	 histology	 examine	 different	

variables.	
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5.4.4	Volume	and	survival	
	

In	 the	 literature,	 as	 detailed	 earlier,	 there	 exists	 a	 strong	 correlation	 between	

texture	features	and	volume.	Volume	has	been	shown	to	correlate	with	survival.	

In	 this	 thesis,	 this	 phenomena	of	 the	 correlation	between	volume	and	 survival	

has	also	been	demonstrated.	Two	different	KM	curves	and	multivariate	analysis	

have	 been	 performed	 to	 demonstrate	 the	 relationship.	 	 The	 volume	 in	 the	

calculation	was	taken	from	the	SNS_vol	from	the	segmentations.	

	

	

Figure	 5.5.	 KM	 curve	 of	 median	 volume	 and	 survival.	 This	 demonstrates	

significance.	
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Figure	 5.6	 KM	 curve	 of	 survival	 and	 volume	 divided	 by	 the	 receiver	

operator	curve	(ROC)	at	25	months.	This	again	demonstrates	significance.	

Previous	 studies	 have	 suggested	 that	 volume	 is	 a	major	 predictor	 for	 survival,	

and	this	was	also	borne	out	in	our	study.	To	examine	this	further,	Cox	regression	

analysis	was	performed	with	the	inclusion	of	volume	and	stage	(Table	5.8).		
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Table	5.8	Cox	Regression	analysis	with	the	inclusion	of	Pathological	Stage	

and	volume.			

In	 this	 two	 variable	 multi-variable	 analysis,	 both	 the	 stage	 and	 volume	 are	

significantly	 correlated	with	 survival.	 The	 hazard	 ratios	 are	 given	 (Exp(coef)).		

Overall	p=	4.16	x	10-5.	N	=	358,	events=250.	

	 Coef	 Exp	(coef)	 Se	(coef)	 x	 p	

>	median	

SNS-vol	

0.3407770	 1.40604	 0.1369289	 2.488715	 0.0128206	

Pathological	

Stage	

0.2456637	 1.27847	 0.0908019	 2.705490	 0.0068204	

	

When	we	 explored	 how	many	 variables	 highly	 correlated	with	 volume	 (taken	

here	as	the	SNS_vol)	we	found	that	458	of	660	(69%)	were	strongly	correlated	

with	 volume	 (spearman	 rank	 >0.7).	 As	 we	 could	 only	 inspect	 linear	 relations	

with	 survival	 it	 was	 thought	 it	 would	 be	 beneficial	 to	 divide	 though,	 i.e.	

normalise,	by	SNS_vol	during	feature	analysis.		

5.5	Summary	
	

This	section	demonstrates	that	there	are	some	survival	differences	between	the	

centres	but	this	is	not	significant.	The	histological	subtype	was	not	significantly	

different	in	terms	of	survival.	The	volume	-	using	two	different	methods	to	split	

the	 data	 -in	 a	 multivariate	 analysis	 did	 appear	 to	 contribute	 to	 survival.	 An	

important	step	as	a	result	of	this	is	the	normalisation	of	all	texture	features	that	

correlated	with	volume.		
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Section	5.6:	Results	III	Comparing	the	datasets:	Scanners	

5.6	Overview	
	

The	 differences	 in	 the	 clinical	 factors	 have	 been	 detailed	 in	 the	 previous	

subsection.	 In	 this	 section,	 the	 differences	 in	 the	 manufacturers,	 models,	 slice	

thickness	and	matrix	are	demonstrated.	The	evaluation	was	performed	by	using	

principal	component	analysis	on	all	 the	texture	features	to	calculate	how	much	

variation	the	first	and	second	principal	components	account	for.			

	

5.6.2	The	scanners	from	the	different	centres.		

The	different	centres	used	different	scanners	and	different	settings.	Therefore,	a	

degree	 of	 heterogeneity	 exists	 in	 the	 data,	 however,	 it	was	 important	 to	 see	 if	

these	differences	in	scanner	type	and	acquisition	contributed	significantly	to	the	

variation	 in	 output.	 The	 rationale	 for	 this	 was	 that	 these	 differences	 could	 be	

controlled	 for	 in	 the	 analysis	 (Table	 5.9).	 The	 Principal	 component	 analysis	 of	

the	Manufacturer	 (Figure	 5.7),	Model	 (Figure	 5.8),	 slice	 thickness	 (Figure	 5.9)	

and	rows	(Figure	5.10)	for	64	gray	levels	are	presented.	Further	PCI	analyses	for	

all	the	other	gray	levels	are	provided	in	Appendix	C.	

.		
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The	 figures	 demonstrate	 that	 the	 points	 of	 variation	 for	 manufacturer,	 model	

type,	slice	thickness	and	matrix	size	(taken	here	as	the	row	type),	are	minimal.	In	

other	 words,	 the	 above	 factors	 contribute	 minimally	 to	 the	 variation	

demonstrated	 and	 thus	 the	 variation	 that	 we	 observe	 is	 likely	 attributed	 to	

intrinsic	properties	of	the	tumour.	

	

It	 is	 important	 to	 note	 that	 the	 figures	 given	 above	 have	 been	 detailed	 for	 64	

gray-levels.	The	other	PCI	charts	relating	to	other	gray-levels	are	demonstrated	

in	the	supplementary	material	(Appendix	C).		

	

Thus	 in	 conclusion,	 sections	 5.5	 and	 5.6	 have	 shown	 that	 there	 are	 minimal	

differences	 between	 the	 different	 centres	 in	 terms	 of	 different	 scanners.	 The	

volume	factor	has	been	accounted	for	in	further	calculations.		
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Chapter	5.7:	Results	IV-PET	and	texture	analysis	for	Lung	
cancer.		

5.7.1	Overview	
	

This	chapter	is	broadly	divided	into	three	sections.	First,	the	training,	validation	

and	TEST1	clinical	differences	were	demonstrated	(Table	5.10).	Secondly,	using	

the	 three	 datasets,	 stage	 and	 PET	 features	 were	 tested	 to	 see	 if	 there	 was	 a	

possibility	to	predict	prognosis.	Thirdly,	two	separate	tests	were	used	to	test	the	

texture	features.		

5.7.2	Comparing	the	datasets:	Training,	testing	and	validation	
	

As	has	been	described	in	chapter	2,	the	data	were	divided	into	three	sets	(Table	

5.10).	 The	 training	 set	 was	 made	 of	 133	 patients	 and	 the	 validation	 set	 was	

completely	independent	of	the	training	set	in	terms	of	not	being	used	to	develop	

the	model.	A	separate	small	set	was	also	used	to	act	as	a	test	set.	

Table	5.10	The	differences	between	the	training,	validation	and	test	sets.			

	 Training	set	 Validation	Set	 Test	I	

Number	 133	 204	 21	

Mean	age	(Range)	

years	

69	(35-89)	 71	(42-91)	 71	(53-101)	

Male	(%)	 82	(61.7)	 126		(61.7)	 10	(47.6)	

Stage	I	(%)	 24	(18)	 33	(16.2)	 4	(19)	

Stage	II	(%)	 34	(25.6)	 37	(18.1)	 4	(19)	
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Stage	III	(%)	 75	(56.4)	 134	(65.7)	 13	(61.9)	

Histology:	SCC	(%)	 69	(51.9)	 95	(46.7)	 14	(66.7)	

Histology:	

Adeno(%)	

41	(30.8)	 77	(37.7)	 5	(23.8)	

Histology:	NSCLC		

NOS	(%)	

18	(13.5)	 25	(12.3)	 2	(9.5)	

Histology:	Other	

(%)	

5	(3.8)	 7	(3.4)	 0	

SUVmean	(range)	 8.25	(1.78-17.4)	 8.44	(2.11-23.7)	 7.75	(4.44-16.8)	

SUVmax	(range)	 16.5	(4.9-42.8)	 15.9	(3.26-49.5)	 13.6	(6.66-39.2)	

SUVpeak	(range)	 14.2	(3.8-35.4)	 14.2	(2.9-43.1)	 12.5	(6.26-34)	

MTV	(range)	mls	 40.4	(5.13-467)	 33.7	(5.27-525)	 30.8	(7.03-230)	

TLG	(range)	 344	(16.2–

5.45x103)	

315.2	(19.4–

5.7x103)	

266	(40.5-2.59	

x103)	

Median	overall	

survival	(Months)	

25	(0-83)	 21.0	(0-85)	 20	(2-37)	

Number	of	deaths	

(%)	

88	(66.2)	 145	(71.1)	 17	(81%)	

Length	of	Follow	up	

(median	+	IQR	in	

months)	

26	(12-39)	 22.0	(11-36)	 21	(8-31)	
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SCC	Squamous	Cell	Carcinoma,	Adeno	Adenocarcinoma,	NSCLC	Non-small	cell	

lung	cancer,	MTV	Mean	tumour	volume,	TLG	Total	lesion	glycolysis,	IQR	

Interquartile	Range	

5.7.3	Comparing	the	datasets:	Training,	testing	and	validation:	
Stage 
	

Stage	as	mentioned	in	the	earlier	chapters	is	a	known	prognostic	marker.	The	

KM	curves	below	were	divided	by	stage	(Figure	5.11).	

	

a) 	

b) 	
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c) 	

	

Figure	5.11	KM	curves	for	stage	for	a)	training,	b)	validation	and	c)	TEST1.	

Although	the	training	set	is	significant,	the	validation	set	and	TEST1	sets	are	not.	

5.7.4.1	Comparing	the	datasets:	Training,	validation	and	test	
SUVmax	
	

The	SUVmax	is	not	used	clinically	for	prognosis.	This	marker	(Figure	5.12),	as	well	

as	 other	 PET	 markers,	 SUVmean	 (Figure	 5.13),	 SUVpeak	 (Figure	 5.14)	 and	 TLG	

(Figure	 5.15)	 were	 used	 to	 demonstrate	 current	 broad	 clinically	 available	

endpoints,	as	this	variable	is	readily	calculated	in	the	clinical	setting.	In	order	to	

generate	Kaplan	Meier	curves	a	dichotomous	end-point	is	required,	even	in	the	

case	of	continuous	data.	The	cut-off	for	all	the	PET	parameters	is	the	maximum	

cut-off	from	the	ROC	curve	(Youden’s	J)	at	25	months	survival	(Babyak,	2004).		

	



5.7.4.1	Comparing	the	datasets:	Training,	validation	and	test	SUVmax	 	 	
	

	

195	

a) 	

b) 	

c) 	

Figure	 5.12	 KM	 curves	 for	 SUVmax	 for	 a)	 training,	 b)	 validation	 and	 c)	

TEST1.	No	significance	demonstrated.	

 

	 	



5.7.4.2	Comparing	the	datasets:	Training,	validation	and	test	SUVmean	 	 	
	

	

196	

5.7.4.2	Comparing	the	datasets:	Training,	validation	and	test	
SUVmean	
	

Another	PET	marker	the	SUVmean	has	been	utilized.	

a) 	

b) 	

c) 	

Figure	 5.13	 KM	 curves	 for	 SUVmean	 for	 a)	 training,	 b)	 validation	 and	 c)	

TEST1.	A	significant	outcome	in	the	training	set	was	observed	but	 in	 the	same	

was	not	true	for	the	other	sets.		
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5.7.4.3	Comparing	the	datasets:	Training,	validation	and	test	
SUVpeak	
	

The	SUVpeak	was	also	tested.	

a) 	

b) 	

	

c) 	

Figure	 5.14	 KM	 curves	 for	 SUVpeak	 for	 a)	 training,	 b)	 validation	 and	 c)	

TEST1.	There	were	no	significant	results.		
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5.7.4.4	Comparing	the	datasets:	Training,	validation	and	test	
TLG	

a) 	

b) 	

c) 	

Figure	5.15	KM	curves	for	TLG	for	a)	training,	b)	validation	and	c)	TEST1.	

There	were	significant	results	in	the	training	and	validation	sets.		
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5.8	Texture	analysis:	Initial	analysis	with	individual	FOS	and	
GLCM	features	
	

A	substantial	amount	of	early	work	was	presented	in	the	literature	(see	Chapter	

2:	literature	review)	on	individual	texture	features,	some	of	which	were	found	to	

be	 significant.	 We	 tried	 to	 replicate	 some	 of	 this	 work	 by	 testing	 two	 sets	 of	

texture	 features	 –	 FOS	 and	 GLCM-which	 are	 the	 two	 widely	 tested	 texture	

features	in	the	literature.	The	results	are	detailed	below	(Table	5.11).		

Table	5.11	Using	FOS	and	GLCM	texture	features	in	the	training,	validation	

and	test	sets.			

Texture		

feature	

cut	 Training	 Validation	 Test1	

FOS_CV	 0.0647	 0.374	 0.97	 0.348	

FOS_lmean	 0.915	 0.224	 0.91	 0.744	

FOS_lmedian	 0.854	 0.0338	 0.792	 0.744	

FOS_lmode	 -.0801	 0.122	 0.102	 0.611	

FOS_lstd	 -0.0237	 0.0393	 0.429	 0.35	

FOS_lmin	 0.17	 0.0111	 0.575	 0.834	

FOS_lmax	 0.0601	 0.0213	 0.132	 0.284	

FOS_Range	 0.83	 0.016	 0.143	 0.577	

FOS_Skew	 -0.244	 0.269	 0.84	 0.204	

FOS_Kurt	 0.11	 0.101	 0.931	 0.178	

FOS_lmeanAbsDev	 -0.0667	 0.0262	 0.429	 0.35	

FOS_RMS	 0.865	 0.0406	 0.998	 0.744	

FOS_Entr_64gl	 0.202	 0.876	 0.0929	 0.312	
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FOS_Ener_64gl	 -0.0789	 0.136	 0.437	 0.436	

GLCM_Varian_64gl	 -0.0378	 0.006	 0.777	 0.181	

GLCM_Correl-64gl	 -0.278	 0.0216	 0.328	 0.22	

GLCM_InfCo1_64gl	 0.052	 0.00835	 0.0189	 0.16	

GLCM_InfCo2_64gl	 0.299	 0.00915	 0.0144	 0.0584	

GLCM_ClShad_64gl	 -0.273	 0.0357	 0.827	 0.0789	

GLCM_ClProm_64gl	 0.324	 0.00363	 0.88	 0.255	

GLCM_Angsmo_64gl	 -0.509	 0.000258	 0.0111	 0.0287	

GLCM_MxProb_64gl	 -0.548	 0.00241	 0.0025	 0.0287	

GLCM_Entrop_64gl	 0.392	 0.0141	 0.000296	 0.0519	

GLCM_Contra_64gl	 -0.434	 0.0197	 0.807	 0.402	

GLCM_Dissim_64gl	 -0.289	 0.0226	 0.743	 0.402	

GLCM_Homoge_64gl	 -0.555	 0.00689	 0.0775	 0.604	

GLCM_sumAvg_64gl	 0.00589	 0.0712	 0.805	 0.998	

GLCM_sumVar_64gl	 0.288	 0.00157	 0.62	 0.0547	

GLCM_sumEnt_64gl	 0.656	 0.0198	 2.13	x	10-5	 0.0752	

GLCM_difVar_64gl	 -0.28	 0.0209	 0.885	 0.611	

GLCM_difEnt_64gl	 0.00977	 0.00579	 0.608	 0.308	

GLCM_AutoCorrel_64gl	 -0.0426	 0.0973	 0.686	 0.889	

GLCM_CITend_64gl	 0.288	 0.00157	 0.62	 0.0547	

GLCM_Homoge1_64gl	 -0.524	 0.00681	 0.11	 0.709	

GLCM_IDMN_64gl	 0.4	 0.00335	 0.757	 0.402	

GLCM_IDN_64gl	 0.141	 0.00859	 0.969	 0.403	

GLCM_invVar_64gl	 0.0129	 0.00496	 0.718	 0.217	
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FOS	 First	 Order	 Statistics,	 GLCM	 Gray	 Level	 Co-occurrence	 Matrix.	 For	 a	 full	

breakdown	of	the	abbreviations	please	see	Appendix	B	and	chapter	2.		

	

As	 there	was	multiple	 testing	 the	adjusted	p	value	(Bonferroni	correction)	was	

0.0013514,	 of	 which	 none	 of	 the	 factors	 in	 the	 testing	 was	 significant.	 A	

composite	feature	of	the	4	best	features	were	compared:	

	

GLCM_Angsmo_64gl	

GLCM_sumVar_64gl	

GLCM_invVar_64gl	

GLCM_difEnt_64gl	

	

Using	 this	 composite	 feature	 for	analyzing	 the	 training	 set,	 the	 subsequent	KM	

curve	demonstrated	p=0.000449	(not	shown).	Using	the	Kmroc	cutoff,	 this	was	

significant	on	the	validation	set	(0.0394,	again	not	shown),	but	when	placed	in	a	

multivariate	 analysis	 (Cox	 Regression)	 including	 Stage,	 the	 composite	 feature	

was	not	significant.		

5.8.1	Texture	analysis:	Using	LASSO	
	

As	 has	 been	 alluded	 previously,	 there	 is	 a	 strong	 correlation	 of	 the	 texture	

features	with	 each	 other.	 The	 heatmap	below	 (Figure	 5.16)	 demonstrates	 this.	

All	 the	areas	that	are	coloured	green	or	red	have	strong	correlations	with	each	

other	(Figure	5.16).		
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Figure	 5.16.	 Spearman	 rank	 correlation	 of	 the	 radiomics	 features	

displayed	 as	 a	 heatmap.	 High	 levels	 of	 correlation	 with	 clustering	 of	

features	are	seen.	
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One	 aspect	 that	 needs	 to	 be	 stated	 is	 that	 although	machine-learning	methods	

have	 been	 developed	with	 binomial	 outcomes,	 the	methods	 to	 adapt	 them	 for	

continuous	survival	outcomes	and	also	account	for	censored	data	have	yet	to	be	

decided.	In	our	study,	two	methods	were	used	to	split	the	data	into	two	groups,	

one	of	which	was	 the	median	 survival	 and	 the	other	was	 the	KM	ROC	method	

linked	to	survival.		

	

In	 this	 thesis,	 a	 form	 of	 penalized	 regression,	 named	 LASSO	 has	 been	

implemented	(Figure	5.17).	

a) 	

b) 	
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Figure	5.17	Radiomics	feature	selection	using	the	binary	logistic	regression	

model,	LASSO.		

(a)	The	area	under	 the	receiver	operating	curve	 (AUC)	was	plotted	against	 the	

logarithm	 of	 the	 tuning	 parameter	 (λ)	 by	 determining	 the	minima	 from	 cross	

validation.	The	optimal	values	representing	x1	SE	of	 the	minima	are	plotted	as	

vertical	 lines.	 (b)	 A	 LASSO	 coefficient	 profile	 plot	 showing	 LASSO	 coefficients	

plotted	 against	 Normalised	 values.	 The	 vertical	 line	 represents	 the	 optimal	

number	of	non-zero	coefficients	obtained	through	cross-validation.	

	

Figure	5.18	Using	Youden’s	J	method	to	determine	the	optimal	cutoff	from	

the	ROC	curve	at	optimal	survival	at	29	months.	The	cutoff	was	used	to	split	

the	subsequent	data.	

	

The	 LASSO	 method	 helped	 develop	 a	 two	 feature	 composite,	 termed	 FVX	

(optimal	 feature	 vector),	 which	 was	 scrutinized	 on	 the	 three	 different	 sets	

(Figures	5.19	and	5.20).		
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a) 	

b) 	

c) 	

Figure	5.19	Testing	 the	 FVX	 composite	 texture	 feature	on	 the	datasets	 a)	

training,	 b)	 validation,	 c)	 TEST1.	 The	 FVX	 as	 split	 by	 the	 median	 gave	

significant	results	in	the	first	two	sets.		
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Figure	5.20	Testing	 the	 FVX	 composite	 texture	 feature	on	 the	datasets	 a)	

training,	 b)	 validation,	 c)	 TEST1.	 The	 FVX	 as	 split	 by	 the	 Kmroc	 gave	

significant	results	in	the	first	two	sets.		

	

b)	

a)	

c)	
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Thus	in	both	Figures	5.19	and	5.20,	there	were	significant	results	in	the	training	

and	validation	sets	using	two	different	methods	to	split	the	data.	The	FVX	

comprised	of	two	texture	features,	weighted	as	given	in	Table	5.12.		

	

Table	5.12	LASSO	selected	composite	variable	with	weightings	given	for	the	

contribution	of	each	texture	feature	

Texture	Variable	 Weights	

GLSZM	Size	Zone	Variance	 0.128	

NGTDM	Complexity	 -0.018	

	

The	 FVX	was	 then	 tested	 in	 a	 Cox	 regression	 analysis	with	 volume	 and	 stage.	

Volume	 was	 not	 significant	 and	 was	 removed.	 Table	 5.13	 demonstrated	 the	

findings.		

	

Table	5.13	Cox	regression	analysis	 including	 the	stage	and	 the	composite	

texture	feature.	Cox	Regression	analysis	overall:	p	=	0.000196.	N	=	204,	events	

=	145.	Concordance	between	stage	and	FVX	is	-0.283.	

Factor	 p	 HR	 95	%	Confidence	

Interval	

Stage	 0.352	 1.12	 0.88-1.43	

Texture	 0.0024	 9.62	 1.35-68.7	
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5.9	Differences	between	the	Test1	set	and	the	remainder	of	the	
sets	
	

For	all	the	factors	that	were	significant,	there	was	a	constant	finding	that	none	

were	significant	on	the	TEST1	set.	The	reasons	for	this	were	be	explored	in	

Figures	5.21,	5.22	and	5.23.		

	
Figure	5.21	KM	plot	 for	 stage	 for	TEST1.	The	stage	1	group	had	the	poorest	

survival.	

	
	

Figure	5.22	KM	plot	for	stage	split	with	median	for	TEST1.	No	significance.		
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Figure	5.23.	KM	plots	comparing	TEST1	with	others	a)	overall,	b)	Stage	1,	c)	

Stage	 2	 and	 d)	 stage	 3.	 The	 stage	 1	 group	 (number	 of	 patients	 =	 4)	 was	

significantly	 different	 from	 the	 rest,	 which	 caused	 a	 deviation	 of	 the	 results.	

Interestingly,	the	stage	2	subset	(number	of	patients	=	4)	performed	better	than	

the	rest	but	this	was	not	significant.	 
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5.10	Test	previous	papers	
	

Having	developed	our	own	texture	composite	feature,	we	wanted	to	test	other	

texture	features	in	the	literature.	We	had	collected	a	large	number	of	datasets	

that	facilitated	the	use	of	this	(Table	5.14).		

	

Table	5.14	 Five	previous	papers	 that	 used	 texture	 analysis	with	 survival.	

The	cancer	types	from	which	they	were	derived	are	also	provided	as	well	as	the	

texture	features.		

Author	and	year	 Tumour	type	 Positive	texture	

feature	

Gray	Level	used	

a)	Cook	(Cook	et	

al.,	2013)	

NSCLC	 Contrast	

Busyness	

Coarseness	

Not	stated	

b)	Cheng	2015	

(Cheng	et	al.,	

2015)	

Oropharyngeal	

Cancer	

Zone-size	non	

uniformity	

GL	non-uniformity	

16,32,64	

	

16,32	

c)	Cheng	2013	

(Cheng	et	al.,	

2013)		

Oropharyngeal	

Cancer	

Uniformity	 4	

d)	Hatt	2015	

(Hatt	et	al.,	

2015)	

Oesophageal		

NSCLC	

Combined:	

entropy,	

dissimilarity,	high	

intensity	large	

area	emphasis,	

Zone	percentage	

64	

e)	Aerts	(Aerts	et	 NSCLC	 SNScom2		 NA	
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al.,	2014a)	 FOSEnergy	

GLRLMGLN	

GLRLM	GLN	HLH	

	

a)	 Cook	 and	 co-workers	 examined	 NSCLC	 and	 noted	 that	 NGTDM	 Contrast,	

Busyness	 and	 Coarseness	 were	 positively	 associated	 with	 survival	 -	 No	

composite	 function	 was	 given.	 However,	 they	 did	 not	 give	 a	 gray-level.	

Furthermore,	this	paper	used	the	Kings	dataset	that	we	also	used	in	our	training	

and	validation	sets,	so	in	order	to	test	the	findings	of	this	paper	we	excluded	this	

subset	from	our	analysis.	

	

In	order	to	test	their	paper,	we	looked	at	each	of	their	positive	texture	features	in	

turn	for	each	gray-level.	

	

b)	Cheng	2015	

The	Cheng	2015	paper	looked	at	oropharyngeal	cancer	and	found	GLSZM	Zone-

size	 non-uniformity	 positively	 associated	with	 survival	 at	 16,	 32	 and	 64	 gray-

levels,	and	GL	non-uniformity	at	16	and	32	gray-levels.	

	

In	order	to	test	their	paper	we	looked	at	each	variable	in	turn	at	each	gray-level.	

	

c)	Cheng	2013	

The	 Cheng	 2013	 paper	 also	 looked	 at	 oropharyngeal	 cancer	 but	 found	 GLCM	
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Uniformity	at	4	gray-level	to	be	positively	associated	with	survival.	

	

They	 looked	 at	 GLCM_Angsmo_4gl	 >	 0.138,	 however,	 when	 we	 looked	 at	 this	

variable,	it	was	not	significant	in	our	dataset.	GLCM_Angsmo_4gl	>	0.138	was	not	

significant	with	p=	0.0984.		

	

d)	Hatt	2015	

Hatt	looked	at	oesophageal	cancer	and	NSCLC.	They	combined	GLCMEntropy	(E13	

&	 E1),	 GLCMDissimilarity	 (D13	 &	 D1),	 GLSZM	 high	 intensity	 large	 area	 emphasis	

(HILAE),	and	GLSZMZone	percentage	(Zone	percentage)	at	64	gray-levels.		

	

e)	Aerts	

Aerts	worked	on	CT	rather	than	PET	and	had	a	fixed	gray-level	scheme	that	does	

not	 really	make	 sense	 for	PET.	We	 looked	at	 all	 gray-levels	 across	 all	 our	data	

except	the	TEST1	dataset	(Table	4.15).	
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Table	5.15	Sum
m
ary	of	the	texture	features	obtained	from

	our	lung	dataset	and	those	previously	defined	variables	

from
	5	publications.	

File	nam
e	

Gray	

levels	

W
avelet

s	

No	of	

feature

s	

Features	
Significan

ce	w
ith	

validation	

set	

(texture	

and	stage	

m
odel)	

Stage	and	

group	

m
odel:	

texture	sig	

Stage	and	

group	m
odel:	

texture	

hazard	

Stage	and	

group	

m
odel:	

stage	sig	

Stage	and	

group	

m
odel:	

hazard	ratio	

Texture	

feature	

develop	

in	this	

study	

64	
No	

2	
GLSZM

SzVar

iance	

NGTDM
Com

plex	

0.000196	
0.00116	

0.573	
0.011	

1.36	

	a)	Cook	

paper	

All	non-significant	in	Cox	regression	
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b)	Cheng	

2015	

16gl	
No	

1	
GLSZM

SzNo

nUnif	

0.000163	
0.0084	

1.48	
0.011	

1.28	

		
64gl	

No	
1	

GLSZM
SzNo

nUnif	

0.000115	
0.0058	

1.15	
0.025	

1.25	

		
32gl	

No	
1	

GLSZM
GINo

nUnif	

0.000421	
0.0245	

1.41	
0.0241	

1.256	

	
	

	
	

	
	

	
	

	
	

c)	Cheng	

2013		

Not	significant	in	Cox	regression	

	d)	H
att	

2015	

Not	significant	in	Cox	regression	

	e)	Aerts	

2015	

4gl	
Yes	

4	
SNScom

2	

FOSEnergy	

GLRLM
GLN	

GLRLM
	GLN	

0.000213	
0.011	

1.46	
0.018	

1.27	
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H
LH
	

		
8gl	

As	

above	

4	
As	above	

8.31x10-5	
0.0035	

1.57	
0.033	

1.24	

		
16gl	

As	

above	

4	
As	above	

0.000179	
0.0082	

1.51	
0.0285	

1.25	

		
32gl	

As	

above	

4	
As	above	

0.000148	
0.0066	

1.54	
0.0342	

1.24	

		
64gl	

As	

above	

4	
As	above	

0.000232	
0.011	

1.49	
0.0228	

1.26	

		
128gl	

As	

above	

4	
As	above	

0.000357	
0.0182	

1.44	
0.0147	

1.27	

		
256gl	

As	

above	

4	
As	above	

0.000183	
0.00827	

1.5	
0.0164	

1.27	
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	Using	the	m
ethods	described	in	each	paper,	w

e	used	our	dataset	to	test	out	these	m
ethods	as	an	independent	dataset.	The	highlighted	

areas	denote	significance.		There	is	a	com
plete	table	of	results	in	Appendix	D.
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It	 is	 very	 interesting	 to	 compare	 our	 dataset	 with	 the	 previous	 papers	 (Table	

5.15).	Although,	all	bar	the	Aerts	paper	developed	their	model	with	much	smaller	

numbers,	 it	 was	 interesting	 to	 see	 that	 there	 appeared	 to	 be	 some	 ability	 to	

predict	 prognosis.	 There	 may	 be	 an	 intrinsic	 phenotype	 independent	 of	 the	

method	of	acquisition	(as	CT	is	x-ray	attenuation	and	FDG	is	glucose	uptake)	or	

voxel	dimensions	that	accounts	for	this.		
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Chapter	6	Discussion	NSCLC	study	
	

6.1	Summary	of	results	

• 358	 scans	 from	 535	 originals	 were	 selected.	 	 133	 were	 used	 for	 the	

training	set,	204	in	the	validation	set	and	21	in	TEST1	

• The	 majority	 of	 patients	 were	 segmented	 at	 40%	 (47.8%)	 and	 30%	

(27.7%)	thresholds.	There	was	9.5%	manual	adjustment	made.		

• There	was	excellent	 intra	(0.9	 ICC)	and	 inter-observer	(0.86)	agreement	

for	segmentation.		

• The	 manufacturer,	 model	 type,	 slice	 thickness	 and	 matrix	 size	 did	 not	

affect	the	variability	of	the	texture.	

• SUVmean	was	 significant	 for	 the	 training	 set	 only	 on	 the	 KM	 curves.	 The	

SUVmax,	 SUVmean	 and	 SUVpeak	 for	 the	 reminder	 of	 the	 datasets	 were	 not	

significant.		

• The	 TLG	 was	 significant	 on	 the	 training	 and	 validation	 set	 on	 the	 KM	

curves.	 However,	 on	 a	 multivariate	 Cox	 regression	 including	 stage	 was	

found	to	be	not	significant.		

• The	 composite	 feature	 vector	 (FVX)	 demonstrated	 significance	 for	 the	

training	 and	 validation	 sets.	 This	was	 also	 significant	 on	Cox	 regression	

with	volume	and	stage	included.		

• The	 TEST1	 dataset	 was	 not	 significant	 for	 the	 FVX	 feature	 but	 differed	

significantly	 from	 the	 remainder	 of	 the	 datasets	 with	 a	 disparate	 high	

number	of	Stage	1	patients	who	underwent	chemo-radiotherapy	and	had	

a	poor	overall	survival.		
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• When	testing	the	texture	features	of	other	published	data	on	our	dataset,	

the	Aerts	(Aerts	et	al.,	2014a,	Cheng	et	al.,	2015)feature	vector	developed	

on	 CT	was	 highly	 significant	 on	 our	 dataset.	 The	 Cheng	 texture	 feature	

(Cheng	et	al.,	2015)	developed	on	oropharyngeal	cancer	and	PET	was	also	

significant	on	our	dataset.		

	

The	 NSCLC	 multi-institution	 retrospective	 study	 demonstrated	 that	 the	

radiomics	 feature,	 FVX,	 derived	 from	 FDG-PET	 primary	 lung	 cancer	 was	

invariant	to	the	PET	scanner	properties	and	predicted	OS.	The	texture	features	in	

the	 radiomics	 feature	 contained	 GLSZM	 size	 variance	 and	NGTDM	Complexity.	

Although	 there	 is	 no	 direct	 histological	 correlation	 or	 immediate	 physiological	

correlation,	 the	 GLSZM	 is	 a	 regional	 ‘homogeneity’	 texture	 that	 calculates	 the	

zones	 of	 homogeneous	 voxels.	 In	 particular,	 the	 size	 variance	 examines	 the	

variance	 in	 number	 blocks	 by	 size	 and	 is	 negatively	 correlated	 with	 survivl,	

perhaps	 consistent	 with	 hypoxic	 or	 necrotic	 regions.	 NGTDM	 examines	 the	

contrast	 difference	 or	 information	 content	 between	 the	 voxel	 and	26	 available	

directions	 in	 the	3D	space.	The	complexity	of	 the	NGTDM	refers	 to	 the	average	

visual	complexity	and	positively	correlated	with	survival,	although	with	less	of	a	

magnitude	that	SzVariance,	and	possibly	acting	as	a	counterbalance	to	the	latter.		

	

Although	PET	parameters,	in	particular	the	SUVmax,	have	been	shown	to	correlate	

with	survival	with	a	meta-analysis	of	13	studies	demonstrating	that	the	primary	

tumour	SUVmax	correlated	with	survival	(Berghmans	et	al.,	2008)	and	that	higher	

SUVmax	 was	 associated	 with	 poorer	 overall	 survival	 in	 patients	 receiving	
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stereotactic	body	radiotherapy	(SBRT)	(Na	et	al.,	2014),	this	was	not	borne	out	in	

our	study,	where	the	SUV	features	were	not	prognostically	significant.	The	TLG	

was	also	not	significant	in	this	study	on	multivariate	analysis.	In	the	literature,	in	

a	study	of	196	inoperable	Stage	IIb/III	NSCLC	the	TLG	(and	the	MTV,	which	we	

found	 in	 our	 study	 to	 be	 highly	 correlated	 with	 the	 TLG)	 to	 be	 strongly	

prognostic	for	OS,	while	SUVmax	was	not	(Salavati	et	al.,	2017).	The	reasons	why	

the	MTV/TLG	and	the	SUVmax	have	been	significant	in	prognosis	is	some	studies	

but	not	others,	including	this	one,	are	not	entirely	clear.		

6.1	Study	strengths	
	

The	biggest	 strength	of	 this	 study	was	 that	 it	 utilised	 a	multi-centre	 approach.	

This	 helped	 in	 many	 ways	 to	 increase	 the	 number	 of	 subjects	 as	 well	 as	

introduce	 real-life	 complexities	 in	 the	data.	Questions	perpetually	 asked	 in	 the	

literature	 that	 have	 been	 explored	 in	 this	 study	 include	 the	 variation	 in	

acquisition	parameters	and	different	scanners.		

	

The	other	strength	of	this	study	was	the	ability	to	build	on	the	work	of	others	to	

have	a	large	number	of	texture	features	available.	Utilising	fractals,	wavelets	and	

other	 features	 for	possibly	 the	 first	 time	 in	PET	studies	has	been	advancement	

from	what	was	utilised	previously.	
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Another	big	advantage,	closely	allied	to	having	a	large	dataset	was	the	ability	to	

develop	 independent	 training,	 validation	 and	 test	 sets.	 This	 has	 increased	 the	

statistical	power	of	the	study	and	allowed	firm	conclusions	to	be	drawn.		

	

Using	the	compiled	dataset	to	test	the	findings	of	previously	published	studies	in	

the	 literature	 was	 an	 interesting	 revelation.	 This	 demonstrated	 that	 some	

findings	 were	 indeed	 type	 1	 errors(Chalkidou	 et	 al.,	 2015)	 and	 others	 have	

yielded	promising	results.		

6.2	Study	limitations		

6.2.1	Sample	size	
	

The	 large	 number	 of	 centres	 also	 has	 its	 disadvantages	 regarding	 information	

loss,	 particularly	 as	 it	 was	 retrospective,	 but	 these	 are	 common	 to	 all	 large	

retrospective	studies	and	are	not	unique	to	this	study.	

	

The	study	was	developed	utilising	as	many	patients	that	could	be	obtained.	The	

majority	of	these	were	obtained	from	large	centres	around	London	and	the	UK.	A	

freely	available	dataset	 from	centres	 from	the	United	States	was	also	obtained,	

albeit	this	accounted	for	less	than	10%	of	the	final	numbers.	The	end	result	was	

that	 this	 cohort	 in	 combination	 is	 the	 largest	 PET	 study	 to	 date	 for	 texture	

analysis.		
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The	 positive	 results	 do	 show	 that	 the	methods	 work.	 There	 is	 a	 concern	 that	

utilising	a	 large	number	of	 texture	 features	on	a	 limited	number	of	studies	can	

result	 in	 over-fitting	 of	 the	 data	 and	 type	 1	 errors	 (Chalkidou	 et	 al.,	 2015).	 In	

addition,	the	utilisation	of	machine	learning,	although	novel,	does	require	a	very	

large	number	of	 subjects,	 somewhere	 in	 the	order	of	 thousands	 as	 opposed	 to	

hundreds.	It	remains	to	be	seen	if	a	large	enough	cohort	will	ever	be	tested.		

	

Another	 issue,	 which	 is	 allied	 to	 the	 previous	 point,	 is	 the	 number	 of	 hours	

required	to	curate	the	data,	to	acquire	the	segmentations	and	all	the	appropriate	

clinical	end-points.	These	are	hours	rarely	mentioned	in	the	literature,	except	by	

Gillies	and	co-workers	(Gillies	et	al.,	2016)	where	many	hours	of	man-hours	have	

been	mentioned.	This	is	a	serious	hindrance	to	this	technology,	which	no	doubt	

will	be	streamlined	in	the	future	as	most	studies	have	been	testing	their	theories	

in	a	retrospective	fashion.		

	

The	minimal	volume	threshold	was	set	at	5ml,	in	keeping	with	previous	work	by	

Soussan	in	breast	cancer	PET	scans	(Soussan	et	al.,	2014),	however	this	may	still	

be	too	small	for	PET	given	the	fact	that	there	is	a	statistical	limitation	in	applying	

radiomics	 to	PET	data	 in	 small	 tumours	 (less	data-points	 in	 the	VOI	 compared	

with	CT,	14%	of	 the	 initial	535	patients	 initially	screened	had	tumour	volumes	

<5ml).	In	view	of	this,	the	results	should	be	treated	with	caution	when	trying	to	

apply	it	to	small	sized	tumours.			
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To	move	forwards,	a	large	prospective	study,	utilising	data	from	many	centres	in	

order	to	increase	numbers	is	warranted.	A	clear	advantage	identified	is	that	the	

texture	 features	 from	 the	 primary	 lesion	 are	 able	 to	 recognise	 poor	 prognosis	

earlier	than	even	stage.		

	

6.2.2	Effects	of	PET	imaging	parameters	on	the	results		

6.2.2.1	Effects	of	image	resolution	and	PVEs	
	

In	order	to	truly	spread	this	technique	into	the	clinical	domain,	some	uniformity	

of	 acquisition	 and	 elimination	 of	 PVEs	 needs	 to	 be	made.	 This	 study	 has	 gone	

quite	 a	 way	 to	 compare	 the	 differences	 between	 the	 different	 centres	 and	

machines,	an	assessment	that	has	never	been	performed	before.	The	maximum	

number	of	different	scanners	in	previous	studies	was	limited	to	two.		

6.2.2.2	Effects	of	image	reconstruction	parameters	(texture	
analysis)	
	

The	 effects	 of	 image	 reconstruction	 have	 been	 shown	 to	 affect	 the	 texture	

analysis	 (Galavis	 et	 al.,	 2010).	 The	 fact	 that	 different	 scanners	 from	 different	

centres	 were	 utilised	 and	 the	 initial	 PCA	 analysis	 demonstrated	 no	 significant	

difference	between	 the	different	groups	 is	very	beneficial	 for	 the	 future	of	 this	

technique	 in	 PET.	 	 Certainly	 the	 findings	 in	 PET	 studies	 in	 earlier	 work	 will	

remain	pertinent	in	the	future	even	as	PET	technology	advances.	
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6.2.2.3	Target	segmentation	
	

In	 order	 to	 utilise	 the	 best	 methods	 to	 segment	 tumours,	 a	 40%	 semi-

quantitative	method	was	used	to	segment	the	tumours.	Whether	adaptive	40%	is	

better	 than	 manual	 segmentation	 or	 another	 automated	 or	 semi-automated	

method	remains	to	be	seen.	This	area	was	not	explored	thoroughly	in	this	thesis	

and	 although	 some	 data	 in	 the	 literature	 exists	 that	 states	 that	 the	method	 of	

segmentation	does	not	significantly	alter	the	texture	analysis	results	(Galavis	et	

al.,	2010),	the	previous	number	of	studies	were	performed	on	small	samples	and	

whether	 methods	 of	 segmentation	 affect	 texture	 analysis	 in	 larger	 studies	

remains	to	be	seen.	

6.2.3	VOI	size	and	target	to	background	ratio	
	

A	 lot	 of	 work	 has	 been	 performed	 in	 this	 area	 and	 the	 literature(Hatt	 et	 al.,	

2010a,	Hatt	 et	 al.,	 2011a,	Orlhac	et	 al.,	 2014,	Brooks	and	Grigsby,	2014)	 states	

that	the	limitation	of	PET	is	its	poor	full-width	half	maximum,	permitting	voxels	

which	are	much	larger	than	those	in	MRI	and	CT.	 	The	minimal	volume	of	5mls	

utilised	in	this	study	was	based	on	a	study	on	FDG	in	breast	cancer	(Soussan	et	

al.,	2014).	Further	research	has	emerged	since	then	that	the	minimum	is	actually	

10mls	 (Hatt	et	al.,	2015),	 although	 the	authors	add	a	 caveat	 that	 the	minimum	

volume	 could	 be	 less	 than	 this	 when	 the	 volume’s	 relationship	 with	 other	

features	 are	 taken	 into	 account.	The	methodology	used	 in	 this	paper	utilised	a	

variety	of	tumour	sites	therefore	it	is	unclear	if	this	could	definitely	be	applied	to	

lung	cancer	in	this	these.	
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6.2.4	Statistical	methods	and	machine	learning	
	

There	 have	 been	 a	 variety	 of	 statistical	 techniques	 utilised	 to	 assess	 texture	

analysis,	from	the	simple	linear	regression	to	the	more	complex	recently	utilised	

machine	learning	methods.	In	this	study,	LASSO,	a	penalised	regression	method	

was	 utilised.	 Supervised	 PCA	 was	 also	 attempted	 but	 this	 method	 had	 to	 be	

abandoned,	 as	we	 could	 not	 overcome	 some	 serious	 hurdles	 including	 how	 to	

use	 dichotomous	 outcomes	 on	 continuous	 data.	 There	 are	 however	 over	 100	

different	 techniques	 for	 machine	 learning,	 such	 as	 random	 forests,	 etc.	 and	

favouring	one	method	over	the	other	may	be	a	potential	fallacy.	However,	due	to	

the	interests	of	time,	only	a	limited	number	of	methods	could	be	explored.			

	

6.3	Comparison	with	existing	Literature		

6.3.1	Texture	analysis	
	

A	 very	 important	 outcome	 of	 this	 work	 was	 the	 exploration	 of	 radiomics	

variables	 optimised	 from	 the	 literature	 on	 our	 lung	 dataset.	 Some	 of	 the	

interesting	conclusions,	which	could	be	explored	in	future,	demonstrate	that	the	

texture	 features	 that	 are	 associated	with	prognosis	 are	not	 linked	 to	 a	 specific	

tumour	type,	or	more	accurately	a	radiomics	feature	optimised	from	one	tumour	

types	may	be	 applicable	 in	 another	 tumour	 type.	 Indeed	 the	Cheng	 et	 al	 study	

(Cheng	et	al.,	2015)	carried	out	their	work	on	oesophageal	cancer,	but	the	same	

variables	were	strongly	significant	in	our	lung	dataset	(see	Table	5.15).		
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The	 other	 very	 interesting	 point	 was	 that	 a	 4	 feature	 set	 developed	 on	 CT	

worked	on	our	lung	dataset	(Table	5.15).	The	work	of	Aerts	(Aerts	et	al.,	2014a),	

for	instance	was	developed	on	the	same	tumour	type	(NSCLC)	and	also	tested	on	

head	and	neck	cancer.	However,	the	fact	that	a	completely	different	modality	was	

used	 in	 optimisation	 is	 very	 interesting	 and	 exciting.	What	 this	 means	 in	 this	

field	 is	 difficult	 to	 ascertain	 at	 this	 moment	 but	 could	 indicate	 that	 there	 are	

global	 texture	 features,	which	quantify	heterogeneity	and	that	are	 independent	

of	modality	and	tumour	type.		

	

6.4	Perspectives	and	Future	work	
	

6.4.1	PET	intra-tumour	heterogeneity	and	underlying	biology	
	

A	large	question	mark	hangs	over	texture	analysis	in	PET	due	to	the	inability	to	

explain	the	texture	 features	and	findings	with	their	underlying	biology.	 Indeed,	

in	 this	 study,	 where	 the	 tumours	were	 irradiated,	 and	 only	 a	 small	 sample	 of	

tumour	biopsy	was	obtained	to	confirm	the	diagnosis	for	treatment	purposes,	no	

corresponding	 underlying	 tumour	 biology	 could	 be	 compared.	 The	 inevitable	

question	 that	 hangs	 over	 texture	 analysis	 for	 the	 foreseeable	 future	 remains,	

“What	 do	 the	 numbers	 actually	 mean?”	 This	 also	 formed	 part	 of	 the	 thought	

proocesses	 behind	 the	 ovarian	 cancer	 texture	 analysis,	 where	 tissue	 and	 the	

ability	 to	 obtain	 from	 other	 ‘omics’	 data	 were	 available	 and	will	 be	 discussed	

shortly.	
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6.4.2	Informative	biomarkers	of	intra-tumour	biological	
heterogeneity	in	the	clinical	context	
	

The	difficult	 process	of	 translating	 laboratory	derived	data	 and	 clinical	 studies	

are	 well	 documented.	 The	 future	 for	 texture	 analysis	 is	 promising	 but	 a	 few	

hurdles	have	to	be	overcome.	Some	of	these	have	been	mentioned	already	such	

as	 the	 long	 time	 it	 takes	 to	processing	 the	 images	 and	marrying	 them	up	with	

their	 clinical	 data,	 etc.	 Issues	 of	 consent	 and	 data	 protection	 abound	 and	 in	

addition	 to	 this,	 the	 time	 taken	 by	 the	 radiation	 oncologist	 or	 radiologist	 to	

acquire	 or	 perform	 this	 is	 a	 severe	 limitation	 on	 a	 background	 of	 their	 ever-

increasing	workloads.	

However,	 an	 improved	 workflow,	 working	 with	 data	 scientists,	 software	

developers	and	biostatisticians	could	make	this	technique	ever	more	useful.	

	

6.4.2	Effects	of	patient	motion	and	positioning	
	

Ongoing	 studies	 demonstrating	 the	 changes	 of	 FDG	 in	 relation	 to	 patient	

positioning	and	location	of	the	tumour	should	be	pursued	in	the	future.	Whether,	

this	 affects	 the	 final	 texture	 analysis	 remains	 to	 be	 seen.	 	 The	 retrospective	

nature	 of	 the	 current	 study	 did	 not	 allow	 the	 exploration	 of	 the	 effect	 of	

breathing	especially	in	the	lower	lobes.		

6.4.3	Optimal	parameters	to	image	heterogeneity	with	PET	
	

The	optimal	parameters	for	PET	imaging	in	texture	analysis	are	again	something	

that	 is	 still	 being	explored	 in	 the	 literature(Galavis	 et	 al.,	 2010,	Willaime	et	 al.,	
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2013).	 Given	 the	 fact	 that	 PCA	 clusters	were	 not	 significant	 does	 demonstrate	

that	 intrinsic	 variances	 in	 texture	 may	 be	 due	 to	 underlying	 biological	

differences.	 However,	much	 like	 batching	 of	 data	 in	multi	 array	 RNA	 accounts	

(Guo	et	al.,	2014)	for	these	differences,	a	similar	method	can	be	applied	to	PET	

and	other	modalities.	

6.4.4	Monitoring	dynamic	and	adaptive	biological	complexity	
with	PET	
	

Questions	often	arise	as	to	what	are	the	advantages	of	dynamic	PET	over	static	

images	 that	 are	 used	 in	 clinical	 practice.	 Although,	 this	 is	 currently	 something	

that	is	not	routinely	used	on	the	clinical	side,	questions	do	arise	if	a	dynamic	data	

set	reflects	heterogeneity	more	accurately	and	whether	the	texture	analysis	can	

tease	 this	out.	The	retrospective	clinically	derived	 images	 from	this	study	have	

not	made	it	possible	to	explore	this	avenue.		
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Chapter	7	–	Results	Ovarian	study		
	

The	 lung	 texture	 analysis	 provided	 useful	 information	 on	 prognosis,	 however,	

the	underlying	biology	was	unknown.	Thus,	 in	order	to	 investigate	this	 further,	

we	obtained	further	information	on	contrast	enhanced	CT	for	patients	who	had	

fresh	 frozen	material	 banked	 at	 the	 time	of	 surgery	 to	 enable	 correlation	with	

other	radiomic	and	–omic	factors.	This	was	known	as	the	Hammersmith	cohort.	

7.1	Results	

7.1.1	Final	numbers	

7.1.1.1	Training	and	validation	set	
	

The	 final	 number	 obtained	 from	 the	 Hammersmith	 cohort	 was	 363	 CT	 scans.	

This	was	taken	from	an	original	number	of	546	consecutive	scans,	of	which	187	

were	excluded.	The	reasons	for	the	exclusions	are	as	follows	with	percentage	in	

brackets:	

CT	for	recurrent	disease	 28	(15.0%)	

Pre-operative	scan	not	available	 106	(56.7%)	

Non-ovarian	histology		 21	(11.1%)	

Non-contrast	scan	 10	(5.4%)	

No	primary	seen	 22	(11.2%)	

Could	not	be	anonymised		 1	(0.5%)	
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Non-ovarian	Histology	

Endometrial	 13	(11.1%)	

Primary	peritoneal	 5	(4.3%)	

Breast	cancer	 1	(0.9%)	

Uterine	 1	(0.9%)	

Other	 2	(1.7%)	
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Non-contrast	scan	

N=10	(5.4%)	

Incorrect	Pathology	

N=	21	(11.2	%)	

Recurrence	

N=	28	(15.0	%)	

CT	Scans	unavailable	

N=	106	(56.7%)	

(2)	Selected	for	segmentation	

N=	391	(71.6%)	

No	primary	ovarian	

mass	visualised	

N=22	(11.2%)	

Selected	for	texture	analysis	

N=	363	(66.9%)	

Figure	 7.1	 Overview	 demonstrating	 the	 selection	 of	 the	 final	 number	 of	 scans	 in	 the	

Hammersmith	cohort.	This	was	further	split	 into	a	training	dataset	of	136	patients	and	

validation	set	of	77	patients.	

(1)	Histology	in	tissue	bank		

N=	546	

Could	not	be	anonymised	

N=	1	(0.5%)	
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7.1.1.2	Validation	set	2	
	

The	acquisition	of	the	scans	for	the	validation	set	has	been	detailed	in	the	

previous	section.		

	

For	the	Validation	set	the	final	numbers	were	as	follows:	

From	143	scans	available,	70	were	selected.	The	reasons	for	the	exclusions	were	

as	follows	(percentage	of	excluded	from	73	total	given	in	brackets):	

Corrupted	file		 	 	 	 1	(1.4%)	

Incomplete	or	no	pre-op	scan:		 	 62	(85.0%)	

No	primary	ovarian	mass	visualised	 9	(12.3%)	

Metallic	artefact	 	 	 	 1	(1.4%)	

Non-contrast	scans	 	 	 	 1	(1.4%)	
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Non-contract	scan	

N=1	(0.7%)	

Corrupt	file	

N=	1	(0.7	%)	

Incomplete	or	no	pre-

op	scan	

N=	62	(43.4	%)	

(2)	Selected	for	segmentation	

N=	82	(57.3%)	

Primary	ovarian	mass	

not	visualised	

N=9	(6.3%)	

Selected	for	texture	analysis	

N=	70	(49.0	%)	

1

Figure	7.2	Overview	demonstrating	the	selection	of	the	final	number	of	scans	in	the	

second	validation	set.		

2

(1)	Proven	ovarian	tumour	in	TCGA	database	

N=	143	

Metallic	artefact	

N=	1	(0.7%)	
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Table	7.1	Breakdow
n	of	the	scanner	types,	m

atrix,	slice	thickness,	etc.	used	in	the	study	

Institution	
N
um

ber			

	(%
)	

V
endor	

N
um

ber	

(%
)	

Scanner	m
odel	

N
um

ber	

(%
)	

M
atrix	

N
um

ber	

(%
)	

Slice	

T
hick

ness	

A
lliance	

1	(0.3)	
G
E
	

150	

(41.3)	

A
quilion	

48	(13.3)	
512	x	

512	

349	

(96.1)		

0.63	

B
M
I	Chiltern	

	

1	(0.3)	
Phillips	

	

69	(19)	
B
rilliance	16	

	

2	(0.6)	
768	x	

768	

14	(3.9)	
1	

Central	M
id	

	

11	(3.1)	
Siem

ens	

	

94	(25.9)	
B
rilliance	64	

	

28	(7.7)	
	

	
1.25	

N
orthw

est	(N
orthw

ick	

Park)	

	

29	(8)	
T
oshiba	

	

48	(13.2)	
D
efinition	A

S	+	

	

26	(7.2)	
	

	
1.5	

Charing	Cross	

	

14	(3.9)	
Picker	

	

2	(0.6)	
D
iscovery	

CT
750H

	

	

1	(0.3)	
	

	
2	
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H
am

m
ersm

ith	

	

147	(40.5)	
	

	
E
m
otion	

	

1	(0.3)	
	

	
2.5	

St	M
arys	

	

33	(9.1)	
	

	
E
m
otion	D

uo	

	

3	(0.8)	
	

	
3	

U
H
W
	Cardiff	

	

1	(0.3)	
	

	
iCT

	256	

	

6	(1.7)	
	

	
3.2	

D
erriford	

	

1	(0.3)	
	

	
Ingenuity	Core	12	

	

1	(0.3)	
	

	
5	

E
aling	

	

19	(5.2)	
	

	
Ingenuity	CT

	

	

11	(3)	
	

	
5.5	

H
eatherw

ood	

	

7	(1.9)	
	

	
LightSpeed	16	

	

1	(0.3)	
	

	
7.5	

H
illingdon	

	

34	(9.3)	
	

	
LightSpeed	Plus	

	

12	(3.3)	
	

	
8	

Lancashire	
1	(0.3)	

	
	

LightSpeed	U
ltra	

96	(26.5)	
	

	
10	
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Lister	

	

1	(0.3)	
	

	
LightSpeed	V

CT
	

	

26	(7.2)	
	

	
	

M
ount	V

ernon	

	

4	(1.2)	
	

	
M
x8000	

	

13	(3.6)	
	

	
	

R
oyal	Shrew

sbury	

	

1	(0.3)	
	

	
M
x8000	ID

T
	16	

	

8	(2.2)	
	

	
	

St	G
eorges	

	

1	(0.3)	
	

	
M
xT
w
in	

	

2	(0.6)	
	

	
	

W
ellington	

	

1	(0.3)	
	

	
O
ptim

a	CT
600	

	

14	(3.6)	
	

	
	

W
est	M

id	

	

30	(8.3)	
	

	
Sensation	10	

	

1	(0.3)	
	

	
	

W
exham

	Park	

	

19	(5.2)	
	

	
Sensation	16	

	

15	(4.1)	
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Som
atom

	

D
efinition	

	

47	(12.9)	
	

	
	

	
	

	
	

Som
atom

	Plus	4	

	

1	(0.3)	
	

	
	

Total	
363	

	
363	

	
363	

	
363	
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7.2	The	Patient	Demographics	
	

Table	7.2	Demographics	of	the	patients	involved	in	the	study	

These	are	split	between	the	patients	that	went	straight	to	surgery	and	those	that	

had	 neo-adjuvant	 chemotherapy.	 A	 total	 of	 293	 patients	 underwent	 primary	

debulking	and	48	delayed	primary	debulking.		

																Feature	 	 Primary	debulking	

(N=293)	

Delayed	primary	

debulking	

(N=48)	

Age	at	diagnosis	 Median	

Range	

60	

19-91	

67.5	

43-83	

Type	 Benign	

Borderline	

Malignant	

Unknown	

6	

35	

247	

5	

0	

0	

47	

1	

Stage	 I-II	

III-IV	

Unknown	

70	

190	

33	

0	

45	

3	

Grade	 Low	

High	

15	

218	

3	

44	
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Unknown	 60	

	

1	

	

Histology	 Serous	

Non-serous	

Unknown	

193	

100	

0	

42	

6	

0	

Residual	disease	 No	

Yes	

Unknown	

199	

52	

42	

37	

7	

4	

Relapsed	 No	

Yes	

Unknown	

141	

117	

62	

21	

22	

5	

Deceased	 No	

Yes	

Unknown	

102	

187	

4	

30	

17	

1	

Molecular	data	 Texture	

RPPA	

tRNA-seq	

WGS	

268	

236	

173	

84	

42	

35	
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7.3	Comparing	patients:	Scanners		
	

	

(a)	

	

(b)	

	

Figure	7.3	PCA	and	Multidimensional	scaling	to	elucidate	any	batch	effect	
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a)	 Principal	 component	 analysis	 and	 b)	multidimensional	 scaling	 by	 Euclidean	

distance	 used	 to	 identify	 batch	 effect	 on	 thickness,	 matrix	 and	 vendor	

(manufacturer).	 There	 is	 strong	 clustering	 in	 the	 matrix	 and	 different	 vendor	

plots	 indicating	 that	any	variance	observed	are	not	due	 to	 intrinsic	differences	

between	 the	 scanners.	 The	 thickness	 demonstrated	 the	 strongest	 effect	 and	 as	

such	the	3.2	and	1.25	mm	thickness	scans	were	removed	from	further	analysis.	

7.3.1	The	effect	of	the	different	scanners	
	

Using	two	separate	methods	(Figure	7.3a)	to	assess	the	texture	variability	of	the	

different	CT	scanners	demonstrates	that	there	is	strong	clustering,	with	minimal	

variation.	This	can	be	seen	with	the	principal	component	analysis	of	the	first	two	

components	accounted	for	20%	of	the	variance	of	the	dataset.	The	groupings	for	

thickness,	 matrix	 and	 vendor	 were	 very	 tight.	 The	 thickness	 data	 will	 be	

explored	in	more	detail	later	on.		

	

In	addition,	in			Figure	7.3b	another	method	to	demonstrate	the	variability	of	the	

data,	namely	the	Euclidean	distance,	again	demonstrates	a	very	similar	result	to	

the	PCA,	with	clustering	of	the	data	points.	In	short,	this	suggests	that	the	three	

factors	 explored,	 namely	 the	 slice	 thickness,	 matrix	 and	 vendor	 and	 invariant	

between	 the	 different	 scanners	 and	 thus	 any	 difference	 that	we	do	 see	 can	 be	

inferred	to	as	belonging	to	the	inherent	tumour	biological	differences.	
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7.4	Unsupervised	clustering	
	

Two	 separate	 methods	 were	 used	 to	 dichotomise	 the	 data	 so	 that	 underlying	

differences	could	be	delineated.	First,	an	unsupervised	clustering	method	(in	our	

case,	 hierarchical	 clustering)	 was	 used.	 An	 unsupervised	 clustering	 method	 is	

when	the	data	is	arranged	or	sorted	without	any	priori	data	used.	For	instance,	

no	stage	or	outcome	data	is	added	to	the	algorithm.	This	allows	the	mining	tool	

to	 develop	 clusters	 of	 similarity,	 which	 can	 be	 tested	 against	 survival	 and	

prediction	 of	 response.	 The	 unsupervised	 clustering	 method	 was	 able	 to	

separate	out	 the	data,	 and	when	 linked	 to	progression	 free	 survival	 (p=0.009),	

this	was	significant,	but	overall	survival	was	not	significant	OS	(p=0.09).	(Figures	

7.4		and	7.5).	

	

The	 findings	 from	 this	 indicate	 that	 there	are	 some	 inherent	differences	 in	 the	

data	 that	 can	 be	 determined	 and	 linked	 to	 survival.	 The	 model	 was	 further	

refined	to	strengthen	these	early	promising	findings.		

	

In	addition,	the	different	cluster	groups	were	also	very	similar	when	compared	

using	Pearson	and	Euclidean	distances	(Figure	7.3).	
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Figure	7.4	U
nsupervised	clustering	of	all	the	serous	cases	dem

onstrate	diagnostic	and	prognostic	potential.			

Using	hierarchical	clustering	by	Pearson	correlation,	the	scans	w
ere	separated	by	low

	(stage	1-2)	and	high	(stage	3-4)	and	w
hether	the	

prim
ary	tum

our	involved	one	ovary	or	both.	Interestingly,	75%
	of	bilateral	tum

ours	clustered	together	using	this	m
ethod.	Also	using	a	

KM
	curve	of	these	five	groups,	there	w

as	a	significant	association	w
ith	the	PFS	(p=0.009)	but	not	w

ith	OS	(p=0.09).	Acknow
ledgm

ents	go	

to	H
aonan	Lu	and	Edw

ard	Curry	for	their	help	in	generating	this	data.		
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		Figure	7.5	U
sing	tw

o	different	m
ethods	to	show

	the	clusters	obtained	from
	the	hierarchical	clustering.		

There	w
as	a	very	close	relationship	and	sim

ilarity	of	the	clustering	using	the	Pearson	correlation	and	that	obtained	from
	Euclidean	

distance.		
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7.5	Slice	Thickness	and	survival	
	

In	order	to	further	improve	the	model,	an	examination	of	the	slice	thickness	and	

the	group	clustering	was	made.	In	Figure	7.6,	a	comparison	was	made	between	

the	slice	thickness	and	clusters.	Cluster	2	was	significantly	different	from	all	the	

other	 clusters	 (p=3.4	 x10-10).	 This	 cluster	 was	 also	 significantly	 biased	 due	 to	

small	numbers	and	the	decision	was	made	to	remove	this	variable	(Figure	7.6).	

Removing	 this	 outlier	 group,	 demonstrated	 that	 the	 remainder	 of	 the	 groups	

were	stable	(Figure	7.7).	This	was	further	confirmed	when	a	box-,	mosaic	plots	

and	Kaplan	Meier	curves	of	all	the	different	slice	thickness	demonstrated	a	better	

survival	with	 a	 slice	 thickness	 of	 1.5	 and	 10	mm	 (Figures	 7.8	 and	 7.9).	 As	 the	

scan	type	should	not	contribute	to	survival,	these	are	clearly	outliers	and	should	

be	removed	from	further	analysis.		
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	Figure	7.6		Com
paring	the	5	clusters	w

ith	scan	thickness.		

There	is	a	significant	difference	between	cluster	2	and	the	others	when	compared	with	slice	thickness.	Cluster	2	was	associated	with	

thinner	slices	(p	=	3.4	x10 -10	by	Kruskall	W
allis).	The	decision	was	made	to	remove	this	cluster	and	re-run	the	clustering.	



7.5	Slice	Thickness	and	survival	 	 	
	

	

247	

	

	

Figure	7.7	Re-run	of	the	clustering	without	the	outlier	demonstrates	stable	

subgroups	

The	unsupervised	clustering	of	the	groups	has	resulted	in	stable	sub-groups	that	

were	 again	 checked	 with	 Pearson	 correlation	 and	 Euclidean	 distance.
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Figure	7.8	The	association	betw
een	the	clusters	and	the	slice	thickness	

There	is	an	association	betw
een	the	clusters	and	the	size	thickness	as	dem

onstrated	by	the	boxplot	(p=9.4	x10
-9	and	the	m

osaic	plot	(p	=	

1.9	x10
-9).	
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Figure	7.9	K
aplan-M

eier	plots	of	the	slice	thickness	and	survival	a)	PFS,	b)	O
S.	

Interestingly,	there	w
as	a	survival	difference	depending	on	the	slice	thickness	on	both	the	PFS	(p=0.0004)	and	OS	(p=0.0003).	The	scans	

w
ith	thickness	of	1.5	and	10	m

m
	had	better	survival
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7.6	Rerun	of	the	unsupervised	clustering	
	

The	analysis	was	re-run	with	 the	 removal	of	 the	small	number	of	outliers.	The	

new	data	 generated	 demonstrated	 an	 improved	model	 (Figure	 7.10	 and	 7.11).	

These	 show	 that	 the	 OS	 KM	 curve	 is	 significant	 with	 p=0.0214,	 HR	 1.59.	

Interestingly,	when	there	were	bilateral	 tumours,	 there	was	a	strong	clustering	

of	 these	 (96%).	 	 There	was	 also	no	 significant	 association	of	 the	unsupervised	

clustering	method	outcome	with	stage.	
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Figure	7.10	Rem
oving	the	slice	thickness	of	1.5	and	10m

m
	dem

onstrated	stable	clusters	and	prognostic	pow
er.	

Given	these	results,	the	decision	w
as	m

ade	to	keep	these	factors	in	the	study.	
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Figure	7.11	U
nsupervised	clustering	of	corrected	clusters	dem

onstrates	diagnostic	and	prognostic	potential	

Tw
o	clusters	w

ere	then	generated.	The	clusters	w
ere	not	associated	w

ith	Stage	(p=0.089)	but	w
ere	significantly	associated	w

ith	the	

presence	of	ascites	(p=0.0009).	96%
	of	bilateral	tum

ours	clustered	together.	The	Kaplan-M
eier	curves	dem

onstrate	significant	

associations	w
ith	the	PFS	(p=0.002,	H

R	1.78,	95%
	CI	1.24-2.57).	W

hen	this	w
as	adjusted	for	stage	and	ascites	p=0.0277,	H

R	1.65,	95%
	CI	

(1.06-2.57).		There	w
as	also	an	association	w

ith	OS	w
ith	p=0.0214,	H

R	1.59	(95%
	CI	1.07-2.36),	although	the	significance	disappeared	

w
hen	stage	and	ascites	w

ere	taken	into	account	(p=0.755).	
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7.7	Association	between	different	clinical	and	CT	factors.		
	

To	ensure	that	certain	known	contributing	 factors	(Ahmed	and	Stenvers,	2013,	

Gupta	and	Lis,	2009)	were	accounted	for,	boxplots	for	stage	and	slice	thickness	

and	 slice	 thickness	 and	 ascites	were	performed	 (Figure	7.12).	Neither	of	 these	

were	significant.	The	CA125	and	cluster	were	also	plotted	on	a	boxplot	(Figure	

7.13)	but	this	was	again	not	significant.		

	

	

Figure	 7.12	 The	 scan	 thickness	 was	 not	 associated	 with	 stage	 or	 the	

presence	of	ascites		

Using	a	boxplot,	stage	did	not	have	an	association	with	thickness	(Wilcoxin	test	

p=0.681,	Chi-squared	test	p=0.533).	Using	the	same	methodology,	 the	presence	

of	ascites	also	did	not	have	an	association	with	slice	thickness	(Wilcoxin	p=0.404,	

Chi-squared	test	p=0.08).		

	

Supplementary 3. Scan thickness is not associated with stage or 
presence of ascites
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Figure	7.13	CA-125	was	not	significantly	different	between	the	two	clusters	

The	CA-125,	a	blood-based	tumour	marker,	used	for	the	detecting	the	presence	

of	ovarian	malignancy,	was	not	significantly	different	between	the	two	clusters	

(p=	0.06.)	

	

The	two	clusters	that	we	have	developed	seem	to	be	independent	of	known	

factors	such	as	ascites	and	CA-125.		

	

Supplementary 3. CA125 is not significantly different between 
two clusters



7.8	Univariate	method	adjusted	for	clinical	factors	 	 	
	

	

255	

7.8	Univariate	method	adjusted	for	clinical	factors	
	

Using	single	univariate	analysis,	KM	curves	were	generated	which	accounted	for	

known	 associations	 like	 stage,	 presence	 of	 ascites,	 etc.	 (Figure	 7.14).	 This	was	

used	 to	 further	 strengthen	 our	model.	 The	 results	 (Figure	 7.14a)	 demonstrate	

that	there	was	an	association	with	the	adjusted	texture	factor,	NGTDMcontrast	and	

PFS,	p=0.055,	HR	1.34,	95%	CI	1.1-1.64,	and	in	the	validation	set	on	the	KM	curve	

p=0.003	and	on	the	multivariate	analysis,	p=0.012,	HR	1.5,	95%	CI	(1.11-2.26).		

	

	In	Figure	7.14,	using	the	texture	 feature,	GLRLMSRLGLE_LLL,	split	at	 the	median,	

the	 KM	 curve	 had	 a	 p=0.023	 in	 the	 training	 set	 and	 on	 multivariate	 analysis	

(adjusted	for	stage,	grade,	residual	disease,	ascites	and	thickness):	p=0.001,	HR	

1.34,	95%	CI	1.2-1.54,	and	 in	 the	 test	 set	on	 the	KM	curve	p=0.037	and	on	 the	

multivariate	analysis,	p=0.0004,	HR	1.71,	95%	CI	(1.27-2.29).	
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	a)	

	b)	

Figure	7.14	Texture	Features	may	predict	survival		

(a)	For	PFS:	using	the	texture	feature	NGTDMcontrast	split	at	 the	median,	 the	KM	

curve	had	a	p=0.005	in	the	training	set	and	on	multivariate	analysis	(adjusted	for	

stage,	grade,	residual	disease,	ascites	and	thickness):	p=0.055,	HR	1.34,	95%	CI	

1.1-1.64,	 and	 in	 the	 test	 set	 (TCGA)	 on	 the	 KM	 curve	 p=0.003	 and	 on	 the	

multivariate	analysis,	p=0.012,	HR	1.5,	95%	CI	(1.11-2.26).	

(b)	 For	OS:	 using	 the	 texture	 feature	GLRLMSRLGLE_LLL	 split	 at	 the	median,	 the	

KM	 curve	 had	 a	 p=0.023	 in	 the	 training	 set	 and	 on	 multivariate	 analysis	

Figure 3.(Aim1) Texture feature may predict the progression 
free survival

Figure 3.(Aim1) Texture feature may predict the overall survival
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(adjusted	for	stage,	grade,	residual	disease,	ascites	and	thickness):	p=0.001,	HR	

1.34,	95%	CI	1.2-1.54,	and	in	the	test	set	(TCGA)	on	the	KM	curve	p=0.037	and	on	

the	multivariate	analysis,	p=0.0004,	HR	1.71,	95%	CI	(1.27-2.29).	

	

7.9	Using	supervised	clustering	using	LASSO	
	

The	 fact	 that	 unsupervised	 clustering	 was	 able	 to	 split	 the	 data	 into	 two	

significant	 groups	 was	 very	 promising.	 Thus	 a	 supervised	 method,	 which	

incorporated	outcome	data,	was	 implemented	 to	 develop	 this	 further.	We	 first	

performed	Cox	regression	with	overall	survival	examining	each	feature	 in	turn,	

using	the	texture	features	from	the	primary	tumours	of	the	HH	training	dataset.	

To	 develop	 a	 more	 powerful	 model,	 LASSO,	 a	 penalised	 regression	 method,	

which	 was	 used	 for	 the	 NSCLC,	 was	 again	 implemented.	 Forty-two	 radiomic	

features	were	 found	to	be	significantly	associated	with	OS	(false	discovery	rate	

<0.05).	The	LASSO	model	utilised	the	657	generated	texture	features	and	created	

a	 new	 texture	 factor,	 which	 included	 4	 weighted	 texture	 variables.	 This	 was	

tested	on	the	training	set	(Figure	7.21).	The	newly	discovered	feature	vector	was	

able	to	give	a	Radiomic	Prognostic	Vector	(RPV)	for	each	tumour.		

	

The	 RPV	 consists	 of	 four	 radiomic	 features:	 a)	 FD_max_25HUgl	 (coefficient:	 -

0.0876),	 b)	 GLRLM_SRLGLE_LLL_25HUgl	 (coefficient:	 0.0869),	 c)	

NGTDM_Contra_HLL_25HUgl	 (coefficient:	 0.165),	 and	 d)	 FOS_Imedian_LHH	

(coefficient:	 0.250).	 All	 the	 features	 have	 approximately	 even	 weighting	 and	

relate	 to	 tumor	 macro-architecture	 at	 the	 25	 Hounsfield	 Unit	 gray	 level	 (and	

discrete	wavelet	filters).	
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An	 unsupervised	 k-means	 clustering	 approach	 was	 used	 to	 split	 the	 patients	

from	the	three	cohorts	based	on	their	RPV	into	three	subgroups	(low-,	medium,	

and	 high-risk).	 The	 patient	 groups	 stratified	 by	 RPV	 differed	 significantly	 on	

overall	survival	on	the	training	dataset	(N=136,	p<	0.0001;	log-rank	test).	Using	

the	 same	 boundaries	 as	 the	 testing	 set,	 the	 independent	 datasets	 were	 also	

tested	and	this	confirmed	the	findings	(HH	validation	set,	N	=	77,	p	=	0.0274,	log	

rank	and	TCGA	validation	dataset,	N=70,	p	=	0.000105,	log	rank,	Fig	7.21)	

	

In	a	Cox	regression	model	 including	age,	stage,	post-operative	residual	disease,	

neo-adjuvant	 chemotherapy	 and	 the	 scan	 thickness,	 RPV	 remained	 significant	

and	 remained	 associated	 with	 OS	 in	 the	 training	 dataset	 	 (Hazard	 ratio:	 3.83,	

95%	Confidence	Interval	(2.27-6.46),	p=	5.11x10-7;	RPV	range:	-0.322	to	3.16),	

as	 well	 as	 the	 TCGA	 validation	 dataset	 (HR:	 4.87,	 95%	 CI	 (1.67-14.2),	 p=	

0.00380)	 and	 the	 HH	 validation	 dataset	 (HR:	 7.36,	 95%	 CI	 (1.29-41.9),	 p=	

0.0245).	 Age,	 stage	 and	 post-operative	 residual	 disease	 were	 significantly	

associated	with	OS	 in	either	uni-	or	multivariable	analysis	 in	 the	combined	HH	

cohort	while	 RPV	 remained	 the	 strongest	 prognostic	 factor,	 suggesting	 RPV	 is	

prognostic	in	a	representative	HGSOC	cohort.	

	

Notably,	 RPV	 possessed	 a	 better	 prognostic	 power	 when	 compared	 to	 the	

existing	 prognostic	 markers	 including	 CA125	 and	 the	 transcriptome-based	

molecular	 subtype	 and	 potentially	 synergises	 with	 existing	 CT-based	

morphological	 approaches.	 Apart	 from	 prognosis,	 high	 RPV	 was	 found	

significantly	associated	with	primary	chemotherapy	resistance,	shorter	PFS	and	
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poor	 surgical	 outcome	 (Fig.	 7.21)	 suggesting	 RPV	 as	 a	 potential	 predictive	

marker	in	HGSOC.		

	

Figure	 7.15	 Texture	 features	 predict	 stage	 using	 LASSO	 regression.	 Using	 the	

LASSO	method	 for	penalised	regression,	 feature	reduction	was	utilised	and	 the	

16	 features	 signature	 (feature	 value)	was	 tested	 on	 the	 training	 set	with	 very	

significant	results.	There	was	an	AUC	(area	under	the	curve)	of	0.737.	The	reason	

why	N	is	453	is	because	all	the	right	and	left	sided	ovarian	masses	were	treated	

as	separate.	

	

7.10	Comparing	the	radiomic	data	between	the	datasets	
	

Although,	 the	 validation	 dataset	 has	 been	 incorporated	 in	 testing	 the	

unsupervised	models,	 further	 details	 and	 analysis	were	 needed	 to	 ensure	 that	

the	 validation	 dataset	was	 similar	 to	 the	 training	 set.	 This	was	 to	 ensure	 that	

neither	dataset	has	unique	features	that	would	preclude	to	making	any	general	

conclusions	and	also	to	reduce	the	possibility	of	false	discovery.	Using	different	



7.9	Using	supervised	clustering	using	LASSO	 	 	
	

	

260	

methods	to	compare	the	radiomic	datasets	for	the	two	cohorts,	it	was	seen	that	

there	were	no	significant	differences	between	the	two	groups	(Figure	7.16).	The	

Pearson	rank	correlation	between	the	two	groups	was	very	high	(r	=	0.817,	p	<	

2.2	 x10-16).	 The	 same	 methods	 were	 adopted	 for	 comparing	 the	 molecular	

portions	of	both	datasets,	which	is	expanded	in	the	next	section.	
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a)	

b)		

Figure	7.16	The	Radiomic	data	from	the	two	cohorts	is	similar	

Using	the	multidimensional	scaling	(MDS)	by	a)	Euclidean	method	and	Pearson	

Correlation,	there	was	a	very	strong	correlation	between	the	two	datasets	(in	the	

latter	r	=	0.817,	p	<	2.2	x10-16).	(b)The	boxplot	of	the	features	also	demonstrates	

this.		

	 	

Supplementary 4. Radiomic data from two cohorts are similar

Supplementary 4. Radiomic data from two cohorts are similar
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Using	the	gene	expression	profiles	collected	in	parallel	with	radiomic	profiles,	a	

surrogate	 marker	 of	 RPV	 was	 constructed	 based	 on	 a	 weighted	 list	 of	 mRNA	

expressions	 in	 the	 TCGA	 validation	 dataset	 where	 both	 CT	 scans	 and	 gene	

expression	 profiles	 were	 available	 (eRPV).	 The	 eRPV	 strongly	 correlated	 with	

RPV	(r=	0.720)	 in	the	TCGA	validation	dataset	and	significantly	 interacted	with	

RPV	in	the	Cox	regression	model.	It	showed	a	similar	prognostic	potential	as	RPV	

in	 two	 additional	 cohorts	 (TCGA	 dataset	 without	 publicly	 available	 CT	 scans:	

n=448,	HR=	2.19,	95%	CI	(1.23	-	4.25),	p=	0.0208;	Tothill	dataset:	n=	228,	HR=	

7.94,	 95%	 CI	 (2.02	 -	 31.3),	 p=	 0.00303;	 adjusted	 for	 stage,	 grade,	 residual	

disease,	age	and	neo-adjuvant	chemotherapy).	The	eRPV	was	thus	considered	as	

a	surrogate	of	RPV	and	subsequently	used	eRPV	in	a	subset	of	the	TCGA	dataset	

without	publicly	available	CT	scans,	as	an	extension	of	RPV	(Noted	as	 ‘eRPV’	 in	

Fig	7.21).		

	

Overall,	we	observed	RPV	to	be	associated	with	overall	survival,	independent	of	

known	clinical	prognostic	factors,	suggesting	that	it	may	reflect	distinct	aspects	

of	clinically	relevant	variation	across	HGSOC.	

	

7.11	The	molecular	pathways	
	

The	underlying	molecular	pathways	and	their	associations	with	texture	analysis	

were	further	explored.	First,	the	RPPA	(reverse	phase	protein	arrays)	quality	in	

the	training	set	(Figure	7.17)	was	demonstrated	in	an	MDS	plot.	This	permitted	
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the	 removal	 of	 low	 tumour	 content	 samples	 (<30%).	 This	 was	 important	 for	

further	analysis	as	the	validation	set	included	high	tumour	content	samples	only.		

	

Secondly,	 further	 comparisons	 of	 the	 protein	 data	 between	 the	 two	 datasets	

were	examined	(Figures	7.17	and	7.18).	It	was	demonstrated	that	there	was	no	

significant	difference	between	the	two	groups,	which	was	very	important	when	

using	 the	 sets	 to	 test	 the	 findings	 on	 the	 training	 set.	 Again	 two	 different	

methods	were	used	to	demonstrate	this,	the	Euclidean	and	Pearson	methods	and	

the	 boxplot	 method	 (Figure	 7.19a	 and	 b).	 	 The	 Pearson	 rank	 correlation	 was	

(r=0.48,	p	<2.2	x10-16).	Although	this	was	not	as	high	as	the	texture	 features,	 it	

was	still	significant.		

	

A	different	method	to	demonstrate	the	similarities	between	the	two	groups	was	

used	to	quantify	the	relative	amount	of	specific	proteins	in	both	groups	(Figure	

7.14).	This	demonstrated	the	 levels	of	 transglutaminase	and	Cyclin	B1	proteins	

were	similar	 in	 the	 training	and	validation	sets.	The	 levels	of	 transglutaminase	

compared	 with	 stage	 in	 the	 training	 and	 validation	 sets	 were	 similar	 and	

significant.	 Comparing	 Cyclin	 B	 and	 grade	 demonstrated	 a	 Spearman	 Rank	 of	

r=0.447,	 p=	 5.7	 x10-6	 in	 the	 training	 set	 and	 r=0.190,	 p=	 0.00015	 in	 the	

validation	set.	
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Figure	7.17	RPPA	quality	control	

Using	the	MDS	plot	of	the	protein	by	tumour	content	and	sample	origin,	the	low	tumour-content	samples	were	removed.	

Supplem
entary 5. RPPA quality control: low

 tum
our-content 

sam
ples are rem

oved
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a) 	

b) 	

Figure	7.18	The	RPPA	data	in	the	two	samples	is	similar	

The	MDS	 by	 (a)	 Euclidian,	 Pearson	 correlation	 (r=0.48,	 p	 <2.2	 x10-16)	 and	 (b)	

boxplot	demonstrate	 the	 similarity	of	 the	 two	datasets.	There	 is,	however,	 less	

correlation	than	that	compared	with	the	texture	features.	
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a) 	

b)

Figure	7.19	The	RPPA	data	in	the	two	samples	is	similar	part	2	

Boxplots	 of	 (a)	 transglutaminase	 and	 (b)	 Cyclin	 B1	 show	 very	 similar	 levels	

across	stage	in	the	training	and	validation	sets.		
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Fig	7.20	Molecular	characteristics	associated	with	RPV	in	HGSOC.	The	Gene	

enrichment	analysis	identified	a)	RPV-positively	correlated	biological	pathways	

and	b)	RPV-negatively	correlated	pathways	(FDR	<0.05).	



7.11	The	m
olecular	pathw

ays	
	

	
		

268	

													

Fig	7.21	H
eatm

ap	and	associations	of	RPV	in	H
GSO

C	Heatm
ap	dem

onstrating	protein	expression	correlation	(Fibronectin,	Rad51	and	

FoxM
1)	w

ith	RPV	for	47	cases	in	the	TCGA	validation	dataset.	These	protein	features	w
ere	com

pared	w
ith	RPV	w

ith	significance	show
n	

for	119	cases	in	the	HH	cohort	and	the	eRPV	from
	353	additional	TCGA	cases.	In	the	top	panel	the	RPV	is	ranked	from

	low
	to	high	(left	to	
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right)	and	their	corresponding	eRPV	(light	blue).	In	the	low
er	panel,	the	protein	expression	level	of	the	Fibronectin,	Rad51	and	FoxM

1.	

The	p-values	are	given	by	one-sided	Spearm
an’s	correlation	test	as	validation	of	the	transcriptom

ic	analyses.	The	clinical,	histological	

and	genetic	characteristics	associated	w
ith	the	RPV	in	the	TCGA	and	HH	cohorts	are	show

n.	A	single	rectangle	block	represents	a	patient	

in	the	TCGA	validation	dataset.	The	significance	of	the	association	betw
een	these	characteristics	w

ith	the	RPV	in	the	tw
o	validation	

datasets	and	the	additional	TCGA	dataset	is	show
n	on	the	right.	The	significance	w

as	calculated	from
	Krukal-W

allis	(m
olecular	subtype)	

or	tw
o-tailed	W

ilcoxon	rank-sum
	test.	The	association	betw

een	RPV	and	proliferation	or	DNA	dam
age	is	highlighted.	***	p<0.001,	

**p<0.01,	*p<0.05,	ns	p>0.1.		

	7.2	Peritoneal	Cancer	Index	on	preoperative	CT	in	ovarian	cancer	
	297	patients	w

ere	eligible	and	the	surgical	outcom
e	w

as	available	in	277	(93%
)	patients.	The	tum

our	grading	w
as	available	in	187	

(63%
)	(Table	7.3).	

	The	surgical	procedure	included	a	total	hysterectom
y	and	bilateral	salpingo-oophorectom

y,	om
entectom

y,	lym
phadenectom

y	in	the	

case	of	bulky	lym
ph	nodes.	There	w

as	also	careful	evaluation	of	all	peritoneal	surface	w
ith	resection	of	any	suspicious	peritoneal	lesions	

or	other	tum
our	involved	organs	or	structures.	A	diaphragm

atic	stripping	or	full	thickness	resection	w
as	perform

ed	in	61%
	of	patients,	
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splenectom
y	in	18%

,	liver	capsule	resection	in	37%
,	a	bow

el	resection	in	63%
,	a	pelvic	lym

phadenectom
y	in	43%

	and	a	para-aortic	

lym
phadenectom

y	in	43%
.	Total	m

acroscopic	tum
our	clearance	w

as	achieved	in	77%
	of	the	patients.		

	Serous	ovarian	cancer	(both	high-	and	low
-	grade	subtypes)	had	significantly	higher	CT-PCI	in	com

parison	w
ith	all	the	other	histological	

subtypes	(p<0.001)	and	w
as	associated	w

ith	a	significantly	m
ore	frequent	upper	abdom

inal	and	bow
el	involvem

ent	(p<0.001).	

	Table	7.3	Descriptive	Analysis	of	those	included	in	the	Ovarian	CT-PCI	w
ith	clinical	and	PCI	details	

	

AGE	
M
ED
IAN	

RAN
GE	

	
	

	

	
61	

19-91	
	

	
	

	
	

	
	

	
	

H
ISTO

LO
GY	

SERO
U
S	

EN
D
O
M
ETRIAL	

M
U
CIN

O
U
S	

CLEAR	

CELLS	

O
TH

ER	

	
237/297	(79.8%

)	
17/297	(5.7%

)	
12/297	(4.0%

)	
12/297	(4%

)	
19/297	

(6.5%
)	



7.2	Peritoneal	Cancer	Index	on	preoperative	CT	in	ovarian	cancer	
	

	
		

271	

	
	

	
	

	
	

FIGO
	STAGE	

I	
II	

III	
IV	

	

	
45/297	(15.2%

)	
26/297	(8.7%

)	
155/297	

(52.2%
)	

71/297	

(23.9%
)	

	

	
	

	
	

	
	

BO
W
EL	IN

VO
LVEM

EN
T	AT	CT	

54/297	(18.2%
)	

	
	

	
	

	
	

	
	

	
	

H
ISTO

LO
GICAL	GRAD

E	
1	

2	
3	

	
	

	
13/187	(7.0%

)	
42/187	(22.4%

)	
132/187	

(70.6%
)	

	
	

	
	

	
	

	
	

Surgical	outcom
e	

CO
M
PLETE	

CYTO
RED

U
CTIVE	

IN
CO
M
PLETE	

CYTO
RED

U
CTIVE	

	
	

	

	
214/277	(77.3%

)	
63/277	(22.7%

)	
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CT	PCI	VALU
E	

M
ED
IAN

	
M
EAN

	
RAN

GE	
	

	

	
9	

10.9	
0-39	

	
	

	
	

	
	

	
	

CT-PCI	groups	
CT-PCI=0	

0<CT-PCI≤5	
5<CT-PCI≤10	

10<CT-

PCI≤20	

CT-

PCI>20	

	
85/297	(28.6%

)	
41/297	(13.8%

)	
27/297	(9.1%

)	
81/297	

(27.3%
)	

63/297	

(21.2%
)	

	
	

	
	

	
	

D
ISEASE	FREE	SU

RVIVAL	

(M
O
N
TH

S)	

M
ED
IAN

	
M
EAN

	
RAN

GE	
	

	

	
14.6	

25.5	
0-126	

	
	

	
	

	
	

	
	

O
VERALL	SU

RVIVAL	

(M
O
N
TH

)	

M
ED
IAN

	
M
EAN

	
RAN

GE	
	

	

	
24.7	

34.4	
0-126	
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7.2.1	Correlation	between	CT-PCI	and	postoperative	residual	
disease	
	

CT-PCI	was	positively	associated	with	the	risk	of	postoperative	residual	disease	

of	any	size	(OR=1.04,	95%CI:	1.01-1.07;	p=0.003).	The	median	CT-PCI	of	patients	

with	residual	disease	after	surgery	was	16	(interquartile	range,	IQR:	6-20),	while	

amongst	patients	with	complete	tumour	cytoreductive	surgery,	it	was	7	(IQR:	0-

19).	 	 The	 proportion	 of	 patients	 with	 suboptimal	 cytoreduction	 was	 32%	

(31/97)	 among	 those	 with	 PCI>16	 and	 18%	 (32/180),	 amongst	 those	 with	

PCI<=16	 (p=0.001).	 The	ROC	 curve	 analysis	 returned	 an	 area	 under	 the	 curve	

(AUC)	of	0.63	(95%CI:	0.56-0.71).	The	best	positive	predictive	value	for	complete	

resection	was	0.36,	corresponding	to	a	PCI	threshold	of	9,	while	the	best	negative	

predictive	value	was	0.90,	corresponding	to	a	PCI	threshold	of	16.		

	

7.2.2	Correlation	between	CT-PCI	interval	categories	and	
survival	
	

Considering	 the	 value	 of	 CT-PCI,	 the	 Kaplan-Meier	 curves	 show	 differences	

between	the	five	groups	based	solely	on	the	PCI	intervals,	especially	for	patients	

with	no	visible	disease	at	the	completion	of	surgery	(Fig	7.21).	Survival	analysis	

according	 to	 Cox-regression	 model	 showed	 that	 FIGO	 stage	 (p<0.001),	

histological	sub-type	(p<0.01)	and	the	CT-PCI	value	(HR=1.03,	95%CI:	1.00-1.05;	

p<0.05)	were	significant	predictors	of	PFS.	Stage	and	histological	subtype	were	

time-dependent	 variables;	 whilst	 their	 estimate	 as	 prognostic	 markers	 of	

recurrence	 was	 maximal	 at	 the	 time	 of	 surgery,	 and	 declined	 with	 time.	 This	
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means	their	strength	as	prognostic	factor	for	recurrence	is	very	high	at	the	time	

of	 surgery	 but	 declines	 afterwards;	 in	 contrast,	 a	 relatively	 higher	 CT-PCI	

maintained	 the	 risk	of	 recurrence	 stable	across	 time,	 compared	 to	a	 lower	CT-

PCI.		
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a)  

b)  

 

Fig	 7.22:	 Kaplan-Meier	 survival	 curves	 of	 patients,	 across	 5	 ordered	 PCI	

interval	 categories.	 Panel	 a)	 Progression	 Free	 Survival.	 Panel	 b)	 Overall	

Survival.	
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Tick	marks	on	each	line	represent	censored	data.		

Similar	 findings	 were	 obtained	 for	 OS,	 where	 in	 multivariate	 Cox-regression	

analysis,	 FIGO	 stage	 (p<0.001)	 and	 histology	 (p<0.01)	 and	 CT-PCI	 (HR=1.03,	

95%CI:	1.01-1.06;	p<0.05)	were	independent	predictors	of	OS	(all	of	them	satisfy	

the	proportional	hazard	assumption	with	 time).	Kaplan-Meier	 curves	 for	OS	of	

the	five	groups	are	shown	in	Fig7.21b).	

	

7.2.3	Correlation	between	CT-PCI	anatomical	categories	and	
survival	
	

The	 population	was	 divided	 into	 four	 groups	 based	 on	 the	 abdominal	 regions	

involved	 on	 CT,	 independently	 of	 the	 PCI	 value:	 1.	 No	 peritoneal	 disease,	 2.	

Peritoneal	disease	in	the	lower	abdomen	only,	3.	Presence	of	peritoneal	disease	

in	 the	upper	 abdomen,	 4.	 Peritoneal	 disease	 in	 the	upper	 abdomen	with	 small	

bowel	involvement.				

	

In	 multivariable	 Cox-regression	 analysis	 on	 259	 patients	 (excluding	 patients	

with	mucinous	carcinoma	for	small	numbers	and	with	missing	data),	those	with	

peritoneal	involvement	of	the	lower	abdominal	regions	(HR=2.04,	95%CI:	0.94-

4.45;	 p=0.07)	 and	 with	 bowel	 involvement	 (HR=2.28,	 95%CI:	 1.25-4.16;	

p=0.007)	 had	 a	 shorter	 PFS	 in	 comparison	 with	 patients	 without	 peritoneal	

spread.		
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With	 respect	 to	 the	 OS,	 patients	 with	 tumour	 involvement	 of	 the	 small	 bowel	

were	 estimated	 at	 higher	 hazard	 of	 death	 or	 recurrence	 compared	 to	 patients	

with	no	region	involvement	(HR=3.01,	95%CI:	1.49-6.08;	p=0.002).	
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Chapter	8	Discussion	–	Ovarian	cancer	
	

8.1	Overview	
	

The	 results	 of	 the	 ovarian	 masses	 data	 will	 be	 outlined	 and	 then	 the	 study	

strengths	 and	 weaknesses	 are	 discussed.	 The	 role	 of	 this	 data	 in	 the	 larger	

context	and	applicability	to	the	clinical	context	will	also	be	discussed.	

	

8.1.1	Results	summarised	
	

The	 results	 demonstrated	 that	 both	 an	 unsupervised	 clustering	method	 (using	

hierarchical	 clustering)	 and	 supervised	 clustering	 (using	 LASSO)	 were	 linked	

with	 survival.	 After	modifications,	 the	 unsupervised	 clustering	method	 had	 an	

association	with	PFS	((p=0.002,	HR	1.78,	95%	CI	1.24-2.57)	and	when	adjusted	

for	stage	and	ascites	p=0.0277,	HR	1.65,	95%	CI	(1.06-2.57).	There	unsupervised	

clustering	 also	 had	 an	 association	 with	 OS,	 p=0.0214,	 HR	 1.59	 (95%	 CI	 1.07-

2.36),	although	the	significance	disappeared	when	stage	and	ascites	were	taken	

into	account	(p=0.755).			

	

Using	the	supervised	clustering	method,	a	feature	vector	was	developed	that	had	

an	area	under	the	curve	of	0.737	for	stage	prediction	in	the	validation	dataset.		A	

four	 feature	weighted	 texture	 feature	 developed	 on	 the	 training	 set,	 called	 the	

Radiomic	 prognostic	 vector	 (RPV)	was	 able	 to	 differentiate	 the	 two	 validation	
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cohorts	into	low-,	medium	and	high-risk	groups	(TCGA:	N=70,	p=	0.000105,	log-

rank	test;	Fig	7.20e)	and	the	HH	validation	dataset:	N=	77,	p=	0.0274).		

	

The	 similarities	 between	 our	 dataset	 and	 the	 publically	 available	 TCGA	

(validation)	dataset	were	explored	and	the	texture	 features	(Pearson	rank,	(r	=	

0.817,	 p	 <	 2.2	 x10-16)	 and	 RPPA	 (Pearson	 correlation	 (r=0.48,	 p	 <2.2	 x10-16))	

were	significantly	similar	and	correlated,	although	the	association	was	stronger	

with	the	texture	features.		

	

The	CT-PCI	positively	 correlated	with	 the	probability	of	postoperative	 residual	

disease	 (p=0.0001).	 The	 performance	 of	 CT-PCI	 on	 predicting	 resectabilty	 in	

ovarian	 cancer	was	 suboptimal	 (AUC	 =	 0.64).	 Using	 the	 CT-PCI	 as	 a	 surrogate	

marker	of	disease	burden	correlated	with	progression	free	and	overall	survival.	

The	 involvement	of	 specific	 anatomic	 regions	on	 the	pre-operative	CT,	 such	 as	

the	 small	 bowel,	 was	 a	 negative	 prognostic	 factor	 for	 the	 overall	 survival	

(p=0.001).	

	

8.2	Biological	interpretation	of	the	radiomic	prognostic	vector	
	

The	 ECM-receptor	 interaction	 and	 focal	 adhesion	 were	 the	 two	 pathways	

thatwere	most	significantly	enriched	for	associations	with	high	RPV.	These	two	

pathways	contained	ECM	components	(TIMP3	(r=	 	0.530),	COL11A1	(r=	0.460))	

and	 focal	 adhesion	 receptors	 (ITGA5	 (r=	 0.368),	 ITGB5	 (r=	 0.387)),	 and	 from	

previous	 studies	 both	 pathways	 were	 enriched	 in	 stroma	 (Finak	 et	 al.,	 2008,	
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Malhotra	 et	 al.,	 2012).	 Accordingly,	 gene	 expression	 that	 correlated	 with	 high	

RPV	were	significantly	enriched	 for	genes	expressed	 in	 the	stromal	component	

(Fig	 7.20c,	 chi-squared	 test	 p<0.0001).	 Additionally,	 RPV	 was	 positively	

correlated	with	 a	 stromal	marker,	 fibronectin,	 at	 the	 protein	 level	 in	 both	 the	

TCGA	and	the	HH	cohorts	(Fig	7.20d).	High	RPV	was	also	associated	with	a	high	

proportion	 of	 tumor-associated	 stromal	 cells,	 evidenced	 from	both	 histological	

data	 (Fig	 7.20e)	 and	 stroma	 score	 estimated	 from	 transcriptomic	 data	

(Yoshihara	 et	 al.,	 2013).	 Lower	 tumor	 cell	 content	 is	 inversely	 related	 to	 high	

stromal	content.	Consistent	with	previous	results,	we	noted	that	higher	RPV	was	

associated	with	lower	tumor	cellularity	(Fig	7.20e)	in	the	TCGA	cohort	and	in	the	

HH	cohort.		

	

Besides	 stroma-related	 pathways,	 a	 number	 of	 proliferation	 and	 DNA	 damage	

response	(DDR)	pathways,	including	DNA	replication,	cell	cycle,	mismatch	repair,	

base	excision	repair,	nucleotide	excision	repair	and	homologous	recombination,	

were	among	the	top	pathways	activated	 in	 the	RPV-low	tumors	(Fig	7.20b).	To	

verify	the	validity	of	the	pathway	analysis,	an	analysis	was	performed	on	reverse	

phase	 protein	 array	 (RPPA)	 data	 from	 both	 HH	 and	 TCGA	 cohorts	 and	 the	

expression	proliferation	and	DDR	pathway	marker	proteins	 including	Stathmin	

1,	FoxM1	and	Rad51	was	found	to	be	higher	at	the	protein	level	in	tumors	with	

low	RPV	in	the	two	independent	datasets	(Fig	7.20d),	which	was	consistent	with	

the	transcriptomic	and	pathway	analysis.	Existence	of	highly	proliferative	cancer	

cells	 with	 impaired	 DNA	 damage	 response	 mechanism	 (e.g.	 TP53	 mutation)	

could	 elicit	 accumulation	 of	 DNA	 damage	 (Gaillard	 et	 al.,	 2015).	 Accordingly,	
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higher	 tumour	mutational	 burden	 and	CNA	burden	were	 observed	 in	RPV-low	

tumours.	 Collectively,	 these	 molecular	 features	 suggest	 that	 RPV-low	 patients	

could	 benefit	 from	 therapeutic	 DDR	 inhibitors	 (PARPi)	 and	 immunotherapy	

(anti-PD1/PD-L1)	(Rizvi	et	al.,	2015).		

	

Molecular	 subtype,	 BRCA1/2	 mutations	 and	 CCNE1	 amplification	 are	 well-

established	 molecular	 characteristics	 contributing	 to	 primary	 chemotherapy	

response	 and	 prognosis.	 However,	 they	 were	 not	 found	 correlated	 with	 RPV,	

highlighting	 the	 independent	 disease	 mechanisms	 associated	 with	 RPV	 (Fig	

7.20e).		

	

Overall,	 the	 stromal	phenotype	seem	sot	be	activated	 in	 the	high	RPV	 tumours	

and	the	proliferation	and	DNA	damage	response	pathways	in	low	RPV	tumours,	

all	of	which	are	potential	therapeutic	targets	in	HGSOC.	

	

8.2.1	Texture	RPV	and	underlying	biological	significance	
	

In	biological	terms,	the	individual	components	of	RPV	combine	to	define	tumour	

mesoscopic	 structure:	 a)	 maximal	 fractal	 dimension	 of	 the	 tumour	 and	 its	

microenvironment,	which	was	negatively	correlated	with	survival,	together	with	

the	 following	 positively	 correlated	 features;	 b)	 proportions	 of	 runs	 that	 have	

short	 lengths	in	the	low	pass	filtered	image;	a	function	which	gives	coarse	low-

density	textures,	e.g.	intermixed	fibrotic	stroma	and	tumour	cells;	c)	the	average	

visual	 contrast	 across	 the	 tumour	 weighted	 by	 sharpening	 in	 the	 X-axis,	 and	
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blurring	in	the	Y	and	Z	axes	reflecting	local	heterogeneity,	and	d)	the	median	of	

the	 distribution	 of	 voxel	 intensities	 across	 the	 entire	 tumour	 weighted	 by	

blurring	 in	 the	 X-axis	 and	 sharpening	 in	 the	 Y	 and	 Z	 axes,	 reflecting	 global	

heterogeneity,	respectively.		

	

In	 addition	 to	 building	 a	 prognostic	 model,	 we	 further	 demonstrated	 that	 the	

radiomics-derived	signature	 is	closely	 linked	 to	a	stromal	phenotype	and	DNA-

damage	 response	 through	 genetic,	 transcriptomic,	 proteomic	 and	 histological	

analysis.	 This	 finding	 is	 consistent	 with	 the	 poor	 prognostic	 value	 of	 stromal	

phenotype	 identified	 in	 many	 cancers	 including	 ovarian	 (Busuttil	 et	 al.,	 2014,	

Zhang	et	al.,	2015,	Chen	et	al.,	2015,	Cheung	et	al.,	2013,	Bonome	et	al.,	2005),	

pancreatic	(Wang	et	al.,	2016a),	prostate	(Mo	et	al.,	2017),	colorectal	(Isella	et	al.,	

2015,	 Cheung	 et	 al.,	 2013),	 gastric	 (Busuttil	 et	 al.,	 2014),	 lung	 (Cheung	 et	 al.,	

2013)	and	breast	cancer(Frings	et	al.,	2013).		

	

The	 tumour	 stroma	 consists	 of	 immune	 cells,	 endothelial	 cells,	 fibroblasts	 and	

extracellular-matrix	 (ECM)(Kalluri	 and	 Zeisberg,	 2006)	 all	 of	 which	 could	

directly	 contribute	 to	 outcome	 via	 distinct	 mechanisms	 in	 EOC	 (Mhawech-

Fauceglia	et	al.,	2015,	Davidson	et	al.,	2014,	Sherman-Baust	et	al.,	2003,	Wang	et	

al.,	 2016b).	 There	 has	 been	 a	 demonstration,	 based	 on	 the	 strong	 association	

between	RPV	and	 response	 to	primary	 chemotherapy	or	 surgery,	 that	patients	

with	high	RPV	have	a	significantly	high	risk	of	failing	quality	surgery	or	systemic	

strategies	and	suggest	that	they	possibly	need	to	be	directed	towards	alternative	

therapeutic	approaches	including	stroma	modifying	therapies	
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Interestingly,	 in	 our	 HGSOC	 cohort	 we	 did	 not	 observe	 a	 strong	 association	

between	 RPV	 and	 any	 single	 cancer	 driver	 events	 including	 ovarian	 cancer	

‘molecular	 subtypes’,	 specific	 gene	mutations	 or	 CNA,	 suggesting	 that	 the	 RPV	

phenotype	and	related	poor	prognosis	may	be	shaped	by	non-canonical	genetic	

alterations	or	pathways.		

	

8.2.2	CT-PCI		
	

The	 radiological	 PCI	 correlated	with	 the	 probability	 of	 post-operative	 residual	

disease	 in	 patients	 with	 epithelial	 ovarian	 cancer	 undergoing	 primary	

cytoreductive	 surgery.	 In	 addition,	 consistent	 with	 other	 studies,	 serous	

histology	 was	 significantly	 associated	 with	 higher	 CT-PCI	 scores.	 CT-PCI	 was	

however	unsuccessful	as	a	tool	to	identify	patients	who	would	not	benefit	from	

cytoreductive	surgery	in	terms	of	total	macroscopic	tumour	clearance.		

	

These	results	partly	correspond	with	data	from	previous	studies	carried	out	with	

other	 tumour	 groups.	 Some	 studies	 in	 peritoneal	 carcinomatosis	 in	

gastrointestinal	cancer	 found	that	CT	PCI	 is	not	a	good	 indicator	of	subsequent	

surgical	findings	(Rivard	et	al.,	2014),	the	sensitivity	is	dependent	on	lesion	size	

(Koh	et	al.,	2009)	and	the	CT-PCI	has	a	lower	sensitivity	and	underestimates	the	

volume	of	disease	(Chua	et	al.,	2011)	compared	with	surgical	PCI.	On	the	other	

hand,	 even	 if	 CT-PCI	 is	 lower	 than	 surgical	 PCI,	 the	 clinical	 significance	 of	 this	
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difference	is	limited	(Esquivel	et	al.,	2010)	and	that	the	CT-PCI	in	gastrointestinal	

cancer	is	helpful	to	predict	resectability	and	survival	(Suzuki	et	al.,	2018).	

	

In	ovarian	cancer,	there	has	been	limited	application	of	preoperative	radiological	

assessment	of	PCI.	 In	a	small	study	(Schmidt	et	al.,	2015)	of	15	patients,	 ten	of	

whom	had	peritoneal	carcinomatosis,	CT,	MRI	and	PET-CT	had	good	accuracy	in	

estimating	 the	 intraoperative	 PCI.	 	 A	 further	 study	 (Mazzei	 et	 al.,	 2013)	 found	

that	CT	 could	be	used	 as	 single	 technique	 to	 select	 patients	 for	 either	primary	

cytoreductive	 surgery	 or	 neoadjuvant	 chemotherapy,	 if	 performed	 with	 a	

dedicated	protocol	and	read	by	an	expert	radiologist.		

	

Our	results	contrast	with	the	previously	reported	experience	in	ovarian	cancer,	

as	the	performance	of	CT-PCI	 in	predicting	total	macroscopic	tumour	clearance	

was	unsatisfactory.	However,	even	if	it	cannot	be	used	alone	as	a	reliable	triage	

tool	 to	 avoid	 suboptimal	 surgery,	 the	 positive	 association	 between	CT-PCI	 and	

postoperative	 residual	 disease	 supports	 further	 investigation,	 as	 it	 may	 be	 an	

auxiliary	predictor	of	patients	at	high-risk	for	residual	disease.	The	value	of	the	

odds	 ratio	 of	 CT-PCI	 for	 incomplete	 cytoreduction	 may	 seem	 low	 but,	

considering	 that	 it	 indicates	 the	 relative	 risk	 for	 each	point	 of	 CT-PCI	 and	 that	

CT-PCI	has	a	wide	spectrum	of	values	(0-39),	the	difference	of	relative	risk	may	

differ	consistently.		

	

The	prognostic	value	of	surgical	PCI	is	helpful	and	recent	studies	have	indicated	

that	 this	 may	 also	 be	 so	 in	 ovarian	 cancer	 (Gasimli	 et	 al.,	 2015,	 Lampe	 et	 al.,	

2015).	 Very	 little	 data	 has	 been	 published	 about	 the	 prognostic	 value	 of	
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radiological	PCI:	in	gastrointestinal	cancer	(Suzuki	et	al.,	2018)	CT-PCI	correlated	

with	 survival;	 in	ovarian	 cancer,	CT-PCI	 is	 correlated	with	CA-125	 level	 and	5-

years	survival	rates	(Diaz-Gil	et	al.,	2016).		

	

Our	study	found	that	CT-PCI	was	an	 independent	prognostic	 factor	of	both	PFS	

and	OS.	Thus,	it	may	aid	in	stratifying	patient	risk,	especially	when	the	peritoneal	

involvement	differs	widely	(it	may	happen	in	FIGO	stage	III	and	IV).	In	particular,	

patients	with	serosal	bowel	involvement,	which	is	a	challenging	site	for	complete	

tumour	resection	especially	when	the	mesentery	is	involved	in	a	diffuse	fashion,	

are	at	 increased	risk,	with	a	demonstrated	shorter	OS	 (Rosendahl	et	al.,	2018).	

The	 negative	 impact	 of	 high	 radiological	 tumour	 burden	 on	 patients’	 clinical	

outcome	 was	 expected	 since	 a	 high	 initial	 tumour	 burden	 indicates	 more	

aggressive	and	more	advanced	disease	that	is	inherently	associated	with	poorer	

outcome.	 Horowitz	 et	 al.	 examined	 data	 from	 2,655	 patients	 with	 EOC	 and	

concluded	 that	 initial	 tumour	 burden	 was	 a	 significant	 prognostic	 factor	 even	

after	adjusting	for	residual	disease	(Horowitz	et	al.,	2015).	

	

8.3.1	Study	strengths	
	

The	biggest	 strength	of	 this	 study	was	 that	 it	was	 large	and	used	 the	expertise	

and	resources	available	to	greatly	expand	our	knowledge	and	understanding	of	

texture	 analysis,	 on	 a	 tumour	 group	 that	 has	 not	 been	 previously	 extensively	

studied	with	texture	analysis.	 	 In	 this	way,	a	comprehensive	database	has	been	

developed	 which	 may	 provide	 valuable	 information	 in	 the	 foreseeable	 future.	

Although	at	the	time	of	writing,	complete	results	were	unavailable.	
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The	other	strength	of	this	study	is	that	it	has	built	on	the	previous	knowledge	of	

texture	analysis,	and	built	a	system	to	extract	many	texture	features	easily	from	

available	images.		

	

Another	major	advantage	was	the	ability	to	test	out	our	findings	on	a	completely	

independent	dataset	which	had	both	molecular	 and	CT	outcome	data	 available	

(TCGA).	The	 ability	 to	utilise	publically	 available	data	will	 only	 enhance	 future	

studies	and	make	the	findings	more	robust.		

	

8.4	Study	limitations	

8.4.1	Sample	Size	
	

All	data	were	obtained	from	one	super-centre,	although	it	can	be	seen	that	(See	

methods	 Section	 7.1	 and	 Table	 7.1)	 there	 were	 a	 wide	 number	 of	 affiliated	

centres,	which	 supplied	CT	 scans.	 Interestingly,	 despite	 the	 extensive	network,	

more	than	half	of	the	scans	(53.4%)	were	imaged	in	Imperial	College	NHS	Trust.		

The	end-result	was	that	this	cohort	was	the	largest	and	at	the	time	of	writing	one	

of	two	texture	analysis	studies(Vargas	et	al.,	2017)	for	ovarian	cancer	on	CT.	

	

The	 ability	 of	 texture	 to	 correlate	 with	 prognosis	 demonstrates	 promising	

findings.	There	is	a	concern	that	utilising	a	large	number	of	texture	features	on	a	

limited	number	of	studies	can	result	in	over-fitting	of	the	data	and	type	1	errors	
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(Chalkidou	 et	 al.,	 2015),	 so	 the	 study	 design	 is	 important	 to	 ensure	 that	 the	

results	 can	 be	 generalised	 to	 other	 datasets.	 Testing	 the	 texture	 discovery	

features	on	independent	validation	set	has	strengthened	the	statistical	findings.		

In	 addition,	 the	 utilisation	 of	machine	 learning,	 although	 novel,	 does	 require	 a	

very	large	number	of	subjects,	somewhere	in	the	order	of	thousands	as	opposed	

to	hundreds.	This	was	 similar	 to	 the	 conclusions	drawn	 from	 the	Lung	 texture	

study	 (Chapter	 3).	 It	 remains	 to	 be	 seen	 if	 a	 large	 enough	 cohort	will	 ever	 be	

tested.		

	

Another	 issue,	 which	 is	 allied	 to	 the	 previous	 point,	 is	 the	 number	 of	 hours	

required	to	curate	the	data.	This	has	been	discussed	previously.	

	

To	advance	the	field,	a	large	prospective	study,	utilising	many	centres	in	order	to	

increase	numbers	 is	warranted.	A	clear	advantage	 identified	 is	 that	 the	 texture	

features	are	able	to	recognise	poor	prognosis	earlier	than	even	stage.	

	

Another	 limitation	 is	 that	 the	stromal	component	contains	a	mixture	of	cells	of	

different	origin	and	extracellular	matrix	composition,	thus	the	exact	elements	in	

the	stroma	measured	by	RPV	are	unclear.	A	study	to	associate	the	RPV	with	each	

stromal	 component	 including	 but	 not	 limited	 to	 the	 fibroblast	 activation,	

immune	 cell	 infiltration	 and	ECM	density	 is	 necessary	 to	better	understand	na	

delineate	the	prognostic	power	of	RPV.	In	addition,	as	discussed	earlier,	the	EOC	

patients	often	had	bilateral	disease	and	one	tumour	was	chosen	to	represent	the	
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patient.	 Further	 investigation	 into	 heterogeneity	 in	 RPV	 for	 bilateral	 tumours	

may	help	elucidate	this	further.	

	

In	the	PCI-CT	part,	the	retrospective	nature	of	the	study	meant	that	we	could	not	

directly	 correlate	 the	 CT-PCI	 with	 surgical	 PCI	 as	 the	 surgeons	 did	 not	

systematically	report	it.		

	

8.4.2	Effects	of	CT	imaging	parameters	on	the	results	

8.4.2.1	Effects	of	image	resolution	
	

The	scans	for	this	study	were	taken	over	a	period	of	over	15	years	starting	from	

the	beginning	of	 the	 last	decade.	Over	the	course	of	 this	period,	 there	has	been	

extensive	 development	 in	 the	 resolution	 of	 CT	 technology	with	 slice	 thickness	

reducing	 from	10mm	to	 less	 than	1mm	over	a	decade.	 Imaging	resolution,	as	a	

result,	appears	to	have	had	an	effect	on	the	texture	analysis.	As	 there	has	been	

such	a	mixture	of	CT	scans	entered	into	this	study,	from	different	manufactures,	

we	have	been	able	to	study	the	effects	of	different	scanners,	manufacturers	and	

matrices	on	CT	for	 the	 first	 time.	Some	of	 this	has	yielded	results	showing	that	

these	 parameters	 have	no	 effect	 on	 the	 texture	 parameters	 (Manufacturer	 and	

model	 type),	whereas	others	have	 shown	 that	 these	parameters	have	 an	 effect	

(slice	thickness).	As	these	changes	are	a	more	accurate	reflection	of	the	real-life	

situation,	this	has	potentially	proven	that	texture	analysis	is	resilient	and	useful	

in	the	real-life	setting.	The	work	is	currently	on	going	but	will	hopefully	pave	the	
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way	 for	 more	 studies	 so	 as	 to	 implement	 a	 more	 realistic	 model	 for	 texture	

analysis.		

	

8.4.2.2	Effects	of	patient	motion,	positioning	and	contrast	
	

The	effects	of	patient	motion	and	positioning	had	a	minimal	impact	on	the	scans	

and	subsequent	 texture	analysis.	CT	scan	acquisition	 is	 rapid,	often	 lasting	 less	

than	a	minute.	Although	there	is	movement	artefact	from	bowel	peristalsis,	etc.	

we	 did	 not	 encounter	 this	 in	 our	 experience.	 The	 only	 issues	 that	 we	 did	

encounter	were	metallic	artefact	(for	 instance,	 from	metallic	hip	work)	causing	

photon	 starvation	 and	 potential	 abnormal	 texture	 features,	 which	 we	 had	 to	

exclude.	This	only	affected	less	than	0.5%	of	the	scans	used.		

	

Unfortunately,	 no	 studies	 exist	 that	 compare	 the	 differences	 in	 the	 texture	

features	 obtained	 between	 contrast	 and	 non-contrast	 studies.	 Presuming	 that	

there	 will	 be	 an	 effect	 with	 contrast	 on	 the	 texture	 features,	 all	 non-contrast	

scans	were	excluded.	

8.4.2.3	Effects	of	image	reconstruction	parameters	
		

The	 effects	 of	 image	 reconstruction	 have	 been	 shown	 to	 affect	 the	 texture	

analysis	in	PET	studies	(Galavis	et	al.,	2010).	However,	the	equivalent	studies	do	

not	exist	in	CT	studies.	We	did	demonstrate	a	modest	effect	of	slice	thickness	on	

the	 variability	 of	 the	 texture	 features	 although	 more	 work	 is	 required	 in	 this	

area.	
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8.4.2.4	Target	segmentation	

Manual	 segmentation	 was	 incorporated	 only	 on	 this	 study.	 The	 effect	 of	

segmentation	on	texture	stability	is	currently	being	explored.		

	

Of	note,	this	is	the	rate-limiting	step	in	terms	of	time,	which	could	be	a	potential	

problem	in	the	clinical	implantation	of	the	technology	in	the	future.	Many	man-

hours	are	required	to	segment	tumours	and	check	them.		An	easier	way	to	semi-

automatically	 segment	 the	 tumours	 was	 not	 explored,	 as	 in	 the	 PET	 study	

performed	 in	 the	 first	part	of	 this	 research.	The	contrast	differences	on	CT	are	

much	less	than	on	PET.		

8.4.3	VOI	size	
	

There	has	been	a	lot	of	work	in	the	PET	literature	of	the	effect	of	VOI	size(Hatt	et	

al.,	 2010b,	 Hatt	 et	 al.,	 2011a,	 Hatt	 et	 al.,	 2009,	 Orlhac	 et	 al.,	 2014)	 on	 texture	

analysis,	especially	the	lowest	volume	permissible.	The	equivalent	studies	on	CT	

scans	have	not	been	established	(however	a	recent	study	on	this	subject	on	CT	

phantoms	has	revealed	some	interesting	results	(Shafiq-ul-Hassan	et	al.,	2017)).	

Certainly,	 the	size	of	 the	voxels	on	CT	 is	much	smaller	 than	 those	seen	on	PET	

(approximately	1	×	1	×	2	mm3	 in	CT	 compared	with	2.6	×	2.6	×	2.4	mm3	or	5.2	

×	5.2	×	2.4	mm3	in	PET	(Jentzen	et	al.,	2007))	and	unlike	the	latter,	the	size	of	the	

voxels	 and	hence	 the	 resolution	has	decreased	 significantly	 in	CT	over	 the	 last	

decade.		In	the	only	CT	study	to	date	150/213	texture	features	were	reproducible	

across	voxel	size	(Shafiq-ul-Hassan	et	al.,	2017).	
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8.4.4	Statistical	methods	and	machine	learning	
	

A	variety	of	techniques	were	used	in	this	study,	some	of	which	were	utilised	for	

the	 first	 time	 having	 been	 initially	 developed	 in	 the	 field	 of	 multi-array	 RNA	

studies	(E	Bair,	2006,	Tibshirani,	1996,	Tibshirani,	1997).	The	number	of	texture	

features	 easily	 outnumbers	 the	 number	 of	 cases	 and	 the	 potential	 for	 type	 1	

statistical	errors	is	large	as	a	result,	but	these	problems	were	also	encountered	in	

other	 areas,	 such	 as	 the	 aforementioned	 multi-array	 RNA,	 and	 penalised	

regression	(like	the	use	of	LASSO	in	our	study)	and	using	independent	datasets	

(from	the	TCGA	dataset)	reduced	these	types	of	errors.	The	use	of	 independent	

datasets	has	shown	the	potential	for	this	technique	and	potentially	validates	the	

results	obtained.		

8.5	Perspectives	and	future	work	

This	 study	 has	 generated	 a	 lot	 of	 data,	 some	 of	 which	 may	 form	 the	 basis	 of	

future	work	and	some	of	which	may	take	many	years	to	analyse	in	the	context	of	

matching	whole	genomic	sequences	with	CT,	RPPA	and	RNA	sequencing(Leong	

et	al.,	2015).	The	omental	and	peritoneal	disease	texture	has	not	been	analysed	

as	of	the	time	of	writing.	

	

The	 semantic	 data	 that	 was	 gathered	 has	 the	 potential	 to	 identify	 disease	

patterns	 that	 correlate	with	 outcome.	 The	 findings	 from	 the	 Peritoneal	 Cancer	

Index	(not	presented)	are	due	to	be	published.	With	the	continuation	of	building	

up	 the	 dataset	 with	 more	 imaging	 and	 biological	 samples,	 there	 is	 scope	 for	

interesting	developments	in	data	mining	allowing	hypothesis	generation.		
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8.6.1	Tumour	heterogeneity	and	underlying	biology	

There	 was	 addition	 information	 regarding	 how	 texture	 is	 correlated	 to	 the	

biological	pathways	of	tumours	and	underlying	molecular	data.	Thus,	this	study	

may	go	 some	way	 to	 try	 to	explain	what	 the	underlying	 texture	 features	mean	

biologically	but	at	the	time	of	writing	this	has	not	been	completely	finalised.		

	

8.6.2	Optimal	parameters	to	image	heterogeneity	with	CT	

If	 the	 underlying	 molecular	 and	 proteomic	 data	 were	 reflected	 in	 the	

appearances	 on	 the	 CT,	 this	 would	 provide	 a	 novel	 non-invasive	 approach	 to	

guide	treatment.	However,	there	is	still	some	way	to	go	before	this	is	realised.		

	

One	of	the	parameters	explored	in	this	study	was	the	effect	of	slice	thickness	on	

texture	 analysis.	 The	 slice	 thickness	 is	 intrinsic	 to	 the	 type	 of	 scanner,	 and	

although	 in	post	processing	 it	 is	possible	 to	make	 the	 slices	 thicker	 than	when	

they	were	acquired,	the	converse	is	not	true.	We	have	witnessed	a	revolution	in	

the	CT	scanning	equipment	in	this	study	where	thicker	slices	with	higher	doses	

have	been	replaced	with	thinner	slice	acquisition	(Shafiq-ul-Hassan	et	al.,	2017,	

Goldman,	 2008).	More	work	 is	 required	 on	 this,	 particularly	 the	 effect	 of	mAs	

and	kVp	on	the	texture	parameters(Kim	et	al.,	2015,	Miles	et	al.,	2009).	Until	this	

time,	 we	 cannot	 recommend	 any	 definite	 effects	 on	 the	 texture	 parameters	

except	the	slice	thickness	(See	Section	7.3).	
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Chapter	9	Conclusion	
	

Texture	analysis	was	employed	 in	 two	studies,	which	were	different	 from	each	

other.	 The	 first	 study	 focused	 on	 358	 multi-centre	 pre-therapy	 FDG-PET	 and	

NSCLC.	 A	 radiomics	 feature	 vector	 (FV)	 containing	 two	 texture	 features	 was	

developed	on	133	scan	training	set	using	LASSO	regression	analysis	and	feature	

discovery.	In	an	independent	validation	set	of	204	scans,	this	FV	was	significant	

(p	 =	 0.00465;	 HR	 =	 1.61,	 95%	 CI	 1.16–2.24),	 and	 independent	 of	 known	

prognostic	factors,	such	as	stage	and	tumour	volume.	With	a	median	cut-off	there	

was	a	fourteen-month	survival	difference	between	the	two	groups.	In	a	separate	

smaller	TEST1	cohort,	who	had	an	unusual	poor	survival	for	Stage	1	cancers,	FVX	

indicated	a	lack	of	survival	difference	(N	=	21,	p	=	0.501).	PET	variables	such	as	

the	SUVmax,	SUVmean	and	SUVpeak	lacked	any	prognostic	information.		

	

In	the	second	study,	657	texture	features	were	extracted	from	the	preoperative	

CT	scans	of	364	epithelial	ovarian	cancer	(EOC)	patients.	Using	machine	learning,	

a	radiomic	prognostic	vector	(RPV)	using	4	texture	features	was	developed.	This	

was	able	to	reliably	identify	the	5%	of	patients	with	a	median	overall	survival	of	

less	 than	 2	 years,,	 and	 this	 was	 validated	 in	 two	 independent	 multi-centre	

cohorts.	 In	 addition,	 genetic,	 transcriptomic	 and	 proteomic	 analysis	 from	 two	

independent	 datasets	 elucidated	 that	 the	 stromal	 phenotype	 and	DNA	 damage	

reponse	pathways	were	activated	in	RPV-stratified	tumours.		
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In	the	same	cohort,	297	patients	with	pre-operative	EOC,	had	their	pre-operative	

CTs	reviewed	by	an	expert	radiologist	according	to	the	peritoneal	cancer	 index	

(PCI)	 to	 assess	 and	 evaluate	 the	 extent	 of	 their	 peritoneal	 metastases,	 if	 they	

were	 present.	 This	 was	 compared	 with	 their	 operative	 PCI	 findings.	 Although	

there	was	a	positive	correlation	with	postoperative	residual	disease	(Odds	ratio	

(OR=1.04,	95%	CI:	1.01-1.07,	p=0.003).	ROC	curve	analysis	 returned	AUC=0.64	

for	prediction	of	 total	macroscopic	 tumour	clearance.	 In	multivariable	analysis,	

patients	 with	 no	 peritoneal	 disease	 seen	 on	 CT	 had	 a	 significantly	 longer	 PFS	

(Hazard	ratio,	HR=2.28,	p=0.007).	Radiological	serosal	small	bowel	involvement	

was	also	an	independent	predictor	for	shorter	OS	(HR=3.01,	p=0.002).	

	

This	work	contributes	to	the	demonstration	that	texture	features	based	on	image	

analysis	can	supplement	existing	methods	in	imaging	to	provide	information	that	

has	hitherto	been	unavailable.	
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Appendices	

Appendix	A1	
	

Literature	review-search	strategy	

The	search	was	last	run	on	17/11/2016	(MEDLINE	and	Web	of	Science)	using	

the	following	search	terms	and	combination:	

	

(variability	OR		heteroge*	OR	descriptor	OR	spatial	OR	feature)	

AND	

(characteri*	OR	quantificat*)	

AND		

(PET	OR	“Positron	Emission	Tomography”	OR	CT	OR	“Computerised	

Tomography”)	AND	(cancer	OR	lesion	OR	oncolog*	OR	neoplasm*	OR	tumour*)	

	

Appendix	A2	
	

Literature	review-identification,	screening	and	selection	of	publications	for	

literature	review	

	

Records	identified	through	database	searching	

N=	5670	(web	of	Science)	

N=	2644	(MEDLINE)	

	

Records	selected	(by	title)	

N=	175	

	

Records	after	duplicates	removed	
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N	=	133	

	

Records	selected	(by	abstract)	

Image	Descriptors	

N=	20	

	

Full-text	article	assessed	for	eligibility	

N=	51	

	

Records	eligible	for	literature	review	

N=	71	
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Appendix	B	

This	 is	 a	 detailed	 table	 of	 all	 the	 texture	 features	 with	 a	 description	 and	 the	

mathematical	formulae	

Name	 Descriptio

n	

	 Mathematical	Formula	

Size	and	Shape	

based	features	

	 	 	

	 	 	 	

SNS_vol	 Volume	 The	volume	

(V)	of	the	

tumour	is	

obtained	by	

multiplying	

the	total	

number	of	

pixels	in	the	

mask	by	

voxel	size		

	

SNS_area	 Area	 The	surface	

area	is	

calculated	

by	

triangulation	

(i.e.	dividing	

the	surface	

into	

connected	

triangles)	

1
2

!

!!!
!!!!  × !!!! 	

SNS_s2v	 Surface	to	

volume	

	 !
!	
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ratio	

SNS_sph	 Sphericity	 	 !
!
!(!!)

!
!

! 	

SNS_sph_dis	 Spherical	

dispropor

tion	

	 !
4!"!	

SNS_com_1	 Compactn

ess	1	

	 !

!"
!
!

	

SNS_com_2	 Compactn

ess	2	

	 36! !!
!!	

SNS_max3d	 Maximum	

3d	

diameter	

The	

maximum	

three-

dimensional	

tumour	

diameter	is	

measured	as	

the	largest	

pairwise	

Euclidean	

distance,	

between	

voxels	on	

the	surface	

of	the	tumor	

volume.	

	

	 	 	 	

FOS_CV	 Coefficien

t	of	

Variation	

	
1
! 1 ! 1

! (1 ! − !!"#$
!

!!!

!

!!!
)!	
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FOS_Imean	 Mean	 	 1
! !(!)

!

!
	

FOS_Imedian	 Median	 The	median	

intensity	

value	of	X	

	

FOS_Imode	 Mode	 	 	

FOS_Istd	 Standard	

Deviation	

	 1
! − 1 ! ! −  ! !

!

!!!

! !

	

where	x̅	is	the	mean	of	x	

FOS_Imin	 Minimum	 The	

minimum	

intensity	

value	of	X	

	

FOS_Imax	 Maximum	 The	

maximum	

intensity	

value	of	X	

	

FOS_Range	 Range	 The	range	of	

intensity	

values	of	X	

	

FOS_Skew	 Skewness	 The	degree	

of	histogram	

asymmetry	

around	the	

mean	

1
! ! ! −  ! !!

!!!

1
! ! ! −  ! !!

!!!

!	

where	x̅	is	the	mean	of	x	

FOS_Kurt	 Kurtosis	 Measure	of	

the	

histogram	

sharpness.	

1
! ! ! −  ! !!

!!!

1
! ! ! −  ! !!

!!!

!	
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where	x̅	is	the	mean	of	x	

FOS_ImeanAbsDe

v	

Mean	

Absolute	

Deviation		

The	mean	of	

the	absolute	

deviations	of	

all	voxel	

intensities	

around	the	

mean	

intensity	

value	

	

FOS_RMS	 Root	

mean	

square	

	 ! !!
!

!

! 	

AUC-CSH	 Area	

under	the	

Curve	

	 	

FOS_Entr	 Entropy	 Measure	of	

information	

content	

− !(!)!"#!!(!)
!"

!!!
	

FOS_Ener	 Energy	 Measure	of	

repeated	

pixel	pairs	

! ! !
!!

!
	

	 	 	 	

GLSZM_SmallZon

e	

Small	

Zone	

Emphasis	

Emphasizes	

small	zones	
!"#$%&'

!
!
!(!, !)

!"

!!!

!"

!!!
!(!, !)

!"

!!!

!"

!!!
	

GLSZM_LargeZon

e	

Large	

Zone	

Emphasis	

Emphasizes	

large	zones	
!"#$%&' × ! !! !, !

!"

!!!

!"

!!!
! !, !

!"

!!!

!"

!!!
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GLSZM_GlNonUnif	 Grey-level	

Non	

Uniformit

y	

Measure	of	

grey-level	

variability	

! !, !
!"

!!!

!!"

!!!
! !, !

!"

!!!

!"

!!!
	

GLSZM_SzNonUni

f	

Size	zone	

Non	

uniformit

y	

Measure	of	

Size-Zone	

variability	

! !, !
!"

!!!

!!"

!!!
! !, !

!"

!!!

!"

!!!
	

GLSZM_ZonePcen

t	

Zone	

Percentag

e	

Ratio	

between	the	

number	of	

zones	and	

the	total	

number	of	

possible	

zones	

(number	of	

voxels)	

!(!, !)
!"

!!!

!"

!!!
!	

GLSZM_ZoneLoGl	 Zone	Low	

grey-level		

Emphasis	

Emphasizes	

zones	of	low	

grey-level	

!(!, !)
!!

!"

!!!

!"

!!!
!(!, !)

!"

!!!

!"

!!!
	

GLSZM_ZoneHiGl	 Zone	Low	

grey-level		

Emphasis	

Emphasizes	

zones	of	

high	grey-	

level	

!!!(!, !)
!"

!!!

!"

!!!
!(!, !)

!"

!!!

!"

!!!
	

GLSZM_SzoneLoG

l	

Small	Zone	
Low	grey	
level	Zone	
Emphasis		
	

Emphasizes	

small	zones	

of	low	grey-

level	

!"#$%&'
!

! ! !, !
!!

!"

!!!

!"

!!!
! !, !

!"

!!!

!"

!!!
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GLSZM_SzoneHiGl	 Small	Zone	
High	grey	
level	Zone	
Emphasis)		
	

Emphasizes	

small	zones	

of	high	grey-

level	

!"#$%&'
!

!
!!! !, !

!"

!!!

!"

!!!
! !, !

!"

!!!

!"

!!!
	

GLSZM_LzoneLogl	 Large	Zone	
Low	grey	
level	
Emphasis)		
	

Emphasizes	

large	zones	

of	low	grey-

level	

!"#$%&' ×! !

!! ! !, !
!"

!!!

!"

!!!
! !, !

!"

!!!

!"

!!!
	

GLSZM_LzoneHiGl	 Large	Zone	
High	grey	
level	
Emphasis)		
	

Emphasizes	

large	zones	

of	high	grey-

level	

!"#$%&' ×! ! !!!(!, !)
!"

!!!

!"

!!!
!(!, !)

!"

!!!

!"

!!!
	

GLSZM_GlVarianc	 Grey	Level	
Variance)		
	

Weighted	

variance	of	

grey-level	

1
!" × !" ! ×! !, ! −  !!"

!
!"

!!!

!"

!!!

! !

	

	

with	!!"  =  !
!" × !" ! × ! !, !!"

!!!
!"
!!! 	

GLSZM_SzVarianc	 Size-Zone	
Variance)		
	

Weighted	

variance	of	

size-zone	

1
!" × !" ( !"#$%&' ×!  × ! !, ! − 

!"

!!!

!"

!!!
!!")!

! !

	

	

with	!!"  =  !
!" × !" !"#$%&' × !  × ! !, !!"

!!!
!"
!!! 	

	 	 	 	

NGTDM_Coarse	 Coarsenes

s	

Measure	of	

texture	

uniformity	

! +  !!
!!

!!!
!(!)

!!

	

NGTDM_Contra	 Contrast	 Measure	of	

contrast	

taking	into	

account	the	

global	

dynamic	

1
!! !! − 1

!!!! ! − ! !
!!

!!!

!!

!!!

1
!! ! !

!!

!!!
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range	of	

grey-levels	

and	local	

variations	

NGTDM_Busyne	 Busyness	 Measure	the	

rate	of	

change	

between	

neighbourho

od	

intensities	

weighed	by	

the	

difference	in	

intensities.	

!!!(!)
!!

!!!
!!! − !"!

!!

!!!

!!

!!!
	

!! ≠ 0,!! ≠ 0	

	

NGTDM_Complex	 Complex	 Complexity	

increases	

with	high	

spatial	

intensity	

variations,	

Contrast	and	

the	presence	

of	small	

clusters	of	

voxels	of	

different	

intensities	

! − !
!! + !!

!!! ! + !!! !
!!

!!!

!!

!!!
	

NGTDM_Streng	 Strength	 Measure	of	

‘distinguisha

bility’	

between	

(!! + !!)(! − !)!
!!
!!!

! +  !(!)!!
!!!

!! ≠ 0, !!  ≠ 0	



Appendix	B	 	 324	
	
	 	

	

clusters	of	

voxels.	This	

depends	on	

cluster	sizes	

and	grey-	

level	

differences	

between	

patches	

	 	 	 	

GLRLM_SRE	 Short	Run	

Emphasis	

Measures	

the	

occurrence	

of	short	runs	

!(!, !|!)
!!

!"
!!!

!"
!!!

!(!, !|!)!"
!!!

!"
!!!

	

GLRLM_LRE	 Long	Run	

Emphasis	

Measures	

the	

occurrence	

of	long	runs	

!!!(!, !|!)!"
!!!

!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	

GLRLM_GLN	 Grey	

Level	

Non-

Uniformit

y	

Measures	

the	

similarity	of	

pixel	

intensities	

!(!, !|!)!"
!!!

!!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	

GLRLM_RLN	 Run	

Length	

Non-

Uniformit

y	

Measures	

the	

similarity	of	

lengths	of	

pixels	

!(!, !|!)!"
!!!

!!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	

GLRLM_RP	 Run	

Percentag

Measures	

the	

percentage	

!(!, !|!)
!!

!"

!!!

!"

!!!
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e	 of	runs	of	a	

given	length.	

The	value	is	

1	if	every	

run	of	length	

1.	

GLRLM_LGLRE	 Low	Grey	

Level	Run	

Emphasis	

Measures	

the	

occurrence	

of	long	runs	

weighted	

towards	low	

intensity	

!(!, !|!)
!!

!"
!!!

!"
!!!

!(!, !|!)!"
!!!

!"
!!!

	

GLRLM_HGLRE	 High	Grey	

Level	Run	

Emphasis	

Measures	

the	

distribution	

of	pixels	

weighted	

towards	

high	

intensity	

!(!, !|!)
!!!!

!"
!!!

!"
!!!

!(!, !|!)!"
!!!

!"
!!!

	

GLRLM_SRLGLE	 Short	Run	

Low	Grey	

Level	

Emphasis	

Measures	

the	

occurrence	

of	short	runs	

weighted	

towards	low	

intensity	

!(!, !|!)
!!!!

!"
!!!

!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	

GLRLM_SRHGLE	 Short	Run	

High	Grey	

Level	

Measures	

the	

occurrence	

!(!, !|!)!!
!!

!"
!!!

!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	
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Emphasis	 of	short	runs	

weighted	

towards	

high	

intensity	

GLRLM_LRLGLE	 Long	Run	

Low	Grey	

Level	

Emphasis	

Measures	

the	

occurrence	

of	long	runs	

weighted	

towards	low	

intensity	

!(!, !|!)!!
!!

!"
!!!

!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	

GLRLM_LRHGLE	 Long	Run	

High	Grey	

Level	

Emphasis	

Measures	

the	

occurrence	

of	long	runs	

weighted	

towards	

high	

intensity	

!(!, !|!)!!!!!"
!!!

!"
!!!

!(!, !|!!"
!!!

!"
!!! ) 	

	 	 	 	

FD_mean	 Mean	 	 	

FD_sd	 Standard	

deviation	

	 	

FD_var	 Variance	 	 	

FD_lacunarity	 Lacunarit

y	

	 	

FD_max	 Maximum	 	 	

FD_min	 Minimum	 	 	
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GLCM_Varian	 Variance	 Measure	the	

spread	in	

pixel	

intensities	

! − ! !!(!, !)
!"

!!!

!"

!!!
	

GLCM_Correl	 Correlatio

n	

Measure	of	

linear	

dependency	

between	

intensities	of	

pairs	of	

voxels	(0:	

uncorrelated

,	1:	linearly	

correlated)	

!" ! !, ! − !!(!)!!(!)!"
!!!

!"
!!!

!!(!)!!(!)
	

GLCM_InfCo1	 	 Measure	of	

non-linear	

dependency	

between	

intensities	of	

pairs	of	

voxels	

“information

al	coefficient	

of	

correlation”	

(0:	

independent	

variables,	1:	

dependent	

variables)	

!"# − !"#1
max !",!" 	

Where	HX	and	HY	are	entropies	of	px	

and	py	and		

! =  −   ! !, ! log2 ! !, !!"
!=1

!"
!=1 	be	the	

entropy	of	P(i,j),	

!"# =  −  !(!, !) log! !(!, !)!"
!!!

!"
!!! ,	

!"#1 =  −  !! ! !!(!) log! !! ! !!(!)
!"

!!!

!"

!!!
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GLCM_InfCo2	 	 	 1− !!!(!"#!!!"#)	

Where	!!" =  −  !(!, !) log! !(!, !)!"
!!!

!"
!!! 	

!"#2 =  −  !!(!)!!(!) log! !!(!)!!(!)
!"

!!!

!"

!!!
	

	

GLCM_ClShad	 Cluster	

Shade	

Measure	the	

skewness	of	

the	GLCM.	

Increases	

with	

asymmetry.	

! + ! − !! ! − !! !
!

!"

!!!

!"

!!!
!(!, !)	

GLCM_ClProm	 Cluster	

Prominen

ce	

	
! + ! − !! ! − !! !

!
!"

!!!

!"

!!!
!(!, !)	

GLCM_Angsmo	 Angular	

Second	

Moment	

Measure	of	

texture	

uniformity	

(1/Ng2		0:	

heterogenou

s,	1:	

homogeneou

s)	

!(!, !) !
!!

!!!

!!

!!!
	

GLCM_MxProb	 Maximum	

Probabilit

y	

Reflects	the	

highest	

number	of	

occurrences	

of	a	pixel	

pair.	

!"# !(!, !) 	
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GLCM_Entrop	 Entropy	 Measure	of	

information	

content	

(0	:	

predominant	

combination	

of	pairs	of	

voxels’	

intensities,	

log2(Ng)	

equal	

contribution	

of	all	pairs)	

	

!(!, !) log! !(!, !)
!"

!!!

!"

!!!
	

GLCM_Contra	 Contrast	 Local	

intensity	

variations	

(0:	no	

contrast,	

(Ng-1)2:	

maximum	

contrast)	

! − ! !
!"

!!!

!"

!!!
!(!, !)	

GLCM_Dissim	 Dissimilar

ity	

Contrast	

weighted	

linearly	with	

the	

difference	of	

grey-level	

(0:	similarity	

(diagonal	

GLCM),	Ng-1	

! − ! !(!, !)
!!

!!!

!!

!!!
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dissimilarity

)	

GLCM_Homoge	 Homogen

eity	

Opposite	of	

contrast	(0:	

dissimilar,	1:	

similar	

(diagonal	

GLCM))	

!(!, !)
1+ ! − ! !

!!

!!!

!!

!!!
	

GLCM_sumAvg	 Sum	

Average	

Average	of	

the	pixel	

intensities	

!!!!!(!)
!!"

!!!
	

GLCM_sumVar	 Sum	

Variance	

	
! − !" !!!!!(!)

!!"

!!!
	

GLCM_sumEnt	 Sum	

Entropy	

	
!!!!(!) log! !!!!(!)

!!"

!!!
	

GLCM_difVar	 Differenc

e	in	

Variance	

	 !"#$"%&' !" !!!!	

GLCM_difEnt	 Differenc

e	entropy	

	
!!!!(!) log! !!!!(!, !)

!!!!

!!!
	

GLCM_AutoCorrel	 Autocorre

lation	

	
!"#(!, !)

!!

!!!

!!

!!!
	

GLCM_ClTend	 Cluster	

Tendency	

Measure	

variations	in	

pixel	

intensities	

! + ! − !! ! − !! !
!

!"

!!!

!"

!!!
!(!, !)	
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GLCM_Homoge1	 Homogen

eity	1	

Measure	the	

uniformity	

of	the	image	

!(!, !)
1+ ! − !

!!

!!!

!!

!!!
	

GLCM_IDMN	 Inverse	

Differenc

e	Moment	

Normalise

d		

	 !(!, !)
1+ ! − ! !

!!

!!

!!!

!!

!!!
	

GLCM_IDN	 Inverse	

Differenc

e	

Normalise

d	

	 !(!, !)
1+ ! − !

!

!!

!!!

!!

!!!
	

GLCM_invVar	 Inverse	

Variance	

Also	called	

Inverse	

Difference	

Moment,	

similar	to	

homogeneity	

!(!, !)
! − ! !  , ! ≠ !

!!

!!!

!!

!!!
	

	

Key	

GLCM:	

P(i,j)	be	the	co-occurrence	matrix	for	an	arbitrary	δ	and	α,	

Ng	be	the	number	of	discrete	intensity	levels	in	the	image,		

µ	be	the	mean	of	P(i,j),	

px(i)=	− !(!, !)!"
!!! 	be	the	marginal	row	probabilities,	

py(i)=	− !(!, !)!"
!!! 	be	the	marginal	column	probabilities,	

µx	be	the	mean	of	px,	

µy	be	the	mean	of	px,	
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σx	be	the	standard	deviation	of	px,	

σy	be	the	standard	deviation	of	py,	

px+y(k)	=	 !(!, !)!!
!!!

!!
!!! ,	i	+	j	=	k,	k	=	2,3,	…,	2Ng,	

px-y(k)	=	 !(!, !)!!
!!!

!!
!!! ,	|i	+	j	|=	k,	k	=	0,1,	…,	Ng	-1.	

	

For	run	length:	

p(i,j|θ)	be	the	(i,j)th	entry	in	the	given	run-length	matrix	p	for	a	direction	θ,	

Ng	the	number	of	discrete	intensity	values	in	the	image,	

Nr	the	number	of	different	run	lengths,	

Np	the	number	of	voxels	in	the	image.	

	

NGTDM	

M(i)	is	the	ith	entry	of	the	NGTDM	which	is	the	sum	of	the	intensity	differences	

between	each	voxel	of	intensity	i	belonging	to	VOI	V	and	its	26	direct	neighbours	

in	3	dimensions,	

ε	is	a	small	number	

Ng	is	the	number	of	quantisation	levels	used	for	normalising	the	VOI	intensities,	

Nt	is	the	number	of	different	grey-levels	present	in	the	image,	

pi	is	the	probability	of	occurrence	of	grey-level	I,	

Ni	is	the	number	of	voxels	of	intensity	in	the	calculation,	

N	is	the	total	number	of	voxels	used	in	the	calculation.	

	

GLSZM:	

Where	P(i)	is	the	(i,j)th	entry	of	the	GLSZM	which	records	the	number	of	clusters	

of	voxels	of	intensity	i	and	number	of	voxels	j	within		the	VOI.		

Ng	is	the	number	of	quantisation	level	used	for	normalising	the	VOI	intensities	
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Xz	is	the	number	of	zones	in	the	image		

Nz	is	the	number	of	zones	in	the	images	

N	is	the	number	of	voxels	in	the	VOI.
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Appendix	C	
PCA	for	the	a)	M

anufacturer	type,	b)m
odel,	c)	slice	thickness,	d)	num

ber	of	row
s	and	e)	colum

ns	for	reach	gray	level.	

4GL	
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8GL	
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16GL	
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32GL	
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128GL	
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256GL	
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	 Appendix	D	
The	full	breakdow

n	of	the	results	w
hen	the	5	papers’	findings	w

ere	tested	in	our	dataset.	

Pape

r	

Su

bse

cti

on	

Gray	

lev

els	

N
o	

of	

feat

ures	

Feat

ures	

w
eights	

Sensiti

vity	

Specifici

ty	

PPV	
N
PV	

Accura

cy	

Sig	

w
ith		

test	

(extra)	

set	

(group	

and	

stage	

m
odel)	

Stage	

and	

group	

m
odel	

(w
ith	

validatio

n	and	

extra):	

stage	sig	

Stage	

and	

group	

m
odel:	

stage	

hazard	

Stage	

and	

group	

m
odel

:	

group	

sig	

Stage	

and	

group	

m
odel:	

group	

hazard	

ratio	

Cook	
All	

4	gl	

	

Con

trast	
M
edian	

0.445	
0.442	

0.49	
0.455	

0.443	
0.0042	

0.00664	
1.38	

0.906	
0.978	

	
	

	
	

	

Km
roc	

0.0373	
0.458	

0.438	
0.433	

0.416	

	
	

	
	

	

	
	

8g	

	
	

M
edian	

0.444	
0.441	

0.49	
0.454	

0.442	
0.0042	

0.0037	
1.39	

0.895	
1.02	

	
	

	
	

	

Km
roc	

0.307	
0.451	

0.393	
0.405	

0.381	
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16gl	

	
	

M
edian	

0.444	
0.442	

0.49	
0.454	

0.443	

0.0042

2	
0.004	

1.39	
0.945	

1.012	

	
	

	
	

	

Km
roc	

0.244	
0.549	

0.298	
0.432	

0.4	

	
	

	
	

	

	
	

32gl	

	
	

M
edian	

0.435	
0.432	

0.49	
0.444	

0.433	

0.0037

3	
0.0083	

1.35	
0.615	

0.91	

	
	

	
	

	

Km
roc	

0.235	
0.54	

0.294	
0.425	

0.391	

	
	

	
	

	

	
	

64gl	

	
	

M
edian	

0.445	
0.442	

0.49	
0.455	

0.443	

0.0036

3	
0.0067	

1.35	
0.58	

0.908	

	
	

	
	

	

Km
roc	

0.256	
0.534	

0.314	
0.429	

0.398	

	
	

	
	

	

	
	

128gl	

	
	

M
edian	

0.444	
0.442	

0.49	
0.454	

0.443	

0.0037

7	
0.00766	

1.35	
0.631	

0.918	

	
	

	
	

	

Km
roc	

0.209	
0.54	

0.27	
0.417	

0.379	

	
	

	
	

	

	
	

256gl	

	
	

M
edian	

0.436	
0.433	

0.49	
0.445	

0.434	

0.0035

6	
0.00841	

1.35	
0.558	

0.902	

	
	

	
	

	

Km
roc	

0.256	
0.498	

0.329	
0.412	

0.379	

	
	

	
	

	

	
	

4gl	

	

Coa
M
edian	

0.427	
0.424	

0.49	
0.436	

0.425	
0.0023

0.00999	
1.327	

0.286	
0.832	
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rsen

ess	

8	

	
	

	
	

	

Km
roc	

0.275	
0.49	

0.348	
0.415	

0.385	

	
	

	
	

	

	
	

8gl	

	
	

M
edian	

0.428	
0.424	

0.49	
0.437	

0.426	

0.0022

9	
0.00719	

1.335	
0.269	

0.83	

	
	

	
	

	

Km
roc	

0.47	
0.296	

0.602	
0.369	

0.381	

	
	

	
	

	

	
	

16gl	

	
	

M
edian	

0.419	
0.415	

0.491	
0.428	

0.417	

0.0021

5	
0.00748	

1.33	
0.245	

0.823	

	
	

	
	

	

Km
roc	

0.244	
0.54	

0.301	
0.428	

0.395	

	
	

	
	

	

	
	

32gl	

	
	

M
edian	

0.41	
0.405	

0.491	
0.418	

0.408	

0.0017

8	
0.00984	

1.32	
0.19	

0.8	

	
	

	
	

	

Km
roc	

0.454	
0.316	

0.578	
0.377	

0.384	

	
	

	
	

	

	
	

64gl	

	
	

M
edian	

0.406	
0.402	

0.491	
0.415	

0.404	
0.0012	

0.0111	
1.314	

0.114	
0.766	

	
	

	
	

	

Km
roc	

0.446	
0.326	

0.567	
0.381	

0.384	

	
	

	
	

	

	
	

12

	
	

M
edian	

0.4	
0.396	

0.491	
0.409	

0.398	
0.0014

0.008	
1.326	

0.147	
0.785	
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8gl	
6	

	
	

	
	

	

Km
roc	

0.442	
0.285	

0.597	
0.348	

0.362	

	
	

	
	

	

	
	

256gl	

	
	

M
edian	

0.405	
0.4	

0.491	
0.413	

0.402	

0.0016

4	
0.00324	

1.35	
0.168	

0.801	

	
	

	
	

	

Km
roc	

0.475	
0.319	

0.587	
0.389	

0.395	

	
	

	
	

	

	
	

4gl	

	

Bus

yne

ss	
M
edian	

0.576	
0.58	

0.487	
0.589	

0.578	

0.0024

8	
0.01	

1.38	
0.303	

1.19	

	
	

	
	

	

Km
roc	

0.499	
0.717	

0.399	
0.6	

0.61	

	
	

	
	

	

	
	

8gl	

	
	

M
edian	

0.567	
0.58	

0.483	
0.584	

0.574	

0.0037

1	
0.00505	

1.36	
0.607	

1.09	

	
	

	
	

	

Km
roc	

0.516	
0.707	

0.411	
0.605	

0.614	

	
	

	
	

	

	
	

16g	

	
	

M
edian	

0.559	
0.561	

0.487	
0.571	

0.56	

0.0037

1	
0.0039	

1.36	
0.608	

1.09	

	
	

	
	

	

Km
roc	

0.525	
0.68	

0.424	
0.6	

0.604	

	
	

	
	

	

	
	

32

	
	

M
edian	

0.567	
0.571	

0.487	
0.58	

0.569	
0.0029

0.006	
1.34	

0.39	
1.15	
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gl	
1	

	
	

	
	

	

Km
roc	

0.542	
0.671	

0.436	
0.606	

0.608	

	
	

	
	

	

	
	

64gl	

	
	

M
edian	

0.576	
0.58	

0.487	
0.589	

0.578	

0.0017

8	
0.00813	

1.33	
0.19	

1.246	

	
	

	
	

	

Km
roc	

0.482	
0.734	

0.385	
0.597	

0.611	

	
	

	
	

	

	
	

128gl	

	
	

M
edian	

0.566	
0.569	

0.487	
0.579	

0.568	

0.0025

8	
0.0031	

1.36	
0.321	

1.17	

	
	

	
	

	

Km
roc	

0.611	
0.57	

0.505	
0.605	

0.59	

	
	

	
	

	

	
	

256gl	

	
	

M
edian	

0.509	
0.51	

0.488	
0.521	

0.509	

	
	

	
	

	

	
	

	
	

	

Km
roc	

0.269	
0.656	

0.281	
0.484	

0.467	

	
	

	
	

	

	

SCC	
4gl	

	

Con

trast	
M
edian	

0.464	
0.482	

0.486	
0.478	

0.473	
0.105	

0.045	
1.39	

0.6	
1.15	

	
	

	
	

	

Km
roc	

0.235	
0.573	

0.287	
0.433	

0.406	

	
	

	
	

	

	
	

8gl	

	
	

M
edian	

0.482	
0.482	

0.495	
0.487	

0.482	
0.11	

0.0467	
1.38	

0.675	
1.11	
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Km
roc	

0.271	
0.476	

0.358	
0.4	

0.375	

	
	

	
	

	

	
	

16gl	

	
	

M
edian	

0.463	
0.482	

0.486	
0.478	

0.473	
0.114	

0.053	
1.37	

0.74	
1.09	

	
	

	
	

	

Km
roc	

0.196	
0.552	

0.28	
0.412	

0.375	

	
	

	
	

	

	
	

32gl	

	
	

M
edian	

0.464	
0.463	

0.496	
0.468	

0.463	
0.117	

0.0884	
1.32	

0.813	
0.941	

	
	

	
	

	

Km
roc	

0.233	
0.513	

0.308	
0.405	

0.374	

	
	

	
	

	

	
	

64gl	

	
	

M
edian	

0.425	
0.443	

0.485	
0.44	

0.434	
0.0823	

0.141	
1.265	

0.386	
0.801	

	
	

	
	

	

Km
roc	

0.136	
0.605	

0.181	
0.416	

0.373	

	
	

	
	

	

	
	

128gl	

	
	

M
edian	

0.424	
0.423	

0.496	
0.428	

0.424	
0.105	

0.122	
1.29	

0.602	
0.872	

	
	

	
	

	

Km
roc	

0.195	
0.57	

0.251	
0.419	

0.384	

	
	

	
	

	

	
	

256gl	

	
	

M
edian	

0.425	
0.423	

0.496	
0.429	

0.424	
0.1	

0.128	
1.28	

0.545	
0.855	

	
	

	
	

	

Km
roc	

0.252	
0.514	

0.325	
0.412	

0.384	
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4gl	

	

Coa

rsen

ess	
M
edian	

0.406	
0.405	

0.496	
0.41	

0.405	
0.095	

0.0967	
1.29	

0.492	
0.845	

	
	

	
	

	

Km
roc	

0.252	
0.475	

0.342	
0.393	

0.364	

	
	

	
	

	

	
	

8gl	

	
	

M
edian	

0.406	
0.405	

0.496	
0.41	

0.405	
0.106	

0.099	
1.3	

0.62	
0.882	

	
	

	
	

	

Km
roc	

0.425	
0.29	

0.59	
0.34	

0.357	

	
	

	
	

	

	
	

16gl	

	
	

M
edian	

0.387	
0.385	

0.497	
0.39	

0.386	
0.0682	

0.132	
1.26	

0.289	
0.768	

	
	

	
	

	

Km
roc	

0.386	
0.327	

0.537	
0.352	

0.356	

	
	

	
	

	

	
	

32gl	

	
	

M
edian	

0.388	
0.385	

0.497	
0.391	

0.386	
0.0929	

0.109	
1.28	

0.473	
0.836	

	
	

	
	

	

Km
roc	

0.391	
0.274	

0.583	
0.315	

0.332	

	
	

	
	

	

	
	

64gl	

	
	

M
edian	

0.354	
0.351	

0.497	
0.356	

0.352	
0.0637	

0.141	
1.26	

0.262	
0.755	

	
	

	
	

	

Km
roc	

0.353	
0.312	

0.526	
0.329	

0.332	

	
	

	
	

	

	
	

12

	
	

M
edian	

0.355	
0.352	

0.497	
0.357	

0.353	
0.0576	

0.152	
1.25	

0.227	
0.734	
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8gl	

	
	

	
	

	

Km
roc	

0.354	
0.294	

0.542	
0.316	

0.323	

	
	

	
	

	

	
	

256gl	

	
	

M
edian	

0.372	
0.369	

0.497	
0.374	

0.37	

	
	

	
	

	

	
	

	
	

	

Km
roc	

0.352	
0.369	

0.484	
0.367	

0.36	

	
	

	
	

	

	

Adeno	
4gl	

	

Con

trast	
M
edian	

0.396	
0.398	

0.473	
0.422	

0.397	

	
	

	
	

	

	
	

	
	

	

Km
roc	

0.393	
0.342	

0.508	
0.385	

0.367	
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Appendix	E1:	Ovarian	CRF	
	

Pt	code	name:	

	

Radiologist	Initials:	

	

CT	findings	

Mediastinal	nodes							 	 No/	Equivocal/Yes/Not	Available	

Pre	cardiac	nodes				 	 	 No	/Equivocal/Yes	

Solid	Pleural	disease			 	 	 No/Yes	

Pleural	effusion			 	 	 No/Yes	

Diaphragms		 	 	 	 No/Diffuse/	Focal	Nodule	(s)	/Massive		

Liver	capsule	right			 	 	 No/Diffuse/	Focal	Nodule	(s)	/Massive	

Liver	capsule	left		 	 	 No/Diffuse/	Focal	Nodule	(s)	/Massive	

Liver	parenchyma	 	 	 No/Equivocal/Yes	

Liver	hilum	 	 	 	 No/Moderate/	Large	

Falciform	ligament	 	 	 No/Yes	

Morrison’s	pouch	 	 	 No/Focal/Moderate/Large	

Spleen	(subcapsule)	 	 	 No/Diffuse/	Focal	Nodule	(s)	/Massive	

Spleen	(parenchyma)	 	 	 No/Equivocal/Yes		

Gastrosplenic	ligament	 	 No/Diffuse/	Focal	Nodule	(s)	/Massive	

Pancreas			 	 	 	 No/Equivocal/Yes	
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Lesser	sac	 	 	 	 No/Equivocal/Yes	

Stomach	wall	 	 	 	 No/	Abutment/Diffuse	Serosal/	

Invasion/Massive	

Supracolic	omentum				 	 No/Diffuse/	Focal	Nodule	(s)	/Massive	

Right	colon/caecum	 	 	 No/	Abutment/Diffuse	Serosal/	

Invasion/Massive	

Appendix	 	 	 	 Not	Seen/No/Mass	

Rt	paracolic	peritoneum	 	 No/Equivocal/Focal/Diffuse/Massive	

Trans	colon		 	 	 	 No/	Abutment/Diffuse	Serosal/	

Invasion/Massive	

Left	colon	 	 	 	 No/	Abutment/Diffuse	Serosal/	

Invasion/Massive		

Lt	paracolic	peritoneum		 	 No/Equivocal/Focal/Diffuse/Massive		

Sigmoid	 	 	 	 No/	Abutment/Diffuse	Serosal/	

Invasion/Massive	

Pelvic	peritoneum	 	 	 No/Equivocal/Focal/Diffuse/Massive	

Rectum	 	 	 	 No/	Abutment/Diffuse	Serosal/	

Invasion/Massive	

Small	bowel	 No/	Abutment/Diffuse	Serosal	

Invasion/Massive		

Small	bowel	mesentery	 No/Equivocal/Nodes/Focal	Nodule/Mass	

Invading	Root	/Diffuse	 	
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Greater	Omentum	 	 	 No/Equivocal/	Focal	Nodule	(S)/Cake	

Anterior	abdominal/umbilical	 	 No/Equivocal/Focal/Large	

Paraaortic	nodes	 	 	 Not	Enlarged/Borderline/Enlarged	

Pelvic	nodes	 	 	 	 Not	Enlarged/Borderline/Enlarged	

Groin	nodes	 	 	 	 Not	Enlarged/Borderline/Enlarged	

Uterus		 	 	 	 Not	Involved/Equivocal/Involved	

Fallopian	tubes	 	 	 Not	Involved/Equivocal/Involved	

	

Right	ovary							1.	No	lesion/not	seen/benign	lesion/	highly	likely	benign/not	

sure/highly	likely	malignant	

2.	Normal/	not	breaching	capsule/breaching	capsule	

3.	Outline:	Smooth/Irregular	

4.	Texture:	cystic/solid/mixed	predominantly	cystic/mixed	

predominantly	solid	

5.	Enhancement	pattern:	homogenous/heterogeneous	

6.	Presence:	thick	septations/papillary	projections/calcifications	

Left	ovary									1.	No	lesion/not	seen/benign	lesion/	highly	likely	benign/not	

sure/highly	likely	malignant	

2.	Normal/	not	breaching	capsule/breaching	capsule	

3.	Outline:	Smooth/Irregular	
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4.	Texture:	cystic/solid/mixed	predominantly	cystic/mixed	

predominantly	solid	

5.	Enhancement	pattern:	homogenous/heterogeneous	

6.	Presence:	thick	septations/papillary	projections/calcifications	

Ascites	 No	or	physiological/previously	drained/less	than	1	litre/more	

than	1	litre	
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Taken	from	(Gilly	et	al.,	2006)	
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Abstract
Purpose The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for
risk stratification of non-small-cell lung cancer (NSCLC).
Patients and methods Pre-therapy PETscans from a total of 358 Stage I–III NSCLC patients scheduled for radiotherapy/chemo-
radiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. A semi-
automatic threshold method was used to segment the primary tumors. Radiomics predictive classifiers were derived from a
training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis was
used for data dimension reduction and radiomics feature vector (FV) discovery.Multivariable analysis was performed to establish
the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent
validation set of 204 patients, and a further independent set of 21 (TESTI) patients.
Results Of 358 patients, 249 died within the follow-up period [median 22 (range 0–85) months]. From each primary tumor, 665
three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discov-
ered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest tomulti-center studies,
invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the
validation cohort (N = 204, p = 0.00465; HR = 1.61, 95% CI 1.16–2.24). In the TESTI cohort, a smaller cohort that presented
with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N = 21, p = 0.501). In
contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any
prognostic information.
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Conclusion PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information
for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy.

Keywords Radiomics . NSCLC . Survival . PET . Risk stratification

Introduction

Lung malignancy is a leading cause of cancer-related death,
with a predicted 5-year survival rate of 8–13% [1].
Worldwide, approximately 1.8 million new cases were diag-
nosed in 2012. Distinct from histology, stage, and perfor-
mance status, the ability to provide prognosis on the basis of
tumor biology is often lacking in current clinical practice.
More recently, DNA sequencing from several tumor regions
has been undertaken to highlight spatio-temporal mutational
heterogeneity [2, 3]. Currently, imaging identifies the sites of
disease and response to treatment by assessing the change in
size but other than TNM staging provides limited prognostic
information. In addition, outcomes of patients within each
TNM staging group can vary widely highlighting the need
for more accurate prognostic markers. Potential interventional
methods to assess genetic heterogeneity will probably employ
multi-core invasive biopsy, which limits its safe use for routine
prognosis determination. The micro- and macro-structure of
tumors, however, also harbor heterogeneous phenotypes due
to factors such as hypoxia, necrosis, directional/non-
directional tumor cell growth, vascular density, and immune
infiltration. It is hypothesized that the asymmetric local, re-
gional, and global density and architectural distortions of tu-
mor phenotypes could have prognostic value, and this has
resulted in a new 'omics' — radiomics [4–6] — whereby
quantitative features describing tumor phenotypes are extract-
ed in high-throughput from routine radiologic images and fur-
ther processed by machine learning methods for prognostica-
tion; such high-dimensional output of tumor phenotypic het-
erogeneity is thought to have important prognostic value, with
drug resistance and potential for development of metastatic
spread implied.

2-deoxy-2-18Fluorine-fluoro-D-glucose positron emission
tomography-computed tomography (FDG-PET/CT) is rou-
tinely used for staging lung cancer prior to consideration of
radical treatment such as surgery or chemo-radiotherapy in-
cluding the use of stereotactic body radiotherapy. Indeed,
radiomics classifiers based on the CT component have been
investigated for predicting lung cancer histology and shown to
have moderate prediction accuracy [7]. Beyond the use of
FDG-PET/CT for staging, we investigated in the present study
whether pre-therapy radiomics features derived from routine
FDG-PET/CT examinations of non-small-cell lung cancer
(NSCLC) patients who were subsequently treated with
radiotherapy/chemo-radiotherapy across multiple hospitals
might harbor useful prognostic information.

Patients and methods

Patients and procedures

The inclusion criteria were consecutive patients with non-
small-cell lung cancer (NSCLC), or entire available cohort
for The Cancer Imaging Archive (TCIA) (http:/ /
cancerimagingarchive.net/, last accessed June 2015), with a
target lesions ≥ 5 ml who had a pre-therapy FDG-PET/CT
scan available and underwent radical radiotherapy with or
without chemotherapy between October 2008 and December
2013. The minimum lesion volume of interest (VOI) of 5 ml
was selected, in accordance with work carried out by Soussan
et al. [8]. Exclusion criteria were patients undergoing surgery
or palliative treatment. Institutional ethical approval for retro-
spective analysis was obtained, and informed consent was
waived.

The following hospitals took part in the trial (Fig. 1):
Imperial College Healthcare NHS Trust, London, St
James’s University Hospital, Leeds, Guy’s and St.
Thomas’ Hospitals, London, The Royal Marsden Hospital,
Sutton, Nottingham University Hospital, Nottingham, and
Mount Vernon Hospital, Northwood; a dataset was also ob-
tained from TCIA. This work was carried out sequentially
with training and validation followed by TESTI. Data from
the four hospitals and The Cancer Imaging Archive
(Imperial, Kings, Leeds, and Royal Marsden, and TCIA)
patients were collated and randomly split into two (by com-
puter) as training set (n = 133) and validation set (n = 134).
A power calculation based on the training set (HR = 1.78,
median survival: 2.92 years, censoring rate: 0.012, median
follow-up: 2.17 years) suggested a sample size of 203 was
needed to obtain the alpha of 0.05 and beta of 0.25.
Therefore, all 70 cases from another centre were added to
the validation set to make a total of 204. This validation set
was only used for testing the findings from the training set.
We used the maximum number of patients in the TCIA da-
tabase that were available at the time. The original number
of patients screened and basis for exclusion are indicated in
Supplementary Table 1.

Pre-therapy clinico-pathologic data were obtained from
medical records (Table 1). Overall survival was defined as
number of months from commencement of treatment to date
of death. Patients who were alive were censored at last follow-
up to 31st July 2016. The hospital records were used to deter-
mine who was still alive at the time of cut-off. This was a
multi-institutional analysis and so patients were examined on
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different PET/CT scanners including Phillips Allegro Body,
Phillips Gemini TF TOF 16 (Phillips Medical Systems,
Amsterdam, Netherlands), Siemens Biograph 64 mCT,
Siemens Biograph 128 mCT (Siemens Healthcare, Erlangen,
Germany), GE Healthcare Discovery ST, GE Discovery STE
(GE Healthcare, Waukesha, Wisconsin, USA), CTI ECAT
HR+ (CTI PET Systems Inc., Knoxville, Tennessee, USA),
and CPS/Siemens Sensation 16. For PET, slice thickness
ranged between 2 and 5.15 mm; the matrix size ranged be-
tween 1282 and 5122. After injection of 350–500 MBq 18F-
FDG [9], emission data were acquired (five or six bed posi-
tions, 2–4 min per bed position) after a 60–90 min uptake
period. In all cases, PET/CTscans were performed from upper
thighs to the base of the skull following ≥ 4–6-h fast, and had a
measured blood glucose level < 11.0 mmol/l at the time of
injection. CT was acquired without oral or intravenous con-
trast agent. The PET data were reconstructed using OSEM

iterative reconstruction and were attenuation-corrected using
the CT data.

PET analysis

Central analyses of all PET/CT data were conducted at
Imperial College London by a semi-automated adaptive
threshold method. The primary tumor was initially delineated
using an initial threshold of 40% of the SUVmax on semi-
automated software (Hermes Gold3; Hermes Medical
Solutions Ltd., London, UK) and VOIs drawn. The PET vol-
ume was correlated with the primary tumor on CT, and under-
estimation was determined by checking if the PET tumour
VOI encompassed the whole tumour on the CT component
of the PET. If the VOI did not cover the tumour visually, a
lower threshold was used [10]. Manual adjustment was
employed when the VOI incorporated adjacent normal

Fig. 1 Overview of centers and
PET images.a Overview of the
centers contributing to the study
and how the data were randomly
divided into training, validation or
independent test set. TCIA, The
Cancer Imaging Archive. b
Typical images from the PET/CT
scans of two patients including
PET, CT, and fusion images.
Patient 1 (age 74, squamous cell
carcinoma, stage IIA, tumour
volume 22.6, overall survival
8 months) with the lower stage
and smaller volume primary le-
sion had a worse survival out-
come than patient 2 (age 77,
squamous cell carcinoma, stage
IIIA, tumour volume 26.5, overall
survival 33 months) with the
higher tumour stage
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structures such as adjacent myocardial activity [11]. All seg-
mentations were made by the same operator (observer 1, a
radionuclide specialist radiologist with 4 years’ experience
of tumor delineation).

The SUVmean, SUVmax, SUVpeak, metabolic tumor volume
(MTV), and total lesion glycolysis (SUVmean × MTV)(TLG)
of the primary tumor were recorded. Using Youdens’s J to find
the optimal cut-off from the ROC for median survival,
Kaplan–Meier curves were generated. The VOIs were extract-
ed and imported into the radiomics software. To assess intra-
and inter-observer variability of the segmentation method, 18
patients were selected at random by SPSS, and segmentation
of the tumor was performed (at 128 Gy level) by two addi-
tional experienced operators (observers 2 and 3, with 6 and
10 years’ experience of tumor delineation respectively)
blinded to the original results and clinical data. Lymph nodes
were excluded from statistical analyses.

The interclass coefficient was used to assess intra- (by ob-
server 1) and inter-observer (by observers 1, 2, and 3) differ-
ences in texture. The differences between the observers were
performed by a 2-way ANOVA repeated measures model
using Bonferroni correction.

Radiomics analysis

Radiomics analysis (Supplementary Fig. 1) was performed at
seven different quantisation/gray levels— 4, 8, 16, 32, 64,128

and 256 Gy — on TexLAB v2, which was developed and
implemented in-house within Matlab R2015b (MathWorks
Inc., Natick, MA, USA). From each primary tumor, 665
radiomic features (listed in Supplementary Table 3) were ex-
tracted from segmented VOIs using local, regional, global,
fractal, and wavelet techniques. These included intensity fea-
tures, shape features, and texture features [gray level co-
occurrence matrix (GLCM), gray level run length matrix
(GLRLM) and neighbourhood gray difference matrix
(NGTDM)] with or without wavelet transformation, as previ-
ously reported [5, 6]. Radiomics features were determined
from 133 PET scans (training set) using TexLAB v2.

Feature selection and radiomics signature discovery

As with other high-throughput analyses, it is important to
reduce the total number of features for prediction purposes
in order to eliminate Type 1 errors and instead learn the true
basis of a decision. We initially identified highly correlated
features for elimination using heatmaps, as highly correlated
features suggested that some feature reduction could be un-
dertaken without information being lost. Heatmaps were cre-
ated using R software (http://www.r-project.org/; Version 3.03
Vienna, Austria). It is known that there is correlation of several
texture features with volume [12]. Using Spearman's rank
correlation, features that had a high correlation with volume
(≥ 0.7) were normalised by dividing the feature value by

Table 1 Characteristics of the
training, validation and test
datasets

Training set Validation set Test set I

Number 133 204 21

Mean age (range) years 69 (35–89) 71 (42–91) 71 (53–101)

Male (%) 82 (61.7) 126 (61.7) 10 (47.6)

Stage I (%) 24 (18) 33 (16.2) 4 (19)

Stage II (%) 34 (25.6) 37 (18.1) 4 (19)

Stage III (%) 75 (56.4) 134 (65.7) 13 (61.9)

Histology: SCC (%) 69 (51.9) 95 (46.7) 14 (66.7)

Histology: adeno(%) 41 (30.8) 77 (37.7) 5 (23.8)

Histology: NSCLC NOS (%) 18 (13.5) 25 (12.3) 2 (9.5)

Histology: other (%) 5 (3.8) 7 (3.4) 0

SUVmean (range) 8.25 (1.78–17.4) 8.44 (2.11–23.7) 7.75 (4.44–16.8)

SUVmax (range) 16.5 (4.9–42.8) 15.9 (3.26–49.5) 13.6 (6.66–39.2)

SUVpeak (range) 14.2 (3.8–35.4) 14.2 (2.9–43.1) 12.5 (6.26–34)

MTV (range) mls 40.4 (5.13–467) 33.7 (5.27–525) 30.8 (7.03–230)

TLG (range) 344 (16.2–5.45 × 103) 315.2 (19.4–5.7 × 103) 266 (40.5–2.59 × 103)

Median overall survival (months) 25 (0–83) 21.0 (0–85) 20 (2–37)

Number of deaths (%) 88 (66.2) 145 (71.1) 17 (81%)

Length of follow-up (median +
IQR in months)

26 (12–39) 22.0 (11–36) 21 (8–31)

SCC squamous cell carcinoma, Adeno adenocarcinoma, NSCLC non-small-cell lung cancer (not otherwise spec-
ified, i.e., not classified into squamous or adenocarcinoma), MTV metabolic tumour volume, TLG total lesion
glycolysis, IQR interquartile range. Stage AJCC/UICC 7

458 Eur J Nucl Med Mol Imaging (2019) 46:455–466



volume to obtain volume-invariant texture features (notably,
the two features included in the final analysis did not correlate
with volume, and thus, did not require normalisation to
volume).

From the 665 sets of features at each gray-level, we used
least absolute shrinkage and selection operator (LASSO) re-
gression analysis for data dimension reduction, radiomics fea-
ture vector (composite feature) discovery, generating Kaplan–
Meier curves and computing the Cox regression analysis.
LASSO is a form of penalised regression used to reduce the
problem of multi-collinearity. Briefly, the non-contributory
variables were assigned zero-weighting, and numerous itera-
tions were performed to link the non-zero contributory vari-
ables to the chosen clinical outcome (in this example, overall
survival) [13]. Analyses were conducted with R software; the
packages in R used for our analysis are indicated in
Supplementary Table 4. Two-sided statistical significance
levels were used, and p ≤ 0.05 was considered statistically
significant. SPSS for Statistics Version 22 (IBM, Armonk,
NY, USA) was used for interclass correlation and 2-way
ANOVA.

The most predictive feature vectors (FVX) were computed
by linear combination of selected statistical features of the
matrices weighted by their respective coefficients and by com-
parison with overall survival (OS). Survival curves were plot-
ted using Kaplan–Meier (KM) methods, stage-specific or
Youden’s J cut-off on the receiver operator curve for the me-
dian survival in the case of FVX. Kaplan–Meier curves were
plotted for overall survival using the ‘survfit’ function from
the ‘survival’ package in R using the median cut-off for the
MTV, TLG, and FVX. The statistical significance of the dif-
ference in the survival curves was calculated using the logrank
test implemented in the ‘survdiff’ function. The survival
curves were evaluated using a log-rank test (Cox
Regression). Multivariable analysis of the FVX, stage, MTV,
and TLG were compared with each other using a stepwise
backward procedure to determine significantly independent
survival indicators. P values of ≤ 0.05 were considered statis-
tically significant, and 95% confidence intervals were calcu-
lated. A continuous Cox regression and the C-index, was com-
puted for each prognosticator in the univariate analysis, and
for the multivariable analysis with and without FVX. All four
variables (FVX, stage, MTV, and TLG) were used as contin-
uous variables in the analysis.

Independent validation and testing

Performance of the FVX and stage were tested by comparison
to OS in an independent validation set of 204 patients, and a
further independent set of 21 (TESTI; the final institutional
dataset to be accepted into the study) patients. Similar survival
comparisons were made with routine PET variables including
SUVmean, SUVmax, SUVpeak, MTV, and TLG.

Results

Patient characteristics and PET analysis

Patient characteristics are displayed in Table 1. There were no
significant differences in the proportion of males to females
except in TESTI, which was a very small dataset. The major-
ity of patients were, as expected for such a cohort, stage III.
Typical PET images are shown in Fig. 1b. Primary tumor
SUVmax ranged from 3.3 to 49.5 (Table 1). All patients were
treated with radiotherapy with or without chemotherapy, and
median survival values were not significantly different be-
tween the training, validation, and independent test cohorts,
except in the small cohort in TESTI. No cases treated primar-
ily by surgery were analysed, as the inclusion criterion was the
cohort having radiotherapy with or without chemotherapy
rather than surgery. Admittedly, some patients with stage I
or II disease would have been unfit for surgery, while others
would have elected for radiotherapy with or without chemo-
therapy in preference to surgery due to factors including pa-
tient choice; we do not have accurate data for the reasons for
this choice. Of 358 patients, 249 died within the follow-up
period [median 22 (range 0–85) months]). The comprehensive
data for scanners are provided in Supplementary Table 2.

Segmentation is an important source of variability in
radiomics analysis [14]. The most prevalent threshold cut-off
values were 40% (47.8% of cases) and 30% (27.7% of cases);
together these accounted for 75.5% of all the thresholds;
24.5% required a lower threshold value in order to encompass
the whole tumour as defined by the CTcomponent of the PET.
Furthermore, 9.5% of cases required additional manual adjust-
ment, after setting the initial threshold, to achieve optimal
segmentation. Intra- and inter-observer variability of
radiomics features from 18 randomly selected patients are
displayed in Supplementary Tables 5 and 6. There was near-
perfect [15, 16] intra- and inter-observer variability in the
PET-derived radiomics features. The intra-observer variability
of the radiomics features alone and when combined with PET
features was 0.9 and 0.92 respectively. Corresponding inter-
observer variability values were 0.86 and 0.88 respectively.

Radiomics feature vector selection

Radiomics predictive classifiers (665) were derived from
TexLAB v2. Generation of a heatmap (Fig. 2) from all the patient
data — both training and validation sets — visually indicated
multi-collinearity (when many features are related), and sug-
gested that some features could be reduced without information
being lost. From the 665 radiomics features returned by the soft-
ware in the training set of 133 patient scans, one FVwas selected
as the optimal predictor (FVX)— a weighted linear combination
of the statistical features of size-variance of the gray-level size
zone matrix at 64 Gy levels (GLSZM_SzVarianc_64gl;
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weighted by 0.128) and complexity of the neighbourhood gray-
tone difference matrix (NGTDM) at 64 Gy levels
(NGTDM_Complex_64gl; weighted by −0.018) — using
LASSO conducted independently at each gray level (example
shown in Supplementary Fig. 2). Previous studies have indicated
that primary tumor volume is an important predictor of survival
in lung cancer [17]. A multivariable analysis was performed
which included the new FVX, volume (SNSvol variable) and
stage; volume was not significant, and was not further consid-
ered. Both the stage and FVX were significant and, most impor-
tantly, there was no correlation between the two (p = 0.22).

We tested the influence of PET scanner equipment proper-
ties on the FVX. Principal component analysis of FVX (at
64 Gy levels) was used to assess the congruence of data across
different manufacturer types, manufacturer models, slice
thickness, number of rows, or number of columns (Fig. 3;
Supplementary Figs. 3–5 and Supplementary Table 7). All
elements of the data were tightly clustered around each other
(minimal variance), suggesting that FVX was invariant to the
type of PET/CT manufacturer or slice thickness; thus, no cor-
rection was made for sets of data from different institutions.
Other FVs were dependent on scanner type (data not shown).

Performance of radiomics feature vector

We tested the performance of FVX in an independent valida-
tion cohort comprised of 204 patient scans by comparison to

OS. Kaplan–Meier (KM) plots for stage and FVX are shown
in Fig. 4. FVX was significantly associated with OS in the
validation set when dichotomised at median (p = 0.00465),
optimal cut-off by Kmroc (p = 0.00116) or as a continuous
variable (p = 0.00429), with hazard ratios (HRs) of 1.61
(1.16–2.24), 1.74 (1.25–2.44), and 5.30 (1.69–16.6) respec-
tively. In the TESTI cohort that presented with an unusually
poor survival of the four stage I cancers (Supplementary
Figs. 6 and 7), FVX correctly indicated a lack of survival
difference (p = 0.501). FVX values for image data presented
in Fig. 1b, for instance, were − 29.9 and − 03.1 for patients 1
and 2 respectively, thus correctly predicting survival relative
to stage. In contrast to the radiomics classifier, clinically rou-
tine PET variables including SUVmax, SUVmean, and SUVpeak

lacked any predictive information (Supplementary Fig. 8).
The MTVand TLG were significant on the KM plots; surpris-
ingly, MTV was also significant on the TESTI KM plot (Fig.
5). The MTVand TLG were highly correlated with each other
(Supplementary Table 8), but neither the TLG nor MTVwhen
tested separately with the FVX and stage were significant on
the multivariable Cox regression (Supplementary Table 9).

FVX, stage, MTV, and TLG were the only potential prog-
nosticators that showed significance in the univariate analysis.
The Cox regression analysis associating FVX, stage, MTV,
and TLG with overall survival in three datasets are
summarised in Supplementary Table 9, with both univariate
analysis and multivariable analysis combining all the four

Fig. 2 Spearman rank correlation
of the radiomics features
displayed as a heatmap. High-
level correlation with clustering
of features is seen
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variables. FVX was prognostic, independent of stage, MTV,
and TLG in both training and validation sets. MTVand TLG
were not significant once combined with FVX in the multi-
variable model, suggesting that FVX is a significantly better
prognosticator than MTVand TLG.

Discussion

This multi-institution retrospective study showed that a
radiomics feature vector, FVX, derived from analysis of
FDG-PET data of primary tumors ≥ 5 ml in patients with
NSCLC is invariant to PET scanner properties and predicts
OS. Accurate prognostic information is crucial in stratifying
newly diagnosed NSCLC patients to different treatments or
best supportive care. Currently, TNM staging is the primary
method to stratify treatment approach in NSCLC; however, it
offers imprecise prognostic information, leading to both
under-treatment and over-treatment in some patients. Other
established prognostic factors for lung cancer include perfor-
mance status (Karnofsky or ECOG (Eastern Cooperative
Oncology Group) classification), weight loss (e.g., > 5%)

and systemic inflammation (C-reactive protein or modified
Glasgow Prognostic Score) [18–20]. While factors such as
EGFR (epidermal growth factor receptor) mutation predict
response to targeted therapy [21–23], tumor-specific prog-
nostic factors are lacking. In the current work, we assessed
the role of radiomics features as prognostic factors in
NSCLC. A machine-learning-enabled weighted linear com-
b i n a t i o n o f t h e s t a t i s t i c a l f e a t u r e s o f
GLSZM_SzVarianc_64gl and NGTDM_Complex_64gl —
FVX — was found to possess prognostic information and
importantly was invariant to scanner properties investigated
(Supplementary Table 7). The features do not have imme-
diate physiological relevance. GLSZM is a regional ‘homo-
geneity’ texture feature that calculates lengths of uniform
pixels (picture elements) in a 2D image, or in our case,
directionally-independent groups of uniform voxels (volume
elements) in each of the 26 available directions in 3D
space; GLSZM_SzVarianc_64gl (size variance of the
GLSZM at 64 Gy level) examines the variance in the num-
ber blocks by size (independent of the gray-level) and is
negatively correlated with survival, possibly identifying
hypoxic or necrotic regions with poor prognosis [24–26].

Fig. 3 Principal component analysis (explained variance) of PET
radiomics features (at 64 Gy level) to assess congruence of data from
different manufacturer models: CPS 1023, CPS 1024, Siemens 1080,
1094, Phillips Allegro Body (C), Siemens Biograph 64 mCT, Siemens

Biograph 128 mCT, GE Discovery ST, GE Discovery STE, CTI ECAT
HR+, Phillips Gemini TF TOF 16, and CPS/Siemens Sensation 16
respectively
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NGTDM represents contrast, and is determined by examin-
ing changes in intensity between a target voxel and the
surrounding neighbors to enable calculation of apparent
difference between neighboring regions of voxel intensities.
Contrast is related to the information content of an image
and is a mathematical measure of heterogeneity; non-
responding tumors with poor prognosis tend to have higher
contrast [27]. NGTDM_Complex_64gl (complexity of the
NGTDM for 64gl), which refers to the average visual

complexity within the volume, is positively correlated with
survival, although with less of a magnitude than SzVarianc,
and perhaps acting as a balance on SzVarianc.

This is one of the first reports of a whole tumor image-
derived lung cancer prognostic factor. In our analysis, there
was a higher hazard of death (1.74; p = 0.00116) when the
median FVX was used as input. The implicit assumption here
is that a set of mathematically-derived tumor phenotypes cor-
relate with survival. It should be noted, however, that death as

Fig. 4 Survival analysis based on composite radiomics feature
dichotomized using ROC. Kaplan–Meier plots of a training, b
independent validation, and b TESTI. Note that the validation dataset

has longer follow-up period. K–M =Kaplan–Meier, N = number of sub-
jects, mths, mo, mth =months, Med =median
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an endpoint could have occurred by other means — indirect
consequence of the tumor or non-tumor related — or may
have been subjected to different variations of physician choice
of chemotherapy/chemo-radiotherapy, making this analysis
the more interesting. Furthermore, routine PET variables,
while useful for staging, did not possess prognostic informa-
t ion. Base l ine pr imary tumor SUVmax has been

reported by some groups, but not all, to predict outcome in
NSCLC patients. For resectable NSCLC patients, a meta-
analysis of 13 studies showed that primary tumor SUVmax

has significant prognostic value on patient survival [28]. A
more recent meta-analysis, assessing the prognostic value of
primary tumor SUVmax prior to radiotherapy in NSCLC, re-
ported that higher tumor SUVmax was correlated with shorter

Fig. 5 Survival analysis based on the SUV variables, MTV and TLG,
dichotomized using ROC. Kaplan–Meier plots of a training dataset, b
independent validation set, and c independent TESTI. Note that the

validation dataset has a longer follow-up period.MTV metabolic tumour
volume, TLG total lesion glycolysis
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OS, particularly in stage I NSCLC receiving stereotactic body
radiotherapy (SBRT) [29].

Volumetric parameters, such asMTVand TLG, which con-
sider the whole tumor volume, have been reported to be prog-
nostic in NSCLC. Secondary analysis of the large multicentre
prospective American trial of 196 inoperable Stage IIb/III
NSCLC has reported MTV, TLG to be strongly prognostic
for OS, while SUVmax was not [30]. The TLG and MTV,
which were shown in our study to highly correlate with each
other, were not significant on multivariable analysis.

As this was a large multi-centre study acquired on differ-
ent scanners, voxel sizes differed (Supplementary Table 2);
we did not standardise the voxel sizes. However, slice thick-
ness and matrix size did not significantly affect the FVX.
The robustness of FVX, invariant to instrument factors in-
cluding slice thickness, permits this variable to be applied in
multi-institutional studies. Previous work on scanner types
[31–33] have yielded mixed results in terms of texture sta-
bility across model and manufacturer type, although limited
models have been used. In addition, much thought has been
given in the methodology to reduce Type 1 errors and false
discovery which have entered the published literature [34].
Compared to CT technology that has seen substantive re-
duction in slice thickness, PET FWHM (full width at half-
maximum; a measure of resolution) has not seen such sub-
stantive change over the past decade, and this could have led
to the scanner invariance of our study. We set a threshold of
5 ml, in keeping with earlier work of Soussan [8]. It is likely
that inclusion of smaller tumors would have led to higher
variability given the poor resolution of PET (compared to
CT or MRI). Hence, the inferences from this study are lim-
ited to the group of patients presenting with medium-large
lesions. The classification of patient subgroups in the
Kaplan–Meier analysis was based on the FVX value calcu-
lated from combination of weighted radiomic features. FVX
was a continuous variable, and we have demonstrated that
FVX was linearly correlated with overall survival in the
training and validation sets using a continuous Cox regres-
sion analysis. It should be noted that other analyses were
performed: Cox regression based on dichotomised median
FVX, Kmeans clustering and optimal cut-off (Youden’s J)
from the ROC curve, and showed consistent results (data
not shown).

TESTI was an unusual dataset in terms of size and
heterogeneity with a high number of stage 1 tumors and
high mortality. The fact that these patients had radiothera-
py ± chemotherapy instead of surgery indicates that there
was probably associated poor performance status.
Unfortunately, information on performance status was not
available. However it was felt important to attempt to test
the radiomics signature against this unusual dataset, as
ideally the ‘real-life’ prediction of the radiomics feature
vector should work irrespective of sample size.

A recent single-institution study of a PET/CT radiomics
signature for prediction of disease-free survival (DFS) in
NSCLC undergoing surgery with curative intent reported that
image derived parameters outperformed TNM staging in
predicting DFS. However, although promising, this was a
single-centre study, utilising what appears to be unenhanced
CT scans without external validation and in a different cohort
of patients to our study [35].

Limitations of the present study should be highlighted. 1)
This is a retrospective, albeit multi-institutional, study and
future prospective studies in similarly large cohorts will be
needed to verify this novel endpoint. 2) We did not consider
other prognostic factors as these were not consistently avail-
able from all institutions. Addition of other prognostic fac-
tors in future studies will enable more rigorous assessment
of events likely to have caused death. 3)We did not consider
EGFR mutations/expression or other genetic outcomes, as
these were not available for all patients. 4) Approximately
14% of the initial 535 patients screened were excluded for
having tumours < 5 ml (Supplementary Table 1). The choice
of 5 ml reflects a statistical limitation of applying radiomics
to PET data (less data-points within the VOI compared to
CT). Thus, with regard to generalisation of our study to
patients having chemo-radiotherapy, we would caution the
exploitation of our findings to smaller tumors. Irrespective
of these limitations, we highlight a massive opportunity for
physicians and patients, whereby mathematically-derived
features from scans that newly diagnosed NSCLC patients
would normally have as part of routine care can be ‘re-pur-
posed’ to predict prognosis. Only software implementation
and computing power are required for incorporation into
patient management pathways; thus, we envisage easy ac-
ceptance of this potentially cost-effective methodology for
use with existing prognostic methods. As it is tumor-specif-
ic, patients stratified to poor prognostic FVX groups could
be candidates for earlier follow-up or a lower threshold in
change of therapy [36].

In summary, we have discovered a scanner-invariant
radiomics feature vector that performs well in indepen-
dent validation and test datasets. This multi-institutional
study provides new opportunities for prospective assess-
ment of radiomics features for prognosis in patients with
NSCLC.
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ARTICLE

A mathematical-descriptor of tumor-mesoscopic-
structure from computed-tomography images
annotates prognostic- and molecular-phenotypes
of epithelial ovarian cancer
Haonan Lu 1,2, Mubarik Arshad2, Andrew Thornton1, Giacomo Avesani 2, Paula Cunnea 1, Ed Curry1,

Fahdi Kanavati2, Jack Liang2, Katherine Nixon1, Sophie T. Williams1, Mona Ali Hassan1, David D.L. Bowtell3,4,

Hani Gabra1,5, Christina Fotopoulou1, Andrea Rockall2,6,7 & Eric O. Aboagye 2

The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35–40%

despite maximal treatment efforts, highlighting a need for stratification biomarkers for

personalized treatment. Here we extract 657 quantitative mathematical descriptors from

the preoperative CT images of 364 EOC patients at their initial presentation. Using machine

learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on

4 descriptors, which we name “Radiomic Prognostic Vector” (RPV). RPV reliably identifies

the 5% of patients with median overall survival less than 2 years, significantly improves

established prognostic methods, and is validated in two independent, multi-center cohorts.

Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets

elucidate that stromal phenotype and DNA damage response pathways are activated in

RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide

personalized therapy of EOC and is potentially transferrable to other cancer types.
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“Radiomics” quantifies mesoscopic tumor phenotype
from anatomic or functional images by defining tumor
spatial complexity—including first and higher order

statistics, fractal and shape features—generating disease features
not appreciated by the naked eye1–3. The development of a
radiomics approach for disease phenotyping, using routine pre-
surgical computed tomography (CT), as an extension of current
imaging semantics is therefore promising4–6.

Epithelial ovarian cancer (EOC) is the sixth most common
cancer among women in the UK and has the highest mortality of
all gynecological cancers, accounting for 4% of all cancer deaths
in women7. High-grade serous ovarian cancer (HGSOC) repre-
sents the most dominant (70% of EOC patients) and most lethal
histological subtype8. Although it is well known that HGSOC
patients have a heterogeneous response to treatment and prog-
nosis, extensive cytoreductive surgery combined with platinum-
based chemotherapy are currently the standard treatments for
most patients without consideration of individual prognostic and
predictive biomarkers. Recently, a number of studies including
the Cancer Genome Atlas (TCGA) project have obtained a
comprehensive genomic profile of HGSOC, resulting in several
molecular prognostic biomarker discoveries9. For instance,
CCNE1 amplification is commonly associated with platinum-
resistant and refractory disease10,11; HGSOCs were classified into
prognostically distinct molecular subtypes according to gene
expression profiling12–14. More recently, large sets of microRNAs
have been exploited to determine the risk profile of EOC15. It
remains challenging, however, to translate these molecularly
determined characteristics into clinically relevant biomarkers due
to intratumor heterogeneity, additional high assay cost, and time
delays. Therefore, a noninvasive, real-time, and cost-effective
prognostic marker approach is warranted to reliably guide per-
sonalized treatment of EOC patients.

In the current study, a novel radiomics-determined mathe-
matical descriptor of EOC tumor risk phenotype with a reliable,
convincing predictive value is discovered and validated, and
further insights into the biological basis of the descriptor is
provided through investigation of correlated transcriptomics,
proteomics and copy-number alterations (CNAs).

Results
Characteristics of data and patients. We developed TexLab 2.0,
a software program that summarized 657 features relating to the
shape and size, intensity, texture and wavelet decompositions of
364 preoperative contrast-enhanced CT scans16 (Table 1 and
Supplementary Figure 1). All the radiomic features are sum-
marized in Supplementary Data 1. A comprehensive molecular
profile including gene expression, copy-number, and protein
expression was analyzed for a subset of patients (Table 1). The
study workflow is summarized in Supplementary Figure 2.

We evaluated 294 primary EOC patients with fresh frozen
tissue treated within the Hammersmith Hospital, Imperial
College Healthcare NHS Trust, London, UK between 2004 and
2015 as well as 70 EOC patients from the TCGA project
(Supplementary Table 1, Supplementary Figure 2).

Overview of radiomic profile in epithelial ovarian cancer. We
wished to investigate the data structure within the radiomic
profiles derived from primary tumors of EOC patients in relation
to clinical and genetic features. For samples with both radiomics
and CNA data, we performed a spectral clustering analysis based
on the Pearson correlation coefficients between each samples’
radiomic profile (Fig. 1a). There was a clear division of samples
into three major groups with each group characterized by high
feature similarity but largely distinct from those in other groups.
Notably, one of these groups (Group 1) was found to be sig-
nificantly enriched for HGSOC (Fig. 1b). EOC, particularly the
HGSOC subtype, frequently features CNAs17. We found that
Group 1 was enriched for tumors with high CNAs (Fig. 1c). This
group had a worse outcome as measured by progression-free
survival (PFS) (Supplementary Figure 3).

To further understand the radiomic characteristics of the
HGSOC subtype, we performed unsupervised hierarchical cluster-
ing analysis using the radiomic profiles in the HH cohort. We
found two distinct clusters within this population based purely
on the radiomic profile (Fig. 1d). Cluster 2 was significantly
associated with the presence of ascites (p= 0.00729, chi-squared
test) and poor PFS (p= 0.022, log-rank test; Fig. 1e), marginally
associated with higher tumor stage (p= 0.0686, Fisher’s exact
test), but not associated with postoperative residual disease or
molecular subtype (Fig. 1d). Of interest, 96% of bilateral tumors
from patient were assigned to the same cluster, revealing a close
radiomic similarity (Supplementary Note 1).

In aggregate, unsupervised analysis highlighted an intrinsic
association between radiomic profile, genetic background, and
clinical characteristics, warranting further characterization.

Radiomic prognostic vector predicts survival. We used three
datasets to assess the prognostic potential of the radiomic profile
for HGSOC patients: HGSOC cases from the HH cohort were
split into the HH discovery (n= 136) and the HH validation
datasets (n= 77), and examined in parallel with the TCGA
validation dataset (n= 70) (Supplementary Figure 2 and Sup-
plementary Table 1). We firstly performed Cox regression with
overall survival (OS) examining each radiomic feature in turn,
using data from primary tumors in the HH discovery dataset
(Supplementary Figure 2). Forty-two radiomic features were
found to be significantly associated with OS (false discovery rate
< 0.05; Fig. 2a; Supplementary Data 2). The 42 radiomic features
were further reduced to 4 weighted features using least absolute
shrinkage and selection operator (LASSO18) (Fig. 2b, c and
Supplementary Table 2). The weighted sum of these four radio-
mic features gave a RPV score for each tumor.

With an unsupervised k-means clustering approach, we split all
the patients from the three cohorts based on their RPV into three
subgroups (low risk, medium risk, and high risk; Supplementary
Table 3). The patient groups stratified by RPV had distinct OS
differences in the discovery dataset (N= 136, p < 0.0001, log-
rank test; Fig. 2d). Using the same RPV decision boundaries,
OS differences were confirmed in two independent validation
datasets, the TCGA validation dataset (N= 70, p= 0.000105,
log-rank test; Fig. 2e) and the HH validation dataset (N= 77,
p= 0.0274, log-rank test; Fig. 2f).

In a multivariable Cox regression model with age, stage,
postoperative residual disease, neo-adjuvant chemotherapy, and

Table 1 Summary of data produced

Data type Cohort Platforms Features Cases

Radiomic profile HH TexLab 2.0 657 294
TCGA 70

DNA copy
number

HH Affymetrix SNP6 Whole
genome

84
TCGA 70

Protein
expression

HH RPPA 299 198
TCGA 199 48

mRNA expression HH Illumina MiSeq 68 173
TCGA Affymetrix U133 Whole

genome
70

HH Hammersmith Hospital, TCGA The Cancer Genome Atlas
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the potential structured noise in the datasets (scan thickness),
RPV remained significantly and continuously associated with OS
in the discovery dataset (hazard ratio (HR): 3.83, 95% confidence
interval (CI) (2.27–6.46), p= 5.11 × 10−7; RPV range: −0.322 to
3.16), as well as the TCGA validation dataset (HR: 4.87, 95% CI
(1.67–14.2), p= 0.00380) and the HH validation dataset (HR:
7.36, 95% CI (1.29–41.9), p= 0.0245; Table 2). The addition of
RPV improved the clinically available prognostic methods (stage,
age, and postoperative residual disease) in all three datasets as
measured by the concordance index (C-index)19 (HH discovery:
from 0.658 to 0.739; TCGA validation: from 0.549 to 0.690; HH
validation: from 0.659 to 0.679). Age, stage, and postoperative
residual disease were significantly associated with OS in either
uni- or multivariable analysis in the combined HH cohort while
RPV remained the strongest prognostic factor, suggesting RPV is
prognostic in a representative HGSOC cohort. RPV was also
found associated with OS independent of performance status
in a subset of patients (Supplementary Table 4). We excluded
performance status from the multivariable analysis to avoid
misinterpretation in the presence of insufficient data, given that
we only had the performance status of 62 out of the total
213 patients in the HH cohort, and less than 20 of them had
a performance status > 1. For that reason, any statistical

conclusions relating to performance status will not be valid due
to the very small sample size. Notably, RPV possessed a better
prognostic power when compared to the existing prognostic
markers including CA125 and the transcriptome-based molecular
subtype and potentially synergizes with existing CT-based
morphological approaches (Supplementary Tables 5–7; Supple-
mentary Note 1). Apart from prognosis, high RPV was found
significantly associated with primary chemotherapy resistance,
shorter PFS, and poor surgical outcome (Fig. 3e and Supplemen-
tary Figure 7g, Supplementary Note 1), suggesting RPV as a
potential predictive marker in HGSOC.

Taking advantage of the gene expression profiles collected
in parallel with radiomic profiles, we constructed a surrogate
marker of RPV based on a weighted list of mRNA expressions in
the TCGA validation dataset where both CT scans and gene
expression profiles were available (eRPV; Supplementary Note 1).
eRPV strongly correlated with RPV (r= 0.720) in the TCGA
validation dataset and significantly interacted with RPV in the
Cox regression model (Supplementary Figure 10c). It showed a
similar prognostic potential as RPV in two additional cohorts
(TCGA dataset without publicly available CT scans: n= 448,
HR= 2.19, 95% CI (1.23–4.25), p= 0.0208; Tothill dataset:
n= 228, HR= 7.94, 95% CI (2.02–31.3), p= 0.00303; adjusted
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for stage, grade, residual disease, age and neo-adjuvant che-
motherapy). We thus considered eRPV as a surrogate of RPV and
subsequently used eRPV in a subset of the TCGA dataset without
publicly available CT scans, as an extension of RPV (Noted as
“eRPV” in Fig. 3d, e, Supplementary Figure 7a, 7c, 7e and h-j).

Overall, we observed RPV to be associated with OS, independent
of known clinical prognostic factors, suggesting that it may reflect
distinct aspects of clinically relevant variation across HGSOC.

Biological interpretation of the radiomic prognostic vector. To
understand tumor biological characteristics linked to RPV, we
evaluated enrichments of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways from Spearman correlation coeffi-
cients of gene expression with RPV (Fig. 3a, b; false discovery rate
(FDR) < 0.05); the full lists of pathways are given in Supple-
mentary Data 3 and 4.

We found that ECM−receptor interaction and focal adhesion
were the two pathways most significantly enriched for associa-
tions with high RPV. These two pathways contained ECM
components (TIMP3 (r= 0.530), COL11A1 (r= 0.460)) and focal
adhesion receptors (ITGA5 (r= 0.368), ITGB5 (r= 0.387)), and
from previous studies both pathways were enriched in
stroma20,21. Accordingly, genes with expression correlated to
high RPV were significantly enriched for genes expressed in the
stromal component (Fig. 3c, chi-squared test p < 0.0001).
Additionally, RPV was positively correlated with a stroma
marker, fibronectin, at the protein level in both the TCGA and
the HH cohorts (Fig. 3d and Supplementary Figure 7a).
Furthermore, high RPV was associated with high proportion of
tumor-associated stromal cells, evidenced from both histological
data (Fig. 3e) and stroma score estimated from transcriptomic
data22 (Supplementary Figure 4b). A lower tumor cell content is
inversely related to high stromal content. Consistent with
previous results, we noted that higher RPV was associated with
lower tumor cellularity (Fig. 3e) in the TCGA cohort and the
same trend was observed in the HH cohort (Supplementary
Figure 7d). These associations between molecular and histological
characteristics with RPV were also observed with eRPV in a
subset of the TCGA dataset without publicly available CT scans
(Supplementary Figure 7a, 7c and 7e).

Besides stroma-related pathways, a number of proliferation
and DNA damage response (DDR) pathways, including DNA
replication, cell cycle, mismatch repair, base excision repair,
nucleotide excision repair and homologous recombination, were
among the top pathways activated in the RPV-low tumors
(Fig. 3b). To verify the validity of the pathway analysis, we
analyzed reverse phase protein array (RPPA) data from both HH
and TCGA cohorts and found the expression of proliferation
and DDR pathway marker proteins including Stathmin 1, FoxM1
and Rad51 to be higher at the protein level in tumors with low
RPV in the two independent datasets (Fig. 3d and Supplementary
Figure 7a), which was consistent with our transcriptomic and
pathway analysis. Existence of highly proliferative cancer cells
with impaired DDR mechanism (e.g. TP53 mutation) could
elicit accumulation of DNA damage23. Accordingly, higher
tumor mutational burden and CNA burden were observed in
RPV-low tumors (Supplementary Figure 7k-7l). Collectively,
these molecular features suggest that RPV-low patients may
benefit from DDR inhibitors (PARPi) and immunotherapy (anti-
PD1/PD-L1)24. Potential alternative therapeutic targets based on
the molecular characteristics associated with RPV are listed in
Supplementary Table 8.

Molecular subtype, BRCA1/2 mutations and CCNE1 amplifica-
tion are well-established molecular characteristics contributing to
primary chemotherapy response and prognosis. However, they
were not found correlated with RPV, highlighting the indepen-
dent disease mechanisms associated with RPV (Fig. 3e; Supple-
mentary Note 1).

Overall, stromal phenotype on one hand, and proliferation and
DDR pathways on the other, were respectively activated in RPV-
high and RPV-low tumors, all of which are potential actionable
therapeutic targets in HGSOC.

The reliability and reproducibility of the radiomic profile. To
determine the reliability and reproducibility of the radiomic profile,
we assessed potential sources of error during radiomic data pre-
paration. Firstly, we assessed the batch effect of CT scanner types on
radiomic profile and RPV. Principal component analysis of the
radiomic profile for all tumors showed no association at all with the
five vendors or two types of matrix and was only moderately

Table 2 Summary of Cox regression analysis of RPV in three datasets. RPV was used as a continuous variable in the Cox
regression analysis

Variables Univariate Multivariable

HR (95% CI) p value HR (95% CI) p value

HH discovery (n= 136) RPV 4.08 (2.48–6.71) 3.37e-08 3.86 (2.30–6.46) 3.04 × 10−7

Stage 2.03 (1.37–3.00) 0.000426 1.88 (1.24–2.86) 0.00305
Residual disease 1.75 (1.03–2.99) 0.0393 1.40 (0.803–2.44) 0.235
Agea 1.25 (0.741–2.11) 0.404 1.47 (0.865–2.51) 0.154

HH validation (n= 77) RPV 2.05 (1.01–4.18) 0.0485 5.08 (1.03–25.2) 0.0465
Stage 1.32 (0.775–2.24) 0.309 1.32 (0.664–2.64) 0.425
Residual disease 1.78 (0.777–4.08) 0.173 1.28 (0.514–3.21) 0.593
Agea 2.10 (0.940–4.68) 0.0704 3.44 (1.19–9.94) 0.0228

HH cohort combinedb

(n= 213)
RPV 2.94 (2.02–4.26) 1.54 × 10−8 3.32 (2.16–5.10) 4.91 × 10−8

Stage 1.82 (1.33–2.48) 0.00017 1.75 (1.24–2.50) 0.0017
Residual disease 1.72 (1.11–2.69) 0.0163 1.36 (0.855–2.15) 0.196
Agea 1.46 (0.951–2.24) 0.0835 1.74 (1.10–2.76) 0.0183

TCGA validation (n= 70) RPV 4.94 (2.06–11.8) 0.00034 6.21 (2.06–18.7) 0.00117
Stage 1.75 (0.913–3.34) 0.0921 1.03 (0.309–3.44) 0.960
Residual disease 1.34 (0.480–3.74) 0.576 1.45 (0.414–5.05) 0.564
Agea 1.08 (0.435–2.66) 0.874 0.500 (0.154–1.63) 0.249

HR hazard ratio, CI confidence interval, RPV radiomic prognostic vector, HH Hammersmith Hospital, TCGA the Cancer Genome Atlas
aAge has been dichotomized at 60 years
bCombining HH discovery and HH validation datasets
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associated with the scan thickness (Fig. 4a and Supplementary
Figure 12a-12c; Range: 1–10mm). Thus, RPV is deemed to be
unaffected by the types of CT scanner investigated.

To assess the reliability of radiomic data generated, we
investigated the feature-wise correlation in HH and TCGA cohorts
(Fig. 4b). A consistent feature-wise correlation across independent
studies is an indicator of high reliability. The feature-wise
correlation in HH and TCGA cohorts were strongly correlated
(r= 0.817, p < 0.0001, Pearson correlation), signifying a relatively
consistent structure within the radiomic profile compared with
molecular profiles from RPPA (Supplementary Figure 12c).

In the present study, the primary tumors from CT scans were
initially segmented by radiologists, then analyzed by the TexLab
2.0 software. The segmentation process could potentially cause

interobserver errors due to the manual nature of the procedure;
therefore, we investigated the effect of eight deformations (from
−4 to +4 voxels) of the original segmentations on RPV (Fig. 4c).
The difference between the deformed and original RPV are
shown for each deformation from 106 scans in Fig. 4d. We found
that erosion of the segmentation generally amplified the original
RPV and dilation had an opposite effect, which resulted in an
inverse correlation between the difference in RPV and increase
of voxels. Importantly, the variation in RPV was unremarkable
within the range of 1-voxel erosion (mean difference: 0.105,
sd: 0.167) and 3-voxel dilation (mean difference: −0.0418, sd:
0.125). The interobserver variation in RPV, determined from
segmentation made by two independent radiologists for 21 scans,
fitted well within this range (Supplementary Figure 12e).
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Discussion
In the present study, we obtained and analyzed a comprehensive
radiomic profile containing 657 features for 364 EOC cases in
total—the largest study of its kind for EOC—and we discovered a
novel radiomics-based prognostic signature, RPV, that not only
has strong prognostic power (HR > 3), but is also noninvasive and
readily accessible, compared to the existing molecular profiles and
clinical factors deemed prognostically relevant12,14. In contrast to
previous studies that lacked interpretation of the prognostic sig-
nature, we comprehensively profiled biological and clinical fea-
tures associated with RPV that will help guide future clinical
decision processes in a reliable and reproducible fashion.

Several previous studies have attempted to develop predictive
and prognostic tools based on molecular profiles from tumor
biopsies such as gene expression, DNA methylation, CNA, and
more recently microRNA and circulating tumor DNA12,14,15,25–27.
These molecular prognostic models are challenging to translate
into routine clinical use due to the invasiveness of a biopsy,
insufficient prognostic power due to the vast intratumor hetero-
geneity, high assay costs, and most importantly, the significant
time constraints that are associated with the molecular assay

procedures. The prognostic model we propose is simple, built
solely on the information extracted from a patient’s routine pre-
operative CT scan at the presentation of the disease and hence
readily accessible without additional costs or time delays, knowing
that majority of the HGSOC patients will have CT scans prior to
the treatment (compared to PET, MRI or ultrasound). The entire
primary ovarian mass is segmented, signifying that any prognostic
or biological information extracted is more representative of
the disease compared to a single site biopsy. Moreover, RPV is
stable across the CT scanner types and the segmentation process,
thus limiting the number of potential restrictions for clinical
exploitation in the future. We have constructed a software pipeline
which is able to compute the RPV of 80 EOC datasets within
5 min on a standard computer. Beyond RPV, the dataset could be
mined in a supervised manner for new gene- or protein-radiomics
interactions.

We employed manually engineered features as the main
component of radiomic analyses; this approach is backed by the
current literature in the field1. While some studies28 have started
to investigate the application of deep learning for radiomics via
the extraction of thousands of deep features from convolutional
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networks, the small sample size coupled with the curse of
dimensionality in machine learning pose a hurdle for proper
evaluation of deep learning features for radiomic analysis. The
availability of thousands of annotated or segmented 3D medical
datasets would allow for a more robust evaluation and open the
possibility for applying transfer learning on 3D medical images,
as is currently done with 2D images29–31.

RPV consists of four radiomic features: (a) FD_max_25HUgl
(coefficient: −0.0876), (b) GLRLM_SRLGLE_LLL_25HUgl
(coefficient: 0.0869), (c) NGTDM_Contra_HLL_25HUgl (coeffi-
cient: 0.165), and (d) FOS_Imedian_LHH (coefficient: 0.250). All
the features appear to have approximately even weighting and
relate to tumor macro-architecture at the 25 Hounsfield Unit gray
level (and discrete wavelet filters). In biological terms, the indi-
vidual components of RPV combine to define the tumor-
mesoscopic structure: (a) maximal fractal dimension of the
tumor and its microenvironment, which was negatively correlated
with survival, together with the following positively correlated
features; (b) proportions of runs that have short lengths in the
low pass filtered image; a function which gives coarse low-density
textures, e.g. intermixed fibrotic stroma and tumor cells; (c) the
average visual contrast across the tumor weighted by sharpening
in the x-axis, and blurring in the y and z axes reflecting local
heterogeneity, and (d) the median of the distribution of voxel
intensities across the entire tumor weighted by blurring in the
x-axis and sharpening in the y and z axes, reflecting global
heterogeneity, respectively. A visual representation of the four
radiomic features is shown in Supplementary Figure 13.

In addition to building a prognostic model, we further
demonstrated that the radiomics-derived signature is closely
linked to a stromal phenotype and DNA-damage response
through genetic, transcriptomic, proteomic and histological ana-
lysis. This finding is consistent with the poor prognostic value of
stromal phenotype identified in many cancers including ovar-
ian32–36, pancreatic37, prostate38, colorectal35,39, gastric32, lung35
and breast cancer40. Tumor stroma consists of immune cells,
endothelial cells, fibroblasts and extracellular-matrix (ECM)41 all
of which could directly contribute to outcome via distinct
mechanisms in EOC42–45. We demonstrate, based on the strong
association between RPV and response to primary chemotherapy
or surgery, that patients with high RPV have a significantly high
risk of failing quality surgery or systemic strategies and suggest
that they possibly need to be directed towards alternative ther-
apeutic approaches including stroma modifying therapies (e.g.
ClinicalTrials.gov ID: NCT03363867).

Interestingly, in our HGSOC cohort we did not observe a
strong association between RPV and any single cancer driver
events including ovarian cancer “molecular subtypes”, specific
gene mutations or CNA, suggesting that the RPV phenotype and
related poor prognosis may be shaped by noncanonical genetic
alterations or pathways.

There are some limitations of the present study: firstly, the
study had a retrospective design albeit with two independent
validation datasets. A future prospective study or analysis of
retrospective randomized clinical trial data is required to validate
RPV in a more general HGSOC population. Secondly, as the
stromal component contains a mixture of cells of different origins
and ECM composition, the exact elements in the stroma mea-
sured by RPV remain unclear. A study to associate RPV with each
component in stroma including fibroblast activation, immune cell
infiltration and ECM density is necessary to better understand the
basis of the prognostic power of RPV. In addition, EOC patients
often present with bilateral disease and one tumor was chosen
to represent the patient in this study. Further investigation
into heterogeneity in RPV for bilateral tumors may further help
optimize the prognostic model.

In summary, we have discovered and validated a novel math-
ematical descriptor of tumor phenotype and prognosis that
convincingly fulfills an unmet need in the management of
patients with EOC, and have demonstrated a disruptive tech-
nology that opens the way for multiple classifications of patients
and rapid patient entry into clinical trials at the point of care.

Methods
Patient cohort and biospecimen collection. This is an observational study of
patient data (including data related to fresh frozen tissue, imaging and clinical
annotations) from the Hammersmith Hospital (HH), Imperial College Healthcare
NHS Trust and from the TCGA study. All procedures involving human partici-
pants were done in accordance with the ethical standards of the institutional and/or
national research committee and with the principles of the 1964 Declaration of
Helsinki and its later amendments or comparable ethical standards. Ethical
approval for retrospective analysis of human data was obtained under the Ham-
mersmith and Queen Charlotte’s & Chelsea Research Ethics Committee approval
05/QO406/178 and informed consent was waived, typical for retrospective analysis
of anonymized imaging data.

EOC patients included in the Hammersmith cohort were treated at the
Hammersmith Hospital (HH), Imperial College London NHS Trust between
June 2004 and November 2015. The patients were identified based on the
availability of fresh frozen tumor tissue samples and preoperative CT images.

Patient demographics, surgical and tumor related data were collected
retrospectively from medical records and the multidisciplinary team (MDT) notes
by the clinical members of the team are summarized in Supplementary Table 1.
PFS and OS were defined as the time from the date of surgery until the date of first
relapse or death, respectively. Staging was defined according to FIGO-criteria for
ovarian epithelial carcinoma. Optimal debulking was defined by postoperative
residual disease < 10 mm since this criterion was applied to majority of the
retrospective patients. Primary chemotherapy resistance was defined as stable
disease, a partial response or progressive disease during the first-line
chemotherapy.

Tumor cellularity was quantified from hematoxylin and eosin-stained sections
by an experienced pathologist. Based on the multidimensional scaling analysis we
performed on the RPPA data, only samples with more than 30% tumor cellularity
were included in the RPPA analysis.

A subset of EOC patients from TCGA study were used as the validation cohort.
The preoperative CT images for these cases were downloaded from the cancer
imaging archive46 (http://www.cancerimagingarchive.net/). This was a multicenter
cohort with patients originating from Memorial Sloan Kettering (30 cases), Mayo
Clinic—Rochester (4 cases), University of Pittsburgh (10 cases), UCSF (16 cases)
and Washington University (9 cases). The clinical and histological data were
downloaded from UCSC cancer browser (https://genome-cancer.ucsc.edu/).

Clinical and surgical pathways. The management of all patients and the indi-
cations for surgery were discussed within a multidisciplinary team as per the UK
National Health Service (NHS) guidelines. All operations were performed through
a midline laparotomy by a specialized dedicated multidisciplinary team within
a maximal effort approach aiming to achieve total macroscopic tumor clearance.
Standard surgical procedures included peritoneal cytology, extrafascial hyster-
ectomy, bilateral salpingoophorectomy and infra-gastric omentectomy. When
indicated, additional procedures, such as dissection of macroscopically suspicious
pelvic and paraaortic lymph nodes, bowel resection, splenectomy, diaphragmatic
stripping/resection and/or partial resection of other affected organs (e.g. urinary
bladder, liver/liver capsule, pancreas, lesser sack) were performed in order to
achieve optimal tumor debulking. No systematic pelvic and paraaortic lymph node
dissection was performed routinely in the absence of suspicious bulky lymph nodes
(<1 cm).

Ninety-seven percent of patients were treated with a platinum-based
chemotherapy mainly in a combination regimen with paclitaxel or as monotherapy
in isolated cases.

Clinical follow-up of patients. Patients were regularly evaluated at the end of their
treatment for evidence of disease recurrence. Clinical examination and CA-125
assessment (if the preoperative value was elevated) were performed every 3 months
for the first 2 years and then 6-monthly. A CT/MRI-scan was ordered if the above
examinations revealed any pathology. An isolated CA-125 increase was not
regarded as a recurrence.

CT segmentation and radiomic analysis. As patients were referred to the cancer
center from a network of cancer units, contrast-enhanced CT scans were acquired at
multiple institutions using different manufacturers and different imaging protocols.

For both the HH and the TCGA datasets, the primary tumor masses were
segmented separately by experienced radiologists (M.A., G.A.) using ITK snap
(Version 3.2, 2015) and then all segmentations were checked in consensus with a
radiologist with over 16 years’ experience of ovarian cancer imaging (A.R.). We
included the entire primary tubo-ovarian mass (cystic and solid components). If both
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adnexae were involved, then both were included in the analysis, either as two separate
segmentations or as a single segmentation if the mass was confluent. We segmented
the entire primary mass including cystic and solid components, but excluded ascites.
The segmentations only included tissue that was considered highly likely to be cancer
by the expert reader. Areas of doubt on CT were not included in any segmentations.
Inter-observer variation was also measured by comparing independent segmentation
from two radiologists using the TCGA cohort.

For this study, the primary tumor mass segmentations were used as input for
the in-house texture analysis software package (TextLAB 2.0) developed in
MATLAB 2015b (Mathworks Inc., Nathick, Massachusetts, USA)16.

Using methodologies for feature extractions1,47–53, we defined 657 radiomic
image features that describe tumor characteristics. The features can be divided into
several groups: 1. Shape and Size features; 2. First-order statistics; 3. Second-order
statistics; 4. Wavelet features.

The first group relates to statistics based on the shape of the tumor, e.g.
compactness or sphericity. The second group quantified tumor voxel intensity
characteristics. Group 3 consists of textural features that quantify different measures
of three-dimensional intratumoral heterogeneity. The wavelet features group
calculates the features in groups 2 and 3 after performing wavelet decompositions
of the original image using high-pass or low-pass filters from the coiflet 1 family of
wavelets. All feature algorithms were implemented within MATLAB.

Transcriptomic, proteomic and copy-number analysis. Frozen tumor tissue
pieces (n= 314) were placed into ceramic bead tubes (Stretton Scientific) for
protein extraction by the Functional Proteomics RPPA Core Facility, MD
Anderson, USA. Protein concentration was determined following extraction and
adjusted to 1.5 μg/μl. Proteins were denatured by 1% SDS plus beta-
Mercaptoethanol and serially diluted for subsequent Reverse Phase Protein arrays.

For each tumor in the study, one frozen tumor piece was placed into a tube
containing 500 μl RLT buffer from RNeasy kit (QIAGEN) and one Retsch 6 mm
steel core bead. Tubes were placed into well adapters of a Tissuelyser II (QIAGEN)
and tissues were lysed at 15 Hz for 2 min. Tubes were centrifuged briefly and 320 μl
was removed for subsequent RNA extraction using the RNeasy kit (QIAGEN)
according to the manufacturer’s instructions. RNA concentrations were quantified
using the Bioanalyzer system (Agilent).

For DNA extraction, 450 μl of Buffer ATL from the QIAAMP DNA kit
(QIAGEN) was added to the centrifuge tube, and DNA was extracted following the
manufacturer’s instructions and quantified using QuBit (Thermo Fisher Scientific).

RPPA arrays were carried out and analyzed by MD Anderson Cancer Center54.
Briefly, protein lysates were diluted and loaded onto nitrocellulose-coated slides
that had been preconjugated with primary antibodies. Each protein was then
visualized via a colorimetric reaction and quantified by Array-Pro Analyzer. The
raw expression values were then normalized to protein loading and quantified by
means of standard curves. Log2 transformed and median-centered data were used
for the downstream analyses.

To perform molecular subtyping, total RNA from each individual case was
reverse transcribed into cDNA, followed by amplification with a pool of indexed
primers that target a predefined gene list (42 genes)13. The primers were selected
from the Illumina DesignStudios. The cleaned PCR product underwent QC by
Tapestation (Agilent) to confirm the amplicon sizes. Forty-eight samples were
multiplexed in one single MiSeq run. SR 50 bp were used to generate approximately
20 million reads per run.

Copy-number estimates for CCNE1 in 131 tumor samples from the HH cohort
were obtained through quantitative qPCR10. ΔCt values for tumor samples (CCNE1
relative to the endogenous control LINE1) were normalized to equivalent ΔCt
values from reference (normal Fallopian tube cell line DNA) with an assumed
CCNE1 copy number of 2.

Unsupervised clustering and signature discovery. A simple spectral cluster
analysis was performed using radiomic data from patients with both radiomic and
genomic copy-number data available. First a similarity measure was computed for
each patient with radiomic and CNA profiles as the average Spearman correlation
coefficient. The profiles of pair-wise similarity were then used to compute the
Euclidean distance between each pair of patients. Visual inspection of a hierarchical
clustering dendrogram was used to select three clusters of patients, so that patients
from a given cluster tended to share correlated radiomic profiles.

The number of genes affected by CNA was calculated for each tumor sample, so
that the distribution of the logarithm of these numbers could be compared for
tumors from patients belonging to different clusters.

Kaplan−Meier curves were drawn for PFS and OS using the “survfit” function
from the “survival” package in R. The statistical significance of the difference in
these survival measures across the three patient clusters was calculated using the
log-rank test implemented in the “survdiff” function.

Unsupervised hierarchical clustering of radiomic profiles were performed using
hclust and cutree function in R 3.3.1. The raw radiomic data were firstly scaled by
mean and centered. Pearson correlation-based distance and complete linkage was
used to obtain the final clusters indicated in Fig. 1e. The resulting clusters were
confirmed by repeating the clustering analysis using Euclidean’s distance. The
optimization of the radiomic clusters is indicated in Supplementary Figure 14. The
heatmap was generated using the “heatmap.plus” package in R 3.3.1.

Least absolute shrinkage and selection operator (LASSO) analysis was performed
to build a prognostic model for OS using radiomic data. We first selected for the
discovery dataset (HH discovery) a group of HGSOC patients who had primary
debulking surgery as well as patients not in the unsupervised subgroup 2 (which had
different slice thickness compared to other subgroups, Supplementary Figure 14). All
the other HGSOC patients were used as the HH validation dataset and the HGSOC
patients in the TCGA cohort were used as the TCGA validation dataset. We selected a
large pilot dataset for discovery (HH discovery, n= 136) and the number of patients
in the two validation datasets fulfilled sample size estimate (73 cases needed after
accepting the alpha of 0.05 and beta of 0.25. HR of 2.78, 31.6% cases in the high-risk
group, median survival of 5 years in the low-risk group and median follow-up as 5
years). To generate a prognostic model of OS, a univariate Cox regression was
performed between individual radiomic features and OS, which was adjusted for
stage, slice thickness and residual disease in the HH discovery dataset. Since it was not
possible to decide the more prognosis-related tumor for bilateral tumors and we had
demonstrated close similarity between the two tumors, we included both bilateral
tumors at the model-building stage. The radiomic features with FDR < 5% were
selected as input for LASSO regression using glmnet package in R 3.3.1. “Cox” was set
as the family in the model. Ten-fold cross-validation was performed using cv.glmnet
function to select lambda minimum to give the minimum cross-validated error. The
resulting four radiomic features with coefficients were used to calculate a predictive
index—RPV—for each patient. The RPV was used to perform subsequent continuous
Cox regression and Kaplan−Meier analysis with OS and PFS. For patients with
bilateral tumors, the tumor that gave the higher RPV was selected since it resulted in
better performance compared with the one with lower RPV. After considering the
distribution of RPV and number of patients in each subgroup, K-means clustering
was applied to split the patients into three subgroups (low risk: min−0.0950, medium
risk: 0.0950–0.658, high risk: 0.658−max). The same criteria were used to obtain
subgroups in the validation cohorts. For validation, the radiomic data from the TCGA
dataset and the HH validation dataset were initially scaled and centered. The RPV was
calculated using the four radiomic features with coefficients derived from the
discovery set. For those cases with bilateral tumors which resulted in two RPV values,
the higher RPV was selected for the survival analysis. For multiple Cox regression of
RPV, the slice thickness was introduced as additional variable. Only cases with
complete clinical information (stage, age and postoperative residual disease) and slice
thickness were included in the multivariable Cox regression analysis. REMARK
guidelines were followed when reporting RPV as a prognostic marker in this study55.

Similar procedure was applied to generate eRPV with some modifications. Gene
expression profile from Affymetrix HT Human Genome U133a (Level 2) and
Agilent 244K custom gene expression G4502A_07_3 (Level 3) from the TCGA
study were downloaded from UCSC cancer browser (https://genome-cancer.ucsc.
edu/) and TCGA data portal (https://cancergenome.nih.gov/). Spearman
correlation was applied to obtain a list of genes correlated with RPV (FDR < 0.25
for Affymetrix and FDR < 0.1 for Agilent). The gene list obtained was used to
perform feature selection and linear regression with RPV using “glmnet” package.
“gaussian” was set as the family in the model and a tenfold cross-validation was
applied. The resulting weighted gene lists contributing to eRPV are given in
Supplementary Data 5 and 6.

Gene set enrichment analysis (GSEA) was performed for RPV-correlated genes
in the TCGA dataset. The Level 3 RNA-sequencing dataset of EOC from the TCGA
project was downloaded from UCSC cancer browser (https://genome-cancer.ucsc.
edu/) and the gene-level transcription estimates were obtained in reads per kilobase
million. Spearman correlation coefficient was determined from RPV and all the
genes respectively. The full list of correlation coefficients was used as the pre-
ranked list in GSEA 2.1.0 with KEGG database, 1000 of permutations and classic
enrichment statistic.

Differential gene expression between tumor and stroma in HGSOC was
analyzed using limma package from Bioconductor in R 3.3.1. The Robust Multi-
array Average (RMA) normalized microarray dataset (GSE40595) was downloaded
from GEO (https://www.ncbi.nlm.nih.gov/geo/). The empirical Bayes moderated t-
statistics were computed comparing gene expression from HGSOC stroma and
tumor epithelial component. The p value derived was adjusted for multiple testing
using Benjamini–Hochberg procedure.

Statistical analysis. Standard statistical analysis was applied to all the figures as
appropriate and indicated in the figure legends. All samples were used once.
Multiple testing was corrected with FDR method. All the statistical analyses were
conducted in R 3.3.1.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. The R script that was used to reproduce the key findings and
generate figures are publically accessible in Mendeley Data with the identifier
https://doi.org/10.17632/4c5znk5m8t.1.

Data availability
The radiomics, clinical, RNA-sequencing and proteomics data generated in this
study have been deposited into the Mendeley database under the accession code:
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https://doi.org/10.17632/4c5znk5m8t.2. The gene expression, copy number alteration
and RPPA data from the TCGA project56 were downloaded from the UCSC
cancer browser (https://genome-cancer.ucsc.edu/). The gene expression microarray
data from the Tothill dataset and laser capture microdissected ovarian tumor
tissue were downloaded from the NCBI Gene Expression Omnibus with accession
numbers GSE989114 and GSE4059557. The CT scan data from the TCGA ovarian
cancer project were downloaded from the Cancer Imaging Archive46 (http://www.
cancerimagingarchive.net/). All the other data supporting the findings of this study are
available within the article and its supplementary information files and from the
corresponding author upon reasonable request.
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