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ABSTRACT

In this paper a novel technique to segment tumor voxels in dynamic
positron emission tomography (PET) scans is proposed. An inno-
vative anomaly detection tool tailored for 3-points dynamic PET
scans is designed. The algorithm allows the identification of tumoral
cells in dynamic FDG-PET scans thanks to their peculiar anaerobic
metabolism experienced over time. The proposed tool is prelimi-
narily tested on a small dataset showing promising performance as
compared to the state of the art in terms of both accuracy and classi-
fication errors.

Index Terms— Medical diagnostic imaging, image segmenta-
tion, anomaly detection, positron emission tomography, tumors

1. INTRODUCTION

In oncology, the ability to properly contour tumors in PET/CT im-
ages is clinically important as treatment plans depend on information
on the tumor volume. The tumor cells should be identified as pre-
cisely as possible since underestimation or overestimation of their
volume can lead to treatments that can be either ineffective or dan-
gerous [1].

Manual contouring has been proven to be subjective and inac-
curate [2] and therefore the need for an automatic method for tumor
region segmentation in PET has arisen. However, PET segmenta-
tion remains an open problem mainly because of the limited image
resolution and presence of acquisition noise [3].

For these reasons, many techniques for automatic or semiauto-
matic image segmentation have been proposed. However validation
of accuracy and precision of these algorithms is still unresolved, due
also to the lack of standard approaches and guidelines by nuclear
medicine and radiation oncology professional societies [3].

In this paper, a novel approach based on anomaly detection tech-
nique is proposed. Using 3 PET images acquired at different time in-
stants, we aim at detecting tumoral voxels recognizing their anoma-
lous bahavior over time. The contributions of the paper are the de-
sign of a novel anomaly detection tool tailored for dynamic PET
scans and a preliminary experimentation on a set of PET scans ac-
quired at the Institute for Cancer Research and Treatment of Candi-
olo (IRCC). Our findings show that the proposed approach is very
promising and competitive with respect to the state of the art even
if the number of tested subjects was limited by the fact that 3-points
dynamic PET scan represents a frontier technology that is not part
of any standard clinical protocol at the moment.

Fig. 1. The three 3D PET images of one of the sample patients;
(1) is the early full body scan (ES, 144×144×213 px), (2) and (3)
are the two 5 minutes reconstructions of the delayed scan (DS1 and
DS2, 144×144×45 px), where only the area around the tumor is
acquired. These greyscaled images are here displayed using a Fire
lookup table.

2. BACKGROUND

Positron emission tomography using fluorodeoxyglucose as tracker
(known as FDG-PET) is mainly based on tissue metabolic activity
by virtue of the regional glucose uptake.

Due to multiple mutations in the DNA occurred during cell repli-
cation, cancer cells lack the ability to stop their duplication after
a certain point, raising cell density in tumor region and leading to
insufficient blood supply. The resulting deficiency of oxygen (hy-
poxia) force the cells to rely mostly on the anaerobic metabolism, i.e.
glycolysis [4]. As a consequence, glycolysis can be used as an excel-
lent marker in the detection of cancer cells; FDG-PET - in which the
concentrations of the tracer indicate a glucose uptake in the imaged
area - turns to be a good tool in detecting tumoral masses, lymph
nodes and cancer metastasis all at once [5].

In images obtained by PET acquisitions the intensity of a voxel
represents local concentration of the tracer. The most commonly
used unit is called SUV (Standardized Uptake Value) which is de-
fined as the ratio of the tissue radioactivity concentration over the
injected activity divided by the body weight [6]. It aims to be a
quantitative measure of tracer uptake that can be compared between
patients, but it is also criticized for its misuse [7].

There are two classes of PET scans: static and dynamic. In static
mode, accounting for the majority of PET scans used nowadays [8],
the tracer uptake is integrated over a single acquisition producing a
single value per imaged volume (voxel). In the case of a dynamic



Fig. 2. In (a) six points are chosen on a PET slice: two points within
the normal tissue (1 and 2), two points within the tumor (3 and 4),
one point at the boundary of the tumor (5) and one point within the
bladder (6). In (b) the TACs of the selected points resulting from a
dynamic PET scan are shown. Image courtesy of [8].

scan, tracer activity is measured in different time windows, resulting
in a time activity curve (TAC) for each voxel [9]. The shape of the
TACs, usually found by sample interpolation, conveys tissue specific
biochemical properties over time and carries precious information on
the amount and rate of tracer flux and accumulation [10].

In static PET, the most common techniques that have been
proposed for automatic or semiautomatic tumor segmentation are
thresholding algorithms, where a threshold value (T ) on the SUV
is selected to separate the tumor from the background [11]. Other
types of techniques that have been proposed for static PET are
variational approaches based on deformable active contours [12],
stochastic models mainly based on Expectation-Maximization (EM)
algorithm [13] and learning methods with and without supervision.

Segmentation in dynamic PET involves analysis of TACs in-
stead of single voxel values; in this way the temporal information
is used to improve quality of delineation [14]. Clustering techniques
have been proposed in literature [2, 15]. In this group of techniques,
FCM-SW is an approach based on the Fuzzy c-Means algorithm that
is reported to perform quite well [16]. Stochastic approaches have
been followed, as well: a mixture model has been proposed that
expressed a voxel-level TAC as a weighted combination of scaled
sub-TACs [17]. However, these methods did not consider spatial
relationship among voxels. Some algorithms including spatial in-
formation have been proposed [18, 19], but most of these methods
were designed for brain images where regions have similar dimen-
sions and are rather inefficient in the case of whole body images
where sizes are quite different [14]. Recently, a local means analysis
method was proposed; it uses a hierarchical linkage algorithm with
a seed growing method [20].

3. THE PROPOSED TECHNIQUE

In this paper a novel approach for automatic tumor segmentation in
dynamic PET images is proposed. The algorithm works on two PET
scans where the second acquisition (10 minutes long) is taken after
about an hour from the first one. Every acquisition can be recon-
structed in a variable number of images, each one collecting events
occurred in a given time window. For this study the first scan has
been reconstructed into a single full body image (called early scan,
ES) and the second one is used to construct two images (delayed
scans, DS1 and DS2), collecting respectively events occurred in
the first 5 minutes and in the last 5 minutes of the second acquisi-
tion and imaging only the area in which the tumor is expected to be.
Therefore our proposal is based on the automatic analysis of 3 PET
images (Figure 1).

Fig. 3. Flowchart of the proposed technique

The proposed algorithm exploits the assumption that in cancer
cells the glucose uptake over time is very different from the one in
normal tissues [4]; as a consequence, we propose to use a statisti-
cal anomaly detection mechanism able to detect voxel with peculiar
temporal behavior, i.e. anomalous TAC. An example of this phe-
nomenon can be seen in Figure 2.

Although, to the best of our knowledge, methodologies of this
kind have never been proposed for PET scans, algorithms based on
anomaly detection have already been used in other medical domains,
e.g. on CT images [21] and for segmentation in endoscopic video
sequences [22].

The block diagram showing the main steps of the proposed al-
gorithm is shown in Figure 3. Since PET scans acquired at different
time instants are going to be used, the first processing stage is rep-
resented by image registration. In fact, the patient has left the scan-
ner bed between the scans, and then he/she has obviously slightly
changed his/her position between the first and the second scan. Reg-
istration of DS1 and DS2 with respect to ES is therefore required.

3.1. Registration

The registration process consists in the application of a transforma-
tion to align a moving image over a fixed one (in this studyES). The
transformation parameters are initialized and then refined by an opti-
mizer according to a metric. The final transformation is then applied
to the moving image using interpolation.

Since no deformation is expected, and the image has been just
translated and rotated, affine transformation has been used. It is
the most common choice in instances of rigid-body movement [23].
Then, linear interpolation can be employed for registration, under
the assumtion that intensities vary linearly between grid positions
as discussed in [23]. Finally, normalized cross-correlation has been
employed as registration metric and it is optimized by a gradient de-
scent approach; this combination is suggested to work well on full
body monomodal PET-PET registrations [24].

The computational cost for the registration of DS2 can be re-
duced noticing that both DS1 and DS2 are reconstructed from the
same scan and therefore they share almost the same acquisition con-
ditions. As a consequence, the transformations leading to registra-
tion of DS1 and DS2 are expected to be very similar. For this
reason, to limit computation, we first register DS1; then, the final
transformation obtained on DS1 is provided as an initial estimate
for DS2 registration. This solution allowed us to cut by one half the
number of iterations required to register DS2.

Let us refer to the two registered images as DS1′ and DS2′;
their voxels can be considered as co-located with those of ES and
represent the input of the core part of the proposed tool, i.e. the
anomaly detection stage.



Fig. 4. ROC curves of proposed methods and simple SUV thresh-
olding over two sample patients.

3.2. Anomaly detection

The goal of our algorithm is to identify those voxels exhibiting an
anomalous tracer uptake over time. To this end, we employ the
RX Detector [25] as follows.

Let us introduce the row vector xi = (xi,ES , xi,DS1′ , xi,DS2′)
representing the 3 SUV values of the i-th voxel of ES, DS1′ and
DS2′ respectively. The typical behavior of the normal voxels can be
captured by the covariance matrix that can be estimated as:

Ĉ =
1

N

N∑
i=1

(xi −M) (xi −M)T (1)

whereN is the total number of voxels in the image volume andM =
(µES , µDS1′ , µDS2′) is the average value of the 3 components.

The covariance matrix is computed assuming that vectors xi are
observations of the same random process. Under the legitimate as-
sumtion that normal voxels represent the majority of the acquired
data, it can be concluded that the covariance matrix estimated using
all voxels is representative of the healty tissues [26].

According to the RX Detector the generalized likelihood ratio
test for identifying anomalous voxel with respect to the covariance
model Ĉ can be expressed as:

δRX(xi) = (xi −M)T Ĉ−1 (xi −M) > η (2)

where η is a proper decision threshold. It is worth pointing out that
δRX is also known as Mahalanobis distance [27].

The 3D image associating the value of δRX to each voxel can
also be interpreted as a Mahalanobis distance matrix that takes
higher values if the TAC exhibits an anomalous profile.

In this preliminary work we propose to detect the tumor voxels
setting the decision threshold η adaptively as a function of the δRX

dynamic range. Therefore we set η = P ·max(δRX) with P ≤ 1.
We leave the design of optimal decision mechanisms, taking into

Fig. 5. The same slice in ES (left) and δRX (right) with manual
contour of tumor area superimposed (red line). Under each image a
2D plot of the intensities over the yellow line is presented.

account also spatial consistency of the selected tumor volume, for
future research.

4. EXPERIMENTAL VALIDATION

As already mentioned, the novelty of the proposed approach is
two-fold, namely the usage on 3-points dynamic PET scans and
the exploitation of the RX Detector for tumor contouring. Since
nowadays dynamic PET scans are not used on a large scale for
clinical treatment, our findings are limited to a small dataset, com-
prising 6 subjects, that has been made available at the IRCC for
research purpose. A Philips Gemini TF PET/CT has been used for
acquiring both CT and FDG-PET scans for all the patients. To this
end we acknowledge the precious cooperation of nuclear medicine
physicians that have manually segmented the PET images, setting
up the ground truth for computation of the accuracy yielded by the
proposed automatic tool.

In Figure 4 the Receiver Operating Characteristic (ROC), i.e.
the true positive rate (TPR) versus the false positive rate (FPR), ob-
tained classifying voxels according to (2) varying the value of η is
shown. The ROC curves computed this way are compared with those
obtained with simple thresholding of the voxel SUV values. It can
be noted that using anomaly detection the detection accuracy signif-
icantly improves with respect to the original SUV domain segmen-
tation.

In Figure 5 the original SUV image (left) and δRX values (right)
of a PET section are shown. It can be clearly observed that the δRX

domain is very effective in identifying the target tumoral region.
The proposed segmentation results have been evaluated using

objective metrics as well, namely in terms of the tumoral volume
estimates and the Spatial Overlap Index (SOI) defined in [28] as

SOI =
2(A ∩B)

A+B
(3)

where, when A and B are two binary masks (i.e. manual ROI and
segmented output of RX Detector), the intersection operator is used
to indicate the number of voxels having value 1 in both masks and
the sum operator the total number of voxels having value 1 in the
two masks.



SOI Volumes (ml)
n. RX Thresh. RX Thresh. ROI
1 0.569 0.659 7.808 9.856 19.648
2 0.564 0.416 12.032 13.568 15.680
3 0.377 0.029 24.512 248.128 11.136
4 0.674 0.000 11.072 3.136 6.592
5 0.628 0.000 11.072 3.136 7.872
6 0.433 0.514 2.816 6.976 7.232

Mean 0.541 0.270 11.552 47.467 11.360
Std Dev 0.114 0.295 7.197 98.386 5.279

Table 1. SOI and tumoral volume estimate of proposed RX Detector
(P = 0.27) and SUV thresholding (P = 0.38).

The results are summarized in Table 1, where SOI and volume
estimate obtained by the proposed technique and SUV thresholding
are compared. The experiments have been worked out setting dif-
ferent thresholds values. Table 1 shows the results corresponding
to the thresholds yielding the best average SOI, i.e. P = 0.27 and
P = 0.385 for δRX and SUV segmentation respectively. It can be
observed that the proposed method offers the best average results
both in terms of SOI and volume estimate. In particular, it is worth
pointing out that SUV thresholding completely fails on patients 3,
4 and 5 whereas the proposed tool yields significant results on the
whole dataset.

Our results turns to be competitive with those reported in [3],
where a set of segmentation techniques are compared in terms of
SOI using a dataset of 7 patients suffering from pharyngolaryngeal
squamous cell carcinoma. In particular, in [3] it is found that one
of the best performing method, termed FCM-SW, yields an average
SOI of 0.54. FCM-SW employs a more complex segmentation ap-
proach as opposed to our simple 3-points RX Detector: it is based
on fuzzy c-Means algorithm coupled with anisotropic diffusion fil-
ter to incorporate spatial information and wavelet transform. Even if
the results are computed on different datasets it is noticeable that the
proposed simpler algorithm achieve comparable SOI performance.

5. CONCLUSIONS

In this paper a novel technique for the automatic detection of tu-
moral volumes in 3-points TACs has been designed and preliminar-
ily investigated using a dataset comprising 6 patients. The proposed
approach leverages on the well known RX Detector, applied for the
first time to this domain, to look for anomalies in 3-points TAC. The
basic assumption is that tumor and background regions have differ-
ent uptake curves over time that can be discriminated using 3-points
dynamic PET acquisitions.

Our experimentation in the field confirms that RX Detector ef-
fectively improves the quality of the segmentation by significantly
enhancing contrast between tumor region and background. In this
preliminary study segmentation has been performed with a naı̈ve ap-
proach based on simple thresholding; nonetheless the achieved SOI
and volume estimates are in line with the results reported in the liter-
ature based on more complex segmentation mechanisms. Therefore,
we believe that our study paves the way to further improvements us-
ing more accurate segmentation strategies founded on RX Detector.

Although results seem encouraging, future validation of the
method should be performed to be able to confirm all the hypothesis
contained in this work. This validation should evaluate the algo-
rithm performance over a larger data set, considering a wider range
of tumor volumes.
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