5 research outputs found

    Segmentation of striatal brain structures from high resolution pet images

    Get PDF
    Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and ComputersWe propose and evaluate fully automatic segmentation methods for the extraction of striatal brain surfaces (caudate, putamen, ventral striatum and white matter), from high resolution positron emission tomography (PET) images. In the preprocessing steps, both the right and the left striata were segmented from the high resolution PET images. This segmentation was achieved by delineating the brain surface, finding the plane that maximizes the reflective symmetry of the brain (mid-sagittal plane) and, finally, extracting the right and left striata from both hemisphere images. The delineation of the brain surface and the extraction of the striata were achieved using the DSM-OS (Surface Minimization – Outer Surface) algorithm. The segmentation of striatal brain surfaces from the striatal images can be separated into two sub-processes: the construction of a graph (named “voxel affinity matrix”) and the graph clustering. The voxel affinity matrix was built using a set of image features that accurately informs the clustering method on the relationship between image voxels. The features defining the similarity of pairwise voxels were spatial connectivity, intensity values, and Euclidean distances. The clustering process is treated as a graph partition problem using two methods, a spectral (multiway normalized cuts) and a non-spectral (weighted kernel k-means). The normalized cuts algorithm relies on the computation of the graph eigenvalues to partition the graph into connected regions. However, this method fails when applied to high resolution PET images due to the high computational requirements arising from the image size. On the other hand, the weighted kernel k-means classifies iteratively, with the aid of the image features, a given data set into a predefined number of clusters. The weighted kernel k-means and the normalized cuts algorithm are mathematically similar. After finding the optimal initial parameters for the weighted kernel k-means for this type of images, no further tuning is necessary for subsequent images. Our results showed that the putamen and ventral striatum were accurately segmented, while the caudate and white matter appeared to be merged in the same cluster. The putamen was divided in anterior and posterior areas. All the experiments resulted in the same type of segmentation, validating the reproducibility of our results

    Segmentation of Striatal Brain Structures from High Resolution PET Images

    Get PDF
    We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum) from parametric 11C-raclopride positron emission tomography (PET) brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT) PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development

    Comparison of manual and automatic techniques for substriatal segmentation in C-11-raclopride high-resolution PET studies

    Get PDF
    Background: The striatum is the primary target in regional C-11-raclopride-PET studies, and despite its small volume, it contains several functional and anatomical subregions. The outcome of the quantitative dopamine receptor study using C-11-raclopride-PET depends heavily on the quality of the region-of-interest (ROI) definition of these subregions. The aim of this study was to evaluate subregional analysis techniques because new approaches have emerged, but have not yet been compared directly.Materials and methods: In this paper, we compared manual ROI delineation with several automatic methods. The automatic methods used either direct clustering of the PET image or individualization of chosen brain atlases on the basis of MRI or PET image normalization. State-of-the-art normalization methods and atlases were applied, including those provided in the FreeSurfer, Statistical Parametric Mapping8, and FSL software packages. Evaluation of the automatic methods was based on voxel-wise congruity with the manual delineations and the test-retest variability and reliability of the outcome measures using data from seven healthy male participants who were scanned twice with C-11-raclopride-PET on the same day.Results: The results show that both manual and automatic methods can be used to define striatal subregions. Although most of the methods performed well with respect to the test-retest variability and reliability of binding potential, the smallest average test-retest variability and SEM were obtained using a connectivity-based atlas and PET normalization (test-retest variability=4.5%, SEM=0.17).Conclusion: The current state-of-the-art automatic ROI methods can be considered good alternatives for subjective and laborious manual segmentation in C-11-raclopride-PET studies.Copyright (C) 2016 Wolters Kluwer Health, Inc. All rights reserved.</div

    Spatiotemporal Power of Positron Emission Tomography: Pushing the Limits of Poisson Statistics in High-Resolution Human Neurotransmission Studies

    Get PDF
    Brain disorders involving dysfunctions in neurotransmissionconstitute one of the most prevalent health problems. Subtledisruptions in human neurotransmission can result in significantdysfunction of cognition, locomotion, or practically any facet ofhuman behaviour. In turn, homeostasis of a specific neurotransmitter system can often be retrieved through pharmacologicalor lifestyle interventions. At present, human neurotransmissioncan be best assayed using positron emission tomography (PET). To date, neurotransmitter-PET (nt-PET) has been employedto investigate neuroreceptor level phenomenon in human behavior/cognition as well as in treatment development. In thecurrent work the goal was to explore and enhance the temporalcapabilities of nt-PET, to allow better characterization of thetemporal facets of neurotransmission.Main obstacles limiting temporal characterization stem fromthe poor signal-to-noise-ratio of the PET measurement. Inparticular, the limitations related to image reconstruction algorithms and in turn the benefits obtained through regionalanalysis were in the focus of the investigations in this work. Themain finding was that the best temporal resolution achieved using a commonly recommended iterative reconstruction methodwas insufficient for temporal characterization, while a newlydeveloped algorithm allowing analytical reconstruction showedbetter temporal resolution without decreasing signal-to-noiseratio. Furthermore, a novel atlas-based regional analysis methodwas found superior to the currently employed manual region-ofinterest definition.The findings made through this work will directly assist theplanning of future neurotransmission studies, and it is wishedthat the observations in this work would spark new, more widespread interest on the application of nt-PET in e.g. cognitivestimulation studies

    Contributions à l'étude de la classification spectrale et applications

    Get PDF
    La classification spectrale consiste à créer, à partir des éléments spectraux d'une matrice d'affinité gaussienne, un espace de dimension réduite dans lequel les données sont regroupées en classes. Cette méthode non supervisée est principalement basée sur la mesure d'affinité gaussienne, son paramètre et ses éléments spectraux. Cependant, les questions sur la séparabilité des classes dans l'espace de projection spectral et sur le choix du paramètre restent ouvertes. Dans un premier temps, le rôle du paramètre de l'affinité gaussienne sera étudié à travers des mesures de qualités et deux heuristiques pour le choix de ce paramètre seront proposées puis testées. Ensuite, le fonctionnement même de la méthode est étudié à travers les éléments spectraux de la matrice d'affinité gaussienne. En interprétant cette matrice comme la discrétisation du noyau de la chaleur définie sur l'espace entier et en utilisant les éléments finis, les vecteurs propres de la matrice affinité sont la représentation asymptotique de fonctions dont le support est inclus dans une seule composante connexe. Ces résultats permettent de définir des propriétés de classification et des conditions sur le paramètre gaussien. A partir de ces éléments théoriques, deux stratégies de parallélisation par décomposition en sous-domaines sont formulées et testées sur des exemples géométriques et de traitement d'images. Enfin dans le cadre non supervisé, le classification spectrale est appliquée, d'une part, dans le domaine de la génomique pour déterminer différents profils d'expression de gènes d'une légumineuse et, d'autre part dans le domaine de l'imagerie fonctionnelle TEP, pour segmenter des régions du cerveau présentant les mêmes courbes d'activités temporelles. ABSTRACT : The Spectral Clustering consists in creating, from the spectral elements of a Gaussian affinity matrix, a low-dimension space in which data are grouped into clusters. This unsupervised method is mainly based on Gaussian affinity measure, its parameter and its spectral elements. However, questions about the separability of clusters in the projection space and the spectral parameter choices remain open. First, the rule of the parameter of Gaussian affinity will be investigated through quality measures and two heuristics for choosing this setting will be proposed and tested. Then, the method is studied through the spectral element of the Gaussian affinity matrix. By interpreting this matrix as the discretization of the heat kernel defined on the whole space and using finite elements, the eigenvectors of the affinity matrix are asymptotic representation of functions whose support is included in one connected component. These results help define the properties of clustering and conditions on the Gaussian parameter. From these theoretical elements, two parallelization strategies by decomposition into sub-domains are formulated and tested on geometrical examples and images. Finally, as unsupervised applications, the spectral clustering is applied, first in the field of genomics to identify different gene expression profiles of a legume and the other in the imaging field functional PET, to segment the brain regions with similar time-activity curves
    corecore