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Abstract 

 
We propose and evaluate fully automatic segmentation methods for the extraction of striatal brain 

surfaces (caudate, putamen, ventral striatum and white matter), from high resolution positron 

emission tomography (PET) images. In the preprocessing steps, both the right and the left striata 

were segmented from the high resolution PET images. This segmentation was achieved by 

delineating the brain surface, finding the plane that maximizes the reflective symmetry of the 

brain (mid-sagittal plane) and, finally, extracting the right and left striata from both hemisphere 

images. The delineation of the brain surface and the extraction of the striata were achieved using 

the DSM-OS (Surface Minimization – Outer Surface) algorithm. The segmentation of striatal 

brain surfaces from the striatal images can be separated into two sub-processes: the construction 

of a graph (named “voxel affinity matrix”) and the graph clustering. The voxel affinity matrix 

was built using a set of image features that accurately informs the clustering method on the 

relationship between image voxels. The features defining the similarity of pairwise voxels were 

spatial connectivity, intensity values, and Euclidean distances. The clustering process is treated as 

a graph partition problem using two methods, a spectral (multiway normalized cuts) and a non-

spectral (weighted kernel k-means). The normalized cuts algorithm relies on the computation of 

the graph eigenvalues to partition the graph into connected regions. However, this method fails 

when applied to high resolution PET images due to the high computational requirements arising 

from the image size. On the other hand, the weighted kernel k-means classifies iteratively, with 

the aid of the image features, a given data set into a predefined number of clusters. The weighted 

kernel k-means and the normalized cuts algorithm are mathematically similar. After finding the 

optimal initial parameters for the weighted kernel k-means for this type of images, no further 

tuning is necessary for subsequent images. Our results showed that the putamen and ventral 

striatum were accurately segmented, while the caudate and white matter appeared to be merged in 

the same cluster. The putamen was divided in anterior and posterior areas. All the experiments 

resulted in the same type of segmentation, validating the reproducibility of our results.  
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1.   Introduction 
 

The development and proliferation of medical imaging technologies is revolutionizing medicine 

[1]. Medical imaging can extract clinical information on anatomic structures through computed 

tomography (CT), magnetic resonance imaging (MRI). Medical imaging also allows obtaining 

functional information using positron emission tomography (PET), and others, with almost no 

harmful effects to the body and noninvasively. Besides visualization of anatomic structures, 

medical imaging is now also used to do surgical planning and simulation, intra-operative 

navigation, radiotherapy planning, and to track the progress of diseases [1]. E.g., radiotherapy can 

subject a tumor to a specific dose of radiation with minimal collateral damage to healthy tissue.  

 

Each imaging modality was developed to provide information on particular aspects of the imaged 

object. X-ray based computed tomography (CT) produces images based on the photon attenuation 

as the X-rays goes through the tissue. Magnetic resonance imaging (MRI) imaging measures the 

proton or water density. MRI and CT images are used to visualize the anatomical structure of the 

subject, since they allow distinguishing between different tissues. Positron emission tomography, 

presented in more detail in chapter 3, and functional MRI imaging (fMRI) inform on the 

functional properties of the tissue. In figure 1.1 are shown cross-sections acquired with MRI and 

PET. 

 

 

 

Figure 1.1. Examples of medical images from the head, transaxial,sagittal and coronal views. 

(top) A T1-weighted MRI image, (bottom) PET image. The images are from diferent subjects. 

The images were provided by Turku PET Center. 
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Although modern imaging devices attain high quality anatomical views, the analysis of the image 

data via computational methods is still very limited, and requires human intervention. The 

development of more advanced computational methods will allow extracting and interpreting 

quantitative data efficiently and in a repeatable way, which can then be used to support a wide 

range of tasks, from diagnosis to clinical interventions. 

 

One aspect in which computational methods can contribute is in image segmentation. For this to 

be possible, it is necessary to accurately determine the boundaries of each structure. This has 

been shown to be unattainable by traditional low-level image processing techniques since they 

only account for local information, giving rise to incorrect assumptions during the integration 

process, which leads to generating unrealistic object boundaries. 

 

Most clinical segmentation is currently done by manual slice editing, that is, a human operator 

manually delineates the region of interest on each 2D slice of the 3D image. This process has 

several disadvantages, for example, the results will be dependent on any bias of the operator, 

when viewing each 2D slice and deducing the spatial shape of 3D structures. Also relevant to the 

results is the fatigue of the operator, due to the enormous amount of data that must be manually 

or semi-automatically extracted. This makes the process expensive, if feasible, and, more 

importantly, the final result might not be easily reproducible by another operator, hampering the 

comparability between the segmentation results.  

 

Automation of medical image analysis is a highly complex, not only due to the complexity of the 

shapes one wants to extract but also due to the variability within and across individuals. The 

noise in medical images results from a complex combination of noise from several sources, e.g. 

measurement noise, natural intensity variation within structures of interest, and modality 

dependent imaging artefacts [2]. This makes the task of suppressing noise and artificially 

correcting its effects a difficult task. Since different imaging modalities use different 

measurement devices, they are subject to different sources of noise and differ in noise levels. 

Importantly, the effects of noise can vary in different structures of interest which causes 

additional difficulties in their discrimination, since discrimination is done calculating the 

differences in intensity values rather than intensity values themselves [2].  

 

The aim of this thesis is to improve and extend the methods presented in [3]. There, the authors 

proposed an automatic method to extract striatal structures, namely, caudate and putamen, from 

binding potential PET images. The data acquisition was done using the (ECAT EXACT HR+, 

Siemens CTI, Knoxville, TN) scanner and on the dedicated GE Advance PET scanner (GE 

Medical Systems, Waukesha, WI). The methodology in [3] can be divided in the following steps: 

 

1.  Extract the brain surface using a deformable model. 

2.  Extract hemisphere images from the extracted brain surface. 

1.  INTRODUCTION 
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3.  Extract the left and right striatum from the left and right hemisphere images using a 

deformable model. 

4.  Extract putamen and caudate from both right and left striata. 

 
The deformable models have been used to segment, visualize, track, and quantify a variety of 

anatomical structures (see chapter 4 for a more detailed description) and a general overview on 

deformable models. The methods used to extract the information from the images in steps one to 

three are explained in chapters 4 and 6. The extraction of the putamen and the caudate in step 

four is done using a 2-way normalized cut algorithm [3]. In chapter 5 is presented an overview on 

the Graph-Based image segmentation, and more specifically, on the normalized cuts algorithm.  

 

The development of the new brain-dedicated, high-resolution PET scanner (ECAT HRRT, 

Siemens Medical Solutions, Knoxville, TN) that provides images with enhanced resolution, step 

four in [3] fails to segment the striatal structures. The lack of success was due to the excessive 

computational complexity of the segmentation algorithm. This excessive computational 

complexity became prohibitive due to the enhancement of the resolution of the new HRRT 

scanner. This resolution enhancement allows distinguishing more than two structures in the PET 

data. Therefore, the method used in [3] to extract the striatal structures (2-way normalized cut 

algorithm) became obsolete since it can only manage the separation into two structures. In this 

study, we aim to overcome this limitation and develop an algorithm capable of separating the 

striatum into four structures (caudate, putamen, ventral striatum, and white matter). Due to the 

limited success of the previous method, this thesis proposes the use of a mathematically identical 

method, but that is able to dwell with the increased complexity of the new type of high resolution 

images.  

 

In short, this thesis presents new automatic techniques to successfully extract striatal brain 

structures, namely putamen, caudate, and ventral striatum, from PET HRRT binding potential 

images. In chapter 2, information is given about the structures that the proposed method aims to 

extract. The automatic method consists of a series of consecutive steps shown in the hierarchy 

graph below (figure 1.2). 

1.  INTRODUCTION 
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Figure 1.2 Steps of the segmentation of caudate, putamen, ventral striatum. (A) Preprocessing 

steps, (B) affinity matrix construction method, (C) clustering process. 

 
The preprocessing step (figure 1.2 (A)) consists on the extraction of the striatum, from HRRT 

PET binding potential images. This extraction method is the same as the one used in [3] and is 

described above. However, some tuning of the initial parameters was necessary.  

 

Once the striatum was extracted, several features of the striatal voxels are computed (figure 1.2 

(B)). This information is then stored in an affinity matrix and provided to the clustering 

algorithm. The image features used are Euclidean distances between voxels, spatial connectivity 

and intensity values. The affinity matrix contains the similarity values between all pairs of 

voxels. That is, in position i, j is written the similarity value between voxels i and j, thus, this 

1.  INTRODUCTION 

Intensity 

values 
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matrix is symmetric and all values in the diagonal are equal to 1, see section “affinity matrix 

construction methods” for the methodology and an example. Determining the affinity matrix is a 

crucial step to guarantee enough smoothness so that the clustering process can provide a good 

segmentation.  

 

Finally, the clustering algorithm segments the image (figure 1.2 (C)). The clustering procedure is 

treated in this thesis as a graph partition problem. Two approaches were developed that are 

capable of partitioning the graph: the multiway normalized cuts and the weighted kernel k-means. 

In both methods, the affinity matrix represents the graph that one wants to partition into different 

regions. The strategy used in the multiway normalized cut algorithm is to apply the k-means 

clustering algorithm to the computed graph eigenvalues in order to partition the image into 

connected regions. On the other hand, the weighted kernel k-means classifies, iteratively, each 

voxel as belonging to a cluster. This classification is done using the information contained in the 

affinity matrix (graph) of the image. Although this procedure allows successively extracting the 

desired structures of interest, it has some subtleties. Namely, a careful initialization is required in 

each step, to obtain maximum accuracy, i.e., the final result depends on the number of desired 

clusters, initial estimative for the clustering result, maximum distances and spatial connectivity 

allowed between voxels and, number of iterations. These parameters have to be carefully tuned to 

provide the most accurate result. The same values were found to be the optimal for all tested 

HRRT PET image, thus no further tuning was required. Chapters 6 and 7 give, respectively, a 

detailed description of the methodology and results. In chapter 8, the discussion and conclusions 

of the results are presented.  
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2.   Human striatal neuroanatomy 
 

The aim of this thesis is to develop efficient automated methods to extract striatal brain structures 

from high resolution PET images. To this aim, in this chapter, the structures of interest are 

introduced. 

 

The brain is the center of the human nervous system and the main regulator of the ongoing 

processes in the human body. The human brain is composed of white and gray matter and is 

surrounded by three layers of special soft tissue. The white matter is the area of the brain whose 

nerve fibers are involved in myelin responsible for the coloration [4]. The gray matter consists 

mainly of nerve cell bodies (neurons). Its gray brown color is due to the neuronal capillary blood 

vessels and the neuronal cell bodies [4].  

 

The human brain is centrally divided into two hemispheres that are connected by bridges of white 

matter. The brain structure is usually characterized by dividing it six lobes, depending on the 

function to which they have been associated to. Four lobes are visible from the outside, namely, 

the frontal, the parietal, the occipital and, the temporal lobe, while the other two are internal: the 

insula and limbic lobes. The frontal lobe is mainly associated with reasoning, planning, parts of 

speech, movement, emotions, and problem solving. The parietal lobe is associated with 

movement, orientation, recognition, perception of stimuli. The occipital lobe is associated to 

visual processing and the temporal lobe is associated to perception and recognition of auditory 

stimuli, memory, and speech [5]. 

 
2.1.   Striatum 

 

The striatum is an individual entity with a toric topology. There is one striatum in each brain 

hemisphere. The striatum is composed by several structures (figure 2.2): the caudate, the putamen 

and the ventral striatum. The caudate is the closest to the center of the brain, the putamen the 

furthest away and the ventral striatum is beneath them. The putamen and caudate are separated by 

the anterior limb of the internal capsule [5], however there are some bridges of white matter 

connecting these structures. These structures are all contiguous, making difficult the delimitation 

of the ventral striatum. A debate is still ongoing within the medical community to delimitate its 

boundaries. 

 

The striatum is best known for its role in the planning and modulation of movement pathways but 

is also involved in a variety of other cognitive processes involving executive functions. In 

humans, the striatum is activated by stimuli associated with reward, but also by aversive, novel, 

unexpected or intense stimuli [5]. 

 

http://en.wikipedia.org/wiki/Neurons
http://www.answers.com/topic/executive-system
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2.2   Dorsal striatum 

 

2.2.1.   Caudate nucleus 

 

The caudate nucleus has an arched geometry that can be separated into two main structures, 

namely, the head and the tail also referred to as the body of the caudate. The head is located in 

the anterior portion of the caudate and it is an enlarged area when compared to the tail. The head 

of the caudate nucleus and the putamen are horizontally separated with a tract of white matter 

and, the bottom of each of these structures is vertically connected by the nucleus accumbens. The 

tail is connected to the head of the caudate and it elongates circularly, passing through the back of 

the brain. The tail forms the roof of the inferior horn of the lateral ventricle. 

 

Recently, it was demonstrated that the caudate is highly involved in learning and memory, 

particularly regarding feedback processing [6]. It is known that neural activity occurs, in general, 

in the caudate while an individual is receiving feedback. The left caudate has been suggested to 

be related with the thalamus, which governs the comprehension and articulation of words as they 

are translated between different languages [7].  

 

2.2.2.   Putamen 

 

The putamen is the largest striatal structure. This structure is cytologically uniform, but is not 

uniform in terms of the functional behavior of its components. The putamen complex is divided 

into discrete striosomes, embedded in a background matrix, the extrastriosomal matrix [5]. The 

matrix and striosome have several chemical differences, e.g. if the putamen is stained 

immunocytochemically with enkephalin one can observe that this compound will be concentrated 

in the areas where the striosomes are, which is around the striosomes periphery [8]. The putamen 

has various types of connections and neurotransmitters. It receives most of its inputs from the 

motor and somatosensory areas of the cortex. The putamen outputs are delivered mainly to the 

globus pallidus and thalamus. This information will then be delivered to the motor, premotor and 

supplementary motor areas. Therefore, the putamen is considered to be a major player in most of 

the striatal motor functions [5]. 

 

The putamen can be divided into two sub regions, the anterior and posterior putamen (figure 2.1), 

as defined respectively as ventral and dorsal putamen [9]. The anterior putamen is composed by 

gray matter which is bounded by the anterior and posterior limbs of the internal capsule, and, 

laterally, is bounded by the external capsule in the first three planes ventral to the plane 

containing the dorsum of the putamen. The posterior putamen is bounded by the pallidum, by an 

external capsule, and by the internal capsule [9]. 

2.  STRIATAL HUMAN NEUROANATOMY 

http://en.wikipedia.org/wiki/Thalamus
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Figure 2.1 Striatum subdivisions, (CD) caudate, (AP) anterior putamen, (PP) posterior putamen. 

The image is from [10]. 

 

2. 3.   Ventral striatum  

 

In the literature, the striatum is usually divided into two areas, the ventral striatum and the dorsal 

striatum [11]. The dorsal striatum is the sensorimotor-related part of the striatum and it is 

composed by the putamen-caudate complex. The ventral striatum is related with emotional and 

motivational aspects of behavior [12]. Dysfunctions of the ventral striatum have been associated 

among individuals with schizophrenia [13], obsessive-compulsive disorder [13], depression, and 

drug addiction [14].  

 

So far, no structural or functional marker has been identified that allows an accurate distinction 

between ventral and dorsal striatum. Commonly, this separation is assumed to be between the 

caudate-putamen complex and the core and shell structures of the nucleus accumbens (figure 

2.2). However, the ventral striatum is not composed only by the nucleus accumbens, but it 

extends ventrally through the caudate and putamen [11], [15]. 

 

The nucleus accumbens is divided into two areas (shell and core structures) according to their 

specific function [16]. The shell is the structure located at the lower bottom of the nucleus 

accumbens (figure 2.2). The shell is known to be involved in the expression of certain innate, 

unconditioned behaviors, such as feeding and defensive behavior [17]. The core is located above 

the shell and it is responsible for response-reinforcement learning. The shell and core subregions 

play important but distinct roles in instrumental conditioned learning that may be potentiated with 

psychostimulants [16]. 

 

2.  STRIATAL HUMAN NEUROANATOMY 
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In short, the ventral striatum, a specific region of the striatum, is the structure responsible for 

connecting the limbic, cognitive, and motor systems within the striatum. Experimental studies in 

animals have shown that the ventral striatum plays an important role in several forms of 

behavioral learning [18].  

 

 
 

Figure 2.2 Right striatum, Core and Shell belonging to the nucleus accumbens we can consider 

the nucleus accumbens as the ventral striatum, Put (putamen) and Caud (caudate), IC (internal 

capsule). The image is from [18]. 

 

 

 

 

 

 

2.  STRIATAL HUMAN NEUROANATOMY 
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3.   Positron Emission Tomography (PET) 
 

Positron Emission Tomography (PET) is the medical imaging technology used to acquire the 

images to which the proposed methods are applied. In this chapter a theoretical introduction to its 

principles is given. 

 

Positron emission tomography (PET) is a widely used medical imaging technology. Within the 

several categories of medical images, PET is categorized as a functional imaging modality. This 

means that PET imaging devices have the ability to observe physiological functions in vivo, and 

from these create three dimensional dynamic models. This functional information provides the 

enhancement of the understanding that the medical community has of the biochemical basis of 

normal and abnormal bodily functions [19]. PET can be used to explore the functioning of the 

internal organs of both animals and humans. 

 

PET imaging integrates two technologies: the tracer kinetic assay method and computed 

tomography (CT). The tracer kinetic assay method consists of introducing a radio labeled 

biologically active compound (tracer) into the subject blood flow, and in using a mathematical 

model to describe the kinetics of the tracer as it participates in a biological process. The tracer 

kinetic model requires information about the tissue tracer concentration, measured by the PET 

scanner [20]. 

 

During PET acquisition, one administrates into the patient, by injection or inhalation, a positron-

emitting compound containing a radioactive isotope. This compound will concentrate in specific 

regions of the body, with a given (unknown) density. When one emitted positron encounters an 

electron, they annihilate each other and produce two photons of 511 keV. The photons will move 

in opposite (180°) directions, to conserve momentum. The energy of these photons is usually 

sufficient to allow the photons to “escape” the subject body, being then detected by the detector 

rings that surround the subject (figure 3.1 (B)).  

 

For an emission event to be counted, both photons must be registered nearly simultaneously 

(within a time window  τ) at two opposite detectors (scintillation crystals composed of e.g. 

bismuth germanate (BGO)), i.e. they must occur on the same coincidence line (figure 3.1 (A)) 

[19]. The absolute value of the counts in a PET scan results from the counts of true coincidences 

plus the counts of random coincidences. True coincidences are coincident events that originate 

from a single annihilation process, while random coincidence events occur when, accidentally, a 

pair of detectors located in opposite positions record an uncorrelated signal within a time 

window τ.  

The detectors of the PET scanner are arranged in cylindrical shaped rings. This property allows 

the scanner to register the events in three dimensions. From this set of data, the spatial 
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distribution of the radioactivity in the body can be reconstructed by using appropriate 

reconstruction algorithms [21]. All measured coincidence events (valid events detected by a pairs 

of detectors) are stored into sinograms. A sinogram is a two–dimensional matrix where the 

columns store each image projection angle and the rows store the spatial positions within the 

(measured) projections, i.e. they are projection views at different angles [22]. The reconstruction 

algorithms take into account all the coincidence events stored in the sinogram, at all angular and 

linear positions, when reconstructing the image. 

The image quality in PET is strictly related with the applied image reconstruction method. The 

positron emission data acquisition is not free from noise, namely, there is a substantial amount of 

statistical noise that arises from the statistical nature of the decay of the positron emitted by 

radio-labeled isotope [23]. 

   

 
 

Figure 3.1. (A) [18F] annihilation and the positron emission tomography (PET) coincidence 

principle, (B) interior of the HRRT scanner chamber. The images are from [21] and (from 

presentations of J. Johansson). 

 

3.1.   Tracer technology 

 

The tracer technology is one of the fundamental keys in PET imaging. The main idea behind this 

technology is that before the compound is injected into the subject’s blood flow, an artificial 

isotope has to replace an atom of the compound. This isotope is a radio-labeled tracer artificially 

engineered that, when injected in the blood flow, can be detected from outside the body. The 

3.  POSITRON EMISSION TOMOGRAPHY (PET) 
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tracer does not change the chemical properties of the compound, ensuring that the biochemical 

process to be studied is not altered.  

 

The atoms that are usually artificially replaced by their isotopic forms are carbon (C), hydrogen 

(H), nitrogen (N), and/or oxygen (O). These stable molecules are replaced respectively 

by C, N 
13

 
11   or O 

 15 . These radiolabeled isotopes, whose decay results is the emission of a 

positron, are ideal for this purpose due to their short half-life, respectively ( C 
11  half-life is 20 

min; N 
 13 , is 10 min; O 

15 , is 2 min) [21]. However, their short life expectancy requires their 

production to be quickly followed by their introduction in the patient, a difficult and rigorous 

task. For this reason, the production of these compounds by the cyclotron is usually performed 

near the place of application into the patient. 

 

Raclopride labeled with C 
11  is used as a PET tracer to study the function of dopaminergic 

synapses. Raclopride binds to dopamine D2 receptors and is a selective, reversible inhibitor of 

dopaminergic D2 receptor function [20].  

The radiation generated by the injected compound is absorbed by the subject tissue according to 

its mass. This absorption can be quantified by the PET scanner or by computer tomography (CT). 

The resulting dynamic data can be collected from specific biological structures (regions of 

interest) by recording its radioactivity over time [21]. This recording is done in predefined time 

frames in which the analyzed targets are scanned.  

 

To analyze the results from the scans, one needs an estimation of how the tracer binds to the 

region of interest receptors. This information is stored in the so called parametric binding 

potential (BP) images. By definition, the binding potential is a measure of the ratio of 

concentration of specific binding and is a reference concentration at equilibrium [24]. These 

images are obtained from the recorded dynamic data, through the use of a predefined model, e.g., 

the “simplified reference tissue model” [25].  

 

3.2.   Distribution of the intensity values in a PET image 

 

The spatial distribution of intensity values within an image depends on the radiopharmaceutical 

applied [23], that is, on the uptake areas defined by the tracer. The uptake area of a receptor-like 

tracers is the one with the highest concentration of the tracer type receptors. For example, if the 

tracer used is  C 
11   raclopride, the higher uptakes will be found in the striatal area because it is 

the region with the highest densities of dopamine D2 receptors in the human brain, and therefore 

it will have the highest intensity values. In short, image volumes with higher intensity values than 

its surroundings are classified as the functional region for the applied tracer [23]. 
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3.3.   ECAT HRRT PET scanner 

 

The ECAT HRRT (High Resolution Research Tomograph) is a dedicated 3D-only brain scanner. 

This tomography device is imbued with the new LSO scintillators. It uses depth of interaction 

(DOI) information to achieve uniform isotropic resolution across a 20cm diameter volume [26]. 

 

In Positron Emission Tomography there is a continuous effort to increase the sensitivity and to 

improve spatial resolution up to its physical limits. For high sensitivity a compact geometry is 

needed. Also good spatial resolution requires a small diameter of the detector arrangement to 

reduce the effect of the angular deviation from 180 degrees of the two annihilation photons. A 

compact geometry entails an increase in scatter and random coincidences. Random rates can be 

reduced by a shorter coincidence window, which requires a fast crystal. The other prerequisite for 

improved resolution is a reduction in crystal size, which necessitates a crystal material with high 

luminosity. If good resolution shall be preserved over a large volume in a scanner with a compact 

geometry and a small crystal size, depth of interaction (DOI) needs to be measured additionally. 

 

The High Resolution Research Tomograph scanner was designed to meet all these challenges. It 

employs the new scintillator LSO (Lutetium Oxy Orthosilicate). Its high light yield allows a 

reduction in crystal size and its short scintillation rise and decay time a short coincidence time 

window and a reduction of the dead time. 

 

The single crystal layer in HRRT scanner consists of eight flat panel detector heads, arranged in 

an octagon. The distance between two opposing heads equals 46,9cm. Each head contains 9x13 

LSO crystal blocks of 7.5mm thickness, which are cut into 8x8 crystals, resulting in 7488 

individual crystal elements per head and 59 904 crystals for the entire gantry. The size of one 

crystal equals 2.1x2.1x7.5mm. The HRRT scanner has a 31.2cm transaxial and 25.5cm axial 

FOV and a gantry port diameter of 35cm. 

 

In [3], one of the scanners used for the acquisition was the Exat Ecat HR+. This scanner was 

running in 3D mode during acquisition. From the scan, 13 frames were obtained, with dimensions 

of 128x128x63 slices and voxel size of 2.11x2.11x2.11 mm3. In comparison, the HRRT scanner 

extracted images whose size is 200x200x150 slices with an isotropic voxel dimension of 

1.22x1.22x1.22 mm3, making the automatic analysis of this data a more defying task when using 

the HRRT scanner due to the size of the images to extract. 

 

 

 

3.  POSITRON EMISSION TOMOGRAPHY (PET) 



19 

 

 
 

4.   Deformable models 
 

In this chapter an overview is presented on deformable models. These models are used in the 

striatum extraction from the high resolution images. 

 

The development of digital imaging technologies made possible the use of automated techniques 

of imaging processing, which have an increasingly crucial role in medical imaging. Image 

segmentation is now used at a daily base in medical environment. There are many different 

applications for image segmentation, e.g. quantification of tissue volumes, diagnosis, localization 

of pathology, study of anatomical structures, treatment planning, and computer-integrated surgery 

[27]. 

 

There is no standard approach to a segmentation problem. The adequate segmentation procedure 

varies according to the data and the application in use. One possible definition for image 

segmentation is: “Image segmentation refers to a process of dividing the image data into regions 

whose voxels have some common property such as uniform gray-level. A region is a group of 

voxels with similar properties. Regions often correspond to or have a link to objects” [28]. 

 

The characteristics of the data and the inexistence of a method to assess the validity of the result 

of the segmentation requires the use different segmentation algorithms. As a consequence, new 

segmentation problems require experimental validation of the segmentation algorithms used for 

that particular problem. Moreover, image segmentation is not yet an easy task in terms of 

computational complexity. Although the increasing computation power continuously improves 

the state of the art, several problems remain whose solution is still very challenging, namely, 

removal of intrinsic noise of the images, removal of image artifacts, improvements of image 

resolution, etc. These problems arise due to the object shape and image quality variability and the 

limited resolution allowed by the scanners. Therefore, when applying classical segmentation 

techniques, for example, edge detection or “thresholding”, they have a high probability of failure. 

When using these classical techniques, one has to apply sophisticated image preprocessing or 

postprocessing techniques to obtain good segmentation results, decreasing the failure rate [27]. 

  

The most popular image segmentation methods used for intensity images (image represented by 

point-wise intensity levels) are: thresholding, edge-based methods, region-based methods, and 

deformable models. The threshold techniques base their decisions on local voxel information and 

are suitable to segment objects that fall outside the range of intensity levels of the background. 

Spatial information is ignored in these methods, decreasing their robustness. Some examples of 

the application of these methods can be found in [29], [30]. The edge-based methods were 

developed to detect contours. These methods are “fragile” when the images have broken contour 

lines. Moreover, their robustness is also highly reduced if there are blurred regions. Some 
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examples can be found in [31]. Region-based methods rely on grouping neighboring voxels of 

similar intensity levels to segment the image, thus, the image is partitioned into connected 

regions e.g. [32]. Deformable models usually start with some given boundary shape formed by 

spline curves, and iteratively modifies its topology by applying various shrink/expansion 

operations according to a predefined energy function e.g. [3; 33]. There is a risk that the 

computation of the energy minimization becomes trapped in some local minimum of the energy 

function. Fortunately, optimization algorithms can be added that solve this problem. 

 

Deformable models are a successful approach to image analysis, by combining geometry, 

physics, and approximation theory concepts, and have proven to be effective in segmenting, 

matching, and tracking anatomic structures, being capable of coping with the diversity of 

biological structures [1]. 

 

Deformable models can be subdivided into two subcategories, deformable curves and deformable 

surfaces, respectively, to solve two dimensional or three dimensional image segmentation 

problems. These curves or surfaces are defined inside the image plane or volume, and will be 

deformed until the desired segmentation result is reached. To obtain the deformations, internal 

and external forces are applied. The internal forces are defined within the curve or surface and are 

designed to smooth the model during deformation. The external forces depend on the image data 

and are applied to move the curve or surface toward an object boundary or other desired features 

within an image. 

 

By introducing a priori knowledge about the shape of the object of interest, deformable models 

become more robust to noise and boundary gaps. This initialization makes deformable models 

very suitable for being applied in medical imaging, because the human anatomy is well known. 

Deformable models have a low sensitivity to their initialization, e.g. assumed initial surfaces or 

curves, initial anatomic information, etc. This quality allows using automatic methods without the 

need of human intervention, thus making them suitable to analyze large sets of data. On essence, 

this is an iterative method whose goal is, at each step, to find the global minimization of the 

surface energy function [23]. 

 

4.1.   Medical Image Analysis using Deformable Models 

 

Deformable models were first developed for computer vision and computer graphics problems. 

However, their potential when applied to medical image analysis was soon discovered. 

Deformable models show increased accuracy, precision, reproducibility when compared with the 

limited manual slice editing and traditional image processing techniques. These models can be 

used in a variety of medical imaging technologies such as X-ray, computed tomography (CT), 

angiography, magnetic resonance imaging (MRI), ultrasound and, PET. Deformable models have 
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been used to segment, visualize, track and quantify a variety of anatomical structures. These 

include the brain, heart, face, cerebral, coronary and retinal arteries, kidney, lungs, stomach, liver, 

skull, vertebra, brain tumors, fetus, and even cellular structures such as neurons and 

chromosomes [1].  

 

Deformable models consider the object boundaries as a whole and can make use of “a priori” 

information about the object shape to aid in the segmentation problem. The inherent continuity 

and smoothness of the models can compensate for noise, gaps and other irregularities in object 

boundaries. Furthermore, the parametric representations of the models provide a compact, 

analytical description of object shape. These properties make this technique robust and elegant in 

linking sparse or noisy local image features into a coherent and consistent representation of the 

object.  

 

4.2.   Deformable curves  

 

The first deformable models were used to segment two dimensional structures. One of the first of 

these deformable models to be used was snakes [34] (figure 4.1). These algorithms are usually 

initialized by the user. A deformable contour (figure 4.1 (C)) is first defined. Next, this contour 

expands until it reaches the boundaries of the region of interest (figure 4.1 (d), (e), (f)). The final 

result of the segmentation procedure can still be tuned by the user. This tuning is done by 

changing the models parameters until a smoother segmentation result is obtained. The final 

segmentation consists in a single two dimensional slice that can be used as a first guess in 

neighbouring image slices, sparing the user the burden of initializing manually the contour of 

each image slice. If there is a sequence of two dimensional image scans, one can analyze them 

individually. After segmenting all the image slices, the information accumulated can then be 

aggregated into a continuous three dimensional surface model.  

 

 

 

Figure 4.1. (A) Intensity CT image of LV. (B) Edge detected image. (C) Initial snake. (D)-(F) 

Snake deforming towards LV boundary, driven by “inflation” force . The images are from [33]. 
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However, these two dimensional segmentation approaches have some limitations. As mentioned, 

they are designed to be interactive methods; however in most medical applications it is necessary 

to initialize the contours automatically near the regions of interest limiting their applicability. 

Another limitation is that the objective function, used to allow these methods to expand 

automatically, can constrain their geometric flexibility and prevent the curves/contours from 

representing long tube-like shapes or shapes with significant protrusions or bifurcations (figure 

4.2) [1]. Classic methods are topology dependent, i.e. they are parametric models and one must 

provide in advance topological information about the structure of interest. 

 

 
 

Figure 4.2 Image sequence of clipped angiogram of retina showing automatically subdividing 

snake flowing and branching along a vessel. The images are from [33]. 

 
Due to these limitations, more advanced methods that can automatically cope with topological 

changes were developed. These shape modelling schemes, topology independent, can be 

deformable contours or deformable surface models. They can extract long tube-like shapes or 

shapes with bifurcations (figure 4.2), and also sense changes in the topology (figure 4.3). 

 

 

Figure 4.3. Segmentation of a cross sectional image of a human vertebra phantom using a 

topology-adaptable snake. The snake begins as a single closed curve and becomes three closed 

curves. The images are from [33]. 
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4.3.   Deformable surfaces  

 

Segmenting 3D image volumes slice by slice, both manually or applying 2D contour models, is a 

laborious process and requires a post-processing step to connect the sequence of 2D contours into 

a continuous surface [35]. There are several problems associated with the use of this technique. 

The most important one arises due to the lack of contextual slice-to-slice information, when 

analyzing sequences of adjacent 2D images. This lack of information results in inconsistencies in 

the reconstructed surfaces, such as the appearance of bands or rings.  

 

However, the use of fully three dimensional deformable models instead of using a set of 

individual contours is a faster and more robust segmentation technique, whose results do not 

suffer from lack of contextual information, which ensures smoothness and coherent surfaces 

between image slices. 

 

4.3.1.   DSM (Dual Surface Minimization)  

 

The DSM (Dual Surface Minimization) algorithm is a deformable surface model. This algorithm 

is initialized with two meshes, respectively, the inner and outer meshes. A mesh is defined as a 

volume composed by a set of edges and vertexes. The inner mesh is located inside the region that 

one wants to extract and the outer surfaces are placed outside the regions of interest.  

 

 

Figure 4.4 HRRT PET Scan, Sagittal, Coronal and Transverse views, image provided by Turku 

PET Center. 

 
A two dimensional representation of the initial meshes is shown in figure 4.4 as a red outline. The 

volume that lies inside both initial surfaces (meshes) is called “search volume” and is the area to 

which the minimization process will be applied to, i.e. where the initial meshes will shrink or 

expand. 
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This algorithm is an iterative method that in each iterative step calculates the energy of the 

current mesh. The algorithm strives to minimize the energy, giving as output the surface with 

lower energy, thus it is a typical energy minimization problem. The energy term on the DSM 

algorithm is divided in two terms, the external and the internal energies. The external energy 

depends on the underlying image, and its minimization is achieved by drawing the smallest 

surface that still contains all the salient features of the image while the internal energy controls 

the shape of the surface [23].  

 

The global energy of the surface informs us of how well the mesh approximates the surface of 

interest and it is defined as: 

 

E M =
1

N
   λEint  mi mi1

, mi2
, mi3

 +  1 − λ Eext (mi) 
N
i=1                               (1) 

 

In (1), Eint  is the internal energy,  Eext  the external energy, the parameter λ is a regularization 

parameter that controls the trade off between the internal and external energies. M is a simplex 

mesh and its denoted by M =  m1, … , mN , where mi ∈ ℝ
3 are coordinates of the meshes vertex, 

and N is the number of vertexes in the mesh. In a simple mesh each vertex mi has exactly three 

neighbours, whose coordinates are denoted by mij
. 

 

 
 

Figure 4.5 Simplex mesh with 320 vertexes. The image is from [23]. 

 
The internal energy is defined as: 

 

Eint  mi mi1
, mi2

, mi3
 =

 m i  − 
1

3
 m i j

3
j=1  

2

A(M)
                                                                                     (2) 

 

In (2), A(M) is the average area of the faces of the mesh M. The normalization using the area is 

required for scale invariance of the internal energy. 

 

The external energy is defined as: 
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Eext  mi = 1 −
(IT (m i )) ∇IT (m i ) 

max x IT (x) ∇IT (x) 
                                                                                                     (3) 

 

In (3), IT  is an intensity image, built from the analyzed binding potential image, by applying a 

threshold method. If T is the threshold, all voxels from the binding potential image having a 

higher value than T, will be replaced by that same threshold value. The voxel with smaller value 

will maintain the original intensity value. The threshold T is automatically determined for each 

image based on the expected volume of the striatum [3]. This threshold technique is required to 

correct the high inhomogeneous intensity values within the striatum caused by the partial volume 

effect, noise, and other image artifacts. The edge image ∇IT(wi) is a discreate approximation of 

the gradient, and it is computed using a 3-D Sobel operator [3]. 

 

The external energy defined by eq. 3 is application dependent. Therefore, any new segmentation 

problem requires finding a suitable equation to express the external energy. Equation 3 is used to 

extract the striatum surface from brain hemisphere images in [3]. 

 

For more information about the DSM algorithm see [2]. 

 

4.3.2.   DSM-OS (Dual Surface Minimization-Outer Surface)     

 

The DSM-OS algorithm (Dual Surface Minimization – Outer Surface) is a variant of the DSM 

(Dual Surface Minimization) algorithm. It is also initialized with two surfaces meshes: the inner 

surface, located inside the brain surface and outer surface, outside the brain surface (figure 4.4).  

The main difference between these two deformable surface methods is that, in the DSM-OS 

algorithm, only the outer surface moves towards the region of interest. This is, in some cases, 

advantageous. For example, when extracting the brain surface from positron emission 

tomography (PET) images, it is preferable to approach the surface of interest from outside due to 

noise. Outside the brain volume there is no relevant radioactivity and therefore the noise level is 

lower in that region. Consequently, it is appropriate to use only one surface mesh when 

approaching the target surface from the outside. The algorithm optimization cycle terminates 

when it fulfills a condition, namely, when the outer surface reaches the inner surface. Afterwards, 

the algorithm remembers the mesh of the lowest energy found, and the mesh used to compute that 

energy is assigned as the desired segmented structure. 
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4.4.   Incorporating “A Priori” Knowledge 

 

In medical images, the general shape, location and, orientation of objects are often known and 

this knowledge may be incorporated into the deformable model as initial conditions, data 

constraints, constraints on the model shape parameters or, into the model fitting procedure, 

increasing the accuracy of the final result. The use of implicit or explicit anatomical knowledge 

to guide shape recovery is especially important for a robust automatic interpretation of medical 

images. For automatic interpretation, it is essential to have a model that not only describes the 

size, shape, location, and orientation of the target object but that also can cope with unexpected 

variations in these characteristics. Automatic interpretation of medical images spares clinicians 

from the laborious aspects of their work and still provides increased accuracy, consistency, and 

reproducibility of the interpretations [1]. 
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5.   Graph-Based Image Segmentation 
 

This chapter describes principles of graph based image segmentation theory that are later on 

applied. Two types of graph image segmentation approaches are presented, namely, normalized 

cuts and weighted kernel k-means. The first is a spectral method and the latest a non-spectral 

graph based approach. 

 

Graph-Based techniques are commonly categorized as region-based image segmentation 

techniques. To pose image segmentation as a graph partitioning problem, one has to represent 

how the chosen image features affect the relationship between voxels. This information is 

represented as weights of the connections between the nodes, i.e., by a weighted graph (figure 

5.1) G =  N, E  with node set N and edge set  E [35]. The nodes n ∈ N correspond, for example, 

to pixels (or voxels) intensity values or position, while the edges connect the nodes ni , nj 

according to the neighborhood definition in use. Every edge  ni , nj ∈ E has a weight. Depending 

on the problem such weights might represent, for example, costs, lengths or capacities, etc.  

 

 

 

Figure 5.1 Weighted graph, where the letters are the set of nodes N, and the numbers the set of 

edges E. 

 
The constructed image graphs can be directed or undirected. A directed graph is one whose edges 

are ordered pairs of nodes. In contrast, undirected graphs connect the nodes but the directionality 

of the connections is not defined. A directed graph may be thought of as a neighborhood of one-

way streets. A regular two-way street may be thought of as an undirected graph [36]. 

 

Minimum spanning trees [37], shortest paths [38] and graph-cuts [39] are some of the used graph 

algorithms to solve image segmentation problems. Among these methods, graph-cuts is the one 

http://www.nist.gov/dads/HTML/graph.html
http://www.nist.gov/dads/HTML/edge.html
http://www.nist.gov/dads/HTML/vertex.html
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that distinguishes itself, due to its computational efficiency and flexibility as a global 

optimization tool [35].  

 

5.1.   Spectral methods for clustering 

 

Spectral clustering methods are region-based image segmentation methods. This approach 

segments different structures into distinct fragments. One variant of these methods uses the top 

eigenvectors of a matrix. These eigenvectors are derived from the distance between points. Such 

methods have been successfully used in many applications including computer vision and VLSI 

design [39; 40]. However, there are still debates on which eigenvectors to use and how to derive 

clusters from them.  

 

One method consists in using spectral clustering to partition a spectral graph, such that the second 

eigenvector of the graph’s Laplacian (matrix representing the image graph, computed by 

subtracting the degree matrix (D) and the image affinity matrix (A)) is used to define a semi-

optimal cut [42]. This method assumes that cuts based on the second eigenvector will attain a 

good approximation to the optimal graph cut. This analysis can be extended to clustering by 

building a weighted graph in which nodes correspond to data-points and edges are related to the 

relative features of the points. Cluster differentiation is done by partitioning the graph, which can 

be done by a variety of algorithms such as ratio cut [43], Kernighan-Lin Objective [44], and 

normalized cut [45]. Usually, spectral graph partitioning objectives are used to partition the graph 

in two. Therefore, when one wants to partition the graph in more than two parts, the partition 

methods have to be applied recursively to find the k desired clusters. It has experimentally been 

observed [39; 40] that using more eigenvectors and the direct computation of a k way partitioning 

improves the results. 

 

5.2.   Normalized Cuts 

 

As mentioned above, the normalized cuts algorithm can be used as a criterion to segment a graph. 

A graph can be partitioned into two disjoint sets by removing the edges connecting the two parts. 

One can attain the degree of dissimilarity between these two disjoint areas by computing the total 

weight of the removed edges [42]. This measurement is usually known in graph theory as “cut” 

and it can be mathematically represented as follows: 

 

cut B, C =  A u, v u∈B,v∈C                                                     (4) 

 

In (4), B and C are two distinct areas, while A u, v  is a function of the similarity between nodes u 

and v, A is also called affinity matrix. 
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To attain the global optimum graph bipartition one has to minimize (4). The number of partitions 

for a graph with N nodes is 2N . This optimization is a well-studied problem and efficient 

algorithms have been developed to solve this problem. However, when there are small sets of 

isolated nodes in the graph, the minimum cut criteria favors the cut in those areas, even when it is 

not the optimal cut.  

 

 

 

Figure 5.2 Case where the minimum cut criterion fails. The red lines represent the true cuts and 

the blue line is the ideal cut. The image is from [45]. 

  

In figure 5.2 is shown one case where the minimum cut criterion fails, which thereby justifies the 

need of more sophisticated methods to partition the graph. In this figure it is assumed that the 

edge weights decrease with the increase of the distance between two nodes. Therefore, when one 

applies the minimum cut criterion to the image, the nodes n1 and n2will have the minimum cut 

because they are the ones furthest away from their neighbors. In fact, all the nodes on the right 

side of the desired cut will have smaller cut value when compared to the nodes to the left. 

However, if one uses a method that, instead of relying only on the total edge weight value of the 

connecting partitions, it also accounts for all connections to all nodes in the graph, the problem 

described above can be avoided. 

This new disassociation measure between two groups, named “normalized cut” (Ncut), was first 

introduced in [45] and is defined as: 

 

Ncut B, C =
cut (B,C)

assoc (B,V)
+

cut (C,B)

assoc (C,V)
,       assoc B, V =  A(u, t)u∈B,t∈V                                     (5) 
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In (5), assoc B, V  is the sum of the weights of the connections from nodes belonging to B to all 

nodes in the graph, and assoc C, V  is, similarly, the sum of the weights of the connections from 

nodes belonging to C to all nodes in the graph [45].  

Using this disassociation definition between the groups eliminates the problem that arises when 

the minimum cut criterion tried to partition small isolated points. Therefore, using the normalized 

cut criterion to partition small isolated points will, in general, have a large cut value due to the 

denominators in (5). For example, nodes n1 and n2 from figure 5.2 will no longer have the 

smaller cut value, as they did when submitted to the minimum cut criterion. Instead, the Ncut 

value will increase because the association measure will decrease. 

 

It is shown in [45] that the minimization of the Ncut criterion (5) can be converted into a 

generalized eigenvalue system: 

 

 D − A y = λDy                                          (6) 

 

In (6), A represents an affinity matrix and D is an N x N diagonal matrix. The diagonal matrix  D 

is attained by summing each value from each line of the image affinity matrix (A). 

 

D i, i =  A(i, j)j                                          (7) 

 

The generalized eigenvalue system (6) can be transformed into a standard eigenvalue problem: 

 

D−
1

2 D − A D−
1

2x = λx                                                    (8) 

 

Solving a standard eigenvalue problem is a difficult task since it requires high computational 

power. These computations take O n3  operations to compute all the eigenvectors, where n is the 

number of nodes in the graph. Therefore when one applies this method to a large image, the 

number of operations is usually too large, due to the high number of voxels. See appendix 1 for a 

detailed explanation about eigenvectors and eigenvalues.  

 

We can then partition the graph using the following algorithm [45] which goes through the 

following the steps: 

 

1.  Given an image or image sequence, create a weighted graph with the image information. 

2.  Solve  D − A x = λDx for eigenvectors with the smallest eigenvalues. 

3.  Use the eigenvector with the second smallest eigenvalue to bipartition the graph. 

4.  Decide if the current partition should be subdivided and recursively repartition the 

segmented parts if necessary. 
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In the step one, an affinity matrix is built from chosen image features. Some examples of possible 

features are spatial connectivity, voxel intensity values, Euclidean distance, etc.  

 

Step two solves (8) to determine the eigenvector of the second smallest eigenvalue. The 

eigenvalues are the solutions of the normalized cuts mapped from a discrete domain to a 

continuous domain. Each component in an eigenvector corresponds to a node in the graph.  

 

Afterwards, the graph is bipartitioned using the computed eigenvector by thresholding the 

eigenvector components. The search for the best threshold is done using the Ncut criterion. Only 

the optimum partition of the eigenvector of the second smallest eigenvalue is searched, because 

trying to find the optimum partition for all the eigenvectors would not be computationally 

feasible since there is no algorithm that can solve this problem in “polynomial time”.  

 

Finally, in step four, the algorithm decides if the current partition should be subdivided, 

considering that the graph is being bipartitioned into more than two clusters. If this assumption 

holds, the algorithm returns to the initial step and repartitions the sub-graphs found in the first 

iteration. 

 

There is another way of attaining a k-way partition of the graph that uses more than one 

eigenvector. If we want to partition the graph in, for example, four partitions, one uses three 

eigenvectors and each component of each eigenvector will correspond to an image feature. 

Afterwards, these features are fed to a clustering algorithm e.g., k-means, that will cluster the 

image based on the given features.  

 

5.3.   Non – spectral methods 

 

Spectral clustering, after mapping the original space into an eigenspace, uses the information 

from the eigenvalues and eigenvectors for graph partitioning. These methods are called spectral, 

because they make use of the data affinity matrix spectrum to cluster the points. Their efficiency 

arises from not making any assumptions about the final clusters.  

On the other hand, non-spectral methods do not rely on the computation of the eigenvalues and 

eigenvectors of the image affinity matrix.  

 
5.3.1.   Weighted Kernel k-means 
 

The weighted kernel k-means algorithm [46] is a generalization of the standard k-means 

algorithm [47], and maps points to a higher-dimensional space. Therefore weighted kernel k-

means has a major advantage over standard k-means, since it can discover clusters that are not 

linearly separable in the input space.  
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Weighted kernel k-means was first presented in [48]. It was shown that the weighted kernel k-

means can also be used to monotonically improve a specific graph partitioning objective. 

However, in this case the weights and the kernel have to be chosen properly. This property allows 

the weighted kernel k-means to be mathematically equivalent to general weighted graph 

partitioning problems, such as, ratio association, ratio cuts, Kernighan-lin objective or normalized 

cuts [48]. This thesis focuses on the equivalence between weighted kernel k-means and the 

normalized cuts algorithm.  

 

Therefore, when the eigenvector computation is prohibitive, for example, when one is analyzing 

large image matrixes, the normalized cuts algorithm can be replaced by the weighted kernel k-

means objective.  

 

The weighted kernel k-means tries to find clusters π1, π2 , … , πn  that minimize the objective 

function: 

 

𝒟  πc c=1
k  =   Wiaiϵπc

k
c=1  ϕ ai − mc 

2                          (9) 

 

Where 

 

mc =
 W iϕ(ai )a i ϵπc

 W ia i ϵπc

,                                     (10) 

 

In (9),  W is a diagonal matrix attained by summing each value from each line of the image 

affinity matrix A, its values are always non-negative. Note that the points ai correspond to the  i 

voxels belonging to the c-th cluster  πc , and  mc  represents the “best” cluster representative: 

 

mc = argminz  Wi ϕ ai − z 2
aiϵπc

                                                                                        (11) 

 

The kernel function ϕ allows the equivalence between the weighed kernel k-means and a general 

weighted graph partitioning objective. The kernels usually used are polynomial, gaussian, or 

sigmoid. 

 

The distances are computed using inner products, since  ϕ ai − mc 
2 equals 

 

ϕ ai ϕ ai − 2
 W jϕ ai ϕ(aj )a j ϵπc

 W ja j ϵπc

+
 W j W lϕ ai ϕ(al )a j ,a l ϵπc

( W ja j ϵπc )2                                    (12) 

 

Using the kernel matrix K, where Kij = ϕ ai ϕ aj , (12) can be written as: 
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Kii − 2
 W j K ija j ϵπc

 A ja j ϵπc

+
 W j W l K jla j ,a l ϵπc

( A ja j ϵπc )2
                                 (13) 

 

To attain segmentation equivalence between weighted kernel k-means and normalized cuts 

algorithm, one has to assume W = D and K = D−1AD−1 where W and D are diagonal matrixes 

attained by summing each value from each line of the image affinity matrix (A), and K is the 

kernel matrix. Afterwards, the weighted kernel k-means [48] can be computed following the steps 

below: 

 

   

function    πc c=1
k   =  Kernel_Kmeans  K, k, W, tmax ,  πc

 0  
c=1

k
   

Input →  K: Kernel matrix ; k: number of clusters ; W: weights for each point;  

                   tmax : maximum number of iterations ;   πc
 0  

c=1

k
: initial cluster.  

Output →    πc c=1
k : final clusters.  

1. If no initial clustering is given, initialize the k clusters  i. e. , randomly .                 

Set t = 0.  

2. For each point ai  and every cluster c, compute:  

 

d ai  ,  mc =  Kii − 2
 WjKijajϵπc

 t 

 Wjajϵπc
 t 

+
 WjWlKjlaj ,alϵπc

 t 

  Wjajϵπc
 t  

2  

3. Find c∗ ai = argminc  d ai  ,  mc ,

resolving ties arbitrarily. Compute the updated clusters as:  

πc
(t+1) =  a ∶  c∗ ai = c . 

4. If not converged or tmax > t, set t = t + 1 and go to step 2; Otherwise,  

stop and output the final 

clusters  πc c=1
k =  πc

 t+1  
c=1

k
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6.   Segmentation of striatal structures 
 

In this chapter are described in detail the methods used here to extract the caudate, putamen and 

ventral striatum from high resolution PET images. 

 

6.1.   Pre-processing steps 

 

In the pre-processing steps our purpose is to extract the striatum surface from binding potential 

HRRT PET (High Resolution Research Tomograph Positron Emission Tomography) images. In 

the figure below we can see from top to down three different HRRT PET images in the 

transversal, coronal and sagittal views (left-right). The technique used to achieve the 

segmentation of the striatum was first implemented in [23] and [3]. 

 

 

 

Figure 6.1 Transversal, Coronal and Sagittal views (left-right) of the segmented right striatum of 

three HRRT PET images (top-down), these images were image provided by Turku PET Center 

visualized using [49]. 
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The pre-processing procedure can be divided in three steps: Delineation of the brain structure, 

segmentation of the brain structure in right and left hemisphere and extraction of the striatum 

from each hemisphere image. More detailed information on this method can be found in [23], [3]. 

The delineation of the brain structure was achieved using a deformable model which is based on 

global minimization of its energy. In other words, the algorithm searches for the surface that 

minimizes the energy function E(. ; . ) of the image. Given an image I, the energy E(S; I) of the 

surface S depends on the image data and the properties of the surface. The total energy of the 

surface is a weighted sum of two energies, the internal energy that constrains the shape of the 

surface penalizing surfaces that are not smooth, and the external energy that combines the surface 

with the salient image features. The energy function (1) was minimized with the global DSM-OS 

(Dual Surface Minimization – Outer Surface), this algorithm is a variant of DSM (Dual Surface 

Minimization). DSM-OS was used because sometimes it is advantageous to approach the surface 

of interest from a specified direction, in this case it is from outside because outside there is 

considerable less noise then from inside the brain structure. In this algorithm only one of the two 

surfaces is allowed to move and the other one is used only for computing the stopping condition. 

Then, the algorithm just remembers the surface of lowest energy that has already been found and 

compares with surfaces found in subsequent iterations of the algorithm to it, as explained in 

chapter four.  

After having extracted the brain surface we have to divide that surface in to hemisphere images 

(figure 6.2). This is done using an automatic method called “mid-sagittal plane extraction”. This 

method is very similar to an existing edge-based method originally designed for anatomical brain 

images [50]. The difference from this algorithm and the existing one is that in this one it is 

applied to the extracted brain structure instead of the edge-images due to the low contrast to noise 

ratio in PET images. The mid-sagittal plane was defined as the one about which the reflective 

symmetry of the brain is maximized. 

 

 

 

Figure 6.2 (A) left brain hemisphere, (B) right brain hemisphere. 
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The last computation of this pre-processing step is the segmentation of the striatum from the two 

hemispheres images, this is achieved using DSM-OS algorithm like in the brain surface 

extraction. The main difference between the DSM-OS algorithm used in the brain delineation and 

in the striatum extraction is in the initial surfaces. In the striatum extraction the initial surfaces are 

generated automatically by first locating a voxel within (left/right) striatum based on the centre of 

mass of the highest BP values in a (left/right) hemisphere image and then centering a large 

enough sphere surface to that voxel, while in the brain surface extraction one places one initial 

surface inside the brain area and the other outside, this does not require any special algorithm 

because of the known brain geometry. 

 

 

 

Figure 6.3 (A) segmented left striatum, (B) segmented right striatum, (C) 3D render from 

segmented striatum’s. The image on the left and center were taken from slice number 77 of the 

original image; (A) and (B) were reproduced using [51] and (C) using [52]. 

 

6.2.   Segmentation of the Striatum into four structures 

 

Our method for the segmentation of the striatum into four distinct structures proceeds in a 

stepwise faction, taking into account the physical and spatial anatomy of the structures of interest, 

the large variations of voxel intensity values within and between the structures, and the existence 

of a thin plate of white matter, with relatively smaller voxel intensity values, separating the 

Putamen and the Caudate. 

  

Once the striatum is segmented in the pre processing steps we have the information of which 

voxels belongs solely to the striatum, something that allows us to apply the rest of the method 

only to a small portion of the real image size, this enhances the speed, robustness and 

effectiveness of the procedure.  
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We build the affinity matrix also known as weight matrix using only the voxels belonging to the 

striatum, we define the affinity matrix as (A) and this matrix describes the inter-voxel affinity 

(intensity values and voxel distances) that is represented as weights between voxels, this 

information allows us to know the features needed to the segmentation of the image into different 

structures.  

 

For an image I with dimensions i, j, k, respectively on the x, y, z axis, where i, j, k ∈ ℕ, its affinity 

matrix A  has a dimension of i ∗ j ∗ k rows and i ∗ j ∗ k columns such that  A r, :  , r ∈ ℕ is a 

vector of similarity between the measured features from voxel I(r, r) and all the other voxels in 

the image I, e.g. figure 1.3. Analyzing the values of the affinity matrix we conclude that if x ∈ A 

then x ∈ [0,1] , and the closest the value of x is to 1, more similar x becomes to the voxel 

corresponding to the line being analyzed.  

 

Affinity between two voxels can be qualitatively classified by comparing the difference between 

the two voxel intensity values with a given maximum threshold value and their spatial location. If 

the difference exceeds a chosen threshold, the two voxels are assumed to belong to different 

classes or, more precisely, different structures. The pairwise differences between the voxels are 

mapped into the affinity matrix, and the clustering algorithm analyzes these affinities, clustering 

voxels into structures according to their affinity degree. 

Once the affinity matrix is constructed the affinity degrees are used to assign each voxel to its 

correct structure. 

 

6.2.1.   Affinity matrix construction methods 

 

The voxel affinity matrix was built to deliver accurate information about voxel relation to the 

segmentation method. Two different approaches were used. The first one was first implemented 

by Shi and Malik in [45] and the second is a thresholding method developed in this study. 

 

Shi and Malik’s used two features to build the affinity matrix  A , intensity values similarity and 

Euclidean distance between voxels. The Euclidean distance (Dist) between points  x =

(x1, x2, … , xn) and y =  y1, y2, … , yn , in an n dimensional space is given by: 

 

 Dist x, y =   x1 − y1 2 +  x2 − y2 2 +⋯+  xn − yn 22
=    xi − yi 2n

i=1                    (14) 

 

The weight/affinity between node i and j is Ai,j, and can be computed as: 

 

A(i, j) = e− I i −I(j) ∗  
e−Dist (i,j)                     if  X i − X(j) 2  <  r

 
0                                                         otherwise,

                                        (15) 
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In (15) the two terms of the equation represent, respectively, the similarity between the voxel i 

and j intensity values and the Euclidean distance between voxel i and j spatial location. Notice 

that if the Euclidean distance between voxel i and j is above a given threshold, the affinity degree 

is set to zero. 

 

On the other hand, the method developed in this thesis gives better results than Shi and Malik 

method when applying the affinity matrixes from both methods to the same segmentation 

problem. The method is depicted below: 

 

A(i, j) =  
enorm ∗ I i −I(j)         if I i is connected to I(j)

 
0                                                         otherwise,

                       (16) 

 

This method assumes that voxels I i  and I j  are connected if the distance between them is 

below the threshold. The variable norm is a normalization parameter of the intensity of each 

voxel, mapping all values between -1 and 0. Once the affinity matrix is obtained, accounting for 

the similarity between intensity values (16), another threshold is applied (17). This threshold 

removes connections between any two voxels with a degree of intensity similarity below the 

threshold, enhancing structure boundaries and allowing a more accurate clustering. 

 

A(i, j) =  
A(i, j)                             A(i, j) < threshold

 
0                                                otherwise,

                                         (17) 

 

In (17) A(i, j) corresponds to the affinity value between voxel  i and  j. 

 

 
 

Figure 6.4 (A) Graph representing an image with four voxels (V1, V2, V3, V4) and five weighted 

edges, (B) affinity matrix build using image (A) information, (C) clustering result of image (A) 

using a 2-way segmentation algorithm. 
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In figure 6.4 there is an example of a four node weighted graph (A), each node represent one 

image pixel, in the (B), there is an example how the graph affinity matrix will look like, in (C), 

one can find an example of the clustering when the affinity matrix (B) is feed to an clustering 

algorithm. 

 

6.2.2.   Clustering methods 

 

Two clustering techniques are here implemented, the first being a “multiway normalized cuts” 

algorithm [45] and the second being the “weighted kernel k-means” algorithm [48]. 

The multiway normalized cuts that makes use of eigenvectors, i.e., is a spectral method. The first 

step of this algorithm is constructing an affinity matrix by assigning a node to each voxel in the 

image, and an edge weight for all pairwise neighboring voxels. The assigned weight value is a 

function of the level of matching between the features of the two voxels. This formulation allows 

treating the image segmentation problem as a graph partition of the vertex set. The method seeks 

to partition the graph into subgraphs, internally highly connected, but weakly connected between 

one another, using the computed first k eigenvectors of the graph Laplacians to define the feature 

space to which the K-means clustering algorithm is applied.  

 

The K-means algorithm is an unsupervised learning clustering algorithm. The procedure 

classifies a given data set making use of a defined number of fixed clusters. The algorithm starts 

by defining k-centroids, one for each cluster, and then takes each point belonging to the data set 

and associates it to the nearest centroid. The first step is completed when all points are assigned 

to one of centroids. Next, k new centroids are chosen, and correspond to the mean value of the 

data points assign to each previous k cluster. A new clustering assignment between the same data 

set points and the nearest new centroids is then done. These steps are repeated until there are no 

more changes in the centroids location. The algorithm aims to minimize the total intra-cluster 

variance, or, the squared Euclidean distance objective function: 

 

J =    ai − mc 2
2

ai∈πc
k
c=1                                (18) 

 

In (18) there are k clusters πc , c = 1,2, … , k and mc  is the centroid or mean point of the points ai 

belonging to the cluster πc . 
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function  Clustered  =  Multiway Normalized Cuts Image, k   

Input →  Image: image that we want to be segmented, k: number of clusters.  

Output →  Clustered: Image with the final clusters.  

1. Build the affinity matrix;  

2. Compute the k first eigenvectors of   D − A y =  Dy;  

3. Use KMeans  algoritm to cluster the k eigenvectors into clusters C1, … , Ck ;  

 

 
Considering W = D and K = D−1AD−1 where W and D are diagonal matrixes attained by 

summing each value from each line of the image affinity matrix (A). The new affinity matrix K is 

positive definite (positive definiteness guarantees convergence).  

The weighted form of the kernel k-means is mathematically equivalent to a general weighted 

graph clustering. Such equivalence implies that the weighted kernel k-means algorithm can be 

used to locally optimize a number of graph clustering objectives such as normalized cuts. This is 

done generalizing the k-means objective function to use both weights and kernels [48] from 

which the altered distance function (equation 13) is computed. 

 

Therefore in cases where eigenvector computation is prohibitive, for example, if many 

eigenvectors of a large matrix are required, the weighted kernel k-means algorithm is a more 

suitable choice than spectral methods. The algorithm described below is a representation of a 

clustering method using the weighted kernel k-means as the objective that partition the image 

into connected subsets. 

 

function  Clustered  =  Algorithm1  Image, k, initclusters    

Input →  Image: image that we want to be segmented, k: number of clusters, 

                     initclusters : initial clusters .  

Output →  Clustered: Image with the final clusters.  

 

1. Build the affinity matrix; 

2. Use Weighted Kernel KMeans  to cluster the image affinity matrix  

into clusters C1, … , Ck ;  
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6.3.   Implementation 

 

In this section are described the methods implemented in this thesis. After tuning the initial 

parameters the method implemented in [3] was applied to extract both right and left striatum from 

the high resolution PET images. In [3], the authors used a 2-way normalized cut algorithm to 

segment the two structures that they proposed to extract (caudate and putamen). However, this 

thesis aim is to extract four structures (caudate, putamen, ventral striatum and white matter), so a 

k-way normalized cut algorithm was developed. After realizing that the multiway normalized 

cuts algorithm computation failed when applied to the high resolution PET images, a new 

approach was developed. This approach aimed to replace the normalized cuts, giving a similar 

segmentation results but applicable to high resolution images. The developed algorithm was 

based on the weighted kernel k-means [48]. 

 

Both segmentation algorithms have to be fed with a voxel feature matrix (affinity matrix). This 

affinity matrix is built using a set of chosen features that are extracted from the image voxels. 

The construction method of the affinity matrix is one of the most important steps on the 

segmentation of the striatal structures, because it is in the matrix that is stored the information 

that will be used in the segmentation process. In this thesis were implemented two construction 

methods of the affinity matrix, the one proposed by Shi and Malik in [45], and the one build by 

us. Our method exhibited, when applied to the created phantoms, more accuracy and robustness 

to noise than the Shi and Malik method. All the created methods were implemented using Matlab 

[51]. 
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7.   Experiments 

 

7.1.   Materials 

 

The evaluation of the validity of the automatic segmentation method was achieved using dynamic 

two dimensional phantom images and four  C 
11   Raclopride BP (Binding potential) HRRT PET 

images.  

 

The phantoms used to test the methods are shown in figure 7.1. Figure 7.1 (B) is a 2D phantom 

with dimensions 32x32. This phantom is a simple representation of the structures that this thesis 

aims to extract. In this image the yellow region corresponds to caudate, the dark blue to putamen, 

the light blue to white matter and the dark red to the ventral striatum.  

The figure 7.1 (A) is a “colormap” taken from the coronal view, slice 112, of one of the 

 C 
11   Raclopride HRRT PET scans. This phantom allows measuring the reliability and 

reproducibility of the segmentation method. It also allows understanding the correlation between 

different voxel intensity values within the same structure (cluster), as well as the segmentation 

smoothness in those structures boundaries.  

 

 
  

Figure 7.1 (A) 39x36 Phantom, (B) 32x32 phantom. 

 
The  C 

11   Raclopride HRRT PET scans were provided by Turku PET center and were from four 

healthy male volunteers. The subjects were free from any somatic or psychiatric illness, drug 

abuse and alcoholism.  

 

The imaging was attained by a brain-dedicated, high-resolution PET scanner (ECAT HRRT, 

Siemens Medical Solutions, Knoxville, TN) [53].  In the acquired measurements, a molded 

thermoplastic mask was used as a head fixation to reduce the noise due to head movements.  
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The PET-raclopride scans were acquired in list mode and histogrammed by axial compression of 

span 9. The raclopride uptake was measured for fifty one minutes after injection using thirteen 

frames. The frame sequence consisted of three frames of sixty seconds, four frames of one 

hundred and eighty seconds, and six frames of three hundred and sixty seconds. The image size 

of each scan was 200x200x150 slices and they have an isotropic voxel dimension of 

1.22x1.22x1.22 mm3. The raw data was reconstructed with a speed-optimized version of OP-

OSEM-3D (Ordinary Poisson-OSEM in full 3D) [54], with sixteen subsets and eight full 

iterations [55]. The parametric binding potential HRRT PET images were created from the 

dynamic images using the simplified reference tissue model [25].  

 

7.2.   Results  

 

In this section we present the results attained using the phantoms and real data. The phantoms 

were used to test and validate the proposed methods. Moreover this test allows tuning the 

parameters of the model. Using the tuned model, the methods were applied to the real data. 

 

7.2.1.   Phantoms 

 

The dynamic 2D phantoms are now used to compare the accuracy of the two methods of attaining 

the affinity matrix by submitting the results of each method to the same clustering algorithm, 

namely, the multiway normalized cuts. 

 

In figure 7.2 each line represents a level of noise added to the original image. Respectively, from 

top to bottom the noise level added is 0%, 10%, 30%, 60%. On the first row is represented the 

original data set of test images (figure 7.2 (A), (B), (C), (D)). On the second, the segmentation 

result using Shi and Malik’s affinity matrix construction method (figure 7.2 (E), (F), (G), (H)), 

and on the third row are the results of our method, (figure 7.2 (I), (J), (K), (L)).  

Both methods gave similar results in noiseless conditions when clustering the data into four 

clusters (figure 7.2  (A),(E),(I)) but, when random noise was added to the phantoms, the Shi and 

Malik’s method was less robust to noise when compared to our method. 

The results shown were obtained assuming that two voxels are neighbors if the difference 

between their spatial locations does not exceed 10 voxels. The threshold intensity value used was 

0.4, i.e. if two voxels have a similarity degree below 40%, their intensity degree is set to zero, 

thus forcing them to belong to different clusters. 
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Figure 7.2 (A,B,C,D) Original images with top-bottom 0%, 10%, 30%, 60% of added random 

noise, (E,F,G,H) results of the segmentation of the original images using multiway normalized 

cuts with spatial connectivity of 10 voxels and Shi and Malik method of building the affinity 

matrix, (I,J,K,L) results of the segmentation of the original images using multiway normalized 

cuts with spatial connection of 10 voxels and a intensity threshold of 0.4 on the affinity matrix. 

Note that we are analyzing the structure topology, therefore the colors of the final clusters are not 

part of the final result. The clusters colors differ because our method does not specify any 

specific color for the final clusters, so Matlab chooses randomly the color the final clusters.  

 
The phantom from figure 7.3 was used to measure the reliability and reproducibility of the 

construction methods of the affinity matrix. In the illustration on the left (original phantom) one 

can distinguish 4 main regions: the background (dark blue), the different striatal structures (red 

and orange) and the outline of the structures (light blue). The construction methods of the affinity 
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matrix proved again to be similar, i.e., had similar segmentation results using the multiway 

normalized cuts algorithm. 

 

 
 

Figure 7.3 (A) Original image, (B) segmented image using multiway normalized cuts with spatial 

connectivity of 15, (C) segmented image using our affinity matrix construction method using 

spatial connectivity of 15 and a similarity threshold of 0.4. 

 
In figure 7.4 are shown the results of testing different values of spatial connectivity keeping the 

similarity threshold constant and equal to 0.9. The clustering was done by the multiway 

normalized cuts algorithm. In this case, the value of spatial connectivity used is 15 (figure 7.4 

(E)), found to be more suitable to analyze the anatomy of the desired ROIs (Regions Of Interest). 

 

 

 

Figure 7.4 Original image (A), all the other images are the segmentation result of the multiway 

normalized cuts algorithm using our method for building the affinity matrix with fixed similarity 

threshold of 0.9 and variable spatial connectivity parameter, (B) spatial connectivity parameter 

(sc) of 1, (C) sc = 5, (D) sc = 10, (E) sc = 15, (F) sc = 20. 
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Keeping the spatial connectivity constant (at 15 voxels), the best segmentation results are 

obtained using a high threshold of 90%, that allows keeping only the most similar voxel values of 

the affinity matrix (figure 7.5 (D)). 

 

 
 

Figure 7.5 Segmentation result of the multiway normalized cuts algorithm using our method for 

building the affinity matrix with fixed spatial connectivity parameter of 15 voxels and variable 

similarity threshold, (A) using no threshold, (B) threshold = 0.3, (C) threshold = 0.6, (D) 

threshold = 0.9. 

 
Although the spectral method for segmentation gives good results, it is well known that for large 

data sets it becomes computational prohibitive to compute the Eigenvalues of the affinity matrix. 

Therefore, a weighted version of the kernel k-means algorithm was used. This algorithm does not 

rely on the computation of eigenvalues to achieve the final clustering. This method was shown to 

be equivalent to the multiway normalized cuts in [48] and the results in figure 7.4 (D) (multiway 

normalized cuts) and figure 7.6 (C) (weighted kernel k-means) demonstrate that both methods 

lead to similar segmentation results. However the weighted kernel k-means achieves the 

segmentation result with less computational requirements when compared to the multiway 

normalized cuts. The weighted kernel k-means algorithm applied to the phantom of figure 7.6 is 

not sensitive to its initial cluster guess. Therefore we can make a random initial guess for the 

clustering result or use the cluster shown in figure 7.6 (B), still having the same segmentation 

result as in figure 7.6 (C). On the other hand, the spatial connectivity between voxels and the 

similarity threshold are highly sensitive to the initial guess. The best results obtained for the 

phantom in (figure 7.6 (A)) are shown in (figure 7.6 (C)) where it was predefined a neighborhood 

of 30 voxels, i.e. all the surrounding voxels at a distance smaller than 30 voxels are assumed 

neighbors of the voxel in question. The similarity threshold used to compute figure 7.6 (C) was 

0.5, i.e. voxels with intensity similarity equal to or higher than 50% would be maintained, while 

the rest would be replaced by zero. 
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Figures 7.6 (A) original image, (B) initial cluster, (C) final clustering using in the weighted 

kernel k-means algorithm with spatial connectivity parameter of 30 voxels and threshold of 0.5. 

 

7.2.2.   Real HRRT images 

 

In figure 7.7 are shown two histograms of the intensity values within the left and right striata. The 

test data used to build these histograms was a HRRT PET scan. As mentioned above the 

extraction method considers that there are four structures inside the striatum. Analyzing the 

histograms presented in (figure 7.7 (B), (C)), that correspond respectively to the left and right 

striatum intensity values. One can see that the intensity values of the several structures overlap. 

This overlapping makes it impossible to distinguish them if relying only on the information 

extracted from the intensity values. For this reason, the segmentation process of the structures 

that compose the striatum is a complex process. 

 

 

 

Figure 7.7 Histogram of the intensity values of both striata of the HRRT PET image; (A) original 

image, (B) histogram of the left striatum, (C) histogram the right striatum. 

 
Due to this complexity, robust methods had to be developed to deal with the extraction of the 

striata from each HRRT PET scan. The first method that was applied was the multiway 

normalized cuts that due to the data size proved to be computationally too expensive, in terms of 

memory and time, as predicted. 

Afterwards, we applied the weighted kernel k-means using our affinity matrix construction 

method because it is more resistant to noise and the HRRT PET images are always noisy.  
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Figure 7.8 shows the result of applying the weighted kernel k-means algorithm to a real HRRT 

PET image. The segmentation results are satisfactory, namely, the algorithm found four clusters, 

and from those four clusters one can easily recognize three structures: putamen, nucleus 

accumbens (ventral striatum) and, a merge of caudate and white matter. The green and red 

clusters seen in figure 7.8 (B) correspond, respectively, to the posterior and the anterior putamen 

(see appendix 3, yellow cluster is the posterior putamen and white cluster is the anterior 

putamen), the blue cluster corresponds to the caudate and, the yellow cluster corresponds to the 

ventral striatum. The putamen with this method was segmented into two clusters due to its highly 

non-uniform architecture and the existence of a large tract of white matter traversing through the 

structure. The white matter was the only surface of interest that was not well segmented. In all 

segmented images, the white matter always came embedded into other cluster. 

 

Although in the phantom experiments the initial clustering was irrelevant, the same cannot be 

said when the weighted kernel k-means algorithm was applied to HRRT PET scans, because the 

final result depends on the initialization. The best segmentation results were obtained when the 

initial cluster was separated into four clusters where each cluster was a horizontal parallelepiped 

with the same area. When we tried different initial clusters, such as a random initialization, the 

result was a single cluster on the final segmentation (figure 7.8 (D)). The spatial connectivity 

parameter needs also to be “tuned” to achieve the  

best segmentation. In our case, a neighborhood of 3-4 voxels achieved the best results, while 

values below gave a  final segmentation equal to the initial cluster and superior values resulted in 

a single final cluster (figure 7.8 (C), (D)). This method always segmented the image into four 

clusters regardless of increasing the initial number of clusters set beyond four (figure 7.8 (B)). 

See appendix 2 for more results on the segmentation of the four HRRT PET images into four 

clusters. 
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Figure 7.8 (A) Original HRRT PET BP image (B) segmented image using weighted kernel k-

means with spatial connectivity of 4 and the initial number of clusters set to 4  with equal length, 

(C) segmentation result using spatial connectivity 1, (D) segmentation result using a random 

initial clustering or spatial connectivity parameter above 4. The images are Sagittal and 

transverse views from slice 90, and coronal view is from slice 85; 
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Figure 7.9 (Top) Original HRRT PET image (Bottom) segmentation result of the left striatum 

using weighted kernel k-means algorithm. 
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8.   Discussion and conclusion 
 

A new automatic method was proposed in this study. The method aims to extract striatal 

structures from HRRT PET binding potential images. A similar approach was done for the 

previous scanner model (ECAT EXACT HR+, Siemens CTI, Knoxville, TN) in [3]. 

 

The images were converted into graphs and thus, the segmentation process became a graph 

partition problem. It was experimentally confirmed that a multiway version of the spectral 

segmentation algorithm (normalized cuts) fails when applied to PET images acquired using the 

ECAT HRRT scanner. To solve this problem, the normalized cut algorithm was replaced by a 

non-spectral clustering method called “weighted kernel k-means”, giving similar segmentation 

results, but requiring far less computational resources. 

 

Weighted kernel k-means does not rely on the heavy computation of the eigenvalues and 

eigenvectors of the image affinity matrix. It can be categorized as a region-based segmentation 

method that iteratively groups neighboring voxels accordingly with their similarity degree. This 

properties and the mathematical equivalence between the results of both algorithms makes the 

new algorithm more appropriate to be applied in images with considerable size, where the 

computation of eigenvalues and eigenvectors becomes infeasible. 

 

The method to construct the image graph (affinity matrix) was also changed, as to improve the 

results previously obtained using the method proposed in [45]. Namely, after building the graph 

using spatial connectivity and image intensity values as features, an intensity threshold technique 

is applied to that graph. This improvement produces better clustering results, as well as better 

smoothness control over the clustering results.   

 

The combination of these two methods, namely, the affinity matrix construction method and the 

weighted kernel k-means clustering algorithm, made possible the accurate extraction of the 

putamen, caudate and ventral striatum from four different patients scans. Moreover, the method 

was able to divide the putamen into two different clusters (anterior and posterior putamen) in 

every experiment, a result that was not initially expected but that proved to be accurate. Jussi 

Hirvonen, MD, PhD from Turku PET Center, University of Turku/Turku University Central 

Hospital verified and agreed with the accuracy of this segmentation results. For more information 

about this separation see [56].  

 

The only structure that could not be extracted with this method was the white matter (internal 

capsule) within the striatum. The white matter appeared merged with the caudate complex in the 

final clustering. One way to overcome this problem could be to separate the final caudate-white 

matter cluster from the rest of the clusters and apply again the weighted kernel k-means algorithm 
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to achieve their separation. Another possibility would be to improve the accuracy of the guesses 

of the initial clusters. All the initial clustering guesses used in the weighted kernel k-means were 

simple and did not regard any anatomical information. For example, when trying to segment the 

striatal area of one HRRT brain image into four clusters, the initial clustering guess was an 

image, with the same size of the original image, divided into four areas with the same size, or a 

random clustering initialization. The improvement of these initial guesses is possible if one 

accounts for the real anatomical position of these structures that has been experimentally 

detected. The improvement of the initial guesses would make the clustering algorithm far more 

complex but, on the other hand, would improve the final clustering result and speed of the 

algorithm. 

 

The striatum and its structures are important brain structures when studying the binding on 

dopamine D2 receptors. Therefore, a fully automatic method for the extraction of these structures 

benefits brain research. This method proved to be accurate and reproducible, making it suitable to 

be used for multi-center preclinical and clinical trials for drug development. Another possible 

application for this method would be in medical procedures, where the segmentation is still done 

manually or semi-automatically. This would require a fast performance. The method here 

proposed takes only a few minutes to achieve the clustering result implemented in Matlab [51], 

so, its implementation using a low level programming language would further increase its speed. 

 

These methods for automatic extraction of volumes could be further developed for other medical 

functional imaging technologies, other anatomical structures and radioligands (tracer). 

Furthermore, with the appearance of new scanners with improved resolutions, more structures of 

interest can be extractable from the scans, e.g. in the striatum, instead of the current four 

extractable structures, one could extract more substructures. The increase of the desired number 

of structures one wants to extract from the scans would not affect the algorithm developed in this 

study, since it was built to cope with increasing complexity. Moreover, automatic methods will 

become even more necessary, because the increase of resolution implies an increase of data size 

and number of slices, making the manual ROI extraction harder. 

 

 

 

 

 

 

 

8.  CONCLUSION AND DISCUSSION 
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APPENDIX 1:   Eigenvectors and Eigenvalues  
 

The information given in this appendix is taken from [57]. 

 

Given a d-by-d matrix M, a very important class of linear equations is of the form 

 

Mx = λx                   (19) 

 

for scalar λ, which can be rewritten 

 

 M − λI x = 0                  (20) 

 

where I is the identity matrix and 0 is a zero vector. The solution vector x = ei  and the 

corresponding scalar λ = λi are called the eigenvector and associated eigenvalue, respectively. If 

M is real and symmetric, there are d (possible nondistinct) solution vectors  e1 , e2 , … , ed , each 

with an associated eigenvalue  λ1 , λ2 , … , λd . Under multiplication by M the eigenvectors are 

changed only in magnitude, not direction: 

 

 Mej = λjej                   (21) 

 

If  M is diagonal, then the eigenvectors are parallel to the coordinate axes. 

 

One method of finding the eigenvectors and eigenvalues is to solve the characteristic equation (or 

secular equation,) 

 

 M − λI = λd + a1λ
d−1 + ⋯+ ad−1λ + ad = 0                                                            (22) 

 

for each of its d (possible nondistinct) roots λj. For each such root, one can solve a set of linear 

equations to find its associated eigenvector ej.  

 

Finally, it can be shown that the trace of a matrix is just the sum of the eigenvalues and the 

determinant of a matrix is just the product of its eigenvalues: 

 

tr M =  λi
d
i=1  and  M =  λi

d
i=1                (23) 

 

If a matrix is diagonal, then its eigenvalues are simply the nonzero entries on the diagonal, and 

the eigenvectors are the unit vectors parallel to the coordinate axis. 
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APPENDIX 2:   Segmentation results  
 

Image1 (name: rb0008bp): 

 

 
  Slice: 94           Slice: 92 / 116           Slice: 81 

 
  Slice: 88 / 102           Slice: 82 / 120           Slice: 88 



61 

 

 
 

Image2 (name: rb0009bp): 

 

 
  Slice: 95           Slice: 92 / 116           Slice: 81 

 
  Slice: 105           Slice: 98 / 120           Slice: 88 
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Image3 (name: rb0031bp): 

 

  
 Slice: 108           Slice: 106 / 140           Slice: 113 

 
Slice: 116           Slice: 114 / 146           Slice: 122 
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Image4 (name: rb0037bp): 

 

 
Slice: 83           Slice: 80 / 116           Slice: 69 

 
Slice: 90/88           Slice: 92 / 123           Slice: 77 
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APPENDIX 3:   Putamen subdivision 

 

Image1 (name: rb0008bp): 

 

Coronal view:  

 

 

Transverse view: 
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Sagittal view: 

 


