23 research outputs found

    Advanced machine learning algorithms for Canadian wetland mapping using polarimetric synthetic aperture radar (PolSAR) and optical imagery

    Get PDF
    Wetlands are complex land cover ecosystems that represent a wide range of biophysical conditions. They are one of the most productive ecosystems and provide several important environmental functionalities. As such, wetland mapping and monitoring using cost- and time-efficient approaches are of great interest for sustainable management and resource assessment. In this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and multi-temporal view of landscapes. The ability to extract useful information from satellite imagery greatly affects the accuracy and reliability of the final products. This is of particular concern for mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and fragmented landscape results in similar backscatter/spectral signatures of land cover classes in satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing methodologies of wetland classification by proposing and developing several new techniques based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. Specifically, the importance of employing an efficient speckle reduction method for polarimetric SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. Two novel techniques are also introduced for improving the accuracy of wetland classification. In particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed that discriminates wetland classes in three steps depending on their complexity and similarity. The experimental results reveal that the proposed method is advantageous for mapping complex land cover ecosystems compared to single stream classification approaches, which have been extensively used in the literature. Furthermore, a new feature weighting approach is proposed based on the statistical and physical characteristics of PolSAR data to improve the discrimination capability of input features prior to incorporating them into the classification scheme. This study also demonstrates the transferability of existing classification algorithms, which have been developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several well-known deep Convolutional Neural Network (CNN) architectures currently employed in computer vision is first introduced in this thesis for classification of wetland complexes using multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel missions. Overall, the methodologies proposed in this thesis address fundamental limitations/challenges of wetland mapping using remote sensing data, which have been ignored in the literature. These challenges include the backscattering/spectrally similar signature of wetland classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping on large scales. In addition to the capabilities of the proposed methods for mapping wetland complexes, the use of these developed techniques for classifying other complex land cover types beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further research

    Processing of optic and radar images.Application in satellite remote sensing of snow, ice and glaciers

    Get PDF
    Ce document présente une synthèse de mes activités de recherche depuis la soutenance de ma thèse en 1999. L'activité rapportée ici est celle d'un ingénieur de recherche, et donc s'est déroulée en parallèle d'une activité ``technique'' comprenant des taches d'instrumentation en laboratoire, d'instrumentation de plateformes en montagne, de raids scientifiques sur les calottes polaires, d'élaboration de projets scientifiques, d'organisation d'équipes ou d'ordre administratif. Je suis Ingénieur de recherche CNRS depuis 2004 affecté au laboratoire Gipsa-lab, une unité mixte de recherche du CNRS, de Grenoble-INP, de l'université Joseph Fourier et de l'université Stendhal. Ce laboratoire (d'environ 400 personnes), conventionné avec l'INRIA, l'Observatoire de Grenoble et l'université Pierre Mendès France, est pluridisciplinaire et développe des recherches fondamentales et finalisées sur les signaux et les systèmes complexes.}Lors de la préparation de ma thèse (mi-temps 1995-99) au LGGE, je me suis intéressé au traitement des images de microstructures de la neige, du névé et de la glace. C'est assez naturellement que j'ai rejoint le laboratoire LIS devenu Gipsa-lab pour y développer des activités de traitement des images Radar à Synthèse d'Ouverture (RSO) appliqué aux milieux naturels neige, glace et glaciers. Etant le premier à générer un interférogramme différentiel des glaciers des Alpes, j'ai continué à travailler sur la phase interférométrique pour extraire des informations de déplacement et valider ces méthodes sur le glacier d'Argentière (massif du Mont-Blanc) qui présente l'énorme avantage de se déplacer de quelques centimètres par jour. Ces activités m'ont amené à développer, en collaboration avec les laboratoires LISTIC, LTCI et IETR, des méthodes plus générales pour extraire des informations dans les images RSO.Ma formation initiale en électronique, puis de doctorat en physique m'ont amené à mettre à profit mes connaissances en traitement d'images et des signaux, en électromagnétisme, en calcul numérique, en informatique et en physique de la neige et de la glace pour étudier les problèmes de traitement des images RSO appliqués à la glace, aux glaciers et à la neige

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    The Role of Synthetic Data in Improving Supervised Learning Methods: The Case of Land Use/Land Cover Classification

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information ManagementIn remote sensing, Land Use/Land Cover (LULC) maps constitute important assets for various applications, promoting environmental sustainability and good resource management. Although, their production continues to be a challenging task. There are various factors that contribute towards the difficulty of generating accurate, timely updated LULC maps, both via automatic or photo-interpreted LULC mapping. Data preprocessing, being a crucial step for any Machine Learning task, is particularly important in the remote sensing domain due to the overwhelming amount of raw, unlabeled data continuously gathered from multiple remote sensing missions. However a significant part of the state-of-the-art focuses on scenarios with full access to labeled training data with relatively balanced class distributions. This thesis focuses on the challenges found in automatic LULC classification tasks, specifically in data preprocessing tasks. We focus on the development of novel Active Learning (AL) and imbalanced learning techniques, to improve ML performance in situations with limited training data and/or the existence of rare classes. We also show that much of the contributions presented are not only successful in remote sensing problems, but also in various other multidisciplinary classification problems. The work presented in this thesis used open access datasets to test the contributions made in imbalanced learning and AL. All the data pulling, preprocessing and experiments are made available at https://github.com/joaopfonseca/publications. The algorithmic implementations are made available in the Python package ml-research at https://github.com/joaopfonseca/ml-research
    corecore