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Abstract

Positron emission tomography (PET) is a unique imaging modality that provides physiological

and functional details of the tissue at the molecular level. However, the acquired PET images

have some limitations such as the attenuation. PET attenuation correction is an essential step to

obtain the full potential of PET quantification. With the wide use of hybrid PET/MR scanners,

magnetic resonance (MR) images are used to address the problem of PET attenuation correction.

The MR images segmentation is one simple and robust approach to create pseudo computed

tomography (CT) images, which are used to generate attenuation coefficient maps to correct the

PET attenuation. Recently, deep learning has been proposed and used as a promising technique

to efficiently perform MR and various medical images segmentation.

In this research work, deep learning guided segmentation approaches have been pro-

posed to enhance the bone class segmentation of MR brain images in order to generate accurate

pseudo-CT images. The first approach has introduced the combination of handcrafted features

with deep learning features to enrich the set of features. Multiresolution analysis techniques,

which generate multiscale and multidirectional coefficients of an image such as contourlet and

shearlet transforms, are applied and combined with deep convolutional neural network (CNN)

features. Different experiments have been conducted to investigate the number of selected

coefficients and the insertion location of the handcrafted features.

The second approach aims at reducing the segmentation algorithm’s complexity while

maintaining the segmentation performance. An attention based convolutional encode-decoder

network has been proposed to adaptively recalibrate the deep network features. This attention-

based network consists of two different squeeze and excitation blocks that excite the features

spatially and channel wise. The two blocks are combined sequentially to decrease the number

of network’s parameters and reduces the model complexity.
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The third approach has been focuses on the application of transfer learning from

different MR sequences such as T1 weighted (T1-w) and T2 weighted (T2-w) images. A

pretrained model with T1-w MR sequences is fine tuned to perform the segmentation of T2-w

images. Multiple fine tuning approaches and experiments have been conducted to study the best

fine tuning mechanism that is able to build an efficient segmentation model for both T1-w and

T2-w segmentation.

Clinical datasets of fifty patients with different conditions and diagnosis have been

used to carry an objective evaluation to measure the segmentation performance of the results

obtained by the three proposed methods. The first and second approaches have been validated

with other studies in the literature that applied deep network based segmentation technique to

perform MR based attenuation correction for PET images. The proposed methods have shown

an enhancement in the bone segmentation with an increase of dice similarity coefficient (DSC)

from 0.6179 to 0.6567 using an ensemble of CNNs with an improvement percentage of 6.3%.

The proposed excitation-based CNN has decreased the model complexity by decreasing the

number of trainable parameters by more than 46% where less computing resources are required

to train the model. The proposed hybrid transfer learning method has shown its superiority to

build a multi-sequences (T1-w and T2-w) segmentation approach compared to other applied

transfer learning methods especially with the bone class where the DSC is increased from 0.3841

to 0.5393. Moreover, the hybrid transfer learning approach requires less computing time than

transfer learning using open and conservative fine tuning.
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Chapter 1

Introduction

1.1 Introduction to PET Attenuation Correction

Positron emission tomography (PET) is an essential medical imaging modality that provides

physiological and functional biomarkers using radiolabeledmolecules as tracers. 18F-fluorodeox-

yglucose (FDG) is the widely used tracer to capture the pathophysiological characteristics of

the body. The PET acquisition suffers from photon attenuation which is absorbed by the body.

This leads to artifacts and attenuation which should be corrected to obtain the full potential of

PET quantification, diseases diagnosis, and treatment planning. The knowledge of the tissue-

dependent attenuation coefficient is a critical step to correct the attenuation and achieve an

accurate PET reconstruction. Figure 1.1 depicts the impact of the attenuation correction after

PET reconstruction.

The attenuation map is typically obtained by acquiring an additional scan of computed

tomography (CT). The CT image intensity which is measured by Hounsfield unit reflects the

electron density of the tissue. Hence, there is a linear mapping between the CT Hounsfield

value and the attenuation coefficient which makes the use of CT as the simplest way for PET

attenuation correction. Commonly, the Hounsfield units in CT are mapped into the equivalent

linear attenuation coefficients, which is referred to as the attenuation correction map [2, 3]. The
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(a) (b)

Figure 1.1: A reconstructed PET image without attenuation correction (a), and with attenuation
correction (b) using the 18F-FDG radiotracer. Adapted form [1]

main drawback of CT scan is the radiation exposure which makes it an unsafe imaging option for

some patients. On the other hand, magnetic resonance (MR) imaging is nowadays considered

the premier imaging modality for structural and morphological brain analysis thanks to its

excellent soft tissue contrast, high spatial resolution, anatomical and functional information, and

absence of ionising radiation. MR images have been extensively used for visualising, analysing,

diagnosis, treatment planning, and follow-up of a variety of neurological conditions.

With the various advantages of MR images, hybrid PET/MR systems were introduced

and applied in the clinical routine for molecular imaging applications [4]. The main challenge

of this hybrid imaging is the signal intensity in MR images has no direct mapping or correlation

with the attenuation coefficient. This issue makes the process of generating the attenuation

correction map from MR images an open research question [2]. For instance, bone and air

tissues have similar intensity values in conventional MR images while they have quite different

attenuation coefficients [3]. Figure 1.2 illustrates the difference between CT imaging-based and

MR imaging-based attenuation correction.
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Figure 1.2: The overview process of deriving attenuation correction maps from : (a) CT images,
(b) MR images

This current challenge paves the way to investigate and propose various approaches for

MR images-based attenuation correction. The commonly used neuroimaging are T1-weighted

(T1-w) and T2-weighted (T2-w) MR sequences for MR images-based attenuation correction.

In addition to that, there are other sophisticated MR images pulse sequences which provide

more details in morphological information: diffusion weighted images (DWI) [5], short echo

time (STE) [6], ultra-short echo time (UTE) [7], zero echo time (ZTE) [8], dynamic contrast

enhanced (DCE) [9], and magnetisation-prepared rapid acquisition gradient echo (MP-RAGE)

sequences [10].

The main methods to generate pseudo-CT images from MR images are segmenta-

tion, atlas/template, and emission and transmission methods. The segmentation methods are

considered the most robust and mature methods in both research and clinical domain for MR

images-based attenuation correction for PET images. The first clinical hybrid PET/MR system

uses the two-point Dixon gradient echo sequence which simplifies the segmentation of MR

images into different tissue classes [1]. Nowadays, the commercial PET/MR systems segment

images into three or four tissue classes [11], with the voxels of each tissue class assigned an

approximated predefined linear attenuation coefficient [12] producing the pseudo-CT images

which are used to generate the attenuation correction maps. Hence, there is a great need for
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a reliable segmentation method to generate the attenuation correction coefficients from MR

images.

Atlas-based methods, also referred to as the registration-based methods, involve image

registration between atlas/template images (MR/CT image pairs) and the target MR image using

nonlinear transformation. First, the MR image of a subject is co-registered with the atlas MR

image. Then, the obtained transformation combined with atlas CT image are used to create

subject specific attenuation correction map by applying a learning algorithm [13]. The quality

of PET reconstruction is highly dependent on the registration algorithms accuracy [14–17].

This method is time consuming and potentially have low accuracy under anatomical variations,

especially in cases undergoing neurosurgery [18].

Emission and transmission-based methods have been revisited with the introduction of

fully integrated clinical time-of-flight (TOF) PET/MR systemswhere patient specific attenuation

map is estimated from TOF emission or transmission data. These methods are categorised into

attenuation estimation using consistency conditions, attenuation estimation using only emission

data by applying maximum likelihood reconstruction of activity and attenuation (MLAA),

attenuation estimation from both emission and transmission data, and attenuation estimation

from scattered coincidences [19].

Machine learning techniques are applied to both segmentation and atlas-based methods

where different machine learning algorithms are applied either to perform MR images segmen-

tation [20–25] or as a post-registration process to learn the complex mapping from MR images

to CT to generate the pseudo CT images. Different machine learning techniques have been

applied such as Gaussian mixture [26, 27], k-nearest neighbors (kNN) [28–30], random forest

[31, 32], and deep learning [33]

The fact that the atlas-based and emission-based methods produce larger errors in

attenuation correction for patients with abnormal anatomy as well as they require intensive

computations makes the segmentation the winning approach in terms of robustness, simplicity,

and computation time [19]. In order to ensure the accurate diagnosis and quantification, the

robustness of the applied algorithm is the crucial prerequisite for the clinical adaptation of a
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specific MR based attenuation correction method. Since the deployment of segmentation-based

on hybrid clinical PET/MRI systems, several studies have shown that the diagnosis accuracy

using PET/MR is similar as the usage of the standard reference PET/CT imaging.

Moreover, extensive clinical evaluation and assessment for the atlas and emission-based

methods is required to pave the way into clinical PET/MRI systems. The accuracy of the atlas-

based methods relies on the database of MR/CT atlases and the performance of the machine

learning algorithms. The emission-based method depends on TOF resolution, count level, and

activity distribution [19].

The segmentation-based method is the method of choice which is applied on many

commercial scanners such as Siemens, Philips, and General Electric. This approach is capable

of generating patient-specific attenuationmaps. However, it is challenging to accurately segment

the brain into tissue classes due to the low image contrast between the air and bone tissues. It is

worth investigating different approaches to improve the segmentation performance and exploring

the possibility of applying deep learning to perform robust segmentation.

1.2 Introduction to Magnetic Resonance Imaging Segmenta-

tion

Current research utilises different machine learning techniques and various MR images data

acquisition sequences to perform MR images segmentation for different medical applications.

DWI sequence or a combination of sequences is the most routinely used for the diagnosis and

follow-up in ischemic and hemorrhagic stroke [34–36]. For quantitative analysis in multiple

sclerosis, T2-w MR images is the commonly used sequence either as a single imaging sequence

[37] or in a multi-sequence approach [38–40]. T1-w MR images is frequently used to assess

biomarkers of Alzheimer’s disease such as hippocampal atrophy, ventricle enlargement and

cortex shrinkage [41, 42]. Brain tumour segmentation of MR images received much attention

over the last decade, especially for treatment planning and follow-up. A range of MR images
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sequences were used to perform segmentation such as single MR images sequence with [43]

and without [44] contrast agent, or multi-sequence MR images with [45–48] or without contrast

[45, 49].

The segmentation process is achieved by dividing the brain MR images into three or

more tissue classes such as white matter (WM), gray matter (GM), cerebrospinal fluid (CSF),

air, soft tissue, bone or lesion regions. In addition to more classical segmentation methods as

thresholding, edge based, and watershed based, various machine learning techniques have been

applied for brain segmentation. For instance, random forest classifier has been used for white

matter lesions [50], hippocampus [51], and brain tumor lesions [52] segmentation. Support

vector machine (SVM) has shown its efficiency in Alzheimer disease diagnosis [41], white

matter lesion [53], multiple sclerosis region [54], and brain tumor lesions [45] segmentation.

Additionally, probabilistic models have been proposed to efficiently segment the brain tissue

into three classes or only extract the regions of interest by applying the inverted Dirichlet

mixture Model [55], Markov random field [56] and Bayesian model [57]. Furthermore, neural

network such as multilayer perceptron [58], self-organizing map (SOM) network [59], extreme

learning machine (ELM) [60], and cellular neural network [61] have achieved promising results

in segmenting the brain into different regions. Unsupervised learning, specifically clustering

techniques, have been widely used for skull striping [62], white matter lesion segmentation [63],

and tumor region segmentation [44].

Recently, deep learning has proven its superiority in several brain segmentation ap-

plications using convolutional neural networks (CNNs) for skull stripping [64], stroke lesion

segmentation [65, 66], multiple sclerosis segmentation [67], brain tumor segmentation [48,

68–70], prostate lesion segmentation [71], infant brain segmentation [72], and hippocampus

segmentation [73]. The CNN outperforms other machine learning algorithms to perform seg-

mentation of various medical imaging modalities and applications. The crucial prerequisites

to apply deep learning methods are the availability of large datasets and powerful hardware

computing resources.
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1.3 Research Methodology

The process of MR based attenuation correction is addressed in this research work by the seg-

mentation approach using the deep CNN. The general process of segmentation based attenuation

correction for PET images composes of multi-components which are depicted in Figure 1.3. In

this thesis, the aim and the objectives are dedicated only to the segmentation process which is

highlighted in dashed lines in Figure 1.3.

3D MRI

Segmentation 
based Attenuation 
Correction Method

Conversion to Pseudo  CT

Attenuation Map Generation

PET Reconstruction 

3D MRI

3D MRI

3D MRI

CT

MR

Reconstructed PET Raw PET

Segmented CT

Figure 1.3: The overview process of MR segmentation based attenuation correction for PET
images

In this thesis, the research work is focused on the improvement of the segmentation

technique as a transformation approach from MR images to pseudo-CT images which will be

used to generate the attenuation maps for PET attenuation correction. The segmentation-based

MR attenuation correction is performed using deep CNN as it has shown its superiority in

different medical imaging applications.

The proposed approach aims at addressing the brain segmentation in different aspects

such as increasing the segmentation performance, decreasing the model complexity, decreasing

the computation time and the computing resources, building a multi-modality segmentation
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model, and transferring the knowledge from different MR sequences.

The first stage of this research work intends to increase the segmentation performance

by combining the multiresolution analysis techniques with CNN. The second stage aims at

reducing themodel’s complexity by enhancing theCNNarchitecture using squeeze and excitation

components and building an ensemble of CNNs that produces reliable decisions. The third

stage’s objective is to build a multi-modality model that is able to segment different brain

MR sequences and transfer the knowledge from one sequence to another. At each stage, the

proposed algorithm is evaluated using the clinical brain datasets by visual assessment and

quantitative evaluation. Each segmented MR volume is compared with the ground truth CT

volume by calculating the confusion matrix, precision, recall, dice similarity coefficient (DSC),

and Jaccard similarity coefficient (JSC).

1.4 Research Aim and Objectives

The aim of this research is to propose a robust deep learning algorithm to enhance the bone

segmentation in brain MR images for PET attenuation correction and quantification. This aim

is achieved by endeavouring the following objectives:

• Explore and investigate the medical imaging modalities: MR and CT images.

• Design a 3DCNNarchitecture and thoroughly study and experiment the impact of different

components of the network.

• Investigate the impact of combiningmultiresolution analysis techniques such as Contourlet

and Shearlet with the CNN’s features to improve the bone segmentation.

• Propose a novel segmentation CNN architecture that uses different squeezing and exci-

tation blocks to boost the most dominant features and decrease the model complexity

by relying only on the CNN’s features and eliminating the handcrafted features (e.g.,

Contourlet and Shearlet features).
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• Propose an ensemble of different CNN’s architectures to build a reliable segmentation

model.

• Investigate the applicability of transfer learning from different MR sequences by transfer-

ring the learning from T1-w MR to T2-w MR sequences to perform the segmentation.

• Evaluate and assess the performance of the proposed methods using clinical datasets

of fifty patients with different demographics and clinical diagnosis. Each objective is

evaluated by visual assessment and measurement of different segmentation metrics using

the ground truth images.

• Validate the proposed models by comparing the results with other studies in the literature

that applied segmentation using deep CNN to address theMR based attenuation correction

for PET images.

1.5 Research Contributions to Knowledge

The main contributions of this research are summarized as follows:

• The combination of the multiresolution analysis techniques (Contourlet and Shearlet

transforms) with 3D deep CNN’s features to segment the brain into three tissue classes.

The Contourlet and Shearlet transforms have been applied widely as handcrafted features

to perform segmentation and classification tasks. However, they have not been combined

with CNN’s features. The design of the combination of handcrafted features with deep

CNN’s features has been investigated and evaluated to find the optimal approach which

improves the segmentation performance.

• The proposal of a novel 3D excitation based convolutional encoder decoder network to

segment the brain MR images. The excitation mechanism consists of squeezing then

exciting blocks that are able to recalibrate the network features and distinguish between

the most useful features on spatial and channel wise. Those blocks have been integrated
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in a parallel design in other studies. However, to obtain the full potential of the squeeze

and excitation blocks and to reduce the model complexity, a sequential combination of the

channel wise and the spatial wise excitation blocks is proposed to perform the brain MR

segmentation.

• The development of an ensemble of deep CNNs that combines three convolutional encoder

decoder networks which are trained with different loss and activation functions. The

application of the ensemble approach for PET attenuation correction is used for the first

time in this research.

• The application of transfer learning from T1-w MR sequence to T2-w MR sequence for

PET attenuation correction by proposing a hybrid transfer learning technique. The hybrid

transfer learning using two conventional MR sequences is proposed in this research work

for the first time. In addition to that, the application of domain adaptation by building

a multi-modality convolutional encoder decoder network which is able to segment two

different MR sequences (T1-w and T2-w). This type of augmentation has not been

proposed in the literature.

1.6 Thesis Organisation

The remaining chapters of this thesis are organized as follows:

• A review about the applied segmentation methods for MR image based PET attenuation

correction, the different CNN’s architectures that are applied for segmentation tasks, the

transfer learning approaches, and themedical imagingmodalities is represented in Chapter

2.

• The design of 3D CNN and the combination of multiresolution analysis technique with

CNN based features are detailed in Chapter 4 with extensive analysis and evaluation of

the segmentation results.
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• The proposal of an excitation based 3D CNN with the integration of both spatial and

channel “Squeeze and Excitation” blocks sequentially as well as the ensemble of CNNs

are depicted in Chapter 5 along with the segmentation results and their evaluations.

• The multi-modality model and the transfer learning from T1-wMR sequence to T2-wMR

sequence are proposed in Chapter 6 with thorough evaluation.

• The general discussion about the proposed approaches with the revised research objectives

are discussed in Chapter 7. In addition to that, the limitations and general recommenda-

tions of the proposed methods are discussed.

An overview of the thesis’s organisation is illustrated in Figure 1.4 where each chapter

is associated with its published or submitted papers.

Contributions

The selected method

Applied methods 

Medical Imaging 
Problem

MRI based 
Attenuation 

Correction for 
PET

Segmentation

ML based 
Segmentation

CNN
CNN with 

handcrafted 
features

Attention 
based CNN

Ensemble of 
CNNs

Transfer 
learning

Atlas/Template Emission 
transmission

1 published 
journal paper 

(review)

1 published 
conference 

paper

1 submitted 
journal paper

1 submitted 
journal paper

1 submitted 
journal paper

1 published 
conference 

paper

Chapter  3 Chapter  4 Chapter  5

Figure 1.4: The overview organisation of the thesis where each chapter is associated with its
published or submitted papers.
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Chapter 2

Related Literature

2.1 Introduction

This chapter provides a brief overview of the three medical modalities: PET, MR, and CT

images along with hybrid imaging systems including the image characteristics, acquisition

details, reconstruction process, and clinical applications. Moreover, PET attenuation correction

is introduced in this chapter by highlighting how this problem has been addressed in the literature

using MR images. Additionally, MR images based attenuation correction methods are reviewed

with the focus on segmentation approach. Deep CNN is one of the most efficient tools to perform

image segmentation. Therefore, multiple CNN related mechanisms which can be deployed to

perform and enhance medical images segmentation are also reviewed in this chapter.

Section 2.2 presents an overview of different medical imaging modalities and hybrid

imaging systems. Section 2.3 introduces the MR images segmentation based attenuation correc-

tion methods. Section 2.4 covers deep CNNwith the focus on attention based CNN architecture.

Section 2.5 reviews the combination of multiresolution handcrafted features with deep CNN’s

features. Section 2.6 explores the application of the ensemble of deep CNNs to enhance the

performance of various medical imaging. Section 2.7 covers the transfer learning and domain

adaptation from different medical imaging modalities and multi sequences. Finally, Section 2.8
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summarises the chapter findings and identifies the research gaps.

2.2 Medical Imaging Modalities: Overview

There are various medical imaging modalities which are commonly used in the clinical routine

such as PET, MR, and CT images. Each modality has its specific characteristics and acquisition

technique to visualise the human tissue and organs to help in the diagnosis process and treatment

planning.

2.2.1 Positron Emission Tomography

PET imaging is a unique in vivomedical modality for measuring the physiological and functional

behavior of the body at the cellular level. PET is based on radiopharmaceutical labeled biological

molecules as tracers to map their distribution within the human body. The most widely used

tracer is FDG which is a glucose analogue that helps to measure the consumption of the glucose

in vivo. The sensitivity of PET images is very high compared to other conventional nuclear

imaging which is based on single-photon [74].

PET depends on annihilation coincidence detection mechanism to determine the direc-

tionality of the detected photons. The PET acquisition process starts with injecting the patient

with a positron emitting radiopharmaceutical such as 18F-FDG tracer. When the nucleus of

the radioactive isotope emits a positron, one of the 18F atoms will decay. The positron travels

randomly for few millimetres in tissue before combining with an electron. Both the positron and

electron will undergo an annihilation where their masses are converted to 511 keV energy in the

shape of two Gamma photons. These two photons travel in opposite directions and eventually

will be detected simultaneously by two small detectors. The line of response (LOR) is the link

that connects two detectors. One reason behind the high sensitivity of PET system is the use of

scintillation crystals placed around the patient in the shape of a ring to ensure the detection of

both Gamma photons. Figure 2.1 illustrates the ring of scintillation crystals which surrounds
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the patient with multiple lines of response.

Figure 2.1: Detection scheme of PET imaging.

The scintillation crystals absorb the emitted photons and produce light from the photons

energy. This light is converted into an electrical signal using Photo Multiplier Tubes (PMT).

Both the spatial distribution and the magnitude of the electrical signals represent the raw PET

data. A summary of the PET acquisition process is illustrated in Figure 2.2 and an illustration

of the stages of the detection event and the signal generation is presented in Figure 2.3. The

PET acquisition process is painless and takes around 10- 40 minutes to be completed [74, 75].

The PET reconstruction process is the conversion of the 1D projection (LOR) to 2D

plane image. The raw PET images are reconstructed to take two possible formats: sinogram

and list mode. The sinogram format represents the coincidence events which are grouped into

projection images called sinograms. The value of each sinogram pixel represents the number

of coincidence events related to that LOR. Each 2D slice is represented by a single sinogram

which can be reconstructed [78]. The list mode is an event-by-event format which stores the
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Figure 2.2: An overview of the PET imaging process. Adapted from [76].

1

2

3

4

Figure 2.3: An illustration of the four stages of the PET detection process. (1) The proton
emission event from the nucleus of the radioactive isotope, (2) The positron and electron’s
annihilation process and the conversion of their masses to 511 keV energy in the shape of two
Gamma photons, (3) The PET camera detects the photons using the detectors, (4) The conversion
of the photons into an electrical signal. Adapted from [77].
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coordinates of the coincidence events in a sequential data stream along with other additional

information such as the time and the energy of the detection event. The list mode format does

not preserve the spatial localization information of each event. Yet, it is an efficient storage

format with high temporal resolution and flexibility for manipulation [79].

The PET images are reconstructed on 2D and 3D approaches. The coincidences

that happen within one ring can be reconstructed to 2D images. In the case of allowing

the coincidences within multiple rings, 3D images can be reconstructed. The most common

reconstruction algorithms of PET are the filtered back-projection [75] and iterative reconstruction

algorithms such as maximum-likelihood expectationmaximisation (ML-EM) and its accelerated

version ordered subset expectation maximisation (OSEM) [75]. The PET images should be

corrected prior to the reconstruction process to obtain the full potential of PET quantification.

The PET correction includes the detector efficiency variations, attenuation correction, and

scattered and random coincidences correction.

The clinical applications of PET imaging are in the domain of neurology, cardiology,

and oncology. In neurology, PET imaging is commonly acquired to measure the cerebral blood

flow and the brain’s energy consumption which can help in the diagnosis of dementia and

strokes. In addition to that, PET imaging is used to measure the glucose and tumor metabolism,

the oxygen extraction, and other chemical neurotransmitters such as dopamine which helps to

diagnose Parkinson’s disease. In oncology, PET is used for detecting tumors and metastases and

measuring the effect of treatment on tumor metabolism. Figure 2.4 shows PET images for one

healthy and one cancerous brain where the poor blood flow indicates the metabolic abnormality.

In cardiology, the radiopharmaceutical 13N-ammonia tracer is used to measure the myocardial

blood flow while the 18FDG tracer is used for energy consumption measurement to identify

the ischemic tissue. Moreover, PET imaging is used for the pre-transplantation assessment of

viable myocardium [80]. The PET images of cardiac blood flow and glucose consumption are

illustrated in Figure 2.5.
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(a) (b)

tumor

Figure 2.4: PET images of (a) one healthy brain and (b) one brain with malignant lesion (tumor)
where the poor blood flow indicates the metabolic abnormality. Adapted from [77]

Figure 2.5: PET polar maps of cardiac blood flow (left) and glucose consumption (right) in
three views (transaxial, coronal, and sagittal).Adapted from [80].

2.2.2 Magnetic Resonance Imaging

MR imaging is considered the premier tool in diagnostic radiology. It is able to capture the fine

structural and morphological details of anatomy thanks to its excellent soft tissue contrast and
18



high spatial resolution. Additionally, it is considered the safest non-invasive imaging technique

because the patient is not exposed to any ionising radiation such as CT scan or X-rays [81]. MR

is a versatile imaging technique where the soft tissue details can be visualised in all three planes:

transaxial, sagittal and coronal as illustrated in Figure 2.6.

(a) (b) (c)

Figure 2.6: An illustration of a single slice of MR imaging in (a) axial, (b) coronal, and (c)
sagittal views.

TheMR imaging concept is invented with the fact that the hydrogen atoms in the human

tissue act as little magnets. The hydrogen atom consists of one proton which rotates along its axis

and creates the resonance effect. When the human body enters the MR scanner (hollow cylindri-

cal magnet), it gets exposed to a strong magnetic field. With this magnetisation, the hydrogen’s

proton will be aligned with or against the magnetic field. An oscillating radiofrequency (RF)

current is imposed which allows the protons to change their alignments as well as the direction

of their magnetic field. Once the RF is off, the protons go to their original alignments with the

magnetic field. This realignment of the hydrogen’s protons creates an electrical signal that can

be captured by a computer and transformed to an MR image. One remarkable feature of MR

imaging, it is able to capture the human body with a spatial resolution of better than 1 mm [81].

Figure 2.7 shows the component of an MR scanner.

The produced MR image is described by the physical parameters of the tissue which

are proton density, T1 relaxation time, and T2 relaxation time. It also depends on the RF pulse

parameters such as repetition time (TR), echo time (TE) and others [83]. The relaxation time
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Figure 2.7: The basic design of anMR scanner which shows the components of theMR scanning
system. Adapted from [82].

refers to the time required by the proton to realign and return to its equilibrium state either

longitudinal (T1) or transversal (T2). The T1 relaxation time is much longer than T2 relaxation

time.

Various types of MR images with different appearances are generated by varying the

sequence of the applied RF pulses. The MR sequences are categorised into T1-w, T2-w, DWI,

proton density weighted (PDW), fluid-attenuated inversion recovery (FLAIR), flow sensitive

and others [84]. The most common sequences are T1-w and T2-w which clearly differ in CSF

tissue. On T1-w, the CSF tissue is dark while it is bright on T2-w sequence. Moreover, the T1-w

images are acquired using short TR and TE times. In contrary, T2-w images are scanned with

longer TR and TE times. The brightness and contrast of T1-w and T2-w images are determined

by the tissue’s T1 properties and T2 properties, respectively [85]. Figure 2.8 shows three MR

images with different contrast patterns named T1-w, DWI, and T2-w images.
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T1-weighted 
(TR=600, TE = 11)

Density-weighted 
(TR=3000, TE = 17)

T2-weighted 
(TR=3800, TE = 102)

Figure 2.8: Three conventional MR sequences namely T1-w, DWI, and T2-w images. Adapted
from [86].

Table 2.1 represents TR and TE values of T1-w and T2-w images and Table 2.2

illustrates the differences between the brightness and contrast of different T1-w and T2-w

brain’s tissues.

Table 2.1: The approximate TR and TE times values of T1-w and T2-w sequences [84].

Sequence TR (msec) TE (msec)
T1-w (short TR and TE) 500 14
T2-w (long TR and TE) 4000 90

Table 2.2: The brightness and contrast of different T1-w and T2-w brain tissues [84].

Tissue T1-w T2-w
CSF Dark Bright

White matter Light Dark gray
Cortex Gray Light gray

Fat (within bone marrow) Bright Light
Inflammation (infection, demyelination) Dark Bright

MR imaging is widely used in different clinical diagnosis. For instance, it is used to

diagnose vascular cases including ischemic stroke, aneurysm, and venous thrombosis. It is also

extensively used to detect tumor in the brain or the whole body. Additionally, it provides fine
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details to diagnose different infections such as cerebritis, encephalitis, andmeningitis. Moreover,

it is used for other applications such as detecting multiple sclerosis lesions and epilepsy [85].

2.2.3 Computed Tomography

CT is a common medical imaging based on computerised x-ray scan. This modality offers

the structural view of the human body. CT images do not provide soft tissue details, yet it is

an important imaging technology that helps to make urgent diagnosis for multiple diseases or

treatment planning. The main drawback of CT scan is the radiation exposure which tends to

limit the number of CT scanning per year for each patient. For some cases, the patient should

be injected with an iodinated contrast agent before the scanning [86]. Figure 2.9 shows the first

clinical CT image which is acquired at Atkinson Morley’s Hospital in London (1971) [87] and

another CT image which is acquired recently by Siemens Biograph mCT scanner.

Figure 2.9: (a) The first clinical CT image which is acquired at Atkinson Morley’s Hospital in
London (1971) adapted from [87]

, (b) 2D CT image acquired by Siemens Biograph mCT scanner.

The acquisition of CT images depends on the X-ray transmission-based technique in

which a motorised X-ray source beams that pass through the patient and received by detectors
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situated in the opposite side of the X-ray source. The X-ray source and the detectors are rotating

around the patient’s body by a particular angle to measure the tissue density with Hounsfield

unit. The attenuation of the X-rays after passing through the patient are received by the detectors

and transmitted to a computer [86]. Figure 2.10 illustrates an abstract view of the CT scanning

system.

Figure 2.10: The principle components of CT scanning. A rotating X-ray source and a detector
unit around the patient. Adapted from [88].

The contrast between the different body tissues is generated from the different atten-

uation values of X-rays in the patient’s body. The 2D spatial distribution of tissue attenuation

coefficients represents the signal intensities [86]. Table 5.4 shows the Hounsfield values for

different tissues where the denser structures are represented by larger Hounsfield values.

The design of CT scanners is constantly improving where a CT scanner with two X-rays

sources is developed to offer further information and decrease the time of the acquisition process.

23



Table 2.3: Hounsfield values for different tissue classes of the human body.

Tissue Hounsfield
Air −1000
Lung −600 to −400
Fat −100 to −60

Water 0
Muscle 10 to 40
Blood 30 to 45

Soft tissue 40 to 80
Bone 400 to 3000

Another development is the increase of the number of CT slices acquired simultaneously to cover

a wider view. Volumetric CT can be acquired with the invention of helical CT scanner that

enables the continuous rotation of the gantry and the patient’s bed [87].

The X-rays projections are reconstructed to form 2D slices which can be stacked on top

of each other to build a 3D CT image. The commonly used CT reconstruction algorithms are

filtered back-projection technique and algebraic reconstruction algorithms [87]. The algebraic

reconstruction algorithms are much simpler than filtered back-projection, yet they are less

accurate. The availability of numerous projections with uniform distribution are two main

requirements for the filtered back-projection technique. In case these two requirements are

missing, the algebraic reconstruction algorithms can be applied alternatively. The algebraic

reconstruction algorithms include simultaneous algebraic and iterative reconstruction techniques

[86].

CT imaging is used for various clinical conditions including neurological, pulmonary,

and abdominal diseases. For instance, CT images help to identify the possible brain fractures,

hemorrhage, and edema. The hemorrhage area is indicated with high signal intensity while

the edema is indicated with low signal intensity on CT images. CT is also outstanding at

showing the brain tumor and can be used to analyse the bone structure changes. The detection of

pulmonary diseases is very challenging using MR imaging. Yet, CT imaging is useful to detect

abnormalities in the lung images such as pulmonary malignancies, emboli, silicosis, fibrosis,

and emphysema. Additionally, 3D CT imaging with the use of contrast agent is used to detect

abdominal tumours and ulcerations in the liver [86].
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2.2.4 Modalities Comparison

Table 2.4 summarises the main differences between the three modalities: PET, CT, and MR

images in terms of imaging technology, scope of application, acquisition time, safety level, and

cost [89, 90].

Table 2.4: Comparison between the three modalities: PET, CT, and MR images.

PET CT MR
Imaging technology Radioactive tracers

at the cellular level
X-ray Magnets and ra-

diowave
Scope of application Biological process at

the molecular level
Bone detection accu-
rately

Large variety of
medical conditions

Acquisition time Very long (hours) Short (few minutes) Long (around 30
minutes)

Safety Moderate to high ra-
diation

High radiation Free radiation

Cost Much higher than
regular CT

Less than MR More than CT

2.2.5 Hybrid Scanners

The hybrid imaging is a powerful tool that integrates functional and structural information from

different modalities and provides the full potential of quantitative analysis. PET imaging has

a unique capability to show the functional and physiological details of the tissue. However, it

has low spatial resolution and non-detailed anatomical information which significantly help to

detect multiple diseases. These limitations have paved the way to find another imaging partner

for PET images to complement each other’s such as CT or MR images [91].

A PET/CT Scanner

The hybrid PET/CT scanner is the first hybrid imaging system that was implemented and eval-

uated in the clinical routine. It has been proved to be a successful hybrid imaging that provides

anatomical information of body’s tissue by CT images with their corresponding metabolic func-

tions by PET images. The acquisition process of both imaging can be sequential or simultaneous.
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Figure 2.11 illustrates brain CT, PET, and fused PET/CT images.

CT PET/CTPET

Figure 2.11: Clinical brain CT, PET, and fused PET/CT images which are adapted from [92].

This hybrid imaging has made an important revolution in the diagnosis of various

diseases in oncology, neurology, treatment planning, and cancer staging. The availability of

PET/CT imaging has gradually eliminated the conventional PET scanning. Figure 2.12 shows

a hybrid GE Discovery 690 PET/CT scanner. The main drawback of this scanner is the high

cost [92].

Figure 2.12: GE Discovery 690 PET/CT scanner [93].
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B PET/MR Scanner

Although the PET/CT is a successful integrated imaging system, it still lacks the excellent

soft-tissue contrast which can be provided by MR imaging. Meanwhile, MR imaging is not

able to capture the tissue’s physiology at the molecular level. The combination of PET ac-

quisition process with MR imaging allows to integrate the structural information with high

spatial resolution of MR soft tissue and PET functional details. Both imaging can be acquired

sequentially or simultaneously [92]. Figure 2.13 represents the sequential PET/MR scanner

of the Philips whole-body Ingenuity system at Geneva University Hospital with MR, PET, and

PET/MR images. Although the role of PET/MR imaging in clinical setting is still controversial

Figure 2.13: The sequential PET/MR scanner of the Philips whole-body Ingenuity system at
Geneva University Hospital with MR, PET, and PET/MR images. Adapted from [92].

and there are ongoing efforts to address many related challenges properly, brain and whole-body

PET/MR imaging has various clinical applications. Hybrid PET/MR images are able to capture

the fine details of patient-specific tumor as well as they provide information for personalised

therapy. This hybrid imaging is also capable of detecting neurodegenerative disorders, dementia,

epileptic foci , focal brain ischemia, and inflammatory disorders [91].
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2.3 MR Images Segmentation-based Attenuation Correction

The segmentation ofMR images to perform the PET attenuation correction task has been applied

in the literature using different approaches starting with simple techniques such as level set [94,

95], thresholding [11, 96–101], and radon transform [102] till more complicated techniques such

as clustering [6, 20, 22, 23], classification [1, 21, 24, 25] and deep learning [103, 104]. Table

2.5 summarises the different segmentation methods applied on different MR images sequences.

Table 2.5: The different segmentation methods applied on different MR sequences

Segmentation technique Reference MR sequence

Level set [94] STE
[95] UTE

Thresholding

[96] Dual echo UTE
[97] UTE
[98] UTE and out-of-phase
[99] ZTE
[100] Dixon
[101] UTE
[11] UTE

Radon transform [102] T1-w

Clustering

[6] STE and Dixon
[20] UTE and Dixon
[22] STE and Dixon
[23] T1-w

Classification

[1] UTE
[21] UTE
[24] DCE, MP-RAGE, T1-w
[25] T1-w and Dixon

Deep learning [103] T1-w
[104] UTE, out-of-phase

2.3.1 Machine Learning based Segmentation Methods for PET Attenua-

tion Correction in Brain Imaging

Table 2.6 summarises the three main categories of machine learning techniques proposed for

MR images segmentation for PET attenuation correction: clustering, classification, and deep

learning.
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A Clustering

Su et al. [20] have used a multi-sequences approach for brain segmentation which are UTE

transverse relaxation time map, Dixon-fat, and Dixon-water maps. They have used fuzzy C-

means clustering to segment the head into five different tissue classes including brain, air,

fat, fluid, and bone. Trajectory delay correction and global resizing factor have been used to

evaluate the segmentation results. The obtained pseudo CT images are compared with measured

CT images visually and objectively by calculating the CT histogram and the mean absolute

predication deviation (MAPD).

Khateri et al. [22] have used a combination of STE sequences with 2-point Dixon

technique and applied fuzzy C-means clustering to segment bone tissue. Later, the same team

(Khateri et al. [6]) have applied fuzzyC-means clusteringwithmorphological operations as post-

segmentation technique to slightly enhance the segmentation of the brain into three tissue classes.

They have measured the segmentation improvement by calculating the accuracy, sensitivity, and

specificity. Figure 2.14 shows the MR images segmentation results with reference CT and the

difference maps between the two modalities [22].

Fei et al. [23] have developed amultiscale segmentation approach using radon transform

of T1-w MR images to segment the head into skull, scalp, and brain tissue. The segmented

results are processed with anisotropic diffusion filter to construct a multiscale image series. The

segmentation is refined by a modified fuzzy C-means technique to segment the brain into three

classes: GM, WM, and CS. Afterwards, predefined attenuation coefficients are assigned to each

tissue class. The segmentation results have been evaluated using DSC. The quality of PET

images is compared with the results of transmission (TX)-based attenuation correction by visual

inspection followed by quantitative measurements which are relative difference, mean squared

error (MSE), and peak signal-to-noise ratio (PSNR).
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Figure 2.14: MR images segmentation results achieved by [22] using clustering technique with
the reference CT images (a), the segmented MR images (b), and the difference between the two
modalities (c).

B Classification

Chan et al. [24] have proposed a segmentation method based on tissue classification to differen-

tiate bone from air. Brieman’s Random forest classifier has been trained using a set of features

(gradient, statistical, and contextual) extracted from DCE, T1-c, and MP-RAGE MR sequences

along with uncorrected PET images. The segmentation result of MP-RAGE images is shown in
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Figure 2.15. With the use of CT images as ground truth, DSC for each tissue class, accuracy,

area under curve (AUC), receiver operating characteristic (ROC) curve, and visual assessment

have been used to evaluate the segmentation performance.

Figure 2.15: MR images segmentation results achieved by [24] using voxel classification to
differentiate bone from air. MP-RAGEMR image (a) and segmented MP-RAGEMR image (b).

Koesters et al. [25] have proposed Adaboost classifier to extract bone tissue from T1-w

MRsequences. Afterwards, the bone attenuation coefficient has been added to themanufacturer’s

Dixon-based attenuation map that reflects four tissue attenuation coefficients but not bone tissue.

This method has been evaluated by comparing the standardised uptake value (SUV) estimation

from CT, Dixon, and segmented images by the proposed model for whole-brain and regional

analyses.

Shi et al. [1] has proposed a bone refinement method for existing attenuation correc-

tion maps. This method started with an existing attenuation correction map from the vendor

or obtained from any segmentation-based method which are refined gradually by learning the

relationship between the MR image and the attenuation correction map of the same patient. The

learning process has been performed using multiresolution regional learning approach by ap-

plying support vector machine (SVM) classifier to refine the attenuation correction coefficients.
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The resulting attenuation correction map was compared with vendor and CT based attenuation

correction maps by measuring the bone recovery rate, DSC, voxel-wise error, and region-wise

error.

Santos et al. [21] have performed a learning-based segmentation approach of the skull

using probabilistic neural network. UTE sequences have been used to segment the brain into

four classes: air, brain + soft tissue, CSF, and bone. This method has been compared with CT

based attenuation correction map by calculating the accuracy and DSC as well as the visual

assessment.

C Deep Learning

Deep learning is an emerging technology in machine learning which represents an advanced and

more complex forms of neural networks. Deep networks are self-learning structures capable of

learning high level image features and modeling a non-linear mapping between different image

spaces through a convolution process. This methodology has shown its superiority in several

medical applications, which paved the way to explore its efficiency to perform MR based PET

attenuation correction.

Recently, there are various studies that have applied different deep network architectures

to learn the mapping from MR to CT images to generate pseudo CT with continuous values

such as generative adversarial network [105–109], U-Net [110], residual U-Net [111], and

HighRes3DNet [112]. However, there are only few studies in the literature that have applied

deep learning to perform brain MR images segmentation for PET attenuation correction [103,

104]. Each of these proposed studies have used different MR images sequences and network

architectures.

Liu et al. [103] have applied a deep convolutional encoder decoder network called

Segnet [113] to segment T1-w MR images. This work required a co-registration between

CT and MR images before the training process and the creation of reference mask. To train

the network, the reference labels have been generated from segmented CT images into three
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classes (air, soft tissue, and bone) using intensity-based thresholding technique. An attenuation

coefficient value is assigned to each segmented class to generate the pseudo CT images illustrated

in Figure 2.16. The mean DSC for each class has been calculated to evaluate the segmentation

results. The PET quantification has been measured using the PET reconstruction error and

compared with Dixon-based soft-tissue and air segmentation in addition to anatomic CT-based

template registration. The main drawback of this architecture is the use of cross entropy loss as

an objective function which does not take into account the class unbalancing issue. The number

of bone voxels is much less than the air and soft tissue voxels in the brain volume; Hence, the

classifier will be biased towards the majority class. There is a need to consider using an objective

function which deals with the class unbalancing issue while training the network. This method

shows promising results, yet the results are not cross validated and the segmentation results need

further validation and testing.

Figure 2.16: Pseudo CT image (a) obtained by segmenting T1-w MR image (b) with the use of
CT image (c) as a reference mask [103].

Jang et al. [104] have used UTE and out of phase (fat and water) MR sequences

which have been acquired using dual echo ramped hybrid encoding (dRHE) to segment the

brain into three classes: air, soft tissue, and bone. The UTE sequences have been used as an

input to retrain a pretrained deep network [103] that has been trained with T1-w MR sequences.

Transfer learning has been applied to adopt the knowledge learnt from T1-w to UTE sequences

in order to improve the learning and obtain a reliable training. The obtained segmented MR

images have been processed using conditional random field technique to refine the segmentation

33



results. Furthermore, the out of phase images have been used to segment the soft tissue into fat

and water components using two-point Dixon based segmentation. The segmented labels from

deep learning and Dixon based water and fat images have been integrated to generate the pseudo

CT images. The proposed method has been compared with three other MR based attenuation

correction methods while using CT based attenuation correction map as the standard reference.

The DSC between the segmented images and the CT ground truth images has been calculated

to evaluate the segmentation results. The relative PET error has been calculated to evaluate the

corrected images. Although this method shows good results, it consists of complicated aspects

such as the use of UTE sequences and the application of a post processing step which increases

the method complexity.

2.3.2 MR images Segmentation based Attenuation Correction: Chal-

lenges and Opportunities

The MR imaging is the most preferred imaging modality in different medical applications.

However, there are common challenges associated with MR images segmentation task including

themisclassification of the pixels which determine the boundaries between different tissues. This

may lead to false negatives where the lesion regions are classified as healthy and false positives

where the healthy regions are identified as lesions. Hence, robust and accurate segmentation

techniques are required to be used in the clinical routine.

Machine learning techniques such as neural networks, clustering, random forest, and

SVM have shown promising segmentation results using different set of features. The combina-

tion of different techniques for different medical applications leads to better performance such as

combining random forest classifier with Markov random field to segment white matter lesions in

contrast enhanced FLAIRMR images [50] and combining regularised SVMwith kNN classifier

for hippocampus segmentation [114].

The comparison between the performance and efficiency of each technique is generally

applied within the same context and same medical application. For instance, there are several
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studies that compare the segmentation results using different classifiers as represented in [40,

115–119]. The comparison study between different types of classifiers has shown the superiority

of deep neural networks and especially CNN in the segmentation task. The conventionalmachine

learning workflow composes of features extraction and selection then classification. However,

the set of features control the performance of the segmentationmethods rather than the classifier’s

type. Therefore, more attention on the development of the feature extraction techniques should

be carried out with the employment of simple classifiers.

Although the deep learning approach has shown to be superior than any other machine

learning techniques, it needs a good estimation of the numerous trainable parameters of the

network and requires excessive training data and time to obtain the optimal weights which are

used for prediction.

Hybrid PET/MR scanners have introduced the complementary nature of MR and PET

images to clinical applications. They have also improved the PET quantification for diseases

diagnosis and treatment planning by providing different tissue characteristics. Furthermore,

they have reduced the acquisition time in the case of simultaneous acquisition. The merge of

MR images modality into the field of PET attenuation correction and quantification has raised

new challenges and difficulties.

MR images-based segmentation method is the most recommended for attenuation cor-

rection [120]. This method is easy to implement with low computational cost. However, it

suffers from misclassifying the bone pixels due to the low T2 relaxation time that causes similar

values for bone and air tissue in convent.ional MR sequences. Consequentially, the lack of

good bone segmentation leads to inaccurate attenuation coefficient map which produces a strong

spatial bias of the PET activity. For instance, the ignorance of bone attenuation coefficients in

the head can lead to 20% underestimation of PET activity [121].
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Table 2.6: Segmentation based MR Attenuation Correction Methods for Brain Imaging

Ref Segmentation technique MR sequence Ground
truth

Evaluation metrics

[6] Fuzzy C-means clustering
and morphologic operations STE, Dixon CTAC

Visual comparison
Accuracy and specificity in the cortical

bone, soft tissue, and air= 95%
Sensitivity= 75% - 92% for 3 classes
Correlation coefficient (R2) > 0.95

[22] Fuzzy C-means clustering STE, Dixon MRI
Sensitivity, Specificity
and Accuracy > 90% for
the bone segmentation

[20] Fuzzy C-means
clustering UTE , mDixon CTAC

Mean estimated trajectory delay = 0.774 μs
Average resizing factor =0.979

MPAD = -22 ± 29 HU and 130 ± 16 HU
CT histogram

[23] Fuzzy C-means clustering T1-w TXAC

DSC= 85.2 ± 2.6%
Average relative difference= 4.2%
Mean and standard deviation of

the PSNR are 44.5 ± 6.9

[24] Random forest
DCE, T1-w, MP-RAGE

NA

Visual comparison
DSC (air)= 0.83±0.06

DSC (bone)= 0.98 ± 0.01
Accuracy= 0.96 ± 0.02

Area under curve (AUC)=0.9875±0.0002
p-value=0.85

ROC
[25] Adaptive boosting T1-w CTAC Whole-brain SUV estimation bias =95%
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Table 2.7: Segmentation based MR Attenuation Correction Methods for Brain Imaging (Continued)

Ref Segmentation technique MR sequence Ground
truth

Evaluation metrics

[1] SVM UTE CTAC

Bone recovery rate = 179 ± 57%
Dice coefficient= 70 ± 34%

Voxel-wise error = 27.8 ± 8.3%
Region-wise error= 49.7 ± 6.2%

[21] Probabilistic Neural Network UTE CTAC
Visual comparison
Accuracy =92%

DSC (for the whole head)= 0.66± 0.07

[103] Deep learning: Convolutional
encoder decoder

T1-w CTAC

Mean DSC (air) = 0.971 ± 0.005
Mean DSC (soft tissue) = 0.936 ± 0.011

Mean DSC (bone) = 0.803 ± 0.021
PET reconstruction error = - 0.7 ± 1.1

[104] Deep learning: Convolutional
encoder decoder

UTE, out of phase CTAC

DSC (air) = 0.76 ± 0.03
DSC (soft tissue) = 0.96 ± 0.006

DSC (bone) = 0.88 ± 0.01
Relative PET error = < 1%
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2.3.3 Emerging Techniques

Deep learning-based methods have been proposed for pelvic and prostate PET attenuation

correction. For instance, Bradshaw et al. [122] have applied a 3D CNN called DeepMedic

[123] to segment pelvis T1-w and T2-w MR images for PET attenuation correction. Beside

segmentation-based methods, there are other works that have applied deep learning for attenu-

ation correction for brain [124] and pelvic [125] to learn the relationship between MR and CT

images then generate pseudo CT images. Deep learning has shown its superiority to classical

techniques for MR images segmentation. However, the application of deep learning to perform

brain MR images segmentation for attenuation correction is limited.

There are other studies that have proposed deep learning-based methods for MR im-

ages guided radiation therapy and treatment planning for brain tumor [126–128], prostate/pelvic

region [129] and other different whole-body tissues [130]. These studies have applied differ-

ent deep models such as CNN, dilated CNN, and generative adversarial networks (GAN). A

comparison study [126] between one segmentation, four atlas, and one deep learning methods

to evaluate MR images-based radiotherapy planning in the pelvic region study has shown the

outperformance of deep learning method in terms of segmentation accuracy, CT generation

accuracy, and dosimetric evaluation.

In terms of MR sequences, currently there is room for improvement of the PET at-

tenuation correction performance by using more sophisticated MR sequences with high signal

intensity for bone such as UTE, ZTE, or Dixon sequences. These sequences are able to capture

very short T2 values [99, 101] which enable accurate detection of bone tissue and, in turn, gen-

erate an accurate attenuation correction map. Another elegant way is acquiring UTE sequences

at different echo time to extract more information. Moreover, Dixon sequences provide easy

access to four tissue classes which are soft tissue, air, fat, and lung.

The usage of the special sequences such as UTE, ZTE, and Dixon images along with

robust segmentation techniques and continuous linear attenuation coefficients enables the per-

formance of PET attenuation correction. However, the major drawback of these sequences is
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the long acquisition time which potentially hampers the clinical flow.

2.4 Datasets

MR based attenuation correction task requires three different modalities which as MR, CT, and

PET. In the literature, each research team is using their own non-public datasets to accomplish the

task. Due to the lack of public datasets that can used specifically for MR based PET attenuation

correction, some public datasets that are used to perform MR images segmentation are reported

in Table 2.8. The contributions of this thesis can be evaluated with this list of datasets.

Table 2.8: Public MR images segmentation datasets.

Dataset Task MR sequences
Brain Tumour Segmenta-
tion (BraTS 2012-2020)
[131]

Tumor Segmentation T1-w, T1-c, T1-gd, T2-w,
T1 Flair, T2 Flair

Medical Segmentation De-
cathlon [132]

Hippocampus segmenta-
tion

T1-w MPRAGE

BrainMetShare [133] Metastases segmentation T1 spin echo pre/post-
contrast, T1 gradient-echo
post, T2 Flair

OASIS [134] Subcortical WM and deep
GM structures segmenta-
tion

T1-w, T2-w, FLAIR, TSE,
SWI, DWI, ASL, resting
state bold, field maps, TOF

The University Children’s
Hospital Zurich [135]

Multi-tissue fetal brain
segmentation

T2-w

Calgary-Campinas [136] Skull stripping, WM, CM,
and CSF segmentation

T1-w

2.5 Deep Convolutional Neural Network

The design of CNN follows the neural network architecture with the addition of convolutional

layers to the existing fully connected layers. The development of different CNN architectures

has been evolved rapidly after the big success of AlexNet [137] on 2012 which is considered

the first deep CNN implemented on GPU to perform classification. Afterwards, many CNN’s
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architectures have been proposed such asLeNet [138]which is a deepCNNdeveloped byGoogle,

ResNet [139] which employs residual blocks to enhance the features extraction operation, and

the very deep VGG network [140] that has been trained using millions of natural images. For

segmentation tasks, the CNN is adapted to fully convolutional network (FCN) [141] which

omits the fully connected layers and retrieves the output with the same resolution as the input

images. Later, dilated network which addresses the limitation of FCN has been proposed by

[142].

In the medical domain, the segmentation task has been widely addressed using the

well-known 2D convolutional encoder decoder architecture named U-Net [143] which employs

paths from high resolution to low resolutions features maps. The 3D nature of medical images

opens the door to propose 3D CNN architectures such as V-Net [144].

Recently, the classification and segmentation tasks of 2D and 3D images have been

addressed using attention based networks which apply features recalibration mechanism to

boost the features extraction process. Hu et al. [145] were the first team who proposed a

2D channel attention based CNN to address classification problems by adaptively recalibrate

the channel wise features. They have proved that this recalibration process brings significant

enhancement in classifying public natural images from LSVRC 2017 datasets. They have also

evaluated the performance of this attention block using different CNN architectures to perform

classification.

Later, this architectural unit which excites the features in channel wise has been em-

bedded into segmentation based CNN. For instance, Yu et al. [146] have proposed BiSeNet,

a 2D segmentation CNN which applies the channel attention block. This work has shown

the capability of this block to improve the segmentation problems in computer vision domain.

BiSeNet has been tested using Cityscapes, CamVid, and COCO-Stuff datasets. The same team

have also proposed another 2D segmentation architecture [147] which takes the low and high

level features as an aggregated input to the channel attention mechanism aiming at recalibrating

the network features. This approach has been tested using PASCAL VOC 2012 and Cityscapes

datasets. Moreover, Cheng et al. [148] have applied the channel attention block to propose two
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gated structures which can be integrated with CNN for 2D images segmentation. This network

has been evaluated using CamVid and VOC public datasets.

The success of the channel attention mechanism has inspired the team of Bian et al.

[149] to investigate the possibility to reduce the model complexity which is increased by adding

the channel attention to CNN. They have proposed a dual channel attention network that reduces

the number of additional parameters by using a lightweight channel attention module where the

fully connected layer is replaced with 1D convolutional layer. The performance of this approach

has been evaluated by performing multiple tasks such as classification, segmentation, and object

detection using CIFAR-100 and MS-COCO datasets.

In the medical field, this mechanism has also shown its capability to boost the 2D

medical images features and improve the breast cancer classification [150] and prostate zonal

segmentation [151]. Another improvement in the medical images segmentation is proposed by

Roy et al. [152, 153]. They have firstly suggested a spatial attention block then explored the

concurrent spatial and channel attention within the FCN architecture. They have shown that the

spatial attention is more useful for segmentation tasks rather than the channel attention using

MR and CT images. The channel and spatial attention mechanisms are combined on parallel

within the network architecture to recalibrate the features concurrently. They have observed

consistent improvement of performance across three different 2D architectures (DenseNet, SD-

Net, and U-Net). Afterwards, Wu et al. [154] have applied the concurrent channel and spatial

attention mechanism to segment the skin lesions using an adaptive dual encoder network with

dual attention module.

Due to the necessity of applying 3D CNN to segment medical volumes of different

modalities, the 3D attention mechanism has also been proposed. For instance, Liu et al. [155]

have suggested a modified V-net architecture and integrated the 3D channel and spatial attention

blocks on parallel to segment the brain tumor using multi sequences MR images. Additionally,

Hou et al. [156] have applied the 3D attention block to segment white matter hyperintensities

lesions in MR images using the parallel combination of channel and spatial attention blocks.

Far from the medical domain, the 3D channel attention block has been applied in the
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remote sensing of sea ice field by Han et al. [157] who have designed a 3D channel attention

based CNN to classify the ice sea areas using satellite images. They have also shown that this

mechanism is efficient to accomplish this classification task.

2.6 Handcrafted Features with CNN

The process of automatic extraction of features using CNN has shown its superiority in var-

ious applications to perform different tasks. The CNN based features remove the burden of

handcrafted features task which includes features extraction and selection. However, in some

problems and with specific types of data, the handcrafted features are critical to enhance the

performance [158, 159].

The combination of handcrafted features with CNN’s features is becoming recently a

popular approach to address various problems in different domains such as image scene ge-

ometry recognition [160], classification of working condition in froth flotation [161], signal

gesture recognition [162], land cover content-based image retrieval [163], and pedestrian detec-

tion [164]. Moreover, it has been widely used in the medical field to perform classification,

segmentation, detection, and others tasks. Additionally, this approach has been applied to both

images and signals such as MR images [165], histology images [166], iris images [167],

electromyographic (EMG) signals [162], and electroencephalogram (EEG) signals [168].

The most common handcrafted features reported in the literature which are combined

with CNN’s features are statistical and textural features from the source images. For instance,

Shang et al. [165] have combined radiomics statistical, textural, and shape features with CNN’s

features to perform soft tissue tumor classification, Khan et al. [160] have applied a different

set of statistical features to segment the brain tumor, and Choudhary et al. [167] have combined

another set of statistical features with CNN’s features to perform iris spoofing detection.

Multiresolution analysis techniques such as Contourlet and Shearlet transforms provide

multiscale and multidirectional features by decomposing the image into low and high frequency
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sub-bands. Unlike Wavelet transform, they are shift-invariant and can capture rich information

with different scales and directions in the spectral domain. The CNN is able to extract spatial

features; Yet, the directional details in the spectral domain are neglected. The addition of

handcrafted features that capture multiscale and multidirectional information is proposed in the

literature to improve the performance of different tasks as described in the following subsections.

2.6.1 Contourlet Transform

The Contourlet transform is combined with CNN’s features to perform multiple tasks including

medical images fusion andmulti-modalitymerging [158, 169, 170], natural images classification

[171, 172], remote sensing classification [173], breast cancer classification [174], Seismic

images denoising [175], and bone age assessment [176].

Li et al. [173] have proposed a complex domain CNN which uses Contourlet filter

banks for polarimetric synthetic aperture radar (PolSAR) image classification. They have

suggested to redefine the operations of the conventional CNN’s layers in complex domain to

provide more useful features. They have also employed non subsampled Contourlet (NSCT)

filter with complex CNN filters to obtain multiresolution and multidirectional information. The

proposed network has been tested on three PolSAR data sets and has shown its efficiency to

capture abstract features in different directions and frequency bands. Additionally, Liu et al.

[171] have proposed a Contourlet based CNN for SAR image despeckling. They have designed

multiple multidirectional and multiscale subnetworks. Each independent subnetwork takes a

different Contourlet sub-band as input and trains the network until it reaches a clean image with

minimal noise. The inverse Contourlet transform is applied to the output of all subnetworks to

obtain the clean image. They have applied a different CNN’s architectures for each sub-band to

fit the properties of each sub-band. The proposed approach has been evaluated using synthetic

and real SAR images. This approach has been compared with the state of the art methods and

has shown its superiority in suppressing speckle with minimal required runtime.

In the medical domain, the employment of the Contourlet transform with CNN is
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proposed by Nahid et al. [174] to classify histopathological images. They have conducted a

comparison in the performance between CNNs that take different sets of inputs including raw

images, statistical information of the Contourlet sub-bands, histogram information, local binary

pattern features, and other frequency-domain features. They have found out that the statistical

information of the Contourlet coefficients combined with histogram information outperform

other approaches in terms of different evaluation metrics. The bone age assessment using X-ray

images has been addressed by Liu et al. [176] where they have employed the NSCT coefficients

of the raw images as inputs to the CNN. Each NSCT sub-band is fed to a single CNN then the

output of all networks are merged to perform the regression task. By comparing this approach

with other approaches that adopt spatial domain images as network input, the proposed method

is superior for the bone age assessment task.

2.6.2 Shearlet Transform

The Shearlet transform has been recently employed with CNN to perform various tasks in

different domains such as RGB images classification [177], remote sensing images denoising

[159], panchromatic and multispectral images fusion [178], and classification of video quality

[179]. In the medical field, the Shearlet coefficients have been widely combined with CNN’s

features to perform CT and MR images fusion [180, 181], multi-modality MR images fusion

[182], cancer classification [183, 184], Alzheimer’s disease classification [185], prostate

Gleason grading [183], and image enhancement and denoising [170].

For instance, Rezaeilouyeh et al. [183] have applied classification of histopathology

images using the magnitude and phase of Shearlet coefficients along with raw images as input

to CNN. They have employed one CNN for each raw RGB image, Shearlet sub-band phase and

magnitude. The outputs of all networks are concatenated using one fully connected layer. This

method has been evaluated on performing the classification of breast cancer and Gleason grading

tasks. They have also shown that this method performs better than other methods which use

different set of handcrafted features. Similarly, Liang et al. [184] have applied the same approach

of combining the raw histopathology images with their phase and magnitude coefficients of the
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Shearlet transform to identify colon cancer. They have also shown the capability of Shearlet

coefficients to enrich the CNN’s features and improve the classification performance. Jabason et

al. [185] have combined the PET images with their Shearlet coefficients as an input to the CNN

to classify the different types ofAlzheimer’sDisease. Moreover, Yang et al. [177] have proposed

a sparse representation CNN layer which employs Shearlet and Wavelet transforms to boost the

feature extraction operation. The sparse layer generates non-trainable low pass and high pass

feature maps during the back propagation process. They have evaluated the proposed approach

to perform classification on five different natural images datasets (FOOD-101, CIFAR10/100,

DTD, Brodatz and ImageNet). The results have shown that the multidirectional representation is

able to enhance the classification performance where the best classification accuracy of different

classes is achieved by either the Shearlet or the Wavelet transforms.

2.7 Ensemble of Deep Networks

The combination of multiple machine learning models is an effective approach to improve the

performance of the targeted task and build a reliable decision. This aggregation is well-known

by ensemble method which consists of weak individual models that are aggregated on parallel

such as bagging algorithms or sequentially such as boosting algorithms [186].

This concept has been widely applied in different applications to performmultiple tasks

such as classification [187], segmentation [188], and object detection [189]. Recently, with the

success of deep neural networks in various domains and applications, the ensemble method has

been extensively and efficiently applied with deep neural network to solve multiple problems

[190–193].

The combination of multiple deep networks has been applied to address transportation

problems such as autonomous driving [194], rail surface cracks detection [195], and traffic sign

recognition [196]. This concept has been also introduced to the field of agriculture and food by

aggregating multiple deep models to classify citrus pests [197] and insects [198] and recognise

food images to reduce obesity [199]. The performance of the application of face recognition
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has also been improved by combining multiple CNNs to detect the subject drunkenness using

thermal infrared images [200] or detect fake images [201]. Additionally, the face images quality

assessment, hallucination, and reconstruction have been performed using ensemble models

[202–204]. Beside that, the ensemble method has shown its efficiency in the task of human

action recognition while classifying the human activities using different types of images [205,

206]. Moreover, the ensemble of deep networks has been applied widely in the field of remote

sensing scene by classifying and segmenting radar and hyperspectral images [191–193, 207–

209].

The focus of this review is the application of the ensemble of deep networks in the

medical domain with different medical imaging modalities and applications. In the last three

years, the ensemble of deep networks has been applied extensively to perform classification

and moderately to perform segmentation. The utilisation of deep networks ensemble has been

employed in the diagnosis of different diseases using different imagingmodalities. The diagnosis

of COVID-19 virus has been addressed by classifying the X-ray images to detect pneumonia

using ensemble of deep networks [210–215]. Moreover, the detection of skin cancer and lesions

has been performed by introducing the deep network ensemble using dermoscopic images [216–

220]. The employment of the deep networks ensemble has shown its ability to improve the

classification using different imaging modalities such as ultrasound [221, 222], mammography

[223, 224], microscopic [225, 226], CT [227], MR [228, 229], and retinal [230–232] images to

diagnose multiple diseases like Alzheimer, ocular diseases, breast cancer, thyroid disorder, and

fat assessment. Other different tasks such as the estimation of the brain and bone age [233, 234],

detection of region of pneumonia in the chest [235], and medical image enhancement [236] have

been accomplished efficiently with the application of deep networks ensemble.

Recently, the application of the ensemble of deep networks to address the segmentation

task of medical images has not been thoroughly investigated. For instance, Coupe et al. [237]

have proposed an ensemble of one hundred twenty five 3D U-Net models where each takes

different overlapped sub-volumes as inputs. Each single network performs local segmentation,

then by aggregating the networks using the majority voting, the global segmentation of the
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volume is accomplished. This approach has shown good results in segmenting the brain MR

images.

Karthik et al. [238] have designed an ensemble of deconvolutional networks in the

decoder part of the CNN by combining multi-scale features from different encoder levels. Each

decoder has different number of convolutional layers depending on the resolutions of the features

that are coming from the encoder path. The majority voting for each class is applied to combine

the deconvolutional networks. This approach has shown superior results in segmenting the brain

3D MR images with four different modalities, namely T1-w, T2-w, DWI, and FLAIR.

Hou et al. [156] have proposed a 3DMR images segmentation approach for brain white

matter hyperintensities using an ensemble of two U-Net architectures which employ different

loss functions (dice loss and focal Tversky loss) to achieve a trade-off between specificity and

sensitivity. The two CNNs are aggregated by taking the average of each model’s probability

map.

Mei et al. [239] have applied the concept of ensemble to segment CT images for

the nasopharynx cancer diagnosis. They have used three different sampling approaches to

overcome the class imbalance issue with the employment of a 2.5D Unet for each sampling

strategy resulting in an ensemble of three CNNs of multi scale features. Finally, the three single

models are combined by applying the averaging operation.

Goyal et al . [240] have used 2D dermoscopy images to build an ensemble of two

CNNs: Mask R-CNN and DeeplabV3. The DeeplabV3 is an encoder decoder that follows

the Xception65 CNN architecture while the mask R-CNN is a segmentation network which is

inspired by the R-CNN architecture for object detection. Both networks are pretrained with

public natural images then fine tuned to segment the skin lesions. The networks are combined

using three methods which are the addition of two outputs, the selection of the largest area, and

the selection of the smallest area . They have found out that the aggregation method of selecting

the smallest area improves the segmentation specificity while the two other methods improve

the model’s sensitivity.
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Finally, Tan et al. [241] have performed 2D segmentation for skin and blood cancer

images using an ensemble which consists of three dilation based CNN networks. The CNNs are

combined using the majority voting technique. Each base model is optimised using the proposed

enhanced particle swarm optimization approach.

2.8 Transfer Learning

The transfer learning refers to either transferring knowledge or features from one domain to

another or performing a different task within the same domain. Recently with the wide use of

deep learning, transfer learning has been applied extensively by sharing the learned weights or

the set of extracted features of the pretrained model while changing the number of neurons in the

output layer depending on the target task. Another view of transfer learning is training the deep

model using the data of one domain then testing it with the data of another domain. Another

approach is training and testing the deep model with the data of two different domains while

performing the same task. The focus of this section is the application of transfer learning with

deep neural networks to perform different tasks on medical images.

Despite the disparity between different domains images, the transfer learning from one

domain to another has several advantages. It enables the training of deep networks with small

datasets, reduces the overfitting, and decreases the training time. Transferring the knowledge

from a pretrained network provides a ready set of generic features such as edges, boundaries,

and colors which are useful for any image analysis task.

There are different approaches of transfer learning. First, the knowledge can be trans-

ferred by using only the pretrained weights to initialise the newmodel instead of randomweights

initialisation which tends to cause overfitting with the training data [242]. Second, the pretrained

model’s weights can be fine tuned using the new datasets. The fine tuning process requires freez-

ing some layers of the network while retraining others. The fine tuning process can be limited

only to retrain the last fully connected layer to perform the new task or work with the new domain

data.
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Transfer learning can be applied to perform the same task but using data from a different

domain. This type is called domain adaption such as using datasets from different hospitals,

different scanners, and different scanning protocols. On the hand, transfer learning can convey

the knowledge to perform different tasks from different domains. This approach has been

widely applied by using the pretrained models with natural images to perform medical images

classification and segmentation tasks.

In the medical domain, the application of transfer learning to perform the same task

with datasets from different domains has been applied extensively to segment MR images for

different diseases. For instance, Kushibar et al. [243] have used brain MR volumes which are

acquired with different scanners and protocols to segment sub-cortical brain structures. They

have applied transfer learning by training the model with one dataset then fine tuning the fully

connected layers to segment the images of the second dataset. They have concluded that transfer

learning yields better results than the network which is trained from scratch using the same

number of training images. They have also found out that the obtained results with less training

images using transfer learning are similar to training a network from scratch.

The application of domain adaptation to segment different MR sequences has been

investigated to segment left ventricle. For instance, Vesal and his team [244] have used three

different cardiac MR sequences: late gadolinium enhancement (LGE), T2-w, and balanced

steady-state free precession (bSSFP). Firstly, they have trained a network from scratch using

two MR sequences (T2-w and bSSFP) then used this network to initialise another network that

aims at segmenting the third MR sequence (LGE) using less number of images. Although

this approach has has shown to be efficient on 2D images, it has not performed well on 3D

images due to the limited number of slices. Moreover, the results have shown the efficiency of

domain adaptation with augmentation techniques to improve the segmentation results of the left

ventricle.

Ghafoorian et al. [245] have used only two MR sequences: T1-w and FALIR images.

They have conducted experiments to study the optimal size of the new domain data. They have

also performed several experiments to study the relation between the size of the new domain
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training data and the number of the network’s layers that should be retrained to achieve the

optimal segmentation results. They have found out that with only few training images of the new

domain, the pretrained model with another MR sequence can be fine tuned by just retraining the

last fully connected layer to achieve an accurate domain adaptation model.

Additionally, Chen et al. [246] have performed left ventricle segmentation on cine

MR images by transferring the knowledge from a pretrained model on a public human cine

MR dataset. The results of DSC have shown that the trained model with transfer learning

outperforms the trained model from scratch.

Kessler et al. [247] have applied transfer learning from a different domain to carry out

knee tissue segmentation using three datasets consist of different MR sequences acquired by

multiple scanners (GE, Siemens, Philips, Toshiba, and Hitachi). They have found out that the

transfer learning helps to improve the segmentation accuracy of few knee joint tissues of the

new domain data while it preserves the model’s capability to segment the source domain data.

Zhao et al. [248] have used transfer learning from different MR sequences (T2-w and

DWI) from four medical centres for detection and segmentation of lymph nodes. Hippocampus

segmentation of two different T1-w MR datasets using domain adaptation has been proposed

by Ataloglou at el. [249]. The deep network is initially trained with one dataset then fine tuned

using only fifteen samples of the second dataset. They have shown that the transfer learning

with fine tuning from one dataset to another improves the DSC of hippocampus segmentation.

Besides the segmentation tasks, the domain adaptation has been successfully applied to perform

MR images synthesis [250], reconstruction [251], and classification [252],

On the other hand, transfer learning can be applied to transfer the knowledge from

models trained to perform different tasks on different domains. Many medical imaging tasks

are conducted by transferring the knowledge from pretrained models on natural images such

Imagenet dataset which consist of fourteen millions of 2D images.

For instance, Grimm et al. [253] have performed segmentation of brain volume and

cerebrospinal fluid tissue on simulated T2-w MR images by transferring the knowledge from
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the pretrained VGG16 network. An encoder-decoder Segnet architecture is preinitialised with

layers and weights from a pretrained VGG 16 model then fine tuned by reducing the learning

rate.

Brain tumor segmentation using transfer learning has been applied by Cui et al. [254]

who have proposed a FCN which takes four input channels of four different MR sequences

named FLAIR, T1-w, T2-w, and contrast enhanced T1-w (T1-c). The initial weights of the

network are initialised using the weights of the pretrained model with ImageNet. Yet, the fourth

input channel is initialised with the average weight of the three input channels. The model is

fine tuned afterwards using the SGD approach. They have found that this method obtained

promising segmentation results with faster computation time.

Kuzina et al. [255] have proposed a novel transfer learning approach which is based on

deep weight prior concept. They have used a U-Net based generative Bayesian prior network

which takes the trained convolutional filters with the source dataset to learn the prior on the

target dataset. They have evaluated this method to perform segmentation for two different

diseases: brain tumor and multiple sclerosis using two different datasets of MR images. They

have found out that the trained network with the proposed approach outperforms the network

that is initialised randomly or from a pretrained network.

Recently, brain tumor classification of MR images has been addressed widely with

transfer learning from models trained with natural images such as AlexNet [182, 242, 256],

Vgg16 [257], Vgg19 [258], ResNet34 [259], ResNet 101 [256], ResNet 50 [256], GoogLeNet

[256], and SqueezeNet [256]. Transfer learning from natural images to accomplish medical

images tasks has also been tested on MR images enhancement [260], cine MR images super-

resolution [261], and detection of meniscus region on MR images [262].
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2.9 Summary

This chapter has represented a brief overview of the most common and useful medical imaging

in the clinical routine nowadays: PET, MR, and CT imaging. PET imaging provides the tissue

function and physiology at the molecular level in the shape of a map of radioactive tracer

concentration. CT imaging is a tomographic X-ray based modality that represents the X-ray

absorption coefficient and considered a useful tool to detect the bone tissue. MR imaging

is an excellent modality to capture the soft tissue contrast using a map of the local transverse

magnetization of the hydrogen nuclei. The hybrid imaging of PET/CT and PET/MR are enabling

the sequential or simultaneous acquisition of bothmodalities to bridge the gap betweenmolecular

and systems diagnosis. In this research, MR and CT images are used to develop the segmentation

algorithm to address the application of MR based attenuation correction for brain PET images.

MR based attenuation correction methods for PET images have been introduced in

this chapter with the focus on the segmentation approach. The application of segmentation

using deep learning technique has been reviewed where various enhancement aspects have been

discussed including the combination of handcrafted features with deep learning features, the

attention based CNN, the ensemble modelling, and the transfer learning from different medical

imaging modalities or sequences.

The MR images segmentation for PET attenuation correction is a simple and robust

method which has been adopted on commercial scanners for a long time. However, the seg-

mentation of bone in the brain images is very challenging due to the similarity of air and bone

intensity values and the minority of bone pixels compared to other tissue types.

MR segmentation based attenuation correction has been addressed using deep learning

technique, Yet, the existing literature have applied the existing CNN’s architecture without

any adaptation. The combination of handcrafted features with CNN’s features is one possible

enhancement for MR images segmentation for PET attenuation correction which has not been

proposed yet in the literature. The use of multiresolution analysis features such as Contourlet

and Shearlet transforms to enhance the segmentation task in the medical domain have shown
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the efficacy of the addition of multidirectional and multiscale features to the CNN’s features.

However, the proposed methods in the literature have employed complex solutions including

multiple cascaded CNNs for different multiresolution sub-bands. Moreover, they have used

all resultant coefficients without any dimensionality reduction. A less complicated design is

required to combine the multiresolution features with CNN’s features.

Recently, the attention based CNN has shown its capability to enhance the segmentation

tasks of different natural and medical images using two approaches of attention namely spatial

and channel excitations. This excitation technique recalibrates the extracted features of the

CNN’s layers by emphasising on the most useful ones to accomplish the desired task. Some

studies have employed the parallel combination of both mechanisms of excitation to segment

skin lesions, white matter hyperintensities lesions, and brain tumor. Yet, it has not been applied

to tackle the MR segmentation based attenuation correction problem. The parallel combination

results on increasing the number of the CNN’s parameters, the model’s complexity, and the

computation time and resources. There is a need to explore different ways to integrate the

excitation blocks with CNN to enhance the network performance with minimal increase of the

model complexity.

Classifiers ensemble or committee machine is another technique which has been used

for a long time in the field of machine learning to enable the generalisation of the model,

enhance the model performance, and produce reliable results. This approach has been applied

with deep networks where each base model represents a single deep network. Many studies

have proposed the deep network ensemble to segment different medical images (MR, CT, and

dermoscopy) for medical applications such as cancer detection, ischemic lesion segmentation,

and brain tumor. The MR segmentation based attenuation correction has not been addressed

yet using the ensemble of CNNs. Additionally, the existing studies have applied multiple CNNs

with the same architecture. However, the induction of variation between the ensembled CNNs

is an important factor to generalise the model’s performance and create diversity between the

base CNNs.

Finally, the application of transfer learning has became a crucial step to build deep
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networks especially with the availability of trained networks with millions of images. The

pretrained networks with natural images have been used as a starting point to build new networks

to perform various medical tasks. They have also applied transfer learning using MR images

which are acquired with different scanners or from different institutions. Moreover, the transfer

learning has been applied for different MR sequences such as transferring the knowledge from

T1-w to FLAIR MR sequences. There are multiple MR sequences which worth investigating

their applicability of transfer learning from different sequences especially the most commonly

used in the clinical routine (T1-w and T2-w) to perform the same or different tasks.
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Chapter 3

3D Deep Convolutional Neural Network

with Handcrafted Features for MR

Segmentation

3.1 Introduction

This chapter describes an approach to improve the brain MR images segmentation to generate

pseudo CT images for PET attenuation correction. This approach involves deep CNN technique

that segments the brain into three tissue classes namely: air, soft tissue, and bone. The

main objective is to improve the bone segmentation performance by conducting the following

contributions:

• Designing a 3D deep CNN by studying the impact of different components of the network.

• Applying dice coefficient as an objective function to train the 3D CNN to solve the issue

of class unbalancing.

• Introducing additional handcrafted features such as directional coefficients of non-subsampled

Contourlet (NSCT) and non-subsampled Shearlet (NSST) and aggregating them with
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CNN’s features.

The brain T1-w MR images of fifty patients are used to evaluate the proposed methods

by calculating the precision, sensitivity (recall), DSC, and JSC of each class of the brain.

Moreover, the visual assessment of the segmentation results of some randomly selected slices

from the testing data is performed. This chapter is structured as follows: the next section gives

detailed information about the utilised clinical brain images which include T1-w MR and CT

images. The description of the proposed deep CNN as the baseline model is provided in section

3.3. The methodology of employing handcrafted features with different aggregation methods

with the CNN are provided in section 3.4, 3.5, and 3.6. The obtained results are revealed in

section 3.7 with their quantitative and qualitative evaluation. Finally, the summary with the

limitations are represented in section 3.8.

3.2 Brain Datasets

3.2.1 Data Acquisition

The brain dataset that is used for the experimental work consists of fifty patients which undertook

18F-FDG PET/CT and MR scanning. The patient’s demographics and clinical characteristics

are summarised in Table 3.1. The research protocol and the utilisation of the data are firstly

approved by each patient then by the research ethics committee of the College of Engineering,

Design and Physical Sciences at Brunel University London.

Table 3.1: The datasets demographics and clinical characteristics.

Gender Age (Mean ± SD) Clinical diagnosis
28 women and 22 men 61±12 years 44 neurodegenerative disease, 3 epilepsy, and

3 brain tumors

The MR images were acquired using a 3 T MAGNETOM Skyra (Siemens Healthcare,

Erlangen, Germany) with a 64-channel head coil. The MR scans are 3D T1-w (MP-RAGE)
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sequence that were acquired using the following parameters: TE= 2.3 ms, TR= 1900 ms, T1=

970 ms, flip angle 8°, NEX = 1, and matrix dimension of 255 × 255 × 250 with voxel size of

0.86 × 0.86 × 1 mm. The 18F-FDG PET/CT scans were acquired using two different Siemens

scanners (Siemens Healthcare, Erlangen, Germany): Biograph mCT scanner and Biograph 64

True Point scanner. The matrix size of the CT images is 512 × 512 × 150 with voxel size of

0.97 × 0.97 × 1.5 mm. An example of a single slice of T1-w MR image, CT image, and MR

overlaid on CT image are illustrated in Figure 3.1 in transaxial, coronal , and sagittal views.

CT

MR - CT

a

MR

b c

Figure 3.1: An illustration of a single slice of MR, CT, and MR overlaid on CT in (a) axial, (b)
coronal , and (c) sagittal views.

There is a class imbalance of the three brain tissues where each brain volume consists

of higher number of pixels that belong to soft tissue and air classes compared to bone class. For

instance, the percentage of bone, soft tissue, and air pixels of 10 selected patients are 7.17%,
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52.68%, and 40.15%, respectively.

3.2.2 Data Preprocessing

Although the raw data is in 3D format, the preprocessing of both T1-w and CT images is

performed in 2D fashion by firstly identifying the region of interest by selecting 48 slices from

each patient’s volume. Each patient’s volume consists of different number of slices with a

maximum of 165 slices and a minimum of 82 slices. The slices that reside at the beginning and

the end of each volume are blur and not providing any useful features to learn from. Based on a

manual observation and checking process, 48 consecutive slices of each patient are selected by

removing the blurred and useless slices.

The dimensions of each volume are reduced by removing some pixels of the background

where each slice is cropped into 256 × 256 × 48 matrix dimension. Due to different resolutions,

some of the volumes are resampled to 300 × 300 matrix using bilinear interpolation to include

the whole brain area before cropping. The resampling size 300 × 300 is selected experimentally.

Local contrast normalization technique is applied on MR images to downscale the range of the

pixel’s values.

3.2.3 Ground Truth Generation

CT images are used to generate the ground truth to conduct the supervised learning approach.

Each MR slice is co-registered with its corresponding CT slice to obtain a common coordinate

system and overcome the temporal gap between the acquisition ofMR and CT images (2-3 days).

The registration process starts with the application of rigid Euler transformation followed by the

non-rigid B-spline transformation using a well-known medical imaging registration tool named

Elastix [263]. Afterwards, the labelling of CT images is performed by applying simple pixel

intensity-based thresholding to segment the brain into three tissue classes which are air, bone,

and soft tissue. The thresholds of the CT Hounsfield values for each tissue class are illustrated

in Table 3.2.
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Table 3.2: The CT Hounsfield values threshold for generating the ground truth images.

Hounsfield value threshold Tissue class assignment
HU > 600 Bone
HU < -500 Air
Others Soft tissue

3.3 3D CNN for MR Segmentation

3.3.1 The Baseline CNN Architecture

The baseline CNN follows the well-known 2D U-Net architecture [143] that has been applied

widely in various medical applications [264]. This network is a fully convolutional architecture

that takes the shape of encoder-decoder with the inclusion of additional paths that links the

high-resolution with the low-resolution features. The additional paths increase the resolution of

the output and improve the localisation.

The proposed network is amended by decreasing the number of down-sampling layers

which cause loss of useful features. Additionally, the number of convolutional layers is also

increased by setting three convolutional layers at each depth. The 3D CNN consists of twenty

one 3D convolutional layers where each three convolutional layers are followed by batch nor-

malization layer, rectified-linear unit (ReLU) activation function, and 3D maxpooling layer with

stride size of two. The kernel size of all convolutional layers is 3 × 3 × 3. The number of filters

of the first layer is sixty four and increases by the double as the depth of the network increases.

The decoder path is the mirror of the encoder path by replacing the maxpooling layers with

deconvolution layers. The application of deconvolution layers is another modification to the

U-Net architecture to allow the network to learn the weight of the upsampling process. The

last layer of the network is a fully connected layer that consists of three neurons that represent

the number of classes with a multiclass sigmoid activation function. Figure 3.2 illustrates the

baseline proposed CNN’s architecture.

Another modification to the U-Net is the application of the dice coefficient loss as an

objective function during the network training. The segmentation of brain MR images suffers
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Figure 3.2: The convolutional encoder decoder network that follows the U-Net architecture.

from the problem of classes unbalancing which leads to a biased classification towards the

majority classes. The cross-entropy loss function that is applied in U-Net is not suitable to

address this problem. The dice coefficient loss for multi-class segmentation is defined as:

Ldi ce =
1
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c=1

2
∑

i p i
c g i

c∑
i (p i

c + g i
c )

(3.1)

where p is the probability of each voxel to belong to class c, g is the ground truth of class c, and

C is the number of classes.

3.3.2 Model Input

The input size of the designed CNN is 256 × 256 × 48 where 48 is the number of selected slices

per patient. This huge number of pixels overwhelm the GPU memory and creates limitations

when designing the network architecture and selecting the hyperparameters such as the number

of filters per convolutional layer and the batch size. To overcome this situation, each volume is

divided into overlapped patches to minimize the input size and increase the size of the training

datasets. The employment of overlapped patches preserves the spatial contextual information

for each volume. Each volume is divided into nine overlapped patches with the size of 128 ×
128 × 48 where each patch covers half the area of the adjacent patch.
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3.3.3 Model Training

The deep network is trained from scratch using thirty patients for training, ten patients for

validation, and ten patients for testing. The network weights are initialised using Xavier/Glorot

Uniform initialisation scheme which relies on the numbers of input and output neurons to

automatically determine the scale of initialisation. The network is trained using Adam optimizer

with an initial learning rate that is set to 0.0001 then reduces by a factor of 0.75 on plateau mode

(i.e., when the training accuracy is not increasing for five continuous epochs). The momentum

and the weight decay hyperparameters are set to 0.9 and 0.0005, respectively. The batch size

is two and the training process stops after two hundred epochs or before that when the training

accuracy stops decreasing for ten continuous epochs. All experiments are conducted on Tesla

V100GPUwith 16GBRAM.Keras with the backend of TensorFlowAPIs are used to implement

the proposed model.

3.3.4 Evaluation Metrics and Validation Methods

A Evaluation Metrics

The segmentation results are evaluated quantitatively using a set of metrics which have been

widely applied in the literature to evaluate the segmentation tasks. The segmented MR image

with the generated ground truth from CT images are used to calculate the following evaluation

metrics for each tissue class c:

• Precision (PRE)

PREc = T Pc

T Pc +F Pc
(3.2)

• Recall (REC)

RECc = T Pc

T Pc +F Nc
(3.3)
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• Dice similarity coefficient (DSC)

DSCc = 2×T Pc

(2×T Pc )+F Pc +F Nc
(3.4)

• Jaccard similarity coefficient (JSC)

JSCc = DSCc

2−DSCc
(3.5)

where TP is true positive, FP is false positive, and FN is false negative. These metrics are

calculated for all slices of the testing dataset and per patient.

3.3.5 Validation Methods

The proposed methods are compared with other segmentation studies that applied deep learning

techniques using conventional MR sequences such as T1-w MR images for PET attenuation

correction application. The existing methods which are listed below are re-implemented then

trained and tested with the existing datasets:

• A deep CNN method which is proposed by [103] and follows the SegNet architecture is

applied to identify and segment air, bone, and soft tissue in 3D brain MR images. The

network is trained with T1-w MR images and evaluated using CT images. The same

network architecture is re-implemented with some slight changes to cope with the size of

the existing datasets using the same training parameters and hyperparameters.

• A deep CNN method which is proposed by [104] applies transfer learning technique by

using a pre-trained model with T1-w MR images. The pretrained model is retrained

using MR UTE images as input to the network. 3D fully connected conditional random

field (CRF) is applied to the segmentation results as a post-processing and refinement

technique.
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3.3.6 Experimental Setup

A The Influence of Weight Initialization

The selection of the weight initialisation scheme of the convolutional layers is experimented

by evaluating three different schemes: (1) Xavier uniform [265], (2) He normal [266], and (3)

Random normal. The selection of the best initialisation scheme is based on calculating the DSC

of each tissue class then applying the majority voting. While changing the initialisation strategy

for each experiment, all other training settings and hyperparameters remain the same.

According to the results illustrated in Figure 3.3, the Xavier uniform initialisation

scheme leads to the best segmentation performance for both soft tissue and air classes. However,

the best DSC for bone class is He normal. The performance of the He normal is slightly better

than the Xavier uniform strategy with the bone class. This slight difference is ignored since

the performance of soft tissue and air classes is better with Xavier uniform. Hence, the Xavier

uniform initialisation scheme is adopted for the network weights initialisation. In general, the

bone segmentation performance is lower than soft tissue and air classes due to the difficulty of

differentiating between bone and air classes as there is a similarity in the intensity values of

bone and air classes. Another challenge is the variation of MR image intensity values from one

patient to another [267].
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Figure 3.3: The DSC of the segmentation results using different weight initialisation schemes.
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B The Influence of Pooling Layers

The pooling layer is an essential component of any CNN’s architecture to reduce the dimensions

of the feature maps which consequentially reduces the number of parameters and the amount of

computing resources. The pooling layer also represents an abstract level of each feature map

which produces invariant feature representation. On the other hand, the pooling layer leads to

spatial information loss which effects the performance of the segmentation results. One way

to overcome this issue is the use of skip connections to link the high-level features from high-

resolution layers with low-level features from low-resolution layers to maintain some of the lost

information.

There are mainly two types of pooling layers which are used in CNN’s architecture: (1)

Maxpooling layer and (2) Average pooling layer. The maxpooling layer selects the maximum

value of each covered region of the features map while the average pooling layer represents

each region by its average value. In other words, the two pooling layers is the maxpooling

layer generates the most prominent features while the the average pooling represents the average

of features. The selection of the best pooling type for the segmentation problem is tested

by comparing the segmentation results of using two CNNs with different pooling layers by

calculating the DSC of each class.

The illustrated results in Figure 3.4 show that maxpooling layer outperforms the average

pooling layer for both the bone and air classes. Based on the majority voting, the maxpooling

layer is adopted for the design of the pooling layers in the proposed CNN. The design of the

CNN without using any pooling layer is also tested. However, the network consists of huge

number of parameters which cannot be handled by the existing GPU memory.

C The Influence of Unpooling Layers

The unpooling layer is the opposite of the pooling layer which enlarges the features maps by

performing the resizing operation. There are two types of unpooling operations which are

commonly used in the CNN’s architectures: (1) Upsampling layer and (2) Deconvolution layer.

64



0.6130
0.6140
0.6150
0.6160
0.6170
0.6180
0.6190

MAXPOOLING AVERAGE 
POOLING

D
S

C

BONE

0.9068
0.9069
0.9070
0.9071
0.9072
0.9073
0.9074

MAXPOOLING AVERAGE 
POOLING

D
S

C

SOFT TISSUE

0.9616

0.9618

0.9620

0.9622

0.9624

MAXPOOLING AVERAGE 
POOLING

D
S

C

AIR

Figure 3.4: The DSC of the segmentation results using different pooling methods.

The upsampling layer resizes the feature map by means of interpolation. The upsampling layer

is not trainable where it only uses the mathematical definition of the selected interpolation

method. On the other side, the deconvolution layer is trainable where it tends to learn how to

upsample during the training phase of the network. Hence, this makes the deconvolution layer

data specific layer. Two experiments are conducted to investigate the best unpooling layer for

the segmentation task. All other settings of the CNN’s architecture are remained the same while

changing the unpooling layers in the network design.

The demonstrated results in Figure 3.5 prove that the deconvolution layer is better

than the upsampling layer by comparing the DSC of each CNN’s architecture. Hence, the

deconvolution is selected as the unpooling layer for the proposed network.

D The Influence of Activation Functions

The activation functions are the mathematical expression which determine the output of the

neural network. Each neuron in the network is attached with an activation function which

activates it at a certain condition or threshold. The activation functions also help to normalise

the neuron output to a specific range. There are some activation functions which are associated

with convolutional layers such as ReLU, leaky ReLU, and parametric ReLU. Additionally, there

are other activation functions that are associated with the neurons at the fully connected layer

such as softmax and sigmoid. The CNN mainly use the non-linear activation functions to allow

the model to create sophisticated mapping and relationship between the inputs and outputs. This

nonlinearity is essential for learning the complex data such as high dimensional images.
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Figure 3.5: The DSC of the segmentation results using different unpooling methods.

In the next experiments, the activation functions of the fully connected layer which

consists of neurons that represent the number of classes are explored to find the optimal function

that achieves the best segmentation performance. The investigated activation functions are: (1)

Sigmoid and (2) Softmax. All parameters of the network are fixed while only the activation

function of the fully connected layer is changed.

The shown results in Figure 3.6 reveal that the sigmoid function with bound values

between zero and one leads to the best segmentation performance by comparing the DSC of the

three classes with the softmax function. The performance of the softmax function is very bad

as the network has not been able to reach the convergence status during the training.
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Figure 3.6: The DSC of the segmentation results using different activation functions.
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3.4 Non-SubsampledContourletTransformFeatureswithCNN

based Features for MR Segmentation

3.4.1 Non-subsampled Contourlet transform

Contourlet is a multiscale and multidirectional transform which decomposes an image using

the Laplacian pyramid and the directional filter bank (DFB). Due to the application of down-

samplers and up-samplers in Contourlet filters, Contourlet transform is shift variant. The

Contourlet addresses the drawback of wavelet which operates only in 2D without the capability

to capture the multidirectional information. The Contourlet has the ability to encapsulate the

directionality and anisotropy at various scales.

Non-subsampled Contourlet (NSCT) transform is a multiscale, multidirectional, and

shift invariant transform which is proposed for the first time by Da Cunha el al. [268] to address

essentially the image denoising and enhancement. This transform is a shift invariant version of

the Contourlet transformwith better frequency selectivity and regularity. This type of transforms

include redundancy which enriches the details representation.

The Laplacian pyramid mechanism decomposes the image into one low pass sub-band

and one band pass sub-band. The band pass represents the difference between the input image

and the low pass image. Afterwards, the resultant low pass image is decomposed iteratively with

the same mechanism at each stage. The band pass image is processed by the DFB to extract the

directional details which generate the Contourlet coefficients. The DFB generates 2k directional

coefficients or sub-bands at k scale levels where k is a positive integer.

In this work, the MATLAB non-subsampled Contourlet toolbox [269] is utilised to

generate the NSCT coefficients. The toolbox takes the 2D image, the number of directional

decomposition levels (k), the pyramidal filter, and the directional filter as inputs. Then, it

generates k+1 coefficients where the first coefficient is the low pass sub-band and the remaining

ones represent different directional band pass sub-bands. The number of the directional filter
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decomposition levels is defined by vector K:

K = [1,1,2,2] (3.6)

Where the K levels generate C Contourlet coefficients which are calculated by:

C =
k∑

k=0
2k +1 (3.7)

The actual generated NSCT coefficients are thirteen sub-bands (twelve directional sub-

bands + one low pass sub-band). The NSCT produces coefficients with the same dimensions as

the input image. Figure 3.7 shows an example of some NSCT directional sub-bands at different

scales in addition to the low pass sub-band for a single slice of a randomly selected patient from

the brain dataset.

a b c

d e

Figure 3.7: Four directional NSCT sub-bands from four scales (a-d) and one low pass sub-band
(e) for a single slice of a randomly selected patient from the training dataset.
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3.4.2 Non-Subsampled Contourlet Coefficients Selection

The application of the NSCT decomposition generates twelve redundant coefficients for each

slice. The redundant directional information is reduced by selecting the coefficients that include

more amount of information than others. The coefficients selection is performed by calculating

the entropy score for each NSCT coefficient of each slice. The entropy score is a statistical

measure of the information content and randomness to capture the texture characteristics of the

image [270]. The entropy is calculated as:

Entr opy =−∑
i

ci log2(ci ) (3.8)

where ci is the histogram count of i th bin. The entropy values are calculated using theMATLAB

toolbox [271].

Figure 3.8 illustrates the entropy values of the top ten selected NSCT directional sub-

bands coefficients of one randomly selected slice (slice 44) with a minimum value of 3.028 and a

maximum value of 3.772. Another ten randomly selected slices are illustrated in Figure 3.9 and
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Figure 3.8: The entropy values of the top ten selected NSCT directional sub-bands coefficients
of one randomly selected slice (slice 44) of patient 1.
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all slices of one patient (forty eight slices) are shown in Figure 3.10. The figures demonstrate
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Figure 3.9: The entropy values of the top ten selected NSCT directional sub-bands coefficients
of ten randomly selected slices of one patient.

that there are variations on the entropy values within and among each slice. The variation

indicates there are some NSCT coefficients which are more useful than others. Each NSCT

coefficient with higher entropy value indicates the inclusion of more information which can add

more directional features to help improving the segmentation performance.

Out of twelve directional sub-bands, the top ten coefficients with the highest entropy

values are selected as handcrafted features which will be combined with CNN’s features. Fig-

ure 3.11 represents the histogram of the index of the ten selected NSCT coefficients for each

slice of the fifty patients used in this study. It is observed from this figure that the directional

sub-bands which are located between indices 9 and 12 represent the highest entropy values

which are generated at the third and fourth decomposition levels of the NSCT. The directional

sub-bands of the first and second decomposition levels are not revealing dominant features for

most of the slices. It is worth noting that the more decomposition levels of NSCT coefficients,
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Figure 3.10: The entropy values of the top ten selected NSCT directional sub-bands coefficients
of all slices of one patient (forty eight slices).

Figure 3.11: The histogram of the index of the ten selected NSCT coefficients for each slice of
fifty patients.

the more useful directional features are produced.
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3.4.3 Fusion of Non-Subsampled Contourlet and CNN based Features

The proposed method explores the addition of NSCT coefficients with CNN based features. The

essential objective of adding the NSCT features is to introduce the directionality information and

enrich and complement the CNN’s features. The selected NSCT coefficients are concatenated

to create an input image with size 256 × 256 × 48 ×10. As described in Section 3.3, the original

image size is divided into nine overlapped patches with size 128 × 128 × 48 × 10 to firstly

overcome the memory size limitation and secondly to preserve the contextual information.

The handcrafted NSCT features are concatenated with the CNN based features using

three different mechanisms. The first mechanism which is illustrated in Figure 3.12 aims

at concatenating the NSCT coefficients with the input MR images. The second mechanism

concatenates the NSCT features at the end of the features extraction part of the CNN and

just before the classifier layer as shown in Figure 3.13. The third mechanism adds another

dimensionality to the input MR images by adding the low pass sub-band of the NSCT coefficient

as a new channel. The input size of this network is 128 × 128 × 48 × 2. Moreover, at the end of

this network, one or more directional sub-bands with the highest entropy value are concatenated

with CNN based features to add some directionality information. This mechanism is depicted

in Figure 3.14.

3D MRI

3D MRI

3D MRI+

Raw MR 
image

Directional sub-band 
NSCT/NSST

Figure 3.12: The network design of concatenating the NSCT directional coefficients with the
input MR images.
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Figure 3.13: The network design of concatenating the NSCT directional coefficients with the
CNN features at the end of the network.
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Directional sub-band 
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Figure 3.14: The network design of concatenating the NSCT low pass coefficients with the input
MR images. The NSCT directional coefficients are also concatenated with the CNN features at
the end of the network.

3.5 Non-Subsampled Shearlet Transform Features with CNN

based Features for MR segmentation

3.5.1 Non-subsampled Shearlet Transform

Shearlet transform is a multivariate expansion of the wavelet transform in multidimensional

space. Despite Contourlet transform utilises rotation and translation mechanisms, Shearlet

utilises an additional shearing mechanism to provide directional selectivity and localisation.

The non-subsampled Shearlet (NSST) is the shift invariant version of the Shearlet
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transform with high capability of directional sensitivity. It consists of multiscale decomposition

using non-subsampled Laplacian pyramid transform and multidirectional decomposition using

Shear filter with translation invariance. The Shear filter overcomes the limitation of the number

of directions which exists in non-subsampled Contourlet [272, 273].

In general, the NSST transform outperforms NSCT transform thanks to their well-

localisation at different scales and directions which enables the fine detection of edges and

boundaries. These advantages make the NSST a suitable tool to identify the different brain

tissue classes [183]. In this work, the NSST coefficients are generated using the ShearLab 3D

tool [274]. Each 2D slice is decomposed using the NSST up to four scales using different

shearing levels defined by the vector L:

L = [1,1,2,2] (3.9)

Each level k generates S Shearlets coefficients which are calculated by:

Sk = 2× (2×2L(k) +1) (3.10)

The total number of generated NSST coefficients is fifty seven (fifty six directional

high frequency sub-bands + one low frequency sub-band). The size of each sub-band is the

same as the size of the input image. Figure 3.15 shows an example of some directional high

frequency sub-bands from different scales and one low frequency sub-band for a single slice of

one randomly selected patient from the training dataset.

3.5.2 Non-Subsampled Shearlet Coefficients Selection

The dimensions of the resultant sub-bands of each volume is 128 X 128 X 48 X 57. In order to

reduce the dimensionality and the redundancy, the entropy for each NSST coefficient per slice is

calculated to select only the coefficients that contain dominant information. The mathematical

formula of the entropy is defined in Equation 3.8 in Section 3.4. Figure 3.16 illustrates the
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Figure 3.15: Four NSST directional sub-bands from four scales (a-d) and one low frequency
sub-band (e) for a single slice of one patient.

entropy values of the top ten selected NSST directional sub-bands coefficients of one randomly

selected slice of one patient with a minimum value of 4.04 and a maximum value of 4.61.

Moreover, the entropy values of ten randomly selected slices are illustrated in Figure 3.17 and

all slices of one volume are shown in Figure 3.18. Similar to NSCT, the figures demonstrate

that there is variation on the entropy values within and among each slice but with higher entropy

values.

Out of fifty six directional sub-bands, the top ten coefficients with the highest entropy

values are selected as handcrafted features which will be combined with CNN’s features. Figure

3.19 represents the histogram of the index of the ten selected NSST coefficients for each slice

of the fifty patients used in this study. It is observed from this figure that the directional sub-

bands which are located between indices 28 and 34 represent the highest entropy values which

correspond to the third scale. It is also clear from the same figure that the directional sub-bands

of the first level are not representing truly dominant features for most of the slices of each patient.

75



4.614
4.5692

4.5172
4.4627

4.4022
4.3518 4.342

4.2227

4.04034.0394

E
n

tr
o

py

Coefficients of slice 44

Coeff 1

Coeff 2

Coeff 3

Coeff 4

Coeff 5

Coeff 6

Coeff 7

Coeff 8

Coeff 9

Coeff 10

Figure 3.16: The entropy values of the top ten selected NSST directional sub-bands coefficients
of one randomly selected slice (slice 44) of patient 1.

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

3.75

3.8

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice 9 Slice 10

E
n

tr
o

py

Coeff 1 Coeff 2 Coeff 3 Coeff 4 Coeff 5 Coeff 6 Coeff 7 Coeff 8 Coeff 9 Coeff 10

Figure 3.17: The entropy values of the top ten selected NSST directional sub-bands coefficients
of ten randomly selected slices of one patient.
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Figure 3.18: The entropy values of the top ten selected NSST directional sub-bands coefficients
of all slices of one patient (forty eight slices).

3.5.3 Fusion of Non-Subsampled Shearlet and CNN based Features

The fusion mechanisms of the NSST features with CNN based features are similar to the applied

mechanisms for NSCT features which are described in Section 3.4. The main objective is to

explore if NSST coefficients are able to add more dominant features than NSCT coefficients.

3.6 CombiningNon-SubsampledContourlet andNon-Subsampled

Shearlet Features with CNN based Features for MR Seg-

mentation

The NSCT and NSST transforms generate different set of directional features using different

decomposition filters which operate with different complexity manners. In order to achieve the

full potential of the directional features as well as the low frequency sub-band, the NSCT and
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Figure 3.19: The histogram of the index of the ten selected NSST coefficients for each slice of
fifty patients.

NSST coefficients are combined then fused with CNN’s features.

The first fusion approach considers the directional features from the NSCT bandpass

and the NSST high-pass sub-bands. The NSCT and NSST coefficients are concatenated with

the CNN’s features at the end of the features extractor part of the network and just before the

last activation function (sigmoid) as depicted in Figure 3.20.

The second approach aims at exploring the benefit of concatenating the low frequency

sub-band of NSCT or NSST with the MR image to increase the input dimensionality and add

more data for training. Additionally, the directional sub-bands of both NSCT and NSST are

concatenated at the end of the network with CNN’s features as shown in Figure 3.21.
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Figure 3.20: The network design of concatenating the NSCT and NSST directional coefficients
with the CNN’s features at the end of the network.
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Figure 3.21: The network design of concatenating the NSCT low pass coefficient with the input
MR images. The NSCT and NSST directional coefficients are also concatenated with the CNN’s
features at the end of the network.

3.7 Experimental Results for Brain Segmentation

3.7.1 Model Training and Evaluation

The proposed CNN’s architecture which is introduced in Section 3.3 is adopted herein to study

the impact of adding handcrafted features with CNN based features. The network is trained
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using the same parameters, hyperparameters and computing resources. The training dataset

consists of thirty patients and each of the validation and testing datasets consist of ten patients.

The evaluation of the proposed method is conducted by calculating the same segmenta-

tion metrics which are introduced and defined in Section 3.3 The segmentation metrics for each

brain tissue class are precision, recall, DSC, and JSC.

3.7.2 Evaluating the Effectiveness of Adding Handcrafted Directional

NSCT Coefficients

The impact of adding the directional NSCT coefficients with CNN’s features to perform MR

image segmentation is firstly evaluated by concatenating only one NSCT coefficient per slice

which has the highest entropy value. The NSCT coefficient is concatenated at the end of the

network with the CNN’s extracted features. Secondly, the top ten selected NSCT coefficients

with the highest entropy values are concatenated with CNN’s features in order to increase the

directional features. The addition of ten NSCT coefficients is also evaluated by concatenating

the directional features with the MR input images to pass through the convolutional layers and

perform another features extraction process to maintain only the most useful and dominant

features.

Tables 3.3, 3.4, and 3.5 show the results of the segmentation of the three brain classes

using different mechanisms of concatenating the NSCT directional features with the CNN based

features. The segmentation evaluation metrics show that the aggregation of only one directional

NSCT coefficient with the input image has slight improvement in the segmentation results

of the bone class. The increase of the dimensionality of the NSCT coefficients which are

concatenated with the input image leads to include more directional features; Yet, it has not

shown any improvement in the segmentation performance. The conservation of the raw NSCT

coefficients is able to improve the segmentation of the three brain classes by concatenating

these features with the resultant CNN’s features at the end of the network. The reduction of

the NSCT coefficients dimensionality by selecting only the coefficient with the highest entropy
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value decreases the segmentation performance. Overall, the concatenation of NSCT coefficients

at the end of the features extraction process generates the best segmentation results even with the

use of less coefficients. The inclusion of more NSCT coefficients and concatenating them with

CNN’s features without passing them through the convolutional layers is the winning approach

to improve the segmentation performance of the three brain classes: air, soft tissue, and bone.

By comparing the DSC of the different methods, it is noticeable that the performance of the

bone class is improved with a significant amount while the segmentation performance of soft

tissue and air classes is slightly improved.

Table 3.3: The evaluation metrics of the bone tissue segmentation using different mechanisms
of concatenating the NSCT directional features with the CNN’s features.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
+ 1 directional NSCT (input) 0.6905 0.5637 0.6207 0.4500
+ 1 directional NSCT (end) 0.6821 0.5717 0.6221 0.4515
+ 10 directional NSCT (input) 0.6910 0.5539 0.6149 0.4439
+ 10 directional NSCT (end) 0.6883 0.5962 0.6390 0.4695

Table 3.4: The evaluation metrics of the soft tissue segmentation using different mechanisms of
concatenating the NSCT directional features with the CNN’s features.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
+ 1 directional NSCT (input) 0.8936 0.9178 0.9056 0.8274
+ 1 directional NSCT (end) 0.8918 0.9194 0.9054 0.8271
+ 10 directional NSCT (input) 0.8906 0.9214 0.9058 0.8277
+ 10 directional NSCT (end) 0.8981 0.9171 0.9075 0.8306

Table 3.5: The evaluation metrics of the air tissue segmentation using different mechanisms of
concatenating the NSCT directional features with the CNN features.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
+ 1 directional NSCT (end) 0.9629 0.9614 0.9621 0.9270
+ 1 directional NSCT (input) 0.9600 0.9642 0.9621 0.9270
+ 10 directional NSCT (input) 0.9615 0.9622 0.9619 0.9265
+ 10 directional NSCT (end) 0.9615 0.9634 0.9625 0.9276
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The visual segmentation results of the brain classes using the different proposed mech-

anisms of combining NSCT coefficients with CNN’s features are depicted in Figure 3.22. The

observations from the three randomly selected slices reveal that the baseline model which is

represented in column c generates many false positive pixels of air class in the nasal cavities

area as well as misclassified air and soft tissue pixels. Moreover, the quality of the segmentation

of the bone in some challenging locations (e.g., nasal cavities area) is not good. However,

the segmentation of the bone in other parts of the head is promising. The slices in column d

show that the addition of only one NSCT coefficient with the input MR image removes some

discontinuities in the bone class compared to the baseline model. Additionally, the segmentation

of the air cavities pixels is enhanced. The increase of the dimensionality of the input by adding

ten NSCT coefficients does not shown any improvement in the segmentation where the false

positive pixels of bone in nasal cavities area are increased with the appearance of more bone

discontinuities. The results of concatenating the NSCT coefficients at the end of the network

with CNN’s features by adding one or ten NSCT coefficients show the expansion of false positive

pixels of air class in most of the selected slices. However, the slice in the first row (column e)

shows that the segmentation of some challenging areas in the head is improved. Overall, the

visual comparison indicates that the increase of the NSCT coefficients dimensionality which

in turns increases the input size is an efficient way to improve the segmentation results. The

capability of the model is improved when more directional features are added.

3.7.3 Evaluating theEffectiveness of addingHandcraftedDirectionalNSST

Coefficients

The impact of combining the NSST directional coefficients is firstly evaluated by concatenating

only one selected NSST coefficient per slice which has the highest entropy value with the input

MR images. The second experiment tends to study the impact of adding the raw directional

NSST coefficients without passing them through convolutional layers by concatenating the

handcrafted features at the end of the network and just before the sigmoid activation function.

The third experiment aims at increasing the number of the NSST coefficients to add more
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Figure 3.22: The segmentation results of some randomly selected slices from the testing datasets.
(a) MR images, (b) the CT images which used as ground truth, (c) the segmentation results with
the baseline model, (d) the segmentation results with the addition of one directional NSCT
coefficient with the input, (e) the segmentation results with the addition of ten directional NSCT
coefficients with the input, (f) the segmentation results with the addition of one directional
NSCT coefficient with CNN’s features at the end of the network, (g) the segmentation results
with the addition of ten directional NSCT coefficients with the CNN’s features at the end of the
network.

directional information which may help to improve the segmentation results. Similar to the

second experiment, the top ten selected NSST directional coefficients are concatenated with the

resultant features of the CNN at the end of the network.

Tables 3.6, 3.7, and 3.8 show the quantitative results of the segmentation of the

brain using different mechanisms of concatenating the NSST directional features with CNN

based features. According to the results, the aggregation of the directional NSST coefficients

is able to improve the segmentation results when it is concatenated at the end of the network.

The concatenation of these handcrafted features with the generated CNN based features at the

end of the network shows good improvements in terms of most of the evaluation metrics and

specially for the bone and soft tissue classes. For the air class, only the recall metric is slightly

improved. The increase of the dimensionality of the NSST coefficients which is experimented

by selecting the top ten directional coefficients and concatenating them at the end of the network

shows a slight improvement in the bone class. Thus, only one directional NSST coefficient is
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able to add sufficient directional information and enriches. However, the concatenation of one

directional NSST features with the input MR image does not have any impact due to injection

of few examples of a new type of data to the network. The increase of the dimensionality of the

network’s input by concatenating tenNSSTdirectional coefficientswith the input image increases

the capability of the network to learn enough features from directional NSST coefficients and

shows the best performance.

Table 3.6: The evaluation metrics of the bone tissue segmentation using different mechanisms
of concatenating the NSST directional features with the CNN features.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
+ 1 directional NSST (input) 0.6882 0.5582 0.6164 0.4456
+ 1 directional NSST (end) 0.7027 0.5690 0.6288 0.4586
+ 10 directional NSST (input) 0.7211 0.5595 0.6301 0.4600
+ 10 directional NSST (end) 0.6737 0.5779 0.6221 0.4515

Table 3.7: The evaluation metrics of the soft tissue segmentation using different mechanisms of
concatenating the NSST directional features with the CNN features.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
+ 1 directional NSST (input) 0.8908 0.9218 0.9060 0.8282
+ 1 directional NSST (end) 0.8947 0.9237 0.9090 0.8332
+ 10 directional NSST (input) 0.8934 0.9286 0.9107 0.8360
+ 10 directional NSST (end) 0.8933 0.9155 0.9043 0.8252

Table 3.8: The evaluation metrics of the air tissue segmentation using different mechanisms of
concatenating the NSST directional features with the CNN features.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
+ 1 directional NSST (input) 0.9628 0.9620 0.9624 0.9276
+ 1 directional NSST (end) 0.9614 0.9625 0.9620 0.9267
+ 10 directional NSST (input) 0.9631 0.9636 0.9633 0.9293
+ 10 directional NSST (end) 0.9615 0.9619 0.9617 0.9262

The visual segmentation results of some randomly selected slices of the testing datasets

are illustrated in Figure 3.23. The slices shown in column d are the output of the model which
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concatenates only one NSST directional coefficient with the input MR image are not revealing

any enhancement to the baseline model. For instance, the false negative pixels of the bone

are decreased which in turns decreases the model sensitivity. On the other hand, the addition

of more NSST coefficients enhances the segmentation of the challenging areas of the bone

class. The slices shown in column f and g are the output of the models which concatenates one

and ten NSST directional coefficients with the CNN’s features at the end of the network. The

results show some misclassified soft tissue pixels as air and other misclassified bone pixels as

soft tissue. Moreover, the discontinuities in the bone class are increased. By comparing the

slices in column f and g, it is clear that the segmentation of the model which uses ten NSST

directional coefficients is better than the model that takes only one NSST coefficient especially

in the nasal cavity area. The concatenation of the NSST coefficients with the CNN’s features as

raw features without passing them through the convolutional layers shows its ability to generate

more accurate results by using only one NSST coefficients rather then ten NSST coefficients.

One directional coefficient per slice is able to add the useful directional features to improve the

segmentation results.

3.7.4 Evaluating the Effectiveness of AddingHandcraftedLowPassNSCT

Coefficients

The decomposition of NSCT generates only one low pass (LP) sub-band which represents the

approximate information which can be used as an additional data input to the MR images. The

inclusion of low pass sub-band increases the size of the training datasets and tends to add more

visual representations. Moreover, the directional features of one or more NSCT coefficients are

concatenated with CNN’s features at the end of the network.

Tables 3.9, 3.10, and 3.11 show the evaluation of the brain segmentation using

both low pass and band pass NSCT sub-bands concatenated with the CNN’s features. The

results reveal that the addition of the low pass NSCT sub-band with only one directional NSCT

coefficient at the end of the network is able to attain better segmentation performance for the
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Figure 3.23: The segmentation results of some randomly selected slices from the testing datasets.
(a) the MR images, (b) the CT images which used as ground truth, (c) the segmentation results
with the baseline model, (d) the segmentation results with the addition of one directional NSST
coefficient with the input, (e) the segmentation results with the addition of ten directional NSST
coefficients with the input, (f) the segmentation results with the addition of one directional NSST
coefficient with CNN’s features at the end of the network, (g) the segmentation results with the
addition of ten directional NSST coefficients with the CNN’s features at the end of the network.

bone class.

Table 3.9: The evaluation metrics of the bone tissue segmentation using different mechanisms
of concatenating the NSCT low frequency coefficient with CNN based features.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
+ 1 LP NSCT (input) + 1 directional NSCT (end) 0.6931 0.5744 0.6282 0.4580
+ 1 LP NSCT (input) + 10 directional NSCT (end) 0.7072 0.5446 0.6153 0.4444

Table 3.10: The evaluation metrics of the soft tissue segmentation using different mechanisms
of concatenating the NSCT low frequency coefficient with CNN based features.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
+ 1 LP NSCT (input) + 1 directional NSCT (end) 0.8950 0.9194 0.9070 0.8299
+ 1 LP NSCT (input) + 10 directional NSCT (end) 0.8893 0.9274 0.9079 0.8314

The visual segmentation results of the brain using the proposedmechanisms are depicted
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Table 3.11: The evaluation metrics of the air tissue segmentation using different mechanisms of
concatenating the NSCT low frequency coefficient with CNN based features.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
+ 1 LP NSCT (input) + 1 directional NSCT (end) 0.9615 0.9639 0.9627 0.9281
+ 1 LP NSCT (input) + 10 directional NSCT (end) 0.9632 0.9619 0.9625 0.9278

in Figure 3.24. The figure shows that the addition of the low pass sub-band of NSCT is improving

slightly the segmentation performance of the bone class in the nasal cavities area. However, the

model that concatenates the low pass sub-band with the input along with ten directional NSCT

coefficients with CNN’s features is not improving the segmentation results of the bone class and

is even performing worst than the baseline model.

3.7.5 Evaluating the Effectiveness of Adding Handcrafted Low Pass NSST

Coefficients

Similar to the NSCT decomposition, the NSST also generates only one low pass sub-band.

Both NSCT and NSCT apply the Laplacian pyramid filter which generates an identical low pass

sub-band. Hence, the low pass sub-band of NSCT or NSST is concatenated to the input MR

image while the NSST directional coefficients are concatenated at the end of the network to

study the effect of combining low pass sub-band and NSST high pass sub-bands.

Tables 3.12, 3.13, and 3.14 show the evaluation measurements of the the three classes

segmentation by concatenating the low pass sub-band of the NSST with the input image and

the high pass sub-bands of NSST coefficients with CNN’s features. The results reveal that the

addition of the low pass sub-band with the inclusion of only one directional NSST sub-band is

enhancing the segmentation performance. The second model that takes ten NSST coefficient

while the low pass is concatenated with the input shows better performance compared to the

model that only concatenates ten NSST coefficients without low pass sub-band inclusion. The

inclusion of low pass coefficient of NSST is able to reduce the false positive of bone class and the

false negative of air class. Collectively, the model that takes less data and produces better results
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Figure 3.24: The segmentation results of some randomly selected slices from the testing datasets.
(a) the input MR images, (b) the CT images which used as ground truth, (c) the segmentation
results with the baseline model, (d) the segmentation results with the addition of the NSCT low
pass sub-band (input) and one directional NSCT coefficient (end), (e) the segmentation results
with the addition the NSCT low pass sub-band (input) and ten directional NSCT coefficients
(end).

is the model of choice. Hence, the inclusion of low pass sub-band with one NSST directional

coefficient is the winning approach. Moreover, the results prove that the model that uses the low

pass sub-band concatenated with the input MR image is able to extract useful features from two

inputs with different nature and resolutions. Therefore, this model is robust and reliable to be

used for other transfer learning applications.

The visual segmentation results of the brain using the proposedmechanisms are depicted

in Figure 3.25. The slices show that the inclusion of low pass sub-band of NSST coefficient is

improving the bone segmentation significantly compared to the baseline model segmentation.

It is also able to segment the bone in the challenging areas of the head such as the nasal cavity
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Table 3.12: The evaluation metrics of the bone segmentation using different mechanisms of
concatenating the NSST directional features with the CNN features.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
+1 LP NSST (input) + 1 directional NSST (end) 0.7029 0.5730 0.6313 0.4612
+1 LP NSST (input) +10 directional NSST (end) 0.7031 0.5703 0.6298 0.4596

Table 3.13: The evaluation metrics of the soft tissue segmentation using different mechanisms
of concatenating the NSST directional features with the convolutional network based features.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
+1 LP NSST (input) + 1 directional NSST (end) 0.8940 0.9235 0.9085 0.9085
+1 LP NSST (input) +10 directional NSST (end) 0.8946 0.9221 0.9081 0.8317

Table 3.14: The evaluation metrics of the air segmentation using different mechanisms of
concatenating the NSST directional features with the convolutional network based features.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
+1 LP NSST (input) + 1 directional NSST (end) 0.9633 0.9633 0.9633 0.9297
+1 LP NSST (input) +10 directional NSST (end) 0.9613 0.9635 0.9624 0.9276

and reduces the discontinuities. However, there are some misclassified soft tissue pixels as air.

The concatenation of the low pass sub-band with the input and adding one NSST directional

coefficient with the CNN’s features at the end of the network is producing more accurate

segmentation than using ten NSST directional coefficients since the bone discontinuities are

reduced as well as the false positive of the air and bone classes. Moreover, the model with ten

directional NSST coefficients is able to segment the challenging bone area in the head.

3.7.6 Evaluating theEffectiveness ofAddingCombinedHandcraftedNSCT

and NSST Coefficients

Aiming at achieving the full potential of directional handcrafted features and adding more

useful features to the CNN model, the coefficients of both NSCT and NSST are combined with
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Figure 3.25: The segmentation results of some randomly selected slices from the testing datasets.
(a) the MR images, (b) the CT images which used as ground truth, (c) the segmentation results
with the baseline model, (d) the segmentation results with the addition of the NSST low pass
sub-band (input) and one directional NSST coefficient (end), (e) the segmentation results with
the addition the NSST low pass sub-band (input) and ten directional NSST coefficients (end).

different designs. Firstly, only one directional coefficient with the highest entropy value of each

transform is selected and concatenated with the CNN’s features. Secondly, the dimensionality

of the directional features is increased by selecting the top ten directional coefficients of both

transforms. Additionally, the low pass sub-band of NSST is concatenated with the input MR

image where the directional coefficients of both NSCT and NSST are combined with CNN’s

features at the end of the network.

The quantitative evaluation of the conducted experiments per brain tissue class are

shown in Tables 3.15, 3.16, and 3.17. The results show that the combination of only one di-

rectional coefficient of each transform is not improving the segmentation accuracy significantly.

90



For instance, it is slightly improving the soft tissue and air classes as well as reducing the false

positive of the bone class. Moreover, the results reveal that increasing the dimensionality of

the directional coefficients of both transforms is improving the segmentation results by com-

paring the DSC of the three classes. This combination is outperforming all other combination

mechanisms and shows that adding more directional features using different multiresolution

transforms is adding value to the segmentation model. However, the results of adding the low

pass sub-band with the input image while concatenating one or many directional NSCT/NSST

coefficients with CNN’s features are not revealing any significant segmentation improvement.

Table 3.15: The evaluation metrics of the bone segmentation results using different mechanisms
of concatenating the NSCT and NSST coefficients with the CNN features.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
+ 1 directional NSCT and 1 directional NSST (end) 0.7218 0.5485 0.6233 0.4528
+ 10 directional NSCT and 10 directional NSST (end) 0.7113 0.5831 0.6416 0.4723
+ 1 NSST LP (input) and 1 directional NSCT and NSST
(end)

0.6941 0.5751 0.6290 0.4588

+ 1 NSST LP (input) and 10 directional NSCT and NSST
(end)

0.6980 0.5645 0.6242 0.4537

Table 3.16: The evaluation metrics of the soft tissue segmentation results using different mech-
anisms of concatenating the NSCT and NSST coefficients with the CNN features.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
+ 1 directional NSCT and 1 directional NSST (end) 0.8905 0.9296 0.9096 0.8342
+ 10 directional NSCT and 10 directional NSST (end) 0.8943 0.9273 0.9105 0.8357
+ 1 NSST LP (input) and 1 directional NSCT and NSST
(end)

0.8940 0.9219 0.9078 0.8311

+ 1 NSST LP (input) and 10 directional NSCT and NSST
(end)

0.8920 0.9241 0.9078 0.8311

Tables 3.18, 3.19, 3.20, and Figure 3.26 show the evaluation metrics per patient of the

testing datasets by using the best performing model which combines ten directional coefficients

of NSCT and ten directional coefficients of NSST sub-bands with CNN’s features at the end of

the network.
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Table 3.17: The evaluation metrics of the air segmentation results using different mechanisms
of concatenating the NSCT and NSST coefficients with the CNN features.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
+ 1 directional NSCT and 1 directional NSST (end) 0.9632 0.9624 0.9628 0.9283
+ 10 directional NSCT and 10 directional NSST (end) 0.9647 0.9616 0.9631 0.9289
+ 1 NSST LP (input) and 1 directional NSCT and NSST
(end)

0.9629 0.9625 0.9627 0.9281

+ 1 NSST LP (input) and 10 directional NSCT and NSST
(end)

0.9636 0.9622 0.9629 0.9285

Table 3.18: The evaluation metrics of the bone class segmentation of each patient in the testing
dataset using the combination of ten directional NSCT and ten directional NSST coefficients
with CNN’s features at the end of the network.

Bone tissue
Patient PRE REC DSC JSC
Patient 1 0.8129 0.5180 0.6328 0.4628
Patient 2 0.8478 0.6804 0.7549 0.6063
Patient 3 0.6361 0.3906 0.4840 0.3192
Patient 4 0.6816 0.3604 0.4715 0.3084
Patient 5 0.8975 0.7856 0.8378 0.7209
Patient 6 0.4683 0.5309 0.4976 0.3312
Patient 7 0.1960 0.0909 0.1242 0.0662
Patient 8 0.5477 0.7918 0.6475 0.4788
Patient 9 0.9123 0.8238 0.8658 0.7633
Patient 10 0.6400 0.4761 0.5460 0.3755

Table 3.19: The evaluation metrics of the soft tissue class segmentation of each patient in
the testing dataset using the combination of ten directional NSCT and ten directional NSST
coefficients with CNN’s features at the end of the network.

Soft tissue
Patient PRE REC DSC JSC
Patient 1 0.9197 0.9586 0.9387 0.8845
Patient 2 0.9269 0.9424 0.9346 0.8773
Patient 3 0.9079 0.9255 0.9166 0.8460
Patient 4 0.8585 0.9373 0.8962 0.8119
Patient 5 0.9416 0.9574 0.9494 0.9037
Patient 6 0.9200 0.8743 0.8965 0.8125
Patient 7 0.9232 0.9185 0.9208 0.8532
Patient 8 0.9588 0.8796 0.9175 0.8476
Patient 9 0.9581 0.9727 0.9653 0.9329
Patient 10 0.6749 0.9037 0.7727 0.6296
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Table 3.20: The evaluation metrics of the air class segmentation of each patient in the testing
dataset using the combination of ten directional NSCT and ten directional NSST coefficients
with CNN’s features at the end of the network.

Air tissue
Patient PRE REC DSC JSC
Patient 1 0.9716 0.9896 0.9805 0.9617
Patient 2 0.9583 0.9862 0.9720 0.9456
Patient 3 0.9507 0.9707 0.9606 0.9242
Patient 4 0.9731 0.9805 0.9768 0.9547
Patient 5 0.9814 0.9914 0.9864 0.9731
Patient 6 0.9683 0.9909 0.9794 0.9597
Patient 7 0.9543 0.9896 0.9716 0.9448
Patient 8 0.9815 0.9922 0.9868 0.9740
Patient 9 0.9848 0.9889 0.9869 0.9741
Patient 10 0.9136 0.7516 0.8247 0.7017

Figure 3.26: The box plots of the evaluation metrics of the three tissue classes of the testing
datasets using the method which uses the combined ten directional NSCT and NSST coefficients
concatenated with CNN features at the end of the network.

The segmentation results of the proposed mechanisms are depicted in Figure 3.27

where the slices that are located at columns d and e show that the combination of two different

93



directional handcrafted features is improving the segmentation performance compared to the

baseline model in column c. On the other hand, the inclusion of one directional coefficient of

each transform helps to identify the soft tissue class in very challenging areas in the head. It

also decreases the false positive of air class which increases the precision of air class inside

the head contour. The increase of the number of directional features reduces the false positive

of air and bone classes although some misclassified bone pixels as soft tissue pixels are still

exist. Column f depicts that the addition of low pass sub-band with the directional coefficients

is improving the bone class segmentation while decreasing the sensitivity and the precision of

soft tissue class. The results of the dimensionality increase of the directional coefficients which

are shown in column g indicate the appearance of more discontinuities in bone class which do

not appear in the slice of column f. Moreover, the false negative pixels of soft tissue class are

increased. Overall, the performance of adding the low pass sub-band with one or ten directional

coefficients is not adding a substantial improvement in the segmentation performance.

3.7.7 Validation with Other Methods

The proposed methods are compared with other segmentation studies that applied CNN to

segment T1-w MR images for PET attenuation correction [103, 104] . These methods are

re-implemented then trained and tested using the existing datasets to segment the brain into

three tissue classes: air, soft tissue, and bone.

The evaluation metrics of the three brain classes segmentation of the three proposed

methods are compared with other studies as depicted in Tables 3.21, 3.22, and 3.23. The results

show that the proposed methods which introduce the concatenation of different features from

NSCT and NSST coefficients with CNN’s features using different aggregation mechanisms are

enhancing the segmentation performance of the three brain classes. The baseline model which

represents the CNN without the addition of any handcrafted features is outperforming the other

proposed methods in the literature. Liu et al. [103] have applied the Segnet architecture to

perform the MR images segmentation for PET attenuation correction and Jang et al. [104] have

applied the same pretrained model as [103] using UTE MR images by applying the transfer
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Figure 3.27: The segmentation results of some randomly selected slices from the testing datasets.
(a) the MR images, (b) the CT images which used as ground truth, (c) the segmentation results
with the baseline model, (d) the segmentation results by combining one directional NSCT and
NSST coefficients, (e) the segmentation results by combining ten directional NSCT and NSST
coefficients, (f) the segmentation results by adding the NSST low pass sub-band with the input
image and combining one directional NSCT and NSST coefficients with CNN’s features at the
end of the network, (g) the segmentation results by adding the NSST low pass sub-band with the
input image and combining ten directional NSCT and NSST coefficients with CNN’s features
at the end of the network.

learning technique in addition to conditional random field as post processing technique. The

model which combines both directional features of NSCT and NSST shows its superiority in

performing the segmentation of the bone and soft tissue classes.

Table 3.21: The comparison of the segmentation results of the bone class using the optimal
methods with other techniques in the literature.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
Baseline + 1 LPNSST (input) + 1 directional NSST
(end)

0.7029 0.5730 0.6313 0.4612

Baseline +10 directional NSCT (end) 0.6883 0.5962 0.6390 0.4695
Baseline + 10 directional NSCT and NSST (end) 0.7113 0.5831 0.6416 0.4723
Segnet[103] 0.6278 0.3649 0.4616 0.3000
Segnet + CRF [104] 0.6278 0.3649 0.4616 0.3000

The segmentation results of some randomly selected slices are illustrated in Figure
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Table 3.22: The comparison of the segmentation results of the soft tissue class using the optimal
methods with other techniques in the literature.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
Baseline + 1 LPNSST (input) + 1 directional NSST
(end)

0.8940 0.9235 0.9085 0.9085

Baseline +10 directional NSCT (end) 0.8981 0.9171 0.9075 0.8306
Baseline + 10 directional NSCT and NSST (end) 0.8943 0.9273 0.9105 0.8357
Segnet[103] 0.8696 0.8810 0.8753 0.7783
Segnet + CRF [104] 0.8696 0.8810 0.8753 0.7783

Table 3.23: The comparison of the segmentation results of the air class using the optimal
methods with other techniques in the literature.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
Baseline + 1 LPNSST (input) + 1 directional NSST
(end)

0.9633 0.9633 0.9633 0.9297

Baseline +10 directional NSCT (end) 0.9615 0.9634 0.9625 0.9276
Baseline + 10 directional NSCT and NSST (end) 0.9647 0.9616 0.9631 0.9289
Segnet[103] 0.9083 0.9510 0.9291 0.8677
Segnet + CRF [104] 0.9083 0.9510 0.9291 0.8677

3.28. The visual observations indicate that the models that include ten directional NSCT and

NSST coefficients for segmenting the brain are outperforming the other proposed methods in

the literature. The approach of [103] which is shown in column g is not able to identify the bone

and air classes in challenging areas. Moreover, the precision and the sensitivity of the bone and

air classes are considerably lower than the proposed baseline model. The approach of [104]

is also not showing any improvement in the segmentation results since the conditional random

field which iis used for post processing is not enhancing the segmentation performance.

The main differences of the three proposed methods (shown in columns d - f) are

as follows. The addition of the NSCT coefficients with CNN’s features is able to distinguish

between the soft tissue and bone classes although more cases of false positive of air class have

appeared in different locations. Besides that, the concatenation of NSST coefficients increases

the sensitivity of the soft tissue class and improves the performance of the bone segmentation.

Moreover, the combination of both transforms coefficients with the CNN’s features increases
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the competency of the model to segment the air class. However, there are more discontinuities

that appear in the bone class and more misclassified bone pixels as soft tissue.

Figure 3.28: The segmentation results of some randomly selected slices from the testing datasets.

(a) the input MR images, (b) the CT images which used as ground truth, (c) the segmentation

results of the baseline model, (d) the segmentation results with ten directional NSCT coeffi-

cients concatenated with CNN’s features (end), (e) the segmentation results with the addition

of the NSST low pass sub-band (input) and one directional NSST coefficients (end), (f) the

segmentation results by combining ten directional NSCT and NSST coefficients (end), (g) the

segmentation results of the model proposed by [103], (h) the segmentation results of the model

proposed by [104].

3.8 Summary and Limitations

The design of the CNN’s architecture has been studied in this chapter by exploring the different

network components. Several experiments have been conducted to select the best design of the

network which improves the brain segmentation into three tissue classes: air, bone, and soft

tissue.
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This chapter has also proposed the aggregation of handcrafted features using multires-

olution analysis techniques such as NSCT and NSST transforms with the CNN based features to

enhance the brain T1-w MR images segmentation. The handcrafted features consist of the low

pass sub-band which is concatenated with the input MR image and the directional coefficients

of different levels which are concatenated with CNN’s features at the end of the network.

A detailed objective evaluation using the brain MR images of ten patients has been

carried out. Various experiments have been performed to study the impact of introducing the

multiresolution handcrafted features with CNN’s features. The addition of these features sepa-

rately or combined show their efficiency in enhancing the segmentation results. The approach

of adding NSCT directional features with CNN’s features has shown the potential to improve

the segmentation results when using ten directional coefficients. The inclusion of the low pass

sub-band with the input MR image enhances the segmentation results but shows lower per-

formance compared to the model that adds ten directional NSCT coefficients. One reason of

this is the need to design a deeper model that is able to handle the low pass coefficient of the

NSCT transform and extract the dominant features. The addition of only raw directional NSCT

features without the need to increase the dimensionality of the input MR images with the low

pass sub-band is the model of choice as it requires less complicated modelling and processing

while improving the segmentation performance. On the other hand, the model that concatenates

the low pass sub-band with the input image and one directional NSST coefficients has shown

a good segmentation performance. The Shear information of one NSST directional coefficient

are enough to add the directionality features to the model. Moreover, the combined NSCT and

NSST coefficients has shown even better performance where different directional information

are combined with CNN’s features.

One limitation of these proposed methods is the lack of experimenting the ideal de-

composition levels of the multiresolution transforms. The more decomposition levels the more

useful directional features are produced. However, there is a trade off between the model com-

plexity and the generation of useful directional coefficients. In this work, the NSST and NSCT

coefficients are produced by decomposing the system into a randomly selected number of levels
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(four levels). The decomposition levels value should be carefully chosen empirically to select

the optimal number which generates useful features with a reasonable amount of complexity

and computation time.

Another limitation of this work is the complexity component that has been added to

the proposed methods by endeavouring to find and select useful handcrafted features. The

cumbersome tasks of features extraction and selection which have been omitted from the CNN’s

approach are introducing overheads in the proposed mechanisms. This limitation will be ad-

dressed in the next chapter by proposing a newmethodwhich aims at enhancing the segmentation

performance without relying on handcrafted features.
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Chapter 4

Attention based 3D Deep Convolutional

Neural Network for MR Images

Segmentation

4.1 Introduction

This chapter is proposing a novel excitation-based CNN to recalibrate the network features

adaptively and improve the segmentation of the three brain tissue classes: bone, soft tissue, and

air. This approach employs two existing mechanisms of features excitation namely: (1) spatial

squeeze and channel excitation (cSE) and (2) channel squeeze and spatial excitation (sSE). The

main contributions of this chapter are:

• Aggregating the two excitation mechanisms sequentially and integrating them seamlessly

into the 3D convolutional encoder decoder network. The combination of the two excitation

blocks sequentially intends to improve the segmentation performance and reduce themodel

complexity.

• Designing an ensemble of three SE based CNNs to boost the bone segmentation results

and increase the model reliability.
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Using clinical MR and CT images of fifty patients, this approach is evaluated through a compar-

ison with computed tomography (CT) images as ground truth and validated with other methods

in the literature that applied different deep CNN architectures to perform segmentation for MR

based attenuation correction. The segmentation performance of the three brain classes is calcu-

lated objectively using precision, recall, DSC, and JSC as evaluation metrices. Moreover, the

resultant segmented slices of some randomly selected patients from the testing data are evaluated

subjectively.

This chapter is structured as follows: The applied excitation based CNN with the

experimental setup, conducted experiments, and obtained results are detailed in section 4.2.

The ensemble of CNNs approach with the conducted experiments and the obtained results are

reported in section 4.3. Finally, the summary with the limitations are given in section 4.4.

4.2 Features Recalibration Mechanism

The down-sampling operation of the CNN using the pooling layers reduces the features map size,

yet causes loss of useful features by taking the maximum or average values of each patch of the

features map. One approach to overcome this pitfall is the features recalibration mechanism that

employs global averaging operation to capture the most distinguishable features and suppress

the less distinguishable ones. This recalibration technique constitutes of a generic and resilience

component that combines few blocks which can be integrated within any CNN architecture.

The recalibration mechanism is the resultant of squeezing the features along the spatial or the

channel domain then exciting the same set of features spatially or channel wise. This technique

identifies a relationship between the number of channels, the spatial locations, and the features

maps.
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4.2.1 Channel Excitation Mechanism

The channel excitation depends on the channels interdependencies by squeezing the features

maps along the spatial domain then exciting the same set of features along the channel domain.

The squeeze and excitation process aims to recalibrate and reweight the features. This type of

recalibration is called spatial squeeze and channel excitation (cSE). It squeezes the global spatial

features into a channel descriptor. It is more applied in classification applications as it enables

the extraction of global context information and improves the channel interdependencies [155].

Thismechanism is applied by utilising the global average pooling operation to shrink the

features maps spatially followed by two fully connected layers to reduce the model complexity.

Aftwerwards, the ReLU activation function is added to initiate some nonlinearity and introduce

generalisation. The last component is a sigmoid activation function which is used to rescale the

features to the rang [0,1]. The output feature vector is then multiplied by the original features

maps for excitement and recalibration. Considering a feature map U with c channels:

U = [u1,u2, ...,uc ], (4.1)

the spatial squeezing is calculated by vector z with k elements:

zk = 1

H ×W

H∑
i=1

W∑
j=1

uk (i , j ), (4.2)

where H andW are the height and width of the feature map. By adding the two fully connected

layers and the activation functions, z transformed to:

sk =σ(W2(δ(W1zk ))) (4.3)

where σ and δ refer to sigmoid and ReLU activation functions respectively, W1 ∈ R
c

r xc

and W2 ∈ R
c
r . The parameter r is the reduction ratio that compresses the c channels to c

r

channels that can be selected empirically, W1 and W2 are the weights of the first and second

fully connected layers. The vector s is multiplied by the features map U to excite and recalibrate
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the features and produce the final vector:

XcSE = [u1.s1,u2.s2, ...,uc .sc ] (4.4)

The architecture of this block is illustrated in Figure 4.1.
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Figure 4.1: The architecture of the spatial squeeze and channel excitation block (cSE).

4.2.2 Spatial Excitation Mechanism

The spatial excitation (sSE) mechanism squeezes the features maps on the channel domain

to produce a global scalar value which represents the spatial information which excites the

features maps spatially. This approach preserves the global semantic information and enables

the representation capabilities of feature maps. It is a useful mechanism for image segmentation

[156] as it enhances the salient spatial locations. The architecture of this mechanism is shown

in Figure 4.2 where the spatial squeeze part is represented by the convolution operation using a

convolutional layer with size 1 × 1 × 1 as follows:

q = w ×u(i , j ) (4.5)

where w is the weight and u is a single spatial location (i,j) at the features map. The output

vector q combines all channels for a spatial location then passes through the sigmoid activation

function to rescale the features in the range [0,1]. The resultant is multiplied by the feature maps
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u to excite and recalibrate the features. The spatially excited feature map is calculated as:

XsSE = [σ(q1).u1,σ(q2).u2, ...,σ(q(H ,W )).u(H ,W )] (4.6)

where H and W are the height and width of the feature map.
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Figure 4.2: The architecture of the channel squeeze and spatial excitation block (sSE).

4.2.3 Combined Spatial and Channel Excitation Mechanisms

The exploitation of the two excitation mechanisms channel and spatial wise (scSE) is achieved

by combining them within the CNN architecture. This combination helps to achieve the full

potential of recalibrating the features and capturing the dominant ones. The combination has

two different configurations: parallel combination and sequential combination.

A Parallel Combination

The parallel combination has been proposed by [152] where the 2D input feature maps pass

through the cSE and sSE blocks concurrently. The outputs of both blocks are aggregated using

different methods such as max-out, addition, multiplication, and concatenation. This parallel

combination is applied herein on the 3D domain using the concatenation aggregation method

which provides the best segmentation performance. Figure 4.3 depicts the architecture of the

parallel combination.
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Figure 4.3: The architecture of the parallel combination of channel and spatial excitation blocks.

B Sequential Combination

The sequential combination of the cSE and sSE blocks is introduced in this chapter to decrease

the computation complexity and time. Additionally, the rationale behind this combination

structure is to create an emphasis on the recalibration mechanism by passing only the excited

useful features to the next excitation mechanism. The order of the blocks matters where each

SE block receives different excited features either channel or spatial wise. The order of placing

the cSE and sSE blocks is tested experimentally. Figure 4.4 illustrates the architecture of the

sequential combination of SE blocks which starts with channel then spatial excitation. Figure

4.5 shows the excitation based network architecture where one SE block is placed after each

three convolutional layers.
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Figure 4.4: The architecture of the sequential combination of channel then spatial excitation
blocks (cSE then sSE).
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Figure 4.5: The architecture of the convolutional encoder decoder networkwithmultiple squeeze
and excitation blocks.

4.2.4 Experimental Setup

A Model Input and Training Parameters

The volume size of each patient is 256 × 256 × 48 where 48 is the number of selected slices per

patient. By dividing each patient’s volume into overlapped patches to minimize the input size

and increase the size of the training datasets, the network input size is 128 × 128 × 48.

The CNN is trained from scratch using thirty patients while ten patients are used for

validation, and other ten patients are reserved for testing. The layers weights are initialized

using Glorot Uniform initialisation scheme and updated using Adam optimizer with a moving

learning rate that starts with 0.0001 then reduces by a factor of 0.75 on plateau mode (i.e., when

the training accuracy is not increasing for five continuous epochs). The batch size is two and

the maximum number of epochs is two hundred; Yet the training can be stopped before reaching

100 epochs when the validation accuracy stops increasing. The experiments are conducted on

Tesla V100 GPU with 16 GB RAM.
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B Evaluation Metrics and Validation Methods

The segmentation results are evaluated using a set of metrics by comparing the segmented MR

image with the ground truth which are generated from CT images. The evaluation metrics are:

precision, recall, DSC, and JSC. The definition of each metric is represented in Chapter 3. The

proposed methods are compared with other segmentation studies that applied different CNN’s

architecture using T1-w MR images for PET attenuation correction application. The validation

methods are also described in Chapter 3.

4.2.5 Experimental Results

A Segmentation Results

Several experiments are conducted to study the impact of each type of the excitation blocks using

the same CNN architecture. The proposed methods are channel excitation based CNN, spatial

excitation based CNN, concurrent channel and spatial excitation based CNN, channel excitation

followed by spatial excitation based CNN, and spatial excitation followed by channel excitation

based CNN. The segmentation results for bone, soft tissue, and air classes of each method are

evaluated for all testing datasets as shown in in Tables 4.1, 4.2, and 4.3, respectively. The

segmentation results of the optimal approach (cSE then sSE (sequential)) for each patient are

depicted in Tables 4.4, 4.5, and 4.6 for bone, soft tissue, and air classes, respectively and their

corresponding box plots are illustrated in Figure 4.6.

The results reveal that the addition of any type of the SE block to the CNN architecture

improves the segmentation results and especially the bone class segmentation. The spatial

excitation outperforms the channel excitation as it enables the global contextual information on

the spatial domain. By observing the segmentation results of bone and soft tissue classes, it is

clear the two types of the sequential combination (cSE - sSE and sSE - cSE) outperform the

parallel combination. However, the segmentation of the air class using the parallel combination

of SE blocks outperforms the other proposed methods. All networks are trained with the same
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hyperparameters, yet the only hyperparameter that has to be changed while training the parallel

combination is the batch size that is set to one to fit the GPU memory size. The batch size of

training other networks is two.

Another important observation is that positioning the cSE block before the sSE block

in the sequential configuration shows superiority in the segmentation results. Starting with

recalibrating the features channel wise helps to emphasise the most useful inter-channel features

that will be excited spatially in the next stage to identify the spatial locations of the most useful

channels.

The box plots of different evaluation metrics which are shown in Figure 4.6 indicate a

high variability on the segmentation results of the bone class with high standard deviation range.

The reason of this variability among the patients is the nonhomogeneity of the datasets which

consist of patients with different neurological diseases. In fact, different neurological diseases

can affect the bone health differently [275]. Hence, the segmentation of each neurological

condition should be addressed separately where a model should be trained and tested with

datasets of patients who were diagnosed with the same disease. For instance, the DSC value of

the bone class of patient 7 in Table 4.4 is very low (DSC = 0.0669) compared to patient 9 (DSC

= 0.8789). The proposed model has the capability to segment the bone class accurately for some

patients while it fails with others. The lack of the detailed information about the clinical disease

of each patient prevents us from making a thorough discussion about the high variability of the

bone class.

Table 4.1: The evaluation metrics of the bone class segmentation of the testing datasets using
different configurations of SE blocks.

Bone tissue
Model PRE REC DSC JSC
Baseline 0.6890 0.5601 0.6179 0.4471
+ cSE 0.7066 0.5689 0.6303 0.4601
+ sSE 0.7054 0.5886 0.6417 0.4724
+ cSE and sSE (parallel) 0.6769 0.5500 0.6069 0.4357
+ cSE then sSE (sequential) 0.7261 0.5857 0.6484 0.4797
+ sSE then cSE (sequential) 0.7010 0.5678 0.6274 0.4571

The proposed method is compared with other segmentation approaches in the literature
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Table 4.2: The evaluation metrics of the soft tissue class segmentation of the testing datasets
using different configurations of SE blocks.

Soft tissue
Model PRE REC DSC JSC
Baseline 0.8913 0.9232 0.9070 0.8298
+ cSE 0.8953 0.9230 0.9090 0.8331
+ sSE 0.8944 0.9247 0.9093 0.8337
+ cSE and sSE (parallel) 0.8987 0.9187 0.9086 0.8325
+ cSE then sSE (sequential) 0.8962 0.9290 0.9123 0.8388
+ sSE then cSE (sequential) 0.8910 0.9247 0.9076 0.8308

Table 4.3: The evaluation metrics of the air class segmentation of the testing datasets using
different configurations of SE blocks.

Air tissue
Model PRE REC DSC JSC
Baseline 0.9632 0.9614 0.9623 0.9274
+ cSE 0.9590 0.9619 0.9604 0.9239
+ sSE 0.9650 0.9619 0.9635 0.9296
+ cSE and sSE (parallel) 0.9599 0.9682 0.9640 0.9306
+ cSE then sSE (sequential) 0.9641 0.9626 0.9633 0.9293
+ sSE then cSE (sequential) 0.9638 0.9609 0.9624 0.9274

Table 4.4: The evaluation metrics of the bone tissue segmentation of each patient in the testing
datasets using the sequential configuration of cSE then sSE blocks.

Bone tissue
Patients PRE REC DSC JSC
Patient 1 0.8063 0.6439 0.7160 0.5576
Patient 2 0.8471 0.6916 0.7615 0.6149
Patient 3 0.6570 0.4007 0.4978 0.3314
Patient 4 0.6995 0.2849 0.4049 0.2538
Patient 5 0.8950 0.7765 0.8315 0.7116
Patient 6 0.5155 0.5087 0.5121 0.3442
Patient 7 0.1090 0.0483 0.0669 0.0346
Patient 8 0.5572 0.7028 0.6216 0.4509
Patient 9 0.8993 0.8593 0.8789 0.7839
Patient 10 0.6290 0.5036 0.5594 0.3883

that applied deep CNN to segment MR images for PET attenuation correction [103, 104]. These

methods are re-implemented then trained and tested using the brain MR and CT images. The

results of these methods are compared with the optimal proposed approach as shown in Table

4.7, 4.8, and 4.9 for bone, soft tissue, and air classes, respectively.

109



Table 4.5: The evaluation metrics of the soft tissue segmentation of each patient in the testing
datasets using the sequential configuration of cSE then sSE blocks.

Soft tissue
Patients PRE REC DSC JSC
Patient 1 0.9397 0.9530 0.9463 0.8981
Patient 2 0.9278 0.9425 0.9351 0.8781
Patient 3 0.9136 0.9282 0.9208 0.8532
Patient 4 0.8417 0.9532 0.8940 0.8083
Patient 5 0.9400 0.9578 0.9488 0.9026
Patient 6 0.9226 0.8920 0.9070 0.8299
Patient 7 0.9235 0.9070 0.9151 0.8436
Patient 8 0.9521 0.8910 0.9206 0.8528
Patient 9 0.9680 0.9671 0.9676 0.9372
Patient 10 0.6766 0.8979 0.7717 0.6282

Table 4.6: The evaluation metrics of the air tissue segmentation of each patient in the testing
datasets using the sequential configuration of cSE then sSE blocks.

Air tissue
Patients PRE REC DSC JSC
Patient 1 0.9727 0.9908 0.9817 0.9640
Patient 2 0.9593 0.9849 0.9719 0.9454
Patient 3 0.9531 0.9762 0.9645 0.9315
Patient 4 0.9801 0.9780 0.9790 0.9589
Patient 5 0.9808 0.9908 0.9858 0.9720
Patient 6 0.9651 0.9917 0.9782 0.9574
Patient 7 0.9483 0.9947 0.9709 0.9435
Patient 8 0.9753 0.9915 0.9833 0.9672
Patient 9 0.9846 0.9923 0.9884 0.9771
Patient 10 0.9133 0.7508 0.8241 0.7008

Table 4.7: The comparison of the bone segmentation results using the optimal proposed method
with other techniques reported in the literature using four different evaluation metrics: precision,
recall, DSC, and JSC.

Bone tissue
Model PRE REC DSC JSC
SegNet[103] 0.6278 0.3649 0.4616 0.3000
SegNet + CRF[104] 0.6278 0.3649 0.4616 0.3000
Proposed method 0.7261 0.5857 0.6484 0.4797

The segmentation results of some randomly selected slices from the testing datasets

are shown in Figure 4.7. The first column represents the input MR images, the second column

shows their corresponding CT images which used as ground truth, and the last three columns
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Figure 4.6: The box plot of the evaluation metrics of the three tissue classes of the testing
datasets using the sequential configuration of cSE then sSE blocks.

Table 4.8: The comparison of the soft tissue segmentation results using the optimal proposed
method with other techniques reported in the literature using four different evaluation metrics:
precision, recall, DSC, and JSC.

Soft tissue
Model PRE REC DSC JSC
SegNet[103] 0.8696 0.8810 0.8753 0.7783
SegNet + CRF[104] 0.8696 0.8810 0.8753 0.7783
Proposed method 0.8962 0.9290 0.9123 0.8388

Table 4.9: The comparison of the air segmentation results using the optimal proposed method
with other techniques reported in the literature using four different evaluation metrics: precision,
recall, DSC, and JSC.

Air tissue
Model PRE REC DSC JSC
SegNet[103] 0.9083 0.9510 0.9291 0.8677
SegNet + CRF[104] 0.9083 0.9510 0.9291 0.8677
Proposed method 0.9641 0.9626 0.9633 0.9293
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illustrate the segmentation results using the proposed approach (sequential cSE - sSE) , Segnet

network [103], and Segnet with CRF technique [104].

Figure 4.7: Some slices of the testing data. (a) MR image, (b) CT or ground truth, (c) segmented
MR image with the proposed deep network, (d) Segmented MR image generated by [103], (e)
segmented MR generated by [104]. The colors in columns b - e refer to the following classes:
green is the air, yellow is the soft tissue, and the purple is the bone.

B Position of SE Block

The placement of the squeeze and excitation block within the CNN is studied by experimenting

different configurations shown in Figure 4.8 to find the optimal place as . The comparison

between the different network architectures is carried out by calculating the DSC. According to

the comparison results which are recorded in Table 4.10, the chosen architecture consists of one

sequential combination of the spatial and channel excitation block after each three convolutional

layers at the encoder part, the bottleneck part, and the decoder part. The enhancement in the

bone segmentation is more significant compared to soft tissue and air classes with percentage

increase of 4.93%, 0.75%, and 0.17% for bone, soft tissue, and air classes, respectively.
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Figure 4.8: Different network architectures (a-f) of placing the SE block at different locations.

Table 4.10: The DSC of the three tissue classes which are segmented using different models
with different positions of the csSE block.

Model Bone Soft tissue Air
without csSE block 0.6179 0.9070 0.9623
csSE at the encoder 0.6258 0.9078 0.9629
csSE at the encoder + bottleneck layer 0.6393 0.9089 0.9624
csSE at the decoder 0.6273 0.9074 0.9621
csSE at the encoder + decoder 0.6393 0.9055 0.9624
csSE at the encoder + decoder + bottleneck layer 0.6484 0.9123 0.9633
csSE at the encoder + decoder + bottleneck layer +
classifier layer

0.6429 0.9087 0.9616

C Combining Mechanism

The comparison between the sequential and the parallel combination of channel and spatial

excitation components is conducted by measuring the DSC of each configuration. The main

drawback of the parallel combination is the large number of parameters which requires a large

GPU memory and longer computation time. Although the memory size of the utilised GPU in

this study is 16 GB, the parameters number of CNN with parallel combination of SE blocks
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could not be handled by the available memory. Due to this limitation, two different architectures

are proposed to minimize the number of parameters that can be trained with the available GPU

capacity. The first experiment is conducted by placing the cSE and sSE blocks on parallel into a

network with only ten convolutional layers and two downsampling layers using the batch size of

two. The second experiment is conducted by placing the cSE and sSE blocks on parallel using

the baseline architecture illustrated in Figure 5.1 with the decrease of the batch size to one. The

segmentation results are compared using the DSC as shown in Table 4.11.

Table 4.11: The comparison of the segmentation results (DSC) of the three tissue classes which
are generated by applying different combination mechanisms of the sSE and cSE blocks.

Combination
mechanism

Convolution Pooling Batch
size

DSC
(bone)

DSC (soft
tissue)

DSC (air)

Parallel 21 3 1 0.6069 0.9086 0.9640
Sequential 21 3 1 0.6236 0.9094 0.9660
Parallel 10 2 2 0.6368 0.9104 0.9635
Sequential 10 2 2 0.6402 0.9111 0.9634

The sequential combination of cSE then sSE blocks not only reduces the number of

training parameters but also shows superiority of the segmentation results in terms of DSC

by testing two different CNN architectures. The DSC of the bone class shows substantial

improvement compared to other classes which reveal slight enhancement. The sequential

combination mechanism is capable of recalibrating the features in channel wise then spatial

wise significantly by helping the network to recalibrate the useful spatial regions of the most

dominant channels.

D Relationship Between SE block and Convolution Layers

The design of placing the SE block after n convolutional layers is studied and evaluated by

conducting several experiments. In theory, the addition of one SE block after each convolutional

layer is the optimal design especially with shallow convolutional networks that have few trainable

parameters. However, due to GPU memory limitation, it is not possible to add one SE block

after each convolutional layer in deep networks such as the proposed network which consists of

twenty one convolutional layers. The trade off between the number of convolutional layers and
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the number of SE blocks leads to include one SE after each three convolutional layers which

generates experimentally the optimal results. The DSC values of the segmentation results using

different network designs are shown in Table 4.12.

The inclusion of more SE blocks can substitute the addition of more convolutional

layers to the model. The experiments show that using less convolutional layers with the addition

of one SE block after each convolutional layer is able to generate better features rather than using

more convolutional layers with less SE blocks.

Table 4.12: The study of the relation between the number of SE blocks and the convolutional
layers by comparing the DSC of each tissue class.

SE type Conv SE DSC (bone) DSC (soft tissue) DSC (air)
cSE 7 7 0.6249 0.9097 0.9610
cSE 14 7 0.6108 0.9077 0.9601
cSE 21 7 0.6302 0.9090 0.9614
cSE-sSE 7 7 0.6394 0.9095 0.9620
cSE-sSE 14 7 0.6192 0.9080 0.9629
cSE-sSE 21 7 0.6484 0.9123 0.9633

E Model Complexity

The addition of any SE block to the CNN increases the number of trainable parameters, themodel

complexity, and the computation time. However, each excitation type adds different amount of

complexity. The additional number of parameters by adding the cSE block is calculated by:

I = 2

r

S∑
s=1

NsC 2
s (4.7)

where r is the reduction ratio that is set to 16 in all experiments, S is the number of stages/blocks

in the network, N is the number of repetition of the cSE block which is 1 in all experiments, and

C is the number of channels in the feature map.

On the other hand, the sSE block only introduces Cs additional parameters. The overall

model complexity is given by:

X = 2

r

S∑
s=1

NsC 2
s +Cs (4.8)
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The number of parameters of different architectures and configurations along with the

increase rate of the model complexity are illustrated in Table 4.13. The results show that the

sequential combination of SE components can be added to any architecture with almost no cost.

Table 4.13: The number of parameters and the complexity increase rate of the model using
different excitation mechanisms.

Model Parameters Complexity
increase rate

Baseline 37, 834, 115
cSE 37, 942, 659 0.3%
sSE 37, 835, 530 0.004%
Parallel (cSE and sSE) 55, 438, 154 47%
Sequential (cSE then sSE) 37, 889, 802 0.15%

4.3 Ensemble of 3D CNN

Ensemble learning is a technique used to improve the stability of the designed framework and

enhance the segmentation performance. The ensemble method also aims at combining the

strength of different learning models to improve the segmentation performance [194]. The main

objective of proposing an ensemble approach is to train multiple deep CNNs that complement

each other’s deficiencies for segmenting the brain into three tissue classes. The outputs of all

models are aggregated to provide more robust and reliable results.

The diversity of the network’s components generates complementary segmentation

results. It has been shown that using base models with similar learning capabilities helps to

build an effective model. At this end, the main contribution herein is the employment of the

same CNN’s architecture to build a base model with modifications in the activation function and

the objective function (loss). The resultant probability maps of all base models are averaged to

produce the final segmentation probability map.
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4.3.1 ReLU vs Leaky ReLU Activation Function

ReLu is a non-linear activation function which has been widely applied in the hidden layer of the

CNN. This simple function solves the issue of vanishing gradient that is caused by sigmoid and

tanh activation functions. The ReLu is a simple and light computation activation function which

returns the positive input value or zero if the input value is greater or equal to zero. Otherwise,

it returns zero [276]. This function can be described mathematically as follows:

f (xi ) =


xi , if xi ≥ 0

0, if xi < 0

On the other hand, ReLU has some limitations such as "dying ReLU" problem. This problem is

caused by turning off the neurons which have negative values. Over time the network ends up

with loosing large number of neurons which are not contributing to the process of learning and

discriminating their inputs. This issue has been solved by introducing the leaky ReLU (LReLU)

activation function [277] which produces a small slope for negative values instead of zero. The

degree of slope is a predefined coefficient which has to be tuned during the training process.

The mathematical definition of LReLU is:

f (x) =


xi , if x ≥ 0

xi

αi
, if xi < 0

where αi is a fixed hyperparameter in the range of (1, +∞) [278].

4.3.2 Dice vs Focal Tversky Loss

The dice loss is a commonly used objective function to train CNN with imbalanced datasets.

The mathematical definition of the dice is defined in Chapter 3. Beside the dice loss, the focal

tversky (FT) loss which is proposed recently by [279]. This objective function shows its ability

to achieve better trade off between precision and recall on small regions of the image. The focal
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loss function which is based on Tversky index for binary classification takes the following form:

LF T = (1−
∑N

i=1 pi c ti c +ε∑N
i=1 pi c ti c +α

∑N
i=1 pi c ′ ti c +β

∑N
i=1 pi c ti c ′ +ε

)γ (4.9)

where pi c and pi c ′ are the predicted probabilities that pixel i belongs to class c and class c’,

respectively. ti c and ti c ′ are the true value that pixel i belongs to class c and class c’, respectively.

α and β are hyperparameters which should be tuned to improve the precision and recall with the

occurrence of class imbalacning issue. ε is a small value which prevents the division by zero.

The parameter γ can be tuned in the range of [1,3].

The focal tversky loss formula can be rewritten in the following format to use it for

mulitclass segmentation:

LF T = (1− T P +ε

T P +αF N +βF P +ε
)γ (4.10)

where TP, FN, FP stand for true positive, false negative, and false positive respectively.

In order to create diversity, an ensemble of three CNNs models which employ different

combinations of ReLU and LReLU activation functions and dice and focal tversky losses. Figure

4.9 illustrates an example of an ensemble of three CNNs.

3D MRI
3D MRI

Loss = Dice

Loss = FT

ReLU ReLU
ReLU ReLU

ReLU
ReLUReLU

ReLU ReLU
ReLU ReLU ReLU

ReLU ReLU

LReLU LReLU
LReLU LReLU LReLU

LReLU LReLU

Loss = FT
Avg

Figure 4.9: The design of the proposed ensemble of three CNN models.
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4.3.3 Experimental Results

The ensemble model consists of different base CNN’s models which employ different activation

and objective functions. The selected functions show superior performance when tested with the

baseline model which is presented in Chapter 3 (section 3.3). By using two activation functions

(ReLU and LReLU) and two objective functions (dice and focal tversky loss), four different

CNN architectures are tested using the DSC. The conducted experiments show that CNN with

focal tversky loss outperforms CNN with dice loss and CNN with LReLu function generates

better bone segmentation results than CNN with ReLU function as shown in Figure 4.10. The

variation and the diversity of the obtained segmentation results for the bone class enables the

aggregation of these models to create an ensemble of CNNs models which aims at enhancing the

segmentation performance for the three tissue classes generally and the bone class specifically.

0.605

0.61

0.615

0.62

0.625

0.63

0.635

0.64

loss = Dice loss = FT f(x) = ReLU f(x) = LReLU

D
S

C

Figure 4.10: The dice of the bone class using different loss and activation functions using the
baseline model.

Tables 4.14, 4.15, and 4.16 illustrate the evaluation of the segmentation results of each

base CNN’s model which can be used to build the ensemble model. The obtained segmentation

results are calculated using the precision, recall, DSC, and JSC of each tissue class (air, bone,

and soft tissue). The results demonstrate that the base model which employs dice loss and ReLU

activation function achieves better segmentation results for the soft tissue and air classes. On

the other hand, the model which applies the focal tversky loss and ReLU activation function
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obtains higher DSC and JSC for the bone class. The LReLU activation function with dice loss

generates the highest sensitivity score (less false negative).

Table 4.14: The evaluation of the segmentation results of the bone class by applying four base
CNN models.

Bone tissue
Model PRE REC DSC JSC
Base 1: Dice-ReLU 0.7261 0.5857 0.6484 0.4797
Base 2: FT-ReLU 0.7203 0.5908 0.6491 0.4805
Base 3: Dice-LReLU 0.6786 0.5971 0.6352 0.4655
Base 4: FT-LReLU 0.6997 0.5891 0.6397 0.4702

Table 4.15: The evaluation of the segmentation results of the sof tissue class by applying four
base CNN models.

Soft tissue
Model PRE REC DSC JSC
Base 1: Dice-ReLU 0.8962 0.9290 0.9123 0.8388
Base 2: FT-ReLU 0.8984 0.9236 0.9108 0.8363
Base 3: Dice-LReLU 0.8953 0.9182 0.9066 0.8292
Base 4: FT-LReLU 0.8969 0.9192 0.9080 0.8314

Table 4.16: The evaluation of the segmentation results of the air class by applying four base
CNN models.

Air tissue
Model PRE REC DSC JSC
Base 1: Dice-ReLU 0.9641 0.9626 0.9633 0.9293
Base 2: FT-ReLU 0.9605 0.9634 0.9620 0.9267
Base 3: Dice-LReLU 0.9633 0.9603 0.9618 0.9264
Base 4: FT-LReLU 0.9596 0.9621 0.9608 0.9246

Different combinations with different ensemble sizes ranging from two to four have

been designed and tested using the same evaluation metrics: precision, recall, DSC, and JSC

as shown in Tables 4.17, 4.18, and 4.19 . Some ensembles of size two show better precision

and sensitivity for the bone class while the ensemble of size three outperforms other ensembles

considering the different evaluation metrics for the three tissue classes. Figures 4.11, 4.12,

4.13, and 4.14 depict the precision, recall, DSC, and JSC of the bone class, respectively using

different ensembles combinations. The approach that combines all four base models shows

lower performance compared to three base models due to the increase of results variability.
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Figure 4.11: The precision of the bone class using different base and ensemble models.
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Figure 4.12: The recall of the bone class using different base and ensemble models.
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Figure 4.13: The DSC of the bone class using different base and ensemble models.

0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.50

JS
C

Figure 4.14: The JSC of the bone class using different base and ensemble models.
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Table 4.17: The evaluation of the bone segmentation results of different ensemble models with
different sizes.

Bone tissue
Ensemble
size

Models PRE REC DSC JSC

1 Baseline 0.6890 0.5601 0.6179 0.4471
2 ReLU-Dice + ReLU-FT 0.7386 0.5839 0.6522 0.4839
2 Dice-ReLU + Dice-LReLU 0.7072 0.5995 0.6489 0.4803
2 LReLU-Dice + LReLU-FT 0.6907 0.5988 0.6414 0.4721
2 FT-ReLu + FT-LReLu 0.7276 0.5903 0.6518 0.4835
3 Dice-ReLU + FT-ReLU + FT-LReLU 0.7371 0.5921 0.6567 0.4889
3 Dice-ReLU+FT-ReLU+Dice-LReLU 0.7267 0.5982 0.6562 0.4883
4 All base models 0.7247 0.5974 0.6549 0.4869

Table 4.18: The evaluation of the soft tissue segmentation results of different ensemble models
with different sizes.

Soft tissue
Ensemble
size

Models PRE REC DSC JSC

1 Baseline 0.8913 0.9232 0.9070 0.8298
2 ReLU-Dice + ReLU-FT 0.8964 0.9327 0.9142 0.8420
2 Dice-ReLU + Dice-LReLU 0.8972 0.9251 0.9109 0.8364
2 LReLU-Dice + LReLU-FT 0.8960 0.9205 0.9081 0.8316
2 FT-ReLu + FT-LReLu 0.8975 0.9277 0.9124 0.8389
3 Dice-ReLU + FT-ReLU + FT-LReLU 0.8973 0.9319 0.9143 0.8421
3 Dice-ReLU+FT-ReLU+Dice-LReLU 0.8976 0.9302 0.9136 0.8409
4 All base models 0.8973 0.9299 0.9133 0.8404

Table 4.19: The evaluation of the air segmentation results of different ensemble models with
different sizes.

Air tissue
Ensemble
size

Models PRE REC DSC JSC

1 Baseline 0.9632 0.9614 0.9623 0.9274
2 ReLU-Dice + ReLU-FT 0.9655 0.9632 0.9643 0.9311
2 Dice-ReLU + Dice-LReLU 0.9651 0.9622 0.9636 0.9298
2 LReLU-Dice + LReLU-FT 0.9637 0.9611 0.9624 0.9275
2 FT-ReLu + FT-LReLu 0.9631 0.9631 0.9631 0.9289
3 Dice-ReLU + FT-ReLU + FT-LReLU 0.9658 0.9633 0.9645 0.9315
3 Dice-ReLU+FT-ReLU+Dice-LReLU 0.9662 0.9627 0.9645 0.9313
4 All base models 0.9663 0.9627 0.9645 0.9315

The ensemble with three base CNNs using a combination of dice-ReLU, FT-ReLU, and

FT-LReLU shows superior segmentation results considering the three tissue classes. Figures
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4.15, 4.16, and 4.17 illustrate the effectiveness of the ensemble approach by comparing the

segmentation results of a single base CNN’s model with the ensemble model with size three

using different evaluation metrics of the three tissue classes. The ensemble effectively improves

the precision, the DSC, and the JSC of the bone class while the recall (sensitivity) is better while

using one base model (focal tversky with LReLU). The soft tissue segmentation performance is

also improved in term of recall, DSC, and JSC. However, the precision of the base model (dice

- ReLU) is better. The air class segmentation is also improved while using the ensemble model

considering the four evaluation metrics.
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Figure 4.15: The evaluation metrics of the bone class using the optimal ensemble model which

consists of three base CNN models (dice-ReLU, FT-ReLU, and FT-LReLU).
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Figure 4.16: The evaluation metrics of soft tissue class using the optimal ensemble model which

consists of three base CNN models (dice-ReLU, FT-ReLU, and FT-LReLU)
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Figure 4.17: The evaluationmetrics of air class using the optimal ensemblemodel which consists

of three base CNN models (dice-ReLU, FT-ReLU, and FT-LReLU)

The segmentation maps of one randomly selected slice from patient 5 in the testing

dataset are shown in Figure 4.18 where it depicts the capability of the ensemble model to

segment the highlighted area in the brain more accurately. Compared to the ground truth in
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column b, the first and third base models in columns (c) and (e) generate more false positive of

air tissue. The second base model in column d produces more false positive of bone tissue. The

segmentation map of the ensemble model in column f is the closest one to the ground truth with

less false positive pixels.

Figure 4.18: The segmentation maps of (a) one randomly selected MR slice with its correspond-

ing (b) CT image using the (c-e) three base models and (f) the proposed ensemble model.

4.4 Summary and Limitations

This chapter has presented a novel way to enhance the T1-w MR images segmentation and

reduce the model computation complexity. The excited-based fully CNN model has shown its

capability to improve the segmentation of the brain into three tissue classes: bone, soft tissue,

and air. This approach embeds two different excitation blocks into the CNN to recalibrate the

features by capturing the most useful and distinguishable ones in channel and spatial domain

using the sequential aggregation approach.

Another proposed approach is the employment of the ensemble of multiple CNNs to

improve the brain segmentation and generate reliable results. Three different CNNs architectures

have been aggregated using the averaging operation. Each base CNN applies different activation

functions such as ReLU and LReLU and different objective functions such as dice loss and focal

tversky loss.

Several experiments have been conducted using clinical 3D MR brain images of fifty
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patients to explore the impact of each type of the SE blocks on the segmentation results to find the

optimal CNN architecture that improves the segmentation performance and reduces the model

complexity. The selected excitation based network firstly deploys the channel excitation block to

excite the useful channels then applies the spatial attention on certain regions with informative

details using the spatial excitation block. By comparing the segmented MR images with the

ground truth CT images, the excitation based CNN approach has shown its efficiency to improve

the segmentation performance with minimal increase of model complexity and computation

time. The results has also shown that the features recalibration mechanism outperforms other

proposed methods in the literature. Additionally, the ensemble model has revealed its potential

to boost the segmentation results compared to the segmentation results obtained by each base

CNN’s model.

The datasets consist of patients with different neurological diseases which explains the

variability of the bone segmentation results. However, the diversity of individual models with

different activation and objective functions has shown its efficiency in building a more accurate

ensemble model. This approach needs further evaluation by using the generated segmented

images to reconstruct the PET images to evaluate the attenuation correction quality.

Despite the superior performance of the excitation based CNN model with minimal

increase of the number of parameters and computation time, this approach needs to be explored

with the transfer learning technique to efficiently reduce the complexity of the model learning

process. The transfer learning helps to employ the learned knowledge from a specific dataset

to another dataset where the model can use the transferred knowledge as a starting point of the

learning process to perform a new task or work with data from new domain.

Moreover, the design of the ensemble model requires diverse base CNNs to create a

high level of variation which helps to complement the information of each individual model.

The diversity is induced by designing models which generate uncorrelated segmentation results.

The combination of different CNN’s architectures helps to build such diversity and variation.
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Chapter 5

Transfer Learning and Multi MR

Sequences for MR Imaging Segmentation

5.1 Introduction

This chapter represents the application of transfer learning using multi MR sequences for brain

segmentation. The transfer of knowledge from T1-w to T2-w MR sequences is studied by

investigating the optimal mechanism of fine tuning the pretrained CNN and the required size of

the target datasets (T2-w MR) to fine tune the network. Four mechanisms of transfer learning

have been studied which are: (1) transfer learning without fine tuning, (2) transfer learning

with open fine tuning where the CNN’s weights are initialized using the pretrained network’s

weights, (3) transfer learning with conservative fine tuning by retraining some pretrained layers

and freezing others, and (4) hybrid transfer learning which is the proposed contribution in this

chapter aiming at solving the issues of other types of fine tuning and enhances the transfer

learning results. The hybrid transfer learning approach consists of two parallel encoders which

are fused using an aggregation component. The output of both encoders is fed to a single

decoder. Moreover, an augmentation approach is proposed where the T2-w MR images are

considered as an intensity based augmentation technique. Both T1-w and T2-w MR images are

used to train a CNN from scratch to increase the size of the training dataset and build a multi
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MR sequences segmentation model. The adopted CNN architecture follows the excitation based

CNN which is proposed in Chapter 4.

The impact of transfer learning is tested on segmenting T1-w and T2-w MR images

using four evaluationmetrics namely: precision, recall, DSC, and JSC. The visual comparison of

the segmentation results of some randomly selected slices from the testing data is also conducted.

This chapter is structured as follows: The different applied methods of transfer learning

are presented in section 5.2. The experimental setup is described in section 5.3. The conducted

experiments and the obtained segmentation results with the discussion are detailed in section

5.4. Finally, the summary with the limitations are given in section 5.5.

5.2 Transfer Learning Mechanisms

The proposed transfer learning methodology consists of four different strategies which are

described in sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4. The backbone network which is used to

design and experiment the transfer learning methods is an excitation based CNN that consists of

an encoder, a decoder, and multiple squeeze and excitation blocks embedded at different levels

of the network. The network architecture which is similar to the network proposed in chapter 4

is illustrated in Figure 5.1.

5.2.1 Transfer Learning using Open Fine Tuning

Fine tuning is the conventional way to conduct transfer learning task. The fine tuning process

requires to adjust the weights of pretrained CNN layers. The most common way to fine tune

networks is to initialise the new network with the weights of the pretrained network and fine

tune all or some number of layers. The required size of the data to fine tune the model is much

less than training a network from scratch. The open fine tuning strategy requires to initialise the

network with the weights of the pretrained network with T1-w MR images and adjust them by

unfreezing all pretrained layers using small dataset of T2-w MR images. This mechanism uses
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3D convolution – Batch normalization – ReLU 3D maxpooling

3D Deconvolution Copy & Concatenate

3D Squeeze and Excitation

Figure 5.1: The architecture of the convolutional encoder decoder networkwithmultiple squeeze
and excitation blocks.

the pretrained network’s weights as initialisation values and updates the weights of the whole

network using the target datasets. The main drawback of this network is the necessity of big

enough target dataset to retrain the network properly. This approach also requires long training

time until the model reaches the convergence. Figure 5.2 illustrates the concept of transfer

learning with open fine tuning.

3D MRI 3D MRI

Pretrained network Trainable layers

Figure 5.2: An illustration of the transfer learning concept using open fine tuning to segment
T2-w MR images.
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5.2.2 Transfer Learning using Conservative Fine Tuning

The conservative fine tuning is another type of transfer learning which entails using the weights

of pretrained network and tuning them on specific number of the network’s layers. For instance,

the first few layers of the CNN extract very generic features which can be common for all types

of images. These layers should be frozen during the conservative fine tuning process and only

the last network’s layers can be retrained to adapt the weights to the new domain images. The

optimal number of network’s layers that should be retrained and the size of the dataset which can

be used to conduct the conservative fine tuning process are experimentally determined. Figure

5.3 shows a general illustration of the conservative fine tuning concept.

3D MRI 3D MRI

Trainable layersFrozen layersPretrained network

Figure 5.3: An illustration of the transfer learning concept using conservative fine tuning to
segment T2-w MR images.

5.2.3 Hybrid Transfer Learning

The hybrid transfer learning consists of two parallel encoders (dedicated and adapted) which

carry the features of both T1-w and T2-w MR images. The two set of features are aggregated

before passing to a single decoder. The main architecture of the hybrid transfer learning network

is demonstrated in Figure 5.4.
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Figure 5.4: An illustration of the hybrid transfer learning to segment T2-w MR images.

A Dedicated Encoder

The dedicated encoder is specifically designed to extract T2-w features by training the encoder

from scratch using only T2-w MR images as training datasets. The design of the dedicated

encoder follows the design of the network’s encoder shown in Figure 5.1 which consists of nine

convolutional layers in the encoder path and three convolutional layers in the bottleneck path

with four attention blocks placed after each three convolutional layers.

B Adapted Encoder

The adapted encoder is a pretrained encoder with T1-w images which generate features maps

with smaller dimensions than the input image. All layers of this pretrained encoder are frozen to
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preserve the learnt features from T1-w images. The initial conducted experiments have shown

that the segmentation accuracy of soft tissue and air classes of T2-w images using transfer

learning without any fine tuning of the parameters is promising. This observation was inspiring

to adapt the pretrained T1-w encoder without any fine tuning.

C Aggregation Module

The output of the dedicated encoder (T2-w features) and the adapted encoder (T1-w features) are

aggregated using a fusion block. There are different possible mechanisms of aggregation such

as concatenation, multiplication, maximum, and averaging which are tested experimentally. The

segmentation results using different aggregation blocks are recorded in the experiments section.

The aggregated features are passed to a decoder which retrieves the original size of the input

images using nine convolutional layers, three unpooling layers, and three attention blocks.

5.2.4 Multi-Modality based Augmentation

The main difference between the most conventional MR sequences (T1-w and T2-w images).

The main difference between these two sequences is the appearance of the tissue which is called

the tissue intensity as illustrated in Figure 5.5.

This variation in the intensity values between two MR sequences can be considered as

an intensity based augmentation technique. This idea is implemented by training the CNN with

both sequences of T1-w and T2-w images. This augmentation technique firstly helps to increase

the size of the training datasets and secondly aims at building a CNN which is able to segment

multi MR sequences.
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(a) (b)

Figure 5.5: (a) T1-w MR image, (b) T2-w MR image.

5.3 Experimental Setup

5.3.1 Datasets

The experiments of this chapter have been conducted using the same fifty T1-w MR and CT

images which are described in chapter 3. In addition to that, another dataset of T2-wMR images

which consists of fourteen patients is used to evaluate the different transfer learning approaches.

T1-w and T2-w datasets consist of fourteen common patients.

5.3.2 Model Input

The CNN’s input images are generated using the same preprocessing steps as described in

Chapters 3 and 4. Each volume’s dimensions are 256 × 256 × 48 where 48 is the number of

selected MR slices. Each volume is divided into overlapped patches with size 128 × 128 × 48

to reduce the input dimensions and increase the size of the training datasets.
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5.3.3 Training Setup

The fine tuning process is conducted using three folds cross validation with grid search mech-

anism to find the optimal learning rate. For the hybrid transfer learning where the dedicated

decoder is trained from scratch using T2-w images, the datasets are split as follows: training:

60%, validation: 20%, and testing: 20%. The layers weights are initialised usingGlorot Uniform

initialisation scheme and updated using Adam optimizer with a batch size of two and a moving

learning rate that starts with 0.0001 then reduces by a factor of 0.75 on plateau mode when the

training accuracy is not increasing for five continuous epochs. The maximum number of epochs

is two hundred; Yet the training can be stopped before reaching two hundred epochs when the

validation loss stops improving. The same training setup is applied to conduct the T2-w based

augmentation experiments where the network is trained with both T1-w and T2-wMR sequences

using the size of datasets as described in Table 5.1. All experiments are conducted on Tesla

V100 GPU with 16 GB RAM.

Table 5.1: The size of training, validation, and testing datasets of T1-w and T2-wMR sequences.

Data group T1-w T2-w
Training data 30 patients 8 patients
Validation data 10 patients 3 patients
Testing data 10 patients 3 patients

5.3.4 Evaluation Metrics

The segmentation results are evaluated using a set of metrics by comparing the segmented MR

image with the ground truth which are generated from CT images. The evaluation metrics are:

precision, recall, DSC, and JSC. The definition of each metric is represented in Chapter 3.
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5.4 Experimental Results

5.4.1 Transfer Learning using Open Fine Tuning

The transfer learning with open fine tuning experiment shows the effect of transfer learning by

initialising the weights of the CNN using the weights of the pretrained CNN with T1-w images.

The weights are updated by retraining all layers of the CNN with T2-w images. Tables 5.2,

5.3, and 5.4 show the comparison between the segmentation results of T2-w images without

any fine tuning and three folds cross validation open fine tuning for bone, soft tissue, and air

classes, respectively. The low performance of bone class segmentation which is generated by

using a pretrained model without fine tuning indicates the inability of the model to segment the

bone of two different MR sequences (T1-w and T2-w). On the other hand, the segmentation

results of soft tissue and air classes using the transfer learning without fine tuning show better

performance than open fine tuning. The open fine tuning approach requires the update of CNN’s

weights using a limited number of training dataset of T2-w MR images. Although the CNN

weights are initialised with the pretrained model’s weights, the process of open fine tuning needs

more T2-w datasets to achieve promising segmentation results of the three brain tissue classes.

Table 5.2: The evaluation of the segmentation results of the bone class by applying transfer learn-
ing without fine tuning and open fine tuning using four different evaluation metrics: precision,
recall, DSC, and JSC.

Bone tissue
Model PRE REC DSC JSC
Transfer learning without fine
tuning

0.5223 0.3038 0.3841 0.2377

Open fine tuning (fold=1) 0.6913 0.4494 0.5447 0.3743
Open fine tuning (fold=2) 0.6837 0.4043 0.5081 0.3406
Open fine tuning (fold=3) 0.6980 0.3819 0.4937 0.3277
Open fine tuning (avg) 0.6910 0.4119 0.5155 0.3475
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Table 5.3: The evaluation of the segmentation results of the soft tissue class by applying
transfer learning without fine tuning and open fine tuning using four different evaluation metrics:
precision, recall, DSC, and JSC.

Soft tissue
Model PRE REC DSC JSC
Transfer learning without fine
tuning

0.8445 0.8484 0.8464 0.7338

Open fine tuning (fold=1) 0.7615 0.8950 0.8229 0.6990
Open fine tuning (fold=2) 0.7597 0.8988 0.8234 0.6999
Open fine tuning (fold=3) 0.7460 0.8986 0.8152 0.6881
Open fine tuning (avg) 0.7558 0.8975 0.8205 0.6957

Table 5.4: The evaluation of the segmentation results of the air class by applying transfer learning
without fine tuning and open fine tuning using four different evaluationmetrics: precision, recall,
DSC, and JSC.

Ai tissue
Model PRE REC DSC JSC
Transfer learning without fine
tuning

0.9184 0.9481 0.9330 0.8744

Open fine tuning (fold=1) 0.9292 0.8612 0.8939 0.8082
Open fine tuning (fold=2) 0.9295 0.8620 0.8945 0.8091
Open fine tuning (fold=3) 0.9275 0.8518 0.8880 0.7986
Open fine tuning (avg) 0.9287 0.8584 0.8922 0.8053

5.4.2 Transfer Learning using Conservative Fine Tuning

The study of the performance of conservative fine tuning approach requires conducting intensive

experiments to find the relationship between the required size of the target dataset and the optimal

number of CNN layers which need to be fine tuned. Figure 5.6 illustrates the DSC of the three

classes segmentation by conducting several experiments. Each experiment involves fine tuning a

different number of convolutional layers starting by retraining the last fully connected layer until

the encoder’s convolutional layers. In general, the performance of the bone class segmentation is

increased by updating the weights of more convolutional layers. Yet, the segmentation of the air

and soft tissue classes are slightly improved by retraining more convolutional layers. Different

evaluation metrics using three folds cross validation are shown in Tables 5.5, 5.6, and 5.7 for

bone, soft tissue, and air classes, respectively.

The results show that the segmentation of bone and soft tissue classes is enhanced as
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Figure 5.6: The DSC of three tissue classes using conservative fine tuning.

more convolutional layers are retrained and the layers parameters are updated. However, the

segmentation of air class requires retraining only six convolutional layers to obtain the highest

performance in terms of precision, DSC, and JSC. The highest score of air class sensitivity is

achieved by retraining only the last fully connected layer.

The required size of T2-w MR images to train and fine tune the pretrained model is

investigated by selecting different sizes of the training dataset and recording the DSC of the

segmentation results of each size. The segmentation results are illustrated in Figures 5.7, 5.8,

and 5.9 for the bone, soft tissue, and air classes, respectively. The results reveal that the more

convolutional layers are fined tuned, the highest DSC is obtained with larger training datasets

especially for bone and soft tissue segmentation. In the case of using small training datasets (e.g.

two patients only), less convolutional layers are required to be fine tuned to avoid overfitting.

The segmentation performance of fine tuning only the last fully connected layer to segment the

three tissue classes is almost constant with different sizes of the training datasets. The highest

DSC of the air class is achieved by fine tuning only three convolutional layers with a dataset

of eight patients. The conducted experiments reveal that fine tuning the pretrained model with

T1-wMR images requires the largest target dataset (T2-wMR) in order to transfer the knowledge
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Table 5.5: The evaluation of the segmentation results of the bone class by applying conservative
fine tuning using eight patients for training.

Bone tissue
Model PRE REC DSC JSC
Fine tune FC (fold=1) 0.5105 0.2700 0.3532 0.2145
Fine tune FC (fold=2) 0.5114 0.2687 0.3523 0.2138
Fine tune FC (fold=3) 0.5115 0.2685 0.3522 0.2137
Fine tune FC (avg) 0.5111 0.2691 0.3526 0.2140
Fine tune 3 Conv (fold=1) 0.5642 0.3018 0.3932 0.3932
Fine tune 3 Conv (fold=2) 0.6315 0.2210 0.3274 0.1957
Fine tune 3 Conv (fold=3) 0.6395 0.2801 0.3896 0.2419
Fine tune 3 Conv (avg) 0.6117 0.2676 0.3701 0.2770
Fine tune 6 Conv (fold=1) 0.7063 0.2946 0.4158 0.2624
Fine tune 6 Conv (fold=2) 0.6762 0.2894 0.4053 0.2542
Fine tune 6 Conv (fold=3) 0.6702 0.3417 0.4526 0.2925
Fine tune 6 Conv (avg) 0.6842 0.3086 0.4246 0.2697
Fine tune 9 Conv (fold=1) 0.6687 0.4124 0.5102 0.3424
Fine tune 9 Conv (fold=2) 0.7107 0.2645 0.3855 0.2388
Fine tune 9 Conv (fold=3) 0.6786 0.3157 0.4309 0.2746
Fine tune 9 Conv (avg) 0.6860 0.3309 0.4422 0.2853
Fine tune 12 Conv (fold=1) 0.6135 0.3234 0.4235 0.2686
Fine tune 12 Conv (fold=2) 0.6027 0.3527 0.4450 0.2862
Fine tune 12 Conv (fold=3) 0.6218 0.3156 0.4187 0.2648
Fine tune 12 Conv (avg) 0.6127 0.3306 0.4291 0.2732
Fine tune 15 Conv (fold=1) 0.7147 0.3313 0.4527 0.2926
Fine tune 15 Conv (fold=2) 0.7066 0.3214 0.4418 0.2835
Fine tune 15 Conv (fold=3) 0.6657 0.3592 0.4667 0.3043
Fine tune 15 Conv (avg) 0.6957 0.3373 0.4537 0.2935
Fine tune 18 Conv (fold=1) 0.7343 0.3500 0.4740 0.3106
Fine tune 18 Conv (fold=2) 0.6864 0.3624 0.4743 0.3109
Fine tune 18 Conv (fold=3) 0.6956 0.3558 0.4708 0.3078
Fine tune 18 Conv (avg) 0.7055 0.3560 0.4730 0.3098

properly and avoid overfitting.

5.4.3 Hybrid Transfer Learning

The design of the hybrid transfer learning network consists of an aggregation component where

several experiments are conducted to choose the best aggregation mechanism. The operations of

concatenation, multiplication, averaging, and maximum are applied to integrate the two parallel

encoders. The concatenation operation requires more memory allocation to train the network
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Table 5.6: The evaluation of the segmentation results of the soft tissue class by applying
conservative fine tuning using eight patients for training.

Soft tissue
Model PRE REC DSC JSC
Fine tune FC (fold=1) 0.7411 0.8627 0.7973 0.6629
Fine tune FC (fold=2) 0.7409 0.8632 0.7974 0.6631
Fine tune FC (fold=3) 0.7409 0.8633 0.7974 0.6631
Fine tune FC (avg) 0.7410 0.8631 0.7974 0.6630
Fine tune 3 Conv (fold=1) 0.7433 0.8979 0.8133 0.6853
Fine tune 3 Conv (fold=2) 0.7335 0.9117 0.8129 0.6848
Fine tune 3 Conv (fold=3) 0.7424 0.9010 0.8140 0.6864
Fine tune 3 Conv (avg) 0.7397 0.9035 0.8134 0.6855
Fine tune 6 Conv (fold=1) 0.7434 0.9122 0.8192 0.6938
Fine tune 6 Conv (fold=2) 0.7401 0.9113 0.8169 0.6904
Fine tune 6 Conv (fold=3) 0.7478 0.9044 0.8187 0.6930
Fine tune 6 Conv (avg) 0.7438 0.9093 0.8182 0.6924
Fine tune 9 Conv (fold=1) 0.7559 0.8986 0.8211 0.6965
Fine tune 9 Conv (fold=2) 0.7393 0.9147 0.8177 0.6916
Fine tune 9 Conv (fold=3) 0.7463 0.9085 0.8195 0.6942
Fine tune 9 Conv (avg) 0.7472 0.9073 0.8194 0.6941
Fine tune 12 Conv (fold=1) 0.7492 0.8963 0.8162 0.6894
Fine tune 12 Conv (fold=2) 0.7516 0.8882 0.8142 0.6866
Fine tune 12 Conv (fold=3) 0.7480 0.8972 0.8158 0.6890
Fine tune 12 Conv (avg) 0.7496 0.8939 0.8154 0.6883
Fine tune 15 Conv (fold=1) 0.7488 0.9075 0.8205 0.6957
Fine tune 15 Conv (fold=2) 0.7455 0.9091 0.8192 0.6938
Fine tune 15 Conv (fold=3) 0.7507 0.8971 0.8174 0.6912
Fine tune 15 Conv (avg) 0.7483 0.9046 0.8190 0.6935
Fine tune 18 Conv (fold=1) 0.7504 0.9092 0.8222 0.6981
Fine tune 18 Conv (fold=2) 0.7485 0.9034 0.8187 0.6930
Fine tune 18 Conv (fold=3) 0.7494 0.9049 0.8199 0.6947
Fine tune 18 Conv (avg) 0.7494 0.9059 0.8202 0.6953

and the batch size of this experiment is set to one instead of two. The experiments of all other

aggregation operations are conducted using batch size of two.

Three folds cross validation results of different aggregationmechanisms for the segmen-

tation of bone, soft tissue, and air classes are shown in Tables 5.8, 5.9, and 5.10, respectively.

The evaluation metrics of the bone class show that the multiplication of the features maps of each

encoder generates higher segmentation performance. However, the concatenation mechanism

provides better segmentation results of the soft tissue class. For the air class, all aggregation

methods generate very similar performance with slightly higher results with maximum aggre-
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Table 5.7: The evaluation of the segmentation results of the air tissue class by applying conser-
vative fine tuning using eight patients for training.

Air tissue
Model PRE REC DSC JSC
Fine tune FC (fold=1) 0.9141 0.8630 0.8878 0.7983
Fine tune FC (fold=2) 0.9143 0.8629 0.8879 0.7984
Fine tune FC (fold=3) 0.9144 0.8629 0.8879 0.7984
Fine tune FC (avg) 0.9143 0.8629 0.8879 0.7983
Fine tune 3 Conv (fold=1) 0.9331 0.8561 0.8929 0.8066
Fine tune 3 Conv (fold=2) 0.9366 0.8551 0.8940 0.8082
Fine tune 3 Conv (fold=3) 0.9318 0.8596 0.8943 0.8087
Fine tune 3 Conv (avg) 0.9338 0.8569 0.8937 0.8079
Fine tune 6 Conv (fold=1) 0.9370 0.8587 0.8961 0.8118
Fine tune 6 Conv (fold=2) 0.9361 0.8547 0.8936 0.8076
Fine tune 6 Conv (fold=3) 0.9331 0.8574 0.8937 0.8077
Fine tune 6 Conv (avg) 0.9354 0.8569 0.8944 0.8090
Fine tune 9 Conv (fold=1) 0.9316 0.8587 0.8937 0.8078
Fine tune 9 Conv (fold=2) 0.9368 0.8565 0.8949 0.8097
Fine tune 9 Conv (fold=3) 0.9325 0.8561 0.8926 0.8061
Fine tune 9 Conv (avg) 0.9336 0.8571 0.8937 0.8070
Fine tune 12 Conv (fold=1) 0.9278 0.8583 0.8917 0.8045
Fine tune 12 Conv (fold=2) 0.9243 0.8583 0.8901 0.8019
Fine tune 12 Conv (fold=3) 0.9273 0.8577 0.8911 0.8037
Fine tune 12 Conv (avg) 0.9264 0.8581 0.8910 0.8034
Fine tune 15 Conv (fold=1) 0.9333 0.8599 0.8951 0.8101
Fine tune 15 Conv (fold=2) 0.9327 0.8560 0.8927 0.8062
Fine tune 15 Conv (fold=3) 0.9287 0.8588 0.8924 0.8056
Fine tune 15 Conv (avg) 0.9316 0.8582 0.8934 0.8073
Fine tune 18 Conv (fold=1) 0.9339 0.8596 0.8952 0.8103
Fine tune 18 Conv (fold=2) 0.9302 0.8546 0.8908 0.8031
Fine tune 18 Conv (fold=3) 0.9313 0.8567 0.8924 0.8058
Fine tune 18 Conv (avg) 0.9318 0.8569 0.8928 0.8064

gation method. It is also worth mentioning that the precision of the concatenation based results

of the bone and air classes is better than the multiplication mechanism.

A clear demonstration of the evaluation metrics of the hybrid transfer learning using

different aggregation methods for the bone, soft tissue,and air classes is revealed in Figures 5.10,

5.11, and 5.12, respectively.
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Figure 5.7: The DSC of the bone tissue segmentation using conservative fine tuning for different
numbers of convolutional layers with different sizes of training datasets.
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Figure 5.8: The DSC of the soft tissue segmentation using conservative fine tuning for different
numbers of convolutional layers with different sizes of training datasets.

5.4.4 Methods Comparison

The comparison between the segmentation results using different transfer learning and fine

tuning approaches is illustrated in Tables 5.11, 5.12, and 5.13 for bone, soft tissue, and air
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Figure 5.9: The DSC of the air tissue segmentation using conservative fine tuning for different
numbers of convolutional layers with different sizes of training datasets.

Table 5.8: The evaluation of the segmentation results of the bone class by applying hybrid
transfer learning with different aggregation mechanisms using four different evaluation metrics:
precision, recall, DSC, and JSC with three folds cross validation.

Bone tissue
Model PRE REC DSC JSC
Aggregation: concatenation (fold=1) 0.7057 0.4308 0.5350 0.3652
Aggregation: concatenation (fold=2) 0.6761 0.2122 0.3230 0.1926
Aggregation: concatenation (fold=3) 0.7026 0.3925 0.5036 0.3366
Aggregation: concatenation (avg) 0.6948 0.3451 0.4539 0.2981
Aggregation: multiplication (fold=1) 0.5471 0.6018 0.5731 0.4017
Aggregation: multiplication (fold=2) 0.3990 0.6340 0.4897 0.3243
Aggregation: multiplication(fold=3) 0.5420 0.5685 0.5549 0.3840
Aggregation: multiplication (avg) 0.4960 0.6014 0.5393 0.3700
Aggregation: average (fold=1) 0.6769 0.4945 0.5715 0.4001
Aggregation: average (fold=2) 0.5972 0.4784 0.5312 0.3617
Aggregation: average (fold=3) 0.6804 0.3997 0.5036 0.3366
Aggregation: average (avg) 0.6515 0.4576 0.5355 0.3661
Aggregation: maximum (fold=1) 0.6723 0.4906 0.5673 0.3959
Aggregation: maximum (fold=2) 0.6284 0.4087 0.4953 0.3292
Aggregation: maximum (fold=3) 0.6793 0.4146 0.5149 0.3467
Aggregation: maximum (avg) 0.6600 0.4380 0.5258 0.3573

classes, respectively.
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Table 5.9: The evaluation of the segmentation results of the soft tissue class by applying hybrid
transfer learning with different aggregation mechanisms using four different evaluation metrics:
precision, recall, DSC, and JSC with three folds cross validation.

Soft tissue
Model PRE REC DSC JSC
Aggregation: concatenation (fold=1) 0.7423 0.8965 0.8122 0.6837
Aggregation: concatenation (fold=2) 0.7346 0.9042 0.9042 0.6816
Aggregation: concatenation (fold=3) 0.7335 0.8995 0.8081 0.6780
Aggregation: concatenation (avg) 0.7368 0.9001 0.8415 0.6811
Aggregation: multiplication (fold=1) 0.7850 0.8254 0.8047 0.6732
Aggregation: multiplication (fold=2) 0.7855 0.8006 0.7930 0.6570
Aggregation: multiplication(fold=3) 0.7794 0.8239 0.8010 0.6681
Aggregation: multiplication (avg) 0.7833 0.8166 0.7996 0.6661
Aggregation: average (fold=1) 0.7637 0.8912 0.8225 0.6986
Aggregation: average (fold=2) 0.7672 0.8459 0.8047 0.6732
Aggregation: average (fold=3) 0.7434 0.8973 0.8131 0.6851
Aggregation: average (avg) 0.7581 0.8781 0.8134 0.6856
Aggregation: maximum (fold=1) 0.7553 0.8904 0.8173 0.6911
Aggregation: maximum (fold=2) 0.7550 0.8773 0.8116 0.6829
Aggregation: maximum (fold=3) 0.7461 0.8998 0.8158 0.6889
Aggregation: maximum (avg) 0.7521 0.8892 0.8149 0.6876

Table 5.10: The evaluation of the segmentation results of the air class by applying hybrid
transfer learning with different aggregation mechanisms using four different evaluation metrics:
precision, recall, DSC, and JSC with three folds cross validation.

Air tissue
Model PRE REC DSC JSC
Aggregation: concatenation (fold=1) 0.9259 0.8436 0.8828 0.7902
Aggregation: concatenation (fold=2) 0.9301 0.8587 0.8930 0.8067
Aggregation: concatenation (fold=3) 0.9268 0.8384 0.8804 0.7863
Aggregation: concatenation (avg) 0.9276 0.8469 0.8854 0.7944
Aggregation: multiplication (fold=1) 0.9065 0.8710 0.8884 0.7992
Aggregation: multiplication (fold=2) 0.9058 0.8489 0.8764 0.7800
Aggregation: multiplication(fold=3) 0.9035 0.8691 0.8860 0.7953
Aggregation: multiplication (avg) 0.9053 0.8630 0.8836 0.7915
Aggregation: average (fold=1) 0.9293 0.8594 0.8930 0.8066
Aggregation: average (fold=2) 0.9071 0.8678 0.8870 0.7969
Aggregation: average (fold=3) 0.9271 0.8469 0.8852 0.7941
Aggregation: average (avg) 0.9212 0.8580 0.8884 0.7992
Aggregation: maximum (fold=1) 0.9275 0.8512 0.8877 0.7981
Aggregation: maximum (fold=2) 0.9234 0.8630 0.8922 0.8053
Aggregation: maximum (fold=3) 0.9293 0.8475 0.8865 0.7962
Aggregation: maximum (avg) 0.9267 0.8539 0.8888 0.7999
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Figure 5.10: The evaluation metrics of the segmentation of bone class of T2-w MR images
using different aggregation mechanisms.
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Figure 5.11: The evaluation metrics of the segmentation of soft tissue class of T2-wMR images
using different aggregation mechanisms.

The conservative fine tuning approach which requires retraining eighteen convolutional

layers using a dataset of eight patients generates the most precise bone segmentation compared to

other approaches. Yet, the hybrid fine tuning with the application of multiplication aggregation

operation outperforms the other approaches in terms of sensitivity (recall), DSC, and JSC of
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Figure 5.12: The evaluation metrics of the segmentation of air class of T2-w MR images using
different aggregation mechanisms.

the bone class. On the other hand, the segmentation of the air and soft tissue classes using

the pretrained model of T1-w MR images without fine tuning is performing better than any

fine tuning approaches. The main advantage of the application of hybrid transfer learning and

conservative fine tuning to segment the soft tissue and air classes is the significant enhancement

of the soft tissue sensitivity and the precision of the air class.

Figure 5.13 illustrates the segmentation results of three randomly selected 2D slices

from the testing datasets of T2-w MR images. The segmentation results of the slice shown in

the first row indicates the ability of the pretrained model without any fine tuning (column c) to

segment the air cavities more accurately than the hybrid transfer learning (column h). Yet, the

other approaches (d - g) are not able to segment these regions of air. The visual comparison of

the different segmentation approaches also shows that the transfer learning without fine tuning or

with open or conservative fine tuning are generating many false positive pixels of the bone class

as shown in the second row. The hybrid transfer learning using the multiplication aggregation

mechanism is able to segment the bone class more precisely and accurately as illustrated on the

slices of the second and third rows.
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Table 5.11: The comparison between the segmentation results of the bone class by applying
different approaches of transfer learning using four different evaluationmetrics: precision, recall,
DSC, and JSC.

Bone tissue
Model PRE REC DSC JSC
Transfer learning without fine tuning 0.5223 0.3038 0.3841 0.2377
Open fine tuning 0.6910 0.4119 0.5155 0.3475
Conservative fine tuning (18 Conv) 0.7055 0.3560 0.4730 0.3098
Hybrid transfer learning (mult) 0.4960 0.6014 0.5393 0.3700

Table 5.12: The comparison between the segmentation results of the soft tissue class by applying
different approaches of transfer learning using four different evaluationmetrics: precision, recall,
DSC, and JSC.

Soft tissue
Model PRE REC DSC JSC
Transfer learning without fine tuning 0.8445 0.8484 0.8464 0.7338
Open fine tuning 0.7558 0.8975 0.8205 0.6957
Conservative fine tuning (18 Conv) 0.7494 0.9059 0.8202 0.6953
Hybrid transfer learning (concat) 0.7368 0.9001 0.8415 0.6811

Table 5.13: The comparison between the segmentation results of the air class by applying
different approaches of transfer learning using four different evaluation metrics: precision,
recall, DSC, and JSC.

Air tissue
Model PRE REC DSC JSC
Transfer learning without fine tuning 0.9184 0.9481 0.9330 0.8744
Open fine tuning 0.9287 0.8584 0.8922 0.8053
Conservative fine tuning (6 Conv) 0.9354 0.8569 0.8944 0.8090
Hybrid transfer learning (max) 0.9267 0.8599 0.8888 0.7999

5.4.5 Computation Time

The computation time is an important factor while applying the transfer learning. Figure 5.14

shows the required computation time per epoch to retrain different number of convolutional

layers. It is observed that fine tuning twelve or nine convolutional layers requires the same

amount of computation time. Figure 5.15 represents the required number of epochs until the

model reaches convergence. Although the fine tuning of nine and twelve convolutional layers

requires the same amount of time to train one epoch, they differ in the number of required epochs

to achieve the model convergence. The lowest number of epochs is twenty one which is recorded
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Figure 5.13: The segmentation results of three randomly selected slices from the testing datasets
of T2-w MR images. (a) MR images, (b) CT images which used as ground truth, (c) the
segmentation results using transfer learning without fine tuning, (d) the segmentation results
using open fine tuning, (e) the segmentation results using conservative fine tuning (6 Conv), (f)
the segmentation results using conservative fine tuning (18 Conv), (g) the segmentation results
using hybrid transfer learning (multiplication aggregation), and (h) the segmentation results
using hybrid transfer learning (concatenation aggregation).

by fine tuning nine convolutional layers. Figure 5.16 shows the total computation time of fine

tuning different number of convolutional layers. The total computation time is the computation

time per epoch multiplied by the required number of epochs to train the model until the model’s

convergence. The values shown in the figures are the average of the three folds cross validation

results.

Figures 5.17, 5.18, and 5.19 illustrate the computation time per epoch, the number of

required epochs to train and fine tune the model, and the total computation time for different fine

tuning approaches, respectively. Although, the hybrid transfer learning requires longer time to

execute one epoch, it requires few epochs to converge and complete the training process. Overall,

the hybrid transfer learning requires less amount of time to complete the training followed by

the conservative fine tuning by retraining eighteen convolutional layers then the open fine tuning

that requires to update the weights of all layers of the CNN. The recorded computation time

refers to using eight patients for training the model.
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Figure 5.14: The computation time of a single epoch of the conservative fine tuning approach
by retraining different number of CNN’s layers.
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Figure 5.15: The required number of epochs to apply the conservative fine tuning approach by
retraining different number of CNN’s layers.

5.4.6 T2-w based Augmentation

The segmentation results of the application of intensity based augmentation by using the T2-w

MR sequences as augmented images are illustrated in Tables 5.14, 5.15 and 5.16 for the bone,

soft tissue, and air classes, respectively. The conducted experiments involve testing the model

with T1-w and T2-w MR images to investigate the capability of the model to segment two types

of MR sequences and the ability of the model to preserve the T1-w features after the addition of
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Figure 5.16: The total computation time of the conservative fine tuning approach by retraining
different numbers of CNN’s layers.
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Figure 5.17: The computation time of a single epoch of different transfer learning approaches.

T2-w images.

Firstly, the model is trained with only T1-w images without the application of augmen-

tation and tested to segment T1-w and T2-w MR images. The evaluation metrics of the three

classes show that the model is not able to segment T2-w images properly with low DSC for the

bone class (0.3841).

Secondly, the model is trained with thirty T1-w and eight T2-w MR images and tested

to segment T1-w and T2-w MR images. The percentage increase of the segmentation results
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Figure 5.18: The required number of epochs to train different transfer learning approaches.
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Figure 5.19: The total computation time of different transfer learning approaches.

of the T2-w bone class is high. This enhancement indicates the ability of the augmentation

technique to include T2-w features which in turn enhance the segmentation results of T2-w

images and build a multi-modality segmentation model. On the other hand, the T2-w based

augmentation technique is not affecting the segmentation results of T1-w images. The lack of

segmentation improvement indicates that the model is able to preserve the features of T1-w

images even after training the model with two different MR sequences. The sensitivity of the

soft tissue class remains stable while the precision of the air class is improved by 0.03% after

the application of T2-w based augmentation.

Figure 5.20 illustrates the visual segmentation results of two randomly selected slices

from the testing datasets of T1-w and T2-w MR images. The comparison between the segmen-
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Table 5.14: The segmentation results of T1-w and T2-w bone class by applying T2-w based
augmentation.

Bone tissue
Model PRE REC DSC JSC
T1-w without augmentation 0.7261 0.5857 0.6484 0.4797
T1-w with augmentation 0.7180 0.5639 0.6317 0.4616
Percentage increase -1.12% -3.71% -2.57% -3.76%
T2-w without augmentation 0.5223 0.3038 0.3841 0.2377
T2-w with augmentation 0.7150 0.4338 0.5399 0.3698
Percentage increase % 36.90% 42.78% 40.56% 55.56%

Table 5.15: The segmentation results of T1-w and T2-w soft tissue class by applying T2-w
based augmentation.

Soft tissue
Model PRE REC DSC JSC
T1-w without augmentation 0.8962 0.9290 0.9123 0.8388
T1-w with augmentation 0.8917 0.9290 0.9100 0.8349
Percentage increase -0.50% 0.00% -0.25% -0.47%
T2-w without augmentation 0.8445 0.8484 0.8464 0.7338
T2-w with augmentation 0.8595 0.8786 0.8690 0.7683
Percentage increase 1.78% 3.56% 2.66% 4.70%

Table 5.16: The segmentation results of T1-w and T2-w air class by applying T2-w based
augmentation.

Air tissue
Model PRE REC DSC JSC
T1-w without augmentation 0.9641 0.9626 0.9633 0.9293
T1-w with augmentation 0.9644 0.9618 0.9631 0.9288
Percentage increase 0.03% -0.08% -0.02% -0.05%
T2-w without augmentation 0.9184 0.9481 0.9330 0.8744
T2-w with augmentation 0.9279 0.9460 0.9369 0.8813
Percentage increase 1.04% -0.22% 0.42% 0.79%

tation results of T1-w MR images before and after the application of augmentation do not reveal

a significant enhancement for the bone class. However, the segmentation of the air cavities

before the augmentation is more accurate. Nevertheless, the segmentation of the T2-w images

is highly improved after the T2-w based augmentation where many false positive of the bone

and air classes are disappeared.
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Figure 5.20: The segmentation results of two randomly selected slices from the testing datasets
of T1-w and T2-w MR images. (a) MR images, (b) CT images which used as ground truth,
(c) the segmentation results without the application of augmentation, and (d) the segmentation
results using T2-w based augmentation.

5.5 Summary and Limitations

The application of transfer learning from T1-w to T2-w MR sequences has been studied in

this chapter by exploring different mechanisms of domain adaptation. The knowledge from

a pretrained model with T1-w MR images is transferred to segment T2-w images using four

approaches which are: transfer learning without fine tuning, transfer learning using open fine

tuning, transfer learning using conservative fine tuning, and hybrid transfer learning. The hybrid

transfer learning solves the issue of overfitting when fine tuning the CNN with small dataset.

This approach also enhances the segmentation of the bone class in T2-w MR images. The

segmentation results of the soft tissue and air classes of T2-w MR images using the transfer

learning from T1-wMR images without any fine tuning show the best performance with minimal

computation time. The experiments of conservative fine tuning reveal that retraining only six

convolutional layers is able to produce better segmentation results for air classes with acceptable

153



computation time. On the other hand, the segmentation results of bone and soft tissue classes

reveal better performance with fine tuning eighteen convolutional layers which requires more

computation time.

The technique of T2-w based augmentation has not shown a significant impact on

the performance of T1-w MR segmentation. However, this augmentation technique helps to

improve the T2-w MR segmentation and build a mulitmodality or mulitsequences model which

is able to segment different MR sequences. Generally, the performance of the segmentation of

T1-w MR images is better than T2-w MR images because the size of T1-w dataset is larger than

T2-w dataset. The increase of the size of the target training datasets helps the conservative fine

tuning of CNN.

In summary, the hybrid transfer learning is useful to improve the bone segmentation.

However, the segmentation of the soft tissue and air classes of T2-w images is performing

well using the pretrained model without fine tuning and with minimal computation time and

resources.
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Chapter 6

Conclusions and Future Directions

6.1 Introduction

The PET attenuation correction is one challenging task for PET quantification and analysis.

Recently, with the wide use of the hybrid PET/MR scanners, MR images with their various

advantages are used to create pseudo CT to replace CT images. The generation of pseudo

CT images is an essential step of the integrated process of MR based segmentation for PET

attenuation correction.

The main challenge of the segmentation of brain MR images is the delineation of

bone tissue especially in the nasal cavity areas. One key reason is the similarity of air and

bone intensity values which makes the distinguish between these two tissues very challenging.

Another reason related to machine learning modelling is the issue of classes unbalancing in the

brain volume. The number of air and soft tissue voxels is much higher than the bone voxels.

The classes unbalancing tends to build biased classification models.

This research has proposed multiple approaches to enhance the segmentation of brain

MR images by investigating different mechanisms including CNN, attention based CNN, mul-

tiresolution analysis techniques with CNN, and transfer learning with different fine tuning

mechanisms. The proposed approaches have shown their efficiency in enhancing the segmenta-
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tion of the brain into three tissue classes (bone, soft tissue, air) compared to baseline approaches.

Additionally, the proposed segmentation methods have been evaluated on clinical MR and CT

images and validated with other similar methods in the literature. Moreover, this research has

shown the applicability of transfer learning from different MR sequences. The objectives of this

research have been achieved successfully and will be discussed in the next sections.

This chapter includes a general conclusion of the proposed contributions in this research

work. The defined research objectives which are listed in Chapter 1 are revisited in Section 3 to

ensure they have been addressed adequately. Section 4 illustrates the limitations and the future

directions are suggested in Section 5.

6.2 General Conclusions

This research has investigated three directions of deep neural networks to enhance the segmen-

tation of the bone class in brain MR images.

The first direction includes the combination of handcrafted features with CNN’s fea-

tures to enrich the set of features used for voxel’s classification. The explored multiresolution

handcrafted features are Shearlet and Contourlet transforms which are able to add the multiscale

and multidirectional properties to the set of features. This type of multiresolution features has

shown its capability to enhance the bone segmentation in brain MR images compared to other

techniques proposed in the literature.

Although the results of the fusion of multiresolution features with CNN’s features are

promising, the task of handcrafted features extraction adds some complexity to the segmentation

algorithm. Hence, the second direction of this research has proposed another approach by

designing an attention based CNN that boosts the features during the features extraction process

without the need to any additional handcrafted features. The attention based CNN uses a squeeze

and excitation block that recalibrates the features adaptively on either channel or spatial domain.

The two excitation blocks are integrated sequentially to reduce the model complexity. This
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approach has shown slightly better segmentation performance than the first proposed approach;

Yet it has reduced themodel complexity by eliminating the task of handcrafted features extraction

and selection. Another enhancement that has been proposed under this direction is the application

of an ensemble of attention based CNNswith the deployment of different activation and objective

functions. The segmentation results of the ensemble of attention based CNNs outperform the

results of a single attention based CNN.

The third direction of this research is the application of transfer learning from different

MR sequences. The proposed method have applied different fine tuning mechanisms to transfer

the knowledge from T1-w to T2-w MR sequences. The proposed mechanisms are transfer

learning using open fine tuning, transfer learning using conservative fine tuning, and hybrid

transfer learning. The results reveal that the domain adaptation is efficient with the particular

application of brainMR segmentation. Moreover, the T2-w images have been used as an intensity

based augmentation technique to enhance the segmentation results and build a multi-sequences

segmentation model.

6.3 Research Objectives ’Revisited’

The main objectives of this research which are defined under Chapter 1 are revisited herein to

ensure they have been successfully addressed. The objectives have been determined with the

focus on the area of medical imaging segmentation using a variation of deep learning related

techniques.

1. Have the medical imaging modalities: MR and CT been explored and investigated?

The medical imaging modalities MR and CT have been investigated using MATLAB and

Amide application. The 3D volume and 2D slices have been visualised to observe the

difference between the two modalities and ensure their alignments.

2. Has the 3D CNN been efficiently designed for brain segmentation?

The design of a 3D CNN that follows a convolutional encoder decoder architecture has
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been thoroughly investigated by conducting several experiments to explore the impact

of different components of the network and select the optimal ones. The conducted

experiments with the results analysis are illustrated in Chapter 3.

3. Has the combination of the multiresolution analysis techniques such as Contourlet

and Shearlet transforms with the CNN’s features been investigated and successfully

implemented?

A novel segmentation approach which fuses the multidirectional and multiscale features

with CNN’s features has been proposed and implemented. Different scales and directional

coefficients have been investigated using a particular features selectionmethod. The details

of this approach with the implementation steps and the obtained results have been detailed

in Chapter 3.

4. Has a novel CNN that uses squeezing and excitation blocks to reduce the complexity

been proposed?

A 3D attention based convolutional encoder decoder network has been proposed using two

squeeze and excitation mechanisms which help to recalibrate the features adaptively and

boost the most dominant features in order to improve the brain MR images segmentation.

This network has been successfully implemented to decrease the model complexity by

relying only on the CNN’s features and avoiding the overhead of handcrafted features.

The details of the implementation with the obtained results are presented in Chapter 4.

5. Has an ensemble of different CNNs been proposed?

An ensemble of multiple attention based CNNs has been successfully proposed and

implemented. The ensemble approach has shown an increase in the performance with

the capability to build a reliable segmentation approach. The results of this objective are

demonstrated in Chapter 4.
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6. Has the applicability of transfer learning from different MR sequences has been

investigated?

The transfer learning has been applied using two MR sequences : T1-w and T2-w. Due to

the small size of T2-w datasets, the knowledge is transferred from T1-w to T2-w images.

The transfer learning has been successfully applied by exploring different fine tuning

approaches. Additionally the use of T2-w MR images as an intensity based augmentation

approach has been investigated and implemented to build multi-modality segmentation

approach. The details of the transfer learning and multi-modality approach are illustrated

in Chapter 5.

7. Have the proposed segmentation approaches been evaluated?

Each of the proposed approaches has been evaluated using clinical datasets of fifty patients

with different demographics and clinical diagnosis. Moreover, the performance of each

approach has been assessed by calculating four quantitative evaluation metrics (precision,

recall, DSC, and JSC) as well as the visual comparison with the ground truth.

8. Have the proposed segmentation approaches been validated with other studies?

The first and second segmentation approaches have been compared with other works in

the literature that applied deep learning to segment MR images for brain PET attenuation

correction. The validation of the third approach which is related to transfer learning is not

applicable.

6.4 Research Limitations

Although the determined objectives of this thesis have been successfully fulfilled, some limita-

tions have been identified and categorised as follows:
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6.4.1 Deep Learning

The main challenge of training a deep neural network is the need of big data to obtain a well-

performed model. Another challenge is the lack of interpretability for certain behaviours of

the deep learning. Additionally, the computational cost is a limitation when designing a deep

network. It is crucial to use high performance computing resources such as graphical processing

units with large memory capacity to train millions of parameters to segment 3D images. This is

very challenging during the design stage of the deep network where many trials and experiments

should be conducted given that each experiment can take up to eight hours with Tesla V100

GPU with 16 GB memory. The memory capacity of the GPU is another important resource

that should be considered when designing a 3D deep network. One medical volume consists of

thousands of voxels and in order to use the whole volume as an input to the network in order to

preserve the contextual information, there is a need to use a GPU with memory size of 32 GB

or higher.

6.4.2 Handcrafted Features

The process of extraction and selection of handcrafted features is cumbersome and time con-

suming. The selection of the Contourlet and Shearlet decomposition levels requires careful

consideration by conducting more experiments to select the optimal decomposition levels. In

this research, the decomposition levels and scales are randomly selected.

6.4.3 Generalised Model for Segmentation

The datasets consist of patients with different demographics and neurological diagnosis. The

obtained segmentation results have revealed there is a high variability in the bone segmentation.

Therefore, there is no guarantee that the proposed methods can be used for patients with

different anatomical structures or neurological diseases. Moreover, this work focuses only on

brain segmentation instead of whole body which is more challenging.

160



6.4.4 PET Attenuation Correction

Despite the promising performance of the deep learning guided MR segmentation for PET

attenuation correction to identify the brain tissue classes, the predefined linear attenuation

coefficient assignment to each tissue class is not very practical. The continuous patient-specific

attenuation value estimation is a more promising approach which requires more consideration.

The accurate bone delineation with patient specific attenuation value would lead to perfect

attenuation correction and PET quantification. Hence, there is a need to find a direct mapping

between MR intensity and tissue density (i.e., linear attenuation coefficient). Moreover, there is

a lack of comprehensive comparison with existing techniques reported in the literature (e.g. CT

synthesis) that generate pseudo CT images with continuous values.

6.5 Future Directions

6.5.1 Disease Specific Segmentation

Currently, the proposed segmentation CNN is trained with datasets which include patients with

different clinical neurological diagnosis. This variation hinders the process of building an

accurate and robust segmentation model since the deep learning is an application/data specific

approach. Hence, training one model with a dataset that consists of patients with the same

neurological diagnosis is a promising approach to achieve a robust and reliable segmentation

model. The application of transfer learning is another possible solution to train models with

datasets of patients with different brain diseases. A pretrained model with a specific dataset can

be fine tuned to build another model that works with datasets of different diseases.

6.5.2 More Data

Deep learning is data hungry technique and always requires more data to increase the learn-

ing capability especially with more complicated learning algorithms. Data augmentation is a
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well-known technique to increase the size of the training dataset. The conventional data aug-

mentation techniques such as rotation, flipping, and mirroring have been applied to enhance the

segmentation performance, yet no enhancement has been observed. The application of different

data augmentation techniques such as using generative adversarial network (GAN) to generate

augmented images is a promising approach to be investigated in the future. On the other hand,

the identification of the optimal training size is essential to build a successful model which is

able to generalise without memorisation of the training data. The convergence of the objective

function that measures the error of both training and validation is an indication of a sufficient

sample size [280].

6.5.3 Further Evaluation for PET Images

The focus of this research is directed toward the enhancement of segmentation algorithm using

deep learning technique. Brain segmentation is a critical task to generate pseudo CT image

which is an essential part of the integrated process of PET attenuation correction. In order to

fully evaluate the PET attenuation correction process, further evaluation is required by using

the segmented images to generate the pseudo CT images. The pseudo CT images will be used

to create the attenuation maps and reconstruct the corrected PET images. The evaluation and

analysis of the reconstructed PET images is a future objective to ensure that the efficiency of the

proposed segmentation approaches.

6.5.4 Pseudo CT Generation using Regression

MR image segmentation based approach for PET attenuation correction has some limitations as

stated previously in Chapter 2. One of these limitation is the assignment of a predefined linear

attenuation coefficient for each tissue class to generate the attenuation map. This predefined

coefficient can lead to inaccurate attenuation value for each patient and eventually leads to PET

quantification biases. As a promising solution, there are some recent studies [281, 282] which

are proposing the mapping between MR intensity value and tissue linear attenuation coefficient
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without the need to apply any segmentation. This approach depends on the employment of

regression technique using deep learning. Therefore, the application of regression task instead

of segmentation task is an elegant and promising solution which can be investigated in the future.
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