18 research outputs found

    Collaborative regression-based anatomical landmark detection

    Get PDF
    Anatomical landmark detection plays an important role in medical image analysis, e.g., for registration, segmentation and quantitative analysis. Among various existing methods for landmark detection, regression-based methods recently have drawn much attention due to robustness and efficiency. In such methods, landmarks are localized through voting from all image voxels, which is completely different from classification-based methods that use voxel-wise classification to detect landmarks. Despite robustness, the accuracy of regression-based landmark detection methods is often limited due to 1) inclusion of uninformative image voxels in the voting procedure, and 2) lack of effective ways to incorporate inter-landmark spatial dependency into the detection step. In this paper, we propose a collaborative landmark detection framework to address these limitations. The concept of collaboration is reflected in two aspects. 1) Multi-resolution collaboration. A multi-resolution strategy is proposed to hierarchically localize landmarks by gradually excluding uninformative votes from faraway voxels. Moreover, for the informative voxels near the landmark, a spherical sampling strategy is also designed in the training stage to improve their prediction accuracy. 2) Inter-landmark collaboration. A confidence-based landmark detection strategy is proposed to improve the detection accuracy of “difficult-to-detect” landmarks by using spatial guidance from “easy-to-detect” landmarks. To evaluate our method, we conducted experiments extensively on three datasets for detecting prostate landmarks and head & neck landmarks in computed tomography (CT) images, and also dental landmarks in cone beam computed tomography (CBCT) images. The results show the effectiveness of our collaborative landmark detection framework in improving landmark detection accuracy, compared to other state-of-the-art methods

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Role of deep learning in infant brain MRI analysis

    Get PDF
    Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy

    The Role of Transient Vibration of the Skull on Concussion

    Get PDF
    Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to reflect the wave or cushion its force. To date, there is few researches investigating the effect of transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain better understanding of the role of transient vibration of the skull on concussion. This goal will be achieved by addressing three research objectives. First, a MRI skull and brain segmentation automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI scans struggle with differentiating bone tissue from other structures. One of the most important components for a successful segmentation is high-quality ground truth labels. Therefore, we introduce a deep learning framework for skull segmentation purpose where the ground truth labels are created from CT imaging using the standard tessellation language (STL). Furthermore, the brain region will be important for a future work, thus, we explore a new initialization concept of the convolutional neural network (CNN) by orthogonal moments to improve brain segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align the Facial Skeleton is introduced. An important aspect for further impact analysis is the ability to precisely simulate the same point of impact on multiple bone models. To perform this task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce a 2D/3D technique to align the facial skeleton that was initially developed for automatically calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using cephalometric landmarks and manual image grid alignment to construct the training dataset was introduced. Then, this concept was extended to a 3D version where coronal and transverse planes are aligned using CNN approach. As the alignment in the sagittal plane is still undefined, a new alignment based on these techniques will be created to align the sagittal plane using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are assessed to determine how the skull resonant frequency vibrations propagate into the brain tissue. After applying material properties and mesh to the skull, modal analysis is performed to assess the skull natural frequencies. Finally, theories will be raised regarding the relation between the skull geometry, such as shape and thickness, and vibration with brain tissue injury, which may result in concussive injury

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Oral and Maxillofacial Surgery

    Get PDF
    Oral and maxillofacial surgery is a specialized branch of dentistry that deals with the surgical management of various head and neck pathologies. The specialty focuses on reconstructive surgery of the oro-facial region, surgery of facial trauma, the oral cavity and jaws, dental implants as well as cosmetic surgery. As such, surgeons in this field require extensive knowledge of not only these various surgical procedures but also head and neck anatomy. This book provides comprehensive information on both. Its goal is to educate oral and maxillofacial surgeons to enable them to treat a wide range of conditions and diseases using the most current surgical trends

    Radiographic Assessment of Hip Disease in Children with Cerebral Palsy: Development of a Core Measurement Set and Analysis of an Artificial Intelligence System

    Get PDF
    Cerebral palsy is the most common physical disability during childhood. Cerebral palsy related hip disease is caused by an imbalance of muscle forces, resulting in progressive migration of the hip to complete dislocation. This can decrease function and quality of life. The prevention of hip dislocation is possible if detected early. Therefore, surveillance programmes have been set up to monitor children with cerebral palsy enabling clinicians to intervene early and improve outcomes. Currently, hip disease is assessed by analysing pelvic radiographs with various geometric measurements. This time-consuming task is undertaken frequently when monitoring a child with cerebral palsy. This thesis aimed to identify the key radiographic parameters used by clinicians (the core measurement set), and then build an artificial intelligence system to automate the calculation of this core measurement set. A systematic review was conducted identifying a comprehensive list of previously reported measurements from studies measuring radiographic outcomes in cerebral palsy children with hip pathologies. Fifteen measurements were identified from the systematic review, of which Reimers’ migration percentage was the most commonly reported. These measurements were used to perform a two-round Delphi study among orthopaedic surgeons and physiotherapists. Participants rated the importance of each measurement using a nine-point Likert scale (‘not important’ to critically important’). After the two rounds of the Delphi process, Reimers’ migration percentage was included in the core measurement set. Following the final consensus meeting, the femoral head-shaft angle was also included. The anteroposterior pelvic radiographs of 1650 children were then used to build an artificial intelligence system integrating the core measurement set, in collaboration with engineers from the University of Manchester. The newly developed artificial intelligence system was assessed by comparing its ability to calculate measurements and outline the pelvis and femur on a radiograph. The reliability of the dataset used to train the model was also analysed. The proposed artificial intelligence model achieved a ‘good to excellent’ inter-observer reliability across 450 radiographs when comparing its ability to calculate Reimers’ migration percentage to five clinicians. Its ability to outline the pelvis and proximal femur was ‘adequate’ with the better performance observed in the pelvis than the femur. The reliability of the training dataset used to teach the artificial intelligence model was ‘good’ to ‘very good’. Artificial intelligence systems are feasible solutions to optimise the efficiency of hip radiograph analysis in cerebral palsy. Studies are warranted to include the core measurement set as a minimum when reporting on hip disease in cerebral palsy. Future research should investigate the feasibility of implementing a risk score to predict the likelihood of hip displacement

    Case series of breast fillers and how things may go wrong: radiology point of view

    Get PDF
    INTRODUCTION: Breast augmentation is a procedure opted by women to overcome sagging breast due to breastfeeding or aging as well as small breast size. Recent years have shown the emergence of a variety of injectable materials on market as breast fillers. These injectable breast fillers have swiftly gained popularity among women, considering the minimal invasiveness of the procedure, nullifying the need for terrifying surgery. Little do they know that the procedure may pose detrimental complications, while visualization of breast parenchyma infiltrated by these fillers is also deemed substandard; posing diagnostic challenges. We present a case series of three patients with prior history of hyaluronic acid and collagen breast injections. REPORT: The first patient is a 37-year-old lady who presented to casualty with worsening shortness of breath, non-productive cough, central chest pain; associated with fever and chills for 2-weeks duration. The second patient is a 34-year-old lady who complained of cough, fever and haemoptysis; associated with shortness of breath for 1-week duration. CT in these cases revealed non thrombotic wedge-shaped peripheral air-space densities. The third patient is a 37‐year‐old female with right breast pain, swelling and redness for 2- weeks duration. Previous collagen breast injection performed 1 year ago had impeded sonographic visualization of the breast parenchyma. MRI breasts showed multiple non- enhancing round and oval shaped lesions exhibiting fat intensity. CONCLUSION: Radiologists should be familiar with the potential risks and hazards as well as limitations of imaging posed by breast fillers such that MRI is required as problem-solving tool
    corecore