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Abstract

Anatomical landmark detection plays an important role in medical image analysis, e.g., for 

registration, segmentation and quantitative analysis. Among various existing methods for 

landmark detection, regression-based methods recently have drawn much attention due to 

robustness and efficiency. In such methods, landmarks are localized through voting from all image 

voxels, which is completely different from classification-based methods that use voxel-wise 

classification to detect landmarks. Despite robustness, the accuracy of regression-based landmark 

detection methods is often limited due to 1) inclusion of uninformative image voxels in the voting 

procedure, and 2) lack of effective ways to incorporate inter-landmark spatial dependency into the 

detection step. In this paper, we propose a collaborative landmark detection framework to address 

these limitations. The concept of collaboration is reflected in two aspects. 1) Multi-resolution 

collaboration. A multi-resolution strategy is proposed to hierarchically localize landmarks by 

gradually excluding uninformative votes from faraway voxels. Moreover, for the informative 

voxels near the landmark, a spherical sampling strategy is also designed in the training stage to 

improve their prediction accuracy. 2) Inter-landmark collaboration. A confidence-based landmark 

detection strategy is proposed to improve the detection accuracy of “difficult-to-detect” landmarks 

by using spatial guidance from “easy-to-detect” landmarks. To evaluate our method, we conducted 

experiments extensively on three datasets for detecting prostate landmarks and head & neck 

landmarks in computed tomography (CT) images, and also dental landmarks in cone beam 

computed tomography (CBCT) images. The results show the effectiveness of our collaborative 

landmark detection framework in improving landmark detection accuracy, compared to other state-

of-the-art methods.

I. INTRODUCTION

Anatomical landmark detection aims to automatically localize specific points of interest in 

human anatomy. These points are named landmarks, which often lie on the organ/structure 
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boundary. These landmarks are important in registration, segmentation and quantitative 

analysis, e.g., for landmark-guided deformable registration [1], model initialization in 

deformable segmentation [2, 3], and dental deformity quantization [4]. Despite its 

importance, anatomical landmark detection still remains a challenging problem due to many 

reasons: 1) poor image contrast, 2) image artifacts, and 3) large appearance variations of 

landmark.

Fig. 1 gives an example of one prostate landmark, which lies on the boundary between the 

prostate and rectum. Its local appearance could dramatically change due to the uncertainty of 

bowel gas in the rectum. Besides, CT scans may be acquired after the injection of contrast 

agent, which changes the surrounding appearance of the landmark, and makes automatic 

landmark detection even more challenging.

Fig. 2 gives an example of one tooth landmark in cone beam computed tomography (CBCT) 

images. As shown in the transversal view of Fig. 2(a), metal dental braces can cause severe 

streaking artifacts, which makes the landmark difficult to be recognized. Besides, the 

challenges of teeth landmark detection also come from various deformities of patients. Fig. 2 

(c) shows a patient with anterior open-bite. This deformity leads to dramatic appearance 

changes of the same landmark across different patients, which increases the difficulty of 

landmark detection.

Due to the aforementioned challenges, it is difficult to empirically handcraft all rules to 

address the landmark detection problem. In the literature, researchers often rely on machine 

learning based approaches to tackle this problem. The mainstream landmark detection 

methods can be categorized into two types: classification-based and regression-based 

landmark detections.

In the classification-based methods, strong classifiers are usually learned to distinguish the 

correct position of anatomical landmark from the wrong ones. For example, Zhan et al. [5] 

used cascade Adaboost classifiers to classify each image voxel for detecting anatomical 

landmarks on MR knee images. Zheng et al. [6] proposed marginal spacing learning, which 

used probabilistic boosting trees [7] as classifiers, to detect the positions of heart chambers 

for deformable model fitting. Gao et al. [3] proposed an online updating scheme named 

“incremental learning with selective memory” to update the population-learned cascade 

classifiers with the online collected patient-specific data for improving the accuracy of 

landmark detection on daily treatment CT images.

In contrast to the classification-based approaches, which often require voxel-wise 

classification to determine the correct landmark position, the regression-based approaches 

predict the landmark position from each image voxel. In the training stage, a regression 

model is often learned to predict the 3D displacement from any image voxel to the target 

landmark. In the application/testing stage, the learned regression model can be used to 

predict the 3D displacement for every voxel in the image. Then, based on the estimated 3D 

displacement, each image voxel casts one vote to a potential landmark location. Finally, all 

votes from different image voxels are aggregated to localize the target landmark, such as at 

the voxel with the maximum vote. For example, Criminisi et al. [8] proposed to use 
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regression forest with context-rich visual features for detecting bounding boxes of organs in 

CT images. Instead of determining the bounding box by checking the local image features 

within the box, they showed that the context appearance information is also important in the 

bounding box detection. Recently, researchers [9, 10] have shown that the bounding box 

detection method [8] can also be easily extended to anatomical landmark detection. Besides 

the aforementioned methods, there are methods that combine both classification and 

regression for landmark detection. Lay et al. [2] first used regression forest to detect 

candidate positions for each landmark, and then applied probabilistic boosting trees as 

classifiers to accurately identify the landmark location within all candidates.

Compared to classification-based methods, regression-based methods integrate context 

appearance information to localize landmarks, which makes it less sensitive to the 

anatomical structures with similar local appearances to the target landmark but with 

completely different anatomical positions in the image. Recently, Cootes et al.[11] have also 

shown that random forest regression method is significantly faster and more accurate than 

the equivalent classification-based methods in driving the deformable segmentation of 

different datasets. Despite the success of recent regression-based landmark detection 

methods, they still suffer several limitations:

1. Inclusion of faraway image voxels in the voting procedure. In the conventional 

regression-based method [8], all image voxels are involved in voting the landmark 

location. As many voxels are not near the target landmark, they are not informative 

to local anatomical variations of the landmark. Thus, inclusion of these voxels in 

the voting procedure would limit the detection accuracy.

2. Neglect of landmark dependency in the detection step. Many anatomical landmarks 

are spatially dependent. Independent detection of them may cause inconsistent 

detection results. In the literature, most works [5, 12, 13] exploited the landmark 

spatial dependency in the post-processing step that is separated from the detection 

step. For example, Zhan et al. [5] exploited a linear spatial relationship between 

landmarks for correcting wrongly localized landmarks on MR knee images. Donner 

et al. [12] adopted Markov random field to find the optimal landmark configuration, 

given a set of landmark candidates. Because the spatial dependency is exploited 

after the detection step, it only helps filter out wrongly detected landmarks, not 

improve the accuracy of individual landmark detections.

In this paper, we propose a collaborative regression-based framework for solving the above 

limitations. Specifically, our framework consists of two components:

1. Multi-resolution collaboration. We propose a multi-resolution strategy named 

“multi-resolution regression voting” to detect a landmark hierarchically. In the 

coarsest resolution, all image voxels are allowed to vote the landmark position for 

rough localization. Once the rough position is known, the landmark position can be 

refined by voting from nearby voxels. The training of our multi-resolution 

framework also takes into account the idea that nearby voxels are more useful for 

localizing the landmark than faraway voxels. Particularly, we propose a spherical 

sampling strategy, which associates the sampling probability of a voxel with its 

distance to the target landmark. In this way, spherical sampling strategy tends to 
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draw more training samples towards the target landmark, thus improving the 

prediction accuracy for voxels near the target landmark.

2. Inter-landmark collaboration. We exploit the detection reliability of each landmark 

and then propose a confidence-based landmark detection strategy, which 

uses ”easy-to-detect” (reliable) landmarks to guide the detection of ”difficult-to-

detect” (challenging) landmarks. Particularly, we introduce context distance 

features, which measure the displacements of an image voxel to the reliable 

landmarks. Context distance features can be used to guide the detection of 

challenging landmarks, because the displacements of an image voxel to the reliable 

and challenging landmarks are often highly correlated. If this correlation is 

exploited, the reliable landmarks can be used to improve the detection accuracy of 

challenging landmarks.

In the experiments, we extensively evaluate our method on 127 images, including 73 CT 

prostate images each with 6 landmarks, 14 CBCT dental images each with 15 landmarks, 

and 40 CT head & neck images each with 5 landmarks. Experimental results show that, with 

the proposed strategies, our method outperforms the conventional regression-based method, 

and a classification-based method in landmark detection. Moreover, our method is able to 

localize a landmark in 1 second with accuracy comparable to the inter-observer variability.

The preliminary version of this work was published in [1], where we used landmark 

detection for initializing deformable registration. The method described in this work extends 

our previous work in the following three aspects.

• We propose a spherical sampling strategy in the multi-resolution framework. As 

validated on three datasets, the spherical sampling strategy improves the accuracy 

of landmark detection, compared to the conventional uniform sampling strategy.

• We propose a collaborative landmark detection strategy, by using easy-to-detect 

land-marks to guide and improve the detection accuracy of difficult-to-detect 

landmarks. This strategy is important for detecting those challenging landmarks 

with large variation of landmark appearance.

• Compared to our previous work [1], which was applied only to MRI brain images, 

we have now extensively evaluated our method on three different datasets. The 

results show that our method works not only for the landmarks with clear 

appearances, but also for the landmarks with indistinct appearances, such as 

prostate landmarks in CT images.

The rest of paper is organized as follows. Section II presents the conventional regression-

based landmark detection to familiarize readers with the overall flowchart. Section III 

elaborates the proposed multi-resolution strategy. Section IV provides the details of 

confidence-based landmark detection. Experimental results of different strategies on three 

applications are given in Section V. Finally, Section VI and Section VII present the 

conclusion and discussion of the paper, respectively.
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II. REGRESSION-BASED LANDMARK DETECTION

In this section, we will first introduce the basics of regression forest, which is often used as a 

regression model in the conventional regression-based landmark detection. Then, we will 

describe the conventional regression-based landmark detection method in details.

A. Regression Random Forest

Regression random forest is one type of random forests specialized for non-linear regression 

tasks. It consists of multiple independently-trained binary decision trees. Each binary 

decision tree is composed of two types of nodes, namely leaf node and split node. Each leaf 

node records the statistics that summarizes target values of all training samples falling into 

it. In our implementation, mean d̄∈ℝM and variance v∈ℝM are recorded in each leaf node, 

where M is the dimension of target vector we want to predict/regress, such as M = 3 in our 

case of detecting the location of landmark in the 3D images. Each split node is a split 

function, which often uses a decision stump with one feature f and a threshold t, i.e., Split(Ω|

f, t) = H(Ωf < t), where Ω represents an input sample, Ωf is the value of feature f at sample Ω, 

and H is the Heaviside step function. If Split(Ω|f, t) = 0, sample Ω is split to the left child of 

this split node. Otherwise, it is split to the right child node.

Each binary decision tree in regression random forest is independently trained with boot-

strapping on both samples and features. Given a random subset of training samples and 

features, a binary decision tree is trained recursively, starting from the first split node (root). 

A good split function should separate training samples into two subsets with consistent 

target vectors. This could be achieved by maximizing variance reduction. Thus, the optimal 

parameters {f*, t*} of a split function can be found by maximizing the following objective 

function:

(1)

where  is the variance of the i-th target of all training samples arriving at the split node. 

Nj, j ∈ {L, R}, is the number of training samples split into the left/right child, given a pair of 

{f, t}.  is the variance of the i-th target of training samples split into the left/right child 

node, i.e., j = L or j = R. To maximize Eq. 1, exhaustive search over a random subset of 

features and thresholds is often conducted in the random forest optimization [14]. 

Specifically, a set of thresholds is randomly sampled for each feature in the bootstrapped 

feature set. Every combination of feature and threshold is evaluated on Eq. 1 to find out the 

optimal pair that achieves the maximum objective value. Once the split function is 

determined, it is used to split the training samples into two subsets: left subset with training 

samples satisfying Split(Ω|f, t) = 0, and right subset with training samples satisfying Split(Ω|

f, t) = 1. For each subset, a split function can be similarly trained to further separate training 

samples into subsets with more consistent target vectors. The splitting functions is thus 

recursively trained until one of stopping criteria is met: 1) the number of training samples is 

too few to split; 2) the maximum tree depth is reached. In such cases, the current node 
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becomes a leaf node and the statistics (i.e., mean d̄ and variance v) of training samples 

falling into this node is stored for future prediction.

In the testing stage, a testing sample is pushed to each binary decision tree, starting at the 

root node. Based on the split nodes learned in the training stage, the testing sample is guided 

towards leaf nodes. When it arrives a leaf node, the mean d̄ stored in the leaf node is 

retrieved to serve as the prediction result of this tree. Finally, the results from all different 

trees are fused to obtain the prediction result of the entire forest. Conventionally, averaging 

is often used to fuse prediction results from different trees due to its simplicity and 

efficiency.

(2)

where K is the number of trees in the forest, and d̂
i is the i-th predicted target for this testing 

sample. dī
(k) is the mean of the i-th target stored in the leaf node reached in the k-th tree. 

Since variance of each leaf indicates the prediction uncertainty (i.e., large variance indicates 

high uncertainty, while small variance indicates low uncertainty), it is better to also exploit 

this piece of information when fusing results from different trees. Therefore, in this paper we 

use the variance-weighted averaging to fuse prediction results from different trees:

(3)

where  is the variance of the i-th target stored in the leaf node reached in the k-th tree. 

 is the weight to measure the prediction confidence of the i-th target by the k-th tree, 

which is defined as the inverse of . The smaller the variance is, the larger the confidence 

is. ε is a very small number (1.0×10−6) to deal with the case when variance of leaf node is 

zero.

B. Regression-based Anatomical Landmark Detection

Regression-based landmark detection utilizes context appearances to localize the target 

landmark. This characteristic differentiates it from the classification-based landmark 

detection, which localizes a landmark via voxel-wise classification according to the local 

appearance of each voxel. As a machine-learning-based approach, regression-based 

landmark detection has two stages, the training stage and the testing stage. In the training 

stage, the goal is to learn a regression model (i.e., regression forest) that predicts the 3D 

displacement from any image voxel to the target landmark according to the local image 

appearance of the voxel. In the testing stage, the learned regression model is used to predict 

the 3D displacement for each image voxel in the new testing image. Based on the estimated 

3D displacement to the target landmark, each image voxel casts one vote to a potential 

landmark position. Finally, by collecting votes from all image voxels, the position that 

receives the maximum votes is taken as the detected landmark position. In the following 

paragraphs, the details of respective training and testing stages are provided in the context of 
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single-landmark detection for the sake of concision. However, they can also be used in the 

multi-landmark setting by assuming the independence among landmarks.

Training stage—The input of the training stage is a number of training images, each with 

its interested landmark annotated. To train a regression forest, training samples need to be 

extracted from these training images. In this paper, each training sample is a voxel from one 

training image, thus also referred as training voxel in the rest of the paper. A training voxel 

is represented by a feature vector and associated with a target vector, which is the 3D 

displacement from this voxel to the target landmark in the same image.

The training stage consists of three successive steps: 1) sampling training voxels, 2) 

extracting feature and target vectors, and 3) training regression forest. Since Step 3) is 

straightforward, we detail only Step 1) and Step 2) in the following paragraphs.

1. Sampling training voxels: Theoretically all image voxels in all training images can 

be used as training voxels to train a regression forest. However, as each training 

voxel is often represented by a long feature vector, it is practically impossible to use 

all image voxels for training due to the limit of memory and training time. 

Therefore, sampling is often used to draw a limited number of representative 

training voxels from each training image for training. In the conventional 

regression-based landmark detection, uniform sampling is commonly adopted, 

where each voxel in the training images has the same probability to be sampled. For 

each training image, a fixed number τ of training voxels is uniformly and randomly 

sampled. After sampling, we have τ × Z training voxels, where Z is the number of 

training images.

2. Extracting features and target vectors: As the interested landmark is manually 

annotated on each training image, we can easily compute the target vector d of each 

sampled training voxel, i.e., d = xLM − x, where x and xLM are the positions of a 

training voxel and the landmark, respectively. The features of each training voxel 

are often calculated as 3D Haar-like features, which measure the average intensity 

of an arbitrary position, and also the average intensity difference of two arbitrary 

positions within the local patch of this voxel (see Fig. 3). Mathematically, the 3D 

Haar-like features used in our paper are formulated as:

(4)

where Ix denotes a local patch centered at voxel x. f(Ix|c1, s1, c2, s2, δ) denotes one 

Haar-like feature with parameters {c1, s1, c2, s2, δ}, where c1 ∈ ℝ3 and s1 are the 

center and size of the first positive block, respectively, and c2 ∈ ℝ3 and s2 are the 

center and size of the second negative block, respectively. Note that c1 and c2 refer 

to the center of the blocks relative to the patch rather than the overall image. δ ∈ {0, 

1} switches between two types of Haar-like features (Fig. 3), with δ = 0 indicating 

one-block Haar-like features (Fig. 3(a)) and δ = 1 indicating two-block Haar-like 

features (Fig. 3(b)).
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By changing the parameters {c1, s1, c2, s2, δ} in Eq. 4, we can compute various Haar-like 

features that capture the average intensities and intensity differences at different locations in 

the patch. Following the idea of feature bootstrapping in the random forest, only a subset of 

Haar-like features is sampled to represent each training voxel by randomizing the four 

parameters {c1, s1, c2, s2, δ}.

Once the feature vector (i.e., Haar-like features) and target vector (i.e., 3D displacement) of 

each training voxel are computed as described above, all training voxels/samples are used to 

train the regression forest in a tree-by-tree manner. As mentioned above, each binary 

decision tree is trained independently. Each tree uses different random subsets of training 

voxels and Haar-like features in order to increase the diversity among trained trees, thus 

potentially being able to improve the performance of the ensemble model.

Testing stage—The input of the testing stage is a new image, for which the method will 

localize the position of the target landmark. The testing stage consists of two sucessive steps: 

1) 3D displacement prediction, and 2) landmark voting and localization.

1. 3D displacement prediction: In the first step, the 3D displacement of each voxel in 

the new image (also referred as testing voxel) is predicted using the regression 

random forest learned in the training stage.

2. Landmark voting and localization: After the 3D displacement of each testing voxel 

is predicted, it is used to vote for the potential landmark position. Specifically, for 

each testing voxel x ∈ ℝ3 with the predicted 3D displacement d̂, one vote is cast 

onto the voxel at ROUND(x + d̂), where function ROUND(.) rounds each 

dimension of the input vector to the nearest integer. After collecting votes from all 

image voxels, we obtain a landmark voting map, where the value of each voxel in 

the voting map denotes the number of votes it receives from all locations in the 

image. The landmark position is the voxel that receives the maximum vote.

III. MULTI-RESOLUTION COLLABORATION: MULTI-RESOLUTION REGRES-

SION VOTING

As briefly mentioned in the introduction, the limitation of conventional regression-based 

landmark detection is the inclusion of faraway voxels in both training and testing stages. 

Because local appearances of faraway voxels are insensitive to deformations happened 

around landmark, faraway voxels are not informative to precise landmark position, although 

they are useful for rough localization.

Fig. 4 provides two scenarios for illustration. In the CT prostate case (Fig. 4(a)), the relative 

position of the prostate landmark to the pelvic bone could change due to the inflation of 

bladder or rectum. Hence, voxels of the pelvic bone in different images may have distinct 

displacements to the same prostate landmark even though their local image appearances are 

quite similar. The same situation applies to the CBCT dental landmark detection (Fig. 4(b)). 

Due to the deformities of patients and also the individual shape differences of the mandible, 

the 3D displacement from mandible bottom to the upper frontal tooth landmark could 

change significantly across patients, even though the image appearances of mandible-bottom 
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voxels look similar across patients. These facts cause the ambiguity of 3D displacements 

associated with faraway voxels, thus bringing problems to both training and testing of 

regression-based landmark detection.

The above examples illustrate that faraway voxels are not informative for precise landmark 

detection. However, in the testing stage, without pre-knowing the landmark position, it is 

impossible to distinguish nearby voxels from faraway voxels. Actually, this dilemma can be 

well addressed by the multi-resolution strategy. In this paper, we propose a multi-resolution 

strategy named “multi-resolution regression voting” to address this issue.

Specifically, in the testing stage, a landmark is detected in a hierarchical way. In the coarsest 

resolution, the landmark position is roughly localized by landmark voting from the entire 

image domain. Once the rough landmark position is detected, voxels within distance ρ mm 

from it (also referred as ρ-neighborhood) are identified as nearby voxels and used to refine 

the landmark position in the finer resolution. With the increase of resolution, ρ is gradually 

decreased to exclude faraway and also less informative voxels in the landmark voting step. 

Alg. 1 gives the algorithm for our multi-resolution landmark detection.

The training of our multi-resolution strategy follows the same idea of hierarchical land-mark 

detection as described above. Specifically, a regression forest is independently trained at 

each resolution. The regression forest in the coarsest resolution is trained with training 

voxels sampled from the entire image domain, while the regression forest in the finer 

resolution is trained with training voxels sampled only from the ρ-neighborhood of the 

annotated landmark position in each training image. To take into account that nearby voxels 

are more informative than faraway voxels, a spherical sampling strategy is further proposed, 

which draws training voxels based on the distance of a voxel to the landmark. In this 

spherical sampling strategy, given a ρ-neighborhood of an annotated landmark xLM and the 

number of training voxels Nsample to draw, the algorithm aims to distribute all training 

voxels evenly on each concentric sphere, which makes the concentric spheres with different 

radiuses have roughly the same number of training voxels (see illustration in Fig. 5). 

Mathematically, the sampling probability of each voxel can be computed as:

(5)

It is clear to see that the sampling probability is inversely proportional to the square distance 

of voxel x to the target landmark xLM. Therefore, more training voxels would be drawn near 

the landmark than far away from the landmark, thus potentially improving the displacement

ALGORITHM 1

Multi-resolution Regression Voting Algorithm

Input: Itest - a testing image with an unknown landmark position

    ℛi, i = {Coarsest, ⋯, Finest} − ℛi is the regression forest trained in the i-th resolution

    ρ0 - the voting neighborhood size for the 2nd coarsest resolution
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Output: p - detected landmark position

Notations: (x, ρ) - ρ-neighborhood of voxel x; (Itest) - entire image domain of Itest

Initialization: ρ = ρ0

for i = Coarsest To Finest do

  Re-sample image Itest to resolution i

  /* Set the voting area Φ */

  Φ = (Itest)

  if i ≠ Coarsest then

    Φ = (p, ρ)

    ρ = ρ=2   /* Reduce the voting area by 23 in the next finer resolution */

  end if

  /* 3D displacement prediction */

  for every voxel x in region Φ do

    Predict the 3D displacement d̂(x) by regression forest ℛi

  end for

  /* Landmark voting */

  Initialize voting map V to be zero and of the same size with Itest

  for every voxel x in region Φ do

    V (ROUND(x + d̂(x)) + = 1

  end for

  /* Landmark localization */

  p = maxx V (x)

end for

Return p

prediction accuracy for nearby voxels. Algorithm 2 gives the detail implementation of our 

spherical sampling strategy.

IV. INTER-LANDMARK COLLABORATION: CONFIDENCE-BASED LAND-

MARK DETECTION

As will be shown in the experimental section, much more accurate landmark detection can 

be achieved with the proposed multi-resolution strategy than the conventional regression-

based landmark detection. However, for certain challenging landmarks, where appearance 

variations are large, it is still difficult to accurately detect them independently from other 

landmarks. To improve their detection accuracies, it is necessary to exploit the spatial 

dependency between these challenging landmarks and other reliable landmarks.

Joint landmark detection [8] is a simple way to consider inter-landmark spatial relationship 

in the landmark detection step. It jointly predicts the 3D displacements of a voxel to multiple 

landmarks using a common regression forest, instead of using separate regression forests as 

in individual landmark detection. Sharing a common regression forest increases the 

prediction efficiency. However, it also brings a limitation. As detections of different 

landmarks may prefer different features and splitting functions in the random forest, land-
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mark detection accuracy could be compromised by sharing a common forest. Besides, all 

landmarks are equally treated in the joint detection without considering the detection 

confidence of each landmark. The detection accuracy of reliable landmarks may decrease 

due to the negative influence from challenging landmarks.

ALGORITHM 2

Spherical Sampling Strategy

Input: xLM - an annotated landmark position

ρ - the neighborhood size for sampling

Nsample - the number of training voxels requested

Output: sampled training voxel set 

Initialization: = ∅

for i = 1 to Nsample do

  /* Randomly choose a concentric sphere based on the uniform distribution */

  r = Random(0, ρ)

  /* Randomly sample a point on the unit sphere based on the uniform distribution */

  α = Random(0, 2π)

  z = Random(−1, 1); x = sqrt(1 − z2)cosα; y = sqrt(1 − z2)sinα

  /* Shift and scale it onto the selected concentric sphere */

  xi = xLM + r[x y z]T

  /* Push it into the sampled training voxel set */

  = ∪ {xi}

end for

To effectively exploit the spatial dependency among landmarks, we propose a confidence-

based landmark detection strategy, which uses reliable landmarks (with high detection 

confidence) to guide the detection of challenging landmarks (with low detection 

confidence). There are generally two ways to determine reliable and challenging landmarks. 

In applications where the spatial dependency is explicitly known, such as one landmark is 

annotated according to other landmarks, the dependents are challenging landmarks, and 

those which they depend on are reliable landmarks. In other applications where no such 

dependency is provided, we first compute the variance of Euclidean distances between any 

pair of land-marks across subjects. Landmark pairs with small variances are considered 

spatially highly correlated. Next, we use cross validation to determine the detection accuracy 

of each land-mark. If two landmarks are spatially correlated and their validated detection 

accuracies are statistically different (p < 0.05), we use the landmark with higher detection 

accuracy as the reliable landmark to guide the detection of the one with lower detection 

accuracy. It should be noted that the above cross validation is performed on the training data, 

without using the testing data.

Suppose that LMa is a challenging landmark and {LM1, ⋯ LMb, ⋯ LMB} is a set of 

reliable landmarks, the following paragraphs introduce how the reliable landmarks can be 

used to guide the detection of challenging landmark in the confidence-based landmark 

detection.
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• Training Stage: The regression forest training for B reliable landmarks is the same 

as described in Section III. To train regression forest for challenging landmark 

LMa, the learned regression forests for the B reliable landmarks are first applied to 

detect their positions  on each (j-th) training image 

. Then, the 3D displacements between each training voxel x and detected 

reliable landmarks of the same training image are measured, i.e., 

. These displacements are named “context 

distance features”, which are used as additional geometric features for each training 

voxel and further combined with 3D Haar-like features to train the regression 

forests , i = {Coarsest, ⋯, Finest}.

• Testing Stage: The testing stage follows a similar procedure as the training stage. 

First, the positions of B reliable landmarks  are detected 

in the testing image using the multi-resolution strategy as described in Alg. 1. Then, 

to predict the 3D displacement of each testing voxel x to landmark LMa, the 

context distance features  are calculated 

and combined with 3D Haar-like features as input to the trained regression forest 

. Once the displacements of all testing voxels are estimated, the landmark 

voting and localization steps are the same as described in Section II.

It can be seen from the above descriptions that the only difference between confidence-based 

landmark detection and regular regression-based landmark detection is the introduction of 

“context distance features”, which bridges reliable and challenging landmarks. As the 

selected reliable landmarks are spatially highly correlated with the challenging landmarks, 

for any voxel, its displacements to the reliable landmarks must be also highly correlated with 

those to the challenging landmarks. Therefore, a voxel’s displacements to the reliable 

landmarks (context distance features) are very informative to regress its displacements to the 

challenging landmarks. With the help of these 3D displacements, the 3D displacement 

prediction accuracy for the challenging landmarks could be improved, eventually leading to 

better landmark detection accuracy.

V. EXPERIMENTAL RESULTS

In this section, we extensively evaluate our collaborative landmark detection framework for 

detecting landmarks on three datasets: 1) CT prostate images, 2) CBCT dental images, and 

3) CT head & neck images. The organization of this section is as follows: the parameter 

setting of our method is first presented in Section VA. In all three datasets, the same 

parameter setting is used if not explicitly mentioned. Next, Section VB reports both training 

and testing time of our method. Finally, Sections VC to VE present the experimental results 

of our method on three datasets, respectively.

A. Parameter Setting

Multi-resolution Setting—Our multi-resolution landmark detection consists of 3 

resolutions. The detailed parameters of each resolution are shown in Table I. The original 
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spacings of CT and CBCT images in our dataset are about 1 × 1 × 3 mm3 and 0.4 × 0.4 × 0.8 

mm3, respectively. To ease image processing, CT and CBCT images are linearly resampled 

to the isotropic volumes with spacings 1 × 1 × 1 mm3 and 0.4 × 0.4 × 0.4 mm3, respectively. 

These spacings denote the spacings used in the finest resolution.

Regression Forest Setting—The training parameters for regression random forest is 

provided in Table II. Similar as in [15], the maximum tree depth is large, which makes the 

trained trees as deep as possible. To prevent overfitting, a “Minimum Leaf Sample Number” 

is set to stop splitting if the number of samples falled into the node is less or equal than the 

specified value (i.e., 8). Empirically, we found the detection accuracy increases with the 

increase of 1) tree number K, 2) the number of bootstrapped thresholds, and 3) the number 

of bootstrapped features. However, the increase of “tree number K” will linearly increase the 

runtime for landmark detection. Similarly, the increase of “number of bootstrapped 

thresholds” and “number of bootstrapped features” will linearly increase the time and 

memory cost in the training stage. As a compromise, we adopt the parameters shown in 

Table II, which gives good results on all three datasets. Thus, we believe it should also work 

for other applications.

Other Parameters—The number of training voxels τ sampled from each training image is 

10000. The local voting neighborhood size ρ0 is 30 voxels. The block sizes {s1, s2} are 

limited to {3, 5}. For each one-block Haar-like feature, we randomly sample a value from 

{3, 5} for s1. For each two-block Haar-like feature, we random sample one value with 

replacement from {3, 5} for s1 and s2, respectively. Both one-block and two-block features 

are used in the training.

B. Training and Testing Timing

Our experiments are conducted on a laptop with Intel i7-2720QM CPU (2.2 GHz) and 16 

GB memory. All algorithms are implemented with C++. OpenMP is used to parallelize the 

code by multi-threading. The typical runtime to detect a landmark on a 512 × 512 × 61 

image volume is about 1 second. The training time is 27 mins for one tree with 54 training 

images and the parameter setting described in Section VA. This training time is linearly 

proportional to the number of training images, the number of bootstrapped thresholds, and 

the number of bootstrapped features.

C. CT Prostate Dataset

Data Description—Our CT Prostate dataset consists of 73 CT images from 73 different 

prostate cancer patients acquired from North Carolina Cancer Hospital. A radiation 

oncologist has manually delineated the prostate in each CT image. Based on the delineation, 

six prostate landmarks are defined as shown in Fig. 6, where BS and AP are defined as the 

prostate centers in the most inferior and superior slices of the prostate volume, respectively. 

RT, LF, AT and PT are defined on the same central slice of the prostate volumn. They 

correspond to the rightmost, the leftmost, the most anterior, and the most posterior points of 

the prostate on the central slice, respectively.
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Applications—These landmarks can be used to align the mean prostate shape onto the 

testing image for fast prostate localization [3]. The mean prostate shape is represented as a 

3D mesh. To construct it, the marching cube algorithm [16] is first used to extract a 3D mesh 

from the manual prostate segmentation of each training image. Then, the coherent point drift 

algorithm [17] is used to build the vertex-to-vertex correspondence for all prostate meshes. 

Finally, all correspondent meshes are affinely registered into a common space, where the 

mean prostate shape is obtained by vertex-wisely averaging the aligned meshes. In the 

testing stage, once the prostate landmarks are detected in the new image, an affine 

transformation is estimated between the detected landmarks and their correspondent vertices 

on the mean prostate mesh. Then, the prostate in the new image can be quickly localized by 

applying the estimated transformation onto the mean prostate mesh. For details, readers 

might be interested in [3].

Evaluations—Four-fold cross validation is used to evaluate each component of our 

method. Specifically, the entire dataset is evenly divided into four folds. To test the detection 

accuracy of one fold, other three folds are used as training data to learn regression forests 

and construct mean prostate shape. Two metrics are used to evaluate the performance:

• Landmark Detection Error: Euclidean distance between the ground truth landmark 

position and the automatically detected landmark position.

• Prostate Overlap Ratio: Dice Similarity Coefficient (DSC) between manually 

annotated prostate and automatically localized prostate using six detected 

landmarks:

(6)

where Volgt is the voxel set of the manually annotated prostate, Volauto is the voxel 

set of the automatically localized prostate using the six landmarks, and |.| denotes 

the cardinality of a set.

• Single-resolution versus multi-resolution: Table III quantitatively compares the 

average landmark detection error between single-resolution and multi-resolution 

landmark detections. Both methods use uniform sampling and the same parameters 

to train regression random forest. We can clearly see that single-resolution 

landmark detection always leads to poor detection performance (i.e., mean error ~ 

9mm). In contrast, by using three resolutions, our multi-resolution landmark 

detection significantly improves the detection accuracy by reducing the mean 

landmark detection errors by half. In terms of the prostate overlap ratio, compared 

with the best performance of single-resolution methods, which obtains the mean 

DSC 67.0 ± 11.6% on 73 cases, our multi-resolution method significantly improves 

the mean DSC to 81.0 ± 4.49%, which is comparable to the inter-operator 

variability of manual prostate delineation 81.0 ± 6.00% reported in [18].

• Uniform sampling versus spherical sampling: To justify the use of spherical 

sampling strategy, we quantitatively compare uniform and spherical sampling in 

both single-resolution and multi-resolution. Table IV presents the comparison 
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results. We can see that the spherical sampling strategy significantly (p < 0.05) 

improves the detection accuracy in both single-resolution and multi-resolution. In 

terms of the prostate overlap ratio, the mean DSC obtained by multi-resolution 

landmark detection with spherical sampling is 81.0 ± 4.49%, which is also 

statistically (p = 4.9 × 10−4) better than the mean DSC 80.3 ± 5.05% obtained by 

multi-resolution landmark detection with uniform sampling.

• Joint landmark detection versus confidence-based landmark detection: With the 

multi-resolution and spherical sampling strategies, we obtain detection errors 4.4 

± 3.0 mm for landmark PT and 3.8±2.1 mm for landmark AT. The inferior 

detection accuracy of landmark PT owes to the fact that its local appearance is 

much more complex than that of landmark AT (Fig. 7). As landmarks AT and PT 

are spatially highly correlated, we use landmark AT as reliable landmark to guide 

the detection of landmark PT.

Table V shows the detection accuracy of the six landmarks by the confidence-based 

landmark detection (“Confidence”), and compares it with the detection accuracies of joint 

and individual landmark detections. All three methods use the same multi-resolution strategy 

proposed in this paper. We can see that joint landmark detection performs worse than 

individual landmark detection, which justifies our previous statement that sharing a common 

regression model among different landmarks would compromise the landmark detection 

accuracy.

On the other hand, by comparing confidence-based landmark detection with individual 

landmark detection, we observe significant improvement (p-value=0.01) on detection 

accuracy of landmark PT, which improves from 4.4±3.0mm to 4.0±2.7mm (with 9% 

reduction in mean detection error) due to the guidance from landmark AT. Besides, it is 

surprising to see that the detection accuracies of most other landmarks also get slight 

improvements by using the context guidance from landmark AT. This may be explained by 

the weak spatial correlations associated with these prostate landmarks and landmark AT. 

Additionally, we also notice that the context guidance from landmark A T improves its own 

detection accuracy as well. This is because the sagittal plane of landmark AT can be 

localized very accurately and reliablely using our multi-resolution strategy (i.e., with mean 

and max errors 0.8±0.6 mm and 2.6 mm, respectively). With the guidance of such reliably 

localized sagittal plane, the 3D displacement along the lateral dimension could be more 

accurately predicted, compared with solely relying on the local image appearance. 

Consequently, votes are more clustered towards the correct sagittal plane (Fig. 8(d)), 

compared to the case without self-guidance (Fig. 8(c)). This difference finally leads to the 

improved detection accuracy of landmark AT.

In terms of prostate overlap ratio (DSC), joint landmark detection obtains 77.6±7.14%, 

which is worse than 81.0 ± 4.49% achieved by individual landmark detection. With 

confidence-based landmark detection, the DSC for prostate localization gets slightly 

improved to 81.1 ± 4.32%.

• Comparison with a multi-resolution classification-based method: Finally, we 

compare our method with a multi-resolution classification-based method [3] in 
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Table VI. Both methods use the same number of resolutions and the same 

parameter setting for each resolution. Besides, the same type of Haar features are 

also used in both methods to encourage a fair comparison. We can see from Table 

VI that our method is significantly better than [3] in CT prostate landmark 

detection. For CT prostate landmarks, whose local appearances are indistinct, it is 

very likely to encounter local patches with similar appearances to the target 

landmark. In such situation, classification-based methods may suffer. In contrast, 

with the help from context image patches, regression-based methods are more 

robust, which explains why the regression-based method achieves higher detection 

accuracy in this task. In terms of prostate overlap ratio, our proposed method is also 

significantly higher than the classification-based method [3], which obtains DSC 

73.3 ± 11.6% on this dataset.

D. CBCT Dental Dataset

Data descriptions—Our CBCT dataset consists 14 patients, each with one CBCT scan. 

These patients suffer from either one or two of the following deformities: 1) maxillary 

hypoplasia, 2) mandibular hyperplasia, 3) mandibular hypoplasia, 4) bimaxillary protrusion, 

and 5) condylar hyperplasia. In each CBCT image, 15 landmarks are manually annotated by 

a physician based on the CBCT segmentation (i.e., segmentation of maxilla and mandible), 

as shown in Fig. 9.

Motivations—These dental landmarks are important in deformity diagnosis and treatment 

planning. For example, they provide important symmetry measurements that could be used 

in the analysis of maxillofacial deformities [19]. They can also be used to estimate the 

patient-specific normal craniomaxillofacial shape for guiding the surgery planning [4]. 

Besides, by superposing dental landmarks of the same patient acquired from different time 

points, physicians can monitor temporal changes associated with orthodontic treatment and 

growth. Despite the clinical importance of dental landmarks, it is very time-consuming and 

labor-intensive to manually annotate these landmarks. Specifically, physician needs to first 

manually segment bony structures from CBCT and separate maxilla from mandible. This 

procedure often takes 5 hours. The purpose of segmentation is to separate different 

anatomical structures (e.g., maxilla and mandible) and remove metal artifacts. After that, 3D 

models are generated from the segmented CBCT image. Then, it takes another 30 mins for 

landmark annotation on 3D models. Therefore, it is clinically desirable to develop an 

automatic method that can efficiently and accurately localize dental landmarks directly from 

CBCT image without relying on the segmentation, which is often time-consuming to get.

Evaluations—Two-fold cross validation is used to evaluate our method on this dataset. 

Specifically, the entire dataset is divided into two folds, with 7 CBCT scans in each fold. To 

test the detection accuracy of one fold, CBCT images in the other fold are used to learn the 

regression forest for each landmark. To enrich the training dataset, we also add 30 CT 

images, considering the similar appearances of dental landmarks in CT and CBCT images 

(Fig. 10).

• Evaluation of the proposed strategies: Similarly as conducted in the previous 

dataset, Table VII to Table IX show the quantitative comparisons 1) between single-
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resolution and multi-resolution landmark detections, 2) between uniform and 

spherical sampling, and 3) between joint and individual landmark detections. These 

results indicate the effectiveness of our proposed strategies in improving landmark 

detection accuracy. It should be noted that confidence-based landmark detection is 

not used in this dataset because 1) the detection accuracies of all dental landmarks 

are already high with our multi-resolution strategy; 2) for landmarks with spatial 

dependency (i.e., two upper teeth landmarks UR1 and UL1, and two lower teeth 

landmarks LR1 and LL1), their detection accuracies are almost same, which makes 

it unlikely to get further improvement by using one landmark to guide the other.

• Comparison with the multi-resolution classification-based method: Similarly, Table 

IX quantitatively compares our method with the multi-resolution classification 

based method [3]. We can see that our method significantly outperforms the 

conventional multi-resolution classification based method in almost all landmarks. 

By carefully analyzing the results, we notice that the improvement of our method 

over [3] is bigger in teeth landmarks than non-teeth landmarks. This is due to the 

metal artifacts mentioned in the introduction. For patients with dental braces, their 

CBCT images suffer severe streaking artifacts (Fig. 2), which make appearances of 

upper and lower teeth similar and hard to distinguish. As a result, the classification-

based method may detect the lower tooth landmark on the upper teeth (Fig. 11(a)) 

because it checks only the local appearance. In contrast, with the help of context 

appearances, our regression-based method can easily overcome this limitation and 

produce a good detection result (Fig. 11(b)).

E. CT Head & Neck Dataset

Data descriptions—Our CT head & neck dataset is acquired from PDDCA (http://

www.imagenglab.com//pddca_18.html). PDDCA version 1.1 comprises 40 patient CT 

images from the Radiation Therapy Oncology Group (RTOG) 0522 Study (a multi-

institutional clinical trial led by Dr. Kian Ang). Each CT image has five bony landmarks 

manually annotated: chin (chine), right condyloid process (mand r), left condyloid process 

(mand l), odontoid process (odont proc), and occopital bone (occ bone). Fig. 12 shows the 

positions of these landmarks on one subject.

These bony landmarks are used to align CT images of different patients for correcting 

orientation and translation incurred by different patient setups. The accuracy of alignment 

could largely influence the later processing steps, e.g., multi-atlas based tissue segmentation. 

Therefore, it is important to accurately detect these landmarks.

This dataset is interesting because it provides explicit spatial dependency between land-

marks, which could be used to evaluate our confidence-based landmark detection strategy. 

Specifically, landmark “occ bone” is manually annotated on the same sagittal slice of land-

mark “chin”.

Evaluation—Four-fold cross validation is used to evaluate our method on this dataset. To 

test the detection accuracy of one fold, CT images in other folds are used to learn the 

regression forest for each landmark.
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• Evaluation of the proposed strategies: Similarly as done in the previous datasets, 

Table X to Table XI provide quantitative comparisons 1) between single-resolution 

and multi-resolution landmark detections, and 2) between uniform and spherical 

sampling, respectively. The results indicate the effectiveness of the proposed multi-

resolution and spherical sampling in improving landmark detection accuracy.

• Joint landmark detection versus confidence-based landmark detection: Since 

landmark “occ bone” is annotated according to landmark “chin”, we exploit this 

dependency in our confidence-based landmark detection. Specifically, landmark 

“chin” is used as reliable landmark to help detect landmark “occ_bone”. Table XII 

quantitatively compares joint landmark detection (Joint), individual landmark 

detection (Individual), with the confidence-based landmark detection (Confidence). 

Similar to the previous datasets, individual landmark detection outperforms joint 

landmark detection. However, compared to “Confidence”, its detection accuracy is 

still limited. By incorporating context distance features, “Confidence” achieves the 

best detection accuracy for “occ bone”, by reducing the landmark detection error 

more than half, compared to “Individual”.

• Comparison with the multi-resolution classification-based method [3] : Table XII 

quantitatively compares our method with the multi-resolution classification based 

method [3] on this dataset. We can clearly observe the better detection accuracy 

obtained by our method. Particularly, the detection error of landmark “occ bone” is 

reduced by almost two thirds with our method, compared to [3], which indicates the 

effectiveness of our collaborative landmark detection framework over the 

conventional classification-based method.

VI. CONCLUSION

In this paper, we propose a collaborative landmark detection framework to improve the 

detection accuracy of conventional regression-based method. Specifically, two strategies are 

respectively proposed. The first multi-resolution strategy detects a landmark location from 

the coarsest resolution to the finest resolution. It improves detection accuracy by gradually 

filtering out faraway voxels during the landmark voting step. The second confidence-based 

landmark detection strategy utilizes reliable landmarks to guide the detection of challenging 

landmarks. It improves detection accuracy by exploiting inter-landmark spatial relationship. 

Validated on 127 CT/CBCT scans from three applications, our method obtains accurate 

detection results with the speed of 1 second per landmark. Besides, it also shows better 

performance than the conventional classification-based and regression-based approaches.

VII. DISCUSSION

Ground-truth Annotations

In the prostate application, the landmark positions were annotated by a radiation oncologist 

and then reviewed by another radiation oncologist, in order to minimize the potential bias. In 

CBCT dental application, both maxilla and mandible are first segmented and separated by 

physician from CBCT image. Then, the segmentation is utilized to construct a 3D surface 

model. Finally, landmarks are manually annotated on the constructed 3D model. Compared 
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to the manual annotation on CBCT, our manual annotation on the constructed 3D surface 

model is much more reliable, suffers less inter-patient variation, and also potentially reduces 

the bias in manual annotation. As for the head-neck dataset, we acquired it from the public 

site. Thus, we have limited information regarding how the manual annotation was 

performed. But our visual inspection shows that all land- marks are annotated on the 

distinctive anatomical structures. Thus, we believe that the quality of manual annotation in 

this dataset is sufficiently good to serve as the ground-truth for evaluation.

Assessment of Landmark Detection Accuracy

To assess landmark detection accuracy of our method, we can compare it with intra-operator 

or inter-operator variation of manual landmark annotation. Specifically, the inter-operator 

variation of CT prostate landmark annotation is about 5 mm as shown in [3]. In comparison, 

our method yields detection error 4.2 ± 2.5 mm, which is clinically acceptable. In the CBCT-

based dental application, less than 2 mm detection error is clinically acceptable. Based on 

the references [20, 21], the intra-operator and inter-operator variations of dental landmark 

detection from 3D CT and CBCT are mostly from 1:5 mm to 2 mm. In comparison, our 

method yields detection error 1.5 ± 0.9 mm, which is thus acceptable. In the head-neck 

application, we didn’t find any reference standard. But, considering the slice thickness 3 mm 

and our method obtained detection error 2.0 ± 1.2 mm, we believe the accuracy of our 

method is sufficient for many applications, such as for global alignment.

Appearance Features

In our method, Haar-like features are used as the only appearance features, which have 

shown to be effective in CT/CBCT images. However, if we want to extend our method to 

landmark detection on MR images, which have more complex textures than CT images, it 

may be necessary to add other sophisticated features. Recently, deep learning attracts much 

attention in machine learning and computer vision. Its main idea is to automatically learn 

useful appearance features from data, instead of handcrafting features as often done in 

previous researches. We are planning to borrow deep learning techniques, such as 

convolution neural network, to learn high-level discriminant features to further boost the 

detection accuracy of our method, and also extends it to detect landmarks on other 

modalities, such as MRI.

Large-scale Landmark Detection

We are also targeting the large-scale landmark detection problem, where hundreds of 

landmarks need to be detected on a single image. In such case, the efficiency may be a 

concern if using the current framework, as the detection time of our method is linear to the 

number of landmarks. To address this issue, we are considering to split landmarks into 

spatially coherent groups, and use joint landmark detection for detecting landmarks within 

the same group. Similarly, the confidence-based landmark detection can be also applied by 

first detecting landmarks in reliable groups, and then using them to guide the detection of 

landmarks in challenging groups.
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Transfer Learning

Another interesting direction, which may be worth exploring, is the transfer learning for 

landmark detection, as we have slightly touched in the CBCT dental dataset. Specially, due 

to the limited number of CBCT images, we added 30 CT dental images and mixed them 

with CBCT images for enriching the training dataset. Experimental results showed that the 

average detection accuracy is significantly (p < 0.05) improved from 2.0 ± 2.1 mm to 1.5 

± 0.9 mm, which justifies the benefit of using additional CT images for training. The same 

situation may happen in many cases. More validations are still required to answer the 

question whether high-quality images are indeed helpful in improving the accuracy of 

landmark detection in low-quality images.
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FIG. 1. 
Illustration of one prostate landmark (red point) in transversal and sagittal views of three 

patients. This landmark locates at the most posterior point of the prostate on the prostate 

central slice. Three column panels show three patients with different amounts of injected 

contrast agent in the bladder, and with different amounts of bowel gas in the rectum. (a) no 

contrast agent, and large bowel gas; (b) partial contrast agent, and almost no bowel gas; (c) 

full contrast agent, and some bowel gas.
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FIG. 2. 
Illustration of one upper tooth landmark (red point) in different views of three patients. This 

landmark indicates a right central incisor on the maxilla. Column panels (a) and (b) show 

two patients with and without dental braces, respectively. Panel (c) shows a patient who 

cannot closely bite his teeth due to maxillary hypoplasia and mandibular hyperplasia. Red 

points indicate the positions of the same landmark in different views of various CBCT scans.
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FIG. 3. 
Illustration of 3D Haar-like features. Red and blue boxes denote positive and negative 

blocks. Green boxes denote local patches. One-block Haar-like features (a) compute the 

average intensity of an arbitrary position within the local patch, and two-block Haar-like 

features (b) compute the average intensity difference of two arbitrary positions within the 

local patch.
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FIG. 4. 
Voxels (yellow crosses) with similar local appearances (green boxes) may have quite 

different 3D displacements (blue arrows) to the same landmark (red points) in different 

patient mages. (a) shows two cases for a prostate CT landmark, and (b) shows two cases for 

a dental CBCT landmark. The right-top corner of each image shows the zoomed-in local 

patch centered at he voxel marked by the yellow cross in each image. In the prostate cases, 

due to the indistinct rostate boundary, we overlap the manually labeled prostate region as red 

mask onto the original CT image for better visualization.
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FIG. 5. 
(a) Illustration of the spherical sampling strategy. Yellow cross denotes a target landmark 

xLM. Red circles denote concentric spheres. (b) An example of the distribution of training 

voxels with ρ = 60 mm
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FIG. 6. 
Illustration of six prostate landmarks (transversal view along with 3D rendering).
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FIG. 7. 
Appearance variations of prostate landmarks AT and PT across patients (transversal view).
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FIG. 8. 
(a) a transversal CT prostate slice. (b) the zoomed-in view of red rectangle in (a), where the 

red point indicates the position of landmark AT. (c) and (d) are the voting maps of landmark 

AT in the fine resolution (R1) without and with self-guidance, respectively.
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FIG. 9. 
Illustration of 15 dental landmarks on a 3D rendering skull, where white and yellow parts of 

the skull indicate maxilla and mandible, respectively.
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FIG. 10. 
Qualitative comparison between the landmark appearances in CBCT and CT images.
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FIG. 11. 
Visual comparison between the classification-based method [3] and our regression-based 

method in detecting landmark LLL on a CBCT scan. (a) Landmark position detected by the 

classification-based method. (b) Landmark position detected by our method. (c) Ground-

truth landmark position.
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FIG. 12. 
Illustration of the positions of five bony landmarks in CT head and neck dataset.
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TABLE I

Parameter setting for each resolution.

R3 (Coarsest) R2 (Medium) R1 (Finest)

Spacing (mm) 4× 2× 1×

Patch Size (voxel) 15 30 30 (dental, HN), 50 (prostate)

4× and 2× means that the spacing is four times and two times larger than that of the finest resolution, respectively. HN denotes head & neck.
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TABLE II

Training parameter setting for regression random forest

Tree Number K 10 Maximum Tree Depth 100

Number of Bootstrapped Thresholds 100 Number of Bootstrapped Features 2000

Minimum Leaf Sample Number 8
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TABLE III

Quantitative comparison between single-resolution and multi-resolution landmark detections on the CT 

prostate dataset.

Method
Single-resolution

Multi-resolution
Finest (R1) Medium (R2) Coarsest (R3)

Error (mm) 9.3 ± 5.1 8.7 ± 4.6 8.6 ± 4.6 4.4 ± 2.5

p-value 1.3 × 10−71 1.2 × 10−69 2.6 × 10−68 N/A

p-values are computed with paired t-test between single-resolution methods and our multi-resolution method. The Bold number indicates the best 
performance.
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TABLE VII

Quantitative comparison between single-resolution and multi-resolution landmark detections on CBCT dental 

dataset.

Method
Single-resolution

Multi-resolution
Finest (R1) Medium (R2) Coarsest (R3)

Error (mm) 12 ±8.6 10 ±7.5 9.3 ±7.0 2.8 ±4.2

p-value 8.8 × 10−48 4.1 × 10−46 7.2 × 10−52 N/A

p-values are computed with paired t-test between single-resolution methods and our multi-resolution method. Bold number indicates the best 
performance.
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TABLE X

Quantitative comparison between single-resolution and multi-resolution landmark detections on CT head & 

neck dataset.

Method
Single-resolution

Multi-resolution
Finest (R1) Medium (R2) Coarsest (R3)

Error (mm) 12 ±6.9 9.2 ±5.7 8.9 ±5.6 2.6 ±2.1

p-value 3.0 × 10−42 7.2 × 10−36 1.5 × 10−35 N/A

p-values are computed with paired t-test between single-resolution methods and our multi-resolution method. The bold number indicates the best 
performance.
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