187 research outputs found

    Segment Boundary Detection via Class Entropy Measurements in Connectionist Phoneme Recognition

    Full text link
    This article investigates the possibility to use the class entropy of the output of a connectionist phoneme recogniser to predict time boundaries between phonetic classes. The rationale is that the value of the entropy should increase in proximity of a transition between two segments that are well modelled (known) by the recognition network since it is a measure of uncertainty. The advantage of this measure is its simplicity as the posterior probabilities of each class are available in connectionist phoneme recognition. The entropy and a number of measures based on differentiation of the entropy are used in isolation and in combination. The decision methods for predicting the boundaries range from simple thresholds to neural network based procedure. The different methods are compared with respect to their precision, measured in terms of the ratio between the number C of predicted boundaries within 10 or 20 msec of the reference and the total number of predicted boundaries, and recall, measured as the ratio between C and the total number of reference boundaries

    Exploring the adaptive structure of the mental lexicon

    Get PDF
    The mental lexicon is a complex structure organised in terms of phonology, semantics and syntax, among other levels. In this thesis I propose that this structure can be explained in terms of the pressures acting on it: every aspect of the organisation of the lexicon is an adaptation ultimately related to the function of language as a tool for human communication, or to the fact that language has to be learned by subsequent generations of people. A collection of methods, most of which are applied to a Spanish speech corpus, reveal structure at different levels of the lexicon.• The patterns of intra-word distribution of phonological information may be a consequence of pressures for optimal representation of the lexicon in the brain, and of the pressure to facilitate speech segmentation.• An analysis of perceived phonological similarity between words shows that the sharing of different aspects of phonological similarity is related to different functions. Phonological similarity perception sometimes relates to morphology (the stressed final vowel determines verb tense and person) and at other times shows processing biases (similarity in the word initial and final segments is more readily perceived than in word-internal segments).• Another similarity analysis focuses on cooccurrence in speech to create a representation of the lexicon where the position of a word is determined by the words that tend to occur in its close vicinity. Variations of context-based lexical space naturally categorise words syntactically and semantically.• A higher level of lexicon structure is revealed by examining the relationships between the phonological and the cooccurrence similarity spaces. A study in Spanish supports the universality of the small but significant correlation between these two spaces found in English by Shillcock, Kirby, McDonald and Brew (2001). This systematicity across levels of representation adds an extra layer of structure that may help lexical acquisition and recognition. I apply it to a new paradigm to determine the function of parameters of phonological similarity based on their relationships with the syntacticsemantic level. I find that while some aspects of a language's phonology maintain systematicity, others work against it, perhaps responding to the opposed pressure for word identification.This thesis is an exploratory approach to the study of the mental lexicon structure that uses existing and new methodology to deepen our understanding of the relationships between language use and language structure

    Supervised Sequence Labelling with Recurrent Neural Networks

    Full text link

    Composition of Deep and Spiking Neural Networks for Very Low Bit Rate Speech Coding

    Get PDF
    Most current very low bit rate (VLBR) speech coding systems use hidden Markov model (HMM) based speech recognition/synthesis techniques. This allows transmission of information (such as phonemes) segment by segment that decreases the bit rate. However, the encoder based on a phoneme speech recognition may create bursts of segmental errors. Segmental errors are further propagated to optional suprasegmental (such as syllable) information coding. Together with the errors of voicing detection in pitch parametrization, HMM-based speech coding creates speech discontinuities and unnatural speech sound artefacts. In this paper, we propose a novel VLBR speech coding framework based on neural networks (NNs) for end-to-end speech analysis and synthesis without HMMs. The speech coding framework relies on phonological (sub-phonetic) representation of speech, and it is designed as a composition of deep and spiking NNs: a bank of phonological analysers at the transmitter, and a phonological synthesizer at the receiver, both realised as deep NNs, and a spiking NN as an incremental and robust encoder of syllable boundaries for coding of continuous fundamental frequency (F0). A combination of phonological features defines much more sound patterns than phonetic features defined by HMM-based speech coders, and the finer analysis/synthesis code contributes into smoother encoded speech. Listeners significantly prefer the NN-based approach due to fewer discontinuities and speech artefacts of the encoded speech. A single forward pass is required during the speech encoding and decoding. The proposed VLBR speech coding operates at a bit rate of approximately 360 bits/s

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.
    corecore