66,310 research outputs found

    Capacity Enhancement Strategy

    Get PDF
    This is an outdated document for CCAFS Phase I. The Phase II Capacity Development strategy can be found here: http://hdl.handle.net/10568/82591. Capacity enhancement is a central priority for CCAFS. There is strong institutional support for this prioritization in the mandate of the ESSP, which has an explicit strategy agenda to make sure that capacity enhancement is more than just a tool for implementation of scientific research, and CGIAR, for which collaboration and capacity enhancement are likely to have a high profile within the post-reform agenda

    ProbeGuard:Mitigating Probing Attacks Through Reactive Program Transformations

    Get PDF
    Many modern defenses against code reuse rely on hiding sensitive data such as shadow stacks in a huge memory address space. While much more efficient than traditional integritybased defenses, these solutions are vulnerable to probing attacks which quickly locate the hidden data and compromise security. This has led researchers to question the value of information hiding in real-world software security. Instead, we argue that such a limitation is not fundamental and that information hiding and integrity-based defenses are two extremes of a continuous spectrum of solutions. We propose a solution, ProbeGuard, that automatically balances performance and security by deploying an existing information hiding based baseline defense and then incrementally moving to more powerful integrity-based defenses by hotpatching when probing attacks occur. ProbeGuard is efficient, provides strong security, and gracefully trades off performance upon encountering more probing primitives

    Invertible Program Restructurings for Continuing Modular Maintenance

    Get PDF
    When one chooses a main axis of structural decompostion for a software, such as function- or data-oriented decompositions, the other axes become secondary, which can be harmful when one of these secondary axes becomes of main importance. This is called the tyranny of the dominant decomposition. In the context of modular extension, this problem is known as the Expression Problem and has found many solutions, but few solutions have been proposed in a larger context of modular maintenance. We solve the tyranny of the dominant decomposition in maintenance with invertible program transformations. We illustrate this on the typical Expression Problem example. We also report our experiments with Java and Haskell programs and discuss the open problems with our approach.Comment: 6 pages, Early Research Achievements Track; 16th European Conference on Software Maintenance and Reengineering (CSMR 2012), Szeged : Hungary (2012

    Low-overhead Online Code Transformations.

    Full text link
    The ability to perform online code transformations - to dynamically change the implementation of running native programs - has been shown to be useful in domains as diverse as optimization, security, debugging, resilience and portability. However, conventional techniques for performing online code transformations carry significant runtime overhead, limiting their applicability for performance-sensitive applications. This dissertation proposes and investigates a novel low-overhead online code transformation technique that works by running the dynamic compiler asynchronously and in parallel to the running program. As a consequence, this technique allows programs to execute with the online code transformation capability at near-native speed, unlocking a host of additional opportunities that can take advantage of the ability to re-visit compilation choices as the program runs. This dissertation builds on the low-overhead online code transformation mechanism, describing three novel runtime systems that represent in best-in-class solutions to three challenging problems facing modern computer scientists. First, I leverage online code transformations to significantly increase the utilization of multicore datacenter servers by dynamically managing program cache contention. Compared to state-of-the-art prior work that mitigate contention by throttling application execution, the proposed technique achieves a 1.3-1.5x improvement in application performance. Second, I build a technique to automatically configure and parameterize approximate computing techniques for each program input. This technique results in the ability to configure approximate computing to achieve an average performance improvement of 10.2x while maintaining 90% result accuracy, which significantly improves over oracle versions of prior techniques. Third, I build an operating system designed to secure running applications from dynamic return oriented programming attacks by efficiently, transparently and continuously re-randomizing the code of running programs. The technique is able to re-randomize program code at a frequency of 300ms with an average overhead of 9%, a frequency fast enough to resist state-of-the-art return oriented programming attacks based on memory disclosures and side channels.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120775/1/mlaurenz_1.pd

    Designing Strategies to Support a Transformation of Agriculture in Ethiopia

    Get PDF
    The paper consists of three parts. The first part of the paper is a review of agricultural performance in Ethiopia over the past forty years. The second part diagnoses agricultural system performance and food security problems in Ethiopia and discusses some tentative practical strategies for promoting an agricultural transformation, and with it, increased productivity, income growth, and food security over the long run. The third part describes the general approach to promoting an agricultural transformation and food security for Ethiopia. It is conceptual and procedural. It draws from the lessons of economic history and theory applied to the current situation in Ethiopia.food security, food policy, Ethiopia, Farm Management, Food Security and Poverty, Q18,

    Program Transformations in Magnolia

    Get PDF
    We explore program transformations in the context of the Magnolia programming language. We discuss research and implementations of transformation techniques, scenarios to put them to use in Magnolia, interfacing with transformations, and potential workflows and tooling that this approach to programming enables.Vi utforsker program transformasjoner med tanke på programmeringsspråket Magnolia. Vi diskuterer forsking og implementasjoner av transformasjonsteknikker, sammenhenger der vi kan bruke dei i Magnolia, grensesnitt til transformasjoner, og potensielle arbeidsflyt og verktøy som denne tilnærmingen til programmering kan tillate og fremme.Masteroppgåve i informatikkINF39

    Man-machine partial program analysis for malware detection

    Get PDF
    With the meteoric rise in popularity of the Android platform, there is an urgent need to combat the accompanying proliferation of malware. Existing work addresses the area of consumer malware detection, but cannot detect novel, sophisticated, domain-specific malware that is targeted specifically at one aspect of an organization (eg. ground operations of the US Military). Adversaries can exploit domain knowledge to camoflauge malice within the legitimate behaviors of an app and behind a domain-specific trigger, rendering traditional approaches such as signature-matching, machine learning, and dynamic monitoring ineffective. Manual code inspections are also inadequate, scaling poorly and introducing human error. Yet, there is a dire need to detect this kind of malware before it causes catastrophic loss of life and property. This dissertation presents the Security Toolbox, our novel solution for this challenging new problem posed by DARPA\u27s Automated Program Analysis for Cybersecurity (APAC) program. We employ a human-in-the-loop approach to amplify the natural intelligence of our analysts. Our automation detects interesting program behaviors and exposes them in an analysis Dashboard, allowing the analyst to brainstorm flaw hypotheses and ask new questions, which in turn can be answered by our automated analysis primitives. The Security Toolbox is built on top of Atlas, a novel program analysis platform made by EnSoft. Atlas uses a graph-based mathematical abstraction of software to produce a unified property multigraph, exposes a powerful API for writing analyzers using graph traversals, and provides both automated and interactive capabilities to facilitate program comprehension. The Security Toolbox is also powered by FlowMiner, a novel solution to mine fine-grained, compact data flow summaries of Java libraries. FlowMiner allows the Security Toolbox to complete a scalable and accurate partial program analysis of an application without including all of the libraries that it uses (eg. Android). This dissertation presents the Security Toolbox, Atlas, and FlowMiner. We provide empirical evidence of the effectiveness of the Security Toolbox for detecting novel, sophisticated, domain-specific Android malware, demonstrating that our approach outperforms other cutting-edge research tools and state-of-the-art commercial programs in both time and accuracy metrics. We also evaluate the effectiveness of Atlas as a program analysis platform and FlowMiner as a library summary tool

    Algorithm Diversity for Resilient Systems

    Full text link
    Diversity can significantly increase the resilience of systems, by reducing the prevalence of shared vulnerabilities and making vulnerabilities harder to exploit. Work on software diversity for security typically creates variants of a program using low-level code transformations. This paper is the first to study algorithm diversity for resilience. We first describe how a method based on high-level invariants and systematic incrementalization can be used to create algorithm variants. Executing multiple variants in parallel and comparing their outputs provides greater resilience than executing one variant. To prevent different parallel schedules from causing variants' behaviors to diverge, we present a synchronized execution algorithm for DistAlgo, an extension of Python for high-level, precise, executable specifications of distributed algorithms. We propose static and dynamic metrics for measuring diversity. An experimental evaluation of algorithm diversity combined with implementation-level diversity for several sequential algorithms and distributed algorithms shows the benefits of algorithm diversity

    Generating Predicate Callback Summaries for the Android Framework

    Full text link
    One of the challenges of analyzing, testing and debugging Android apps is that the potential execution orders of callbacks are missing from the apps' source code. However, bugs, vulnerabilities and refactoring transformations have been found to be related to callback sequences. Existing work on control flow analysis of Android apps have mainly focused on analyzing GUI events. GUI events, although being a key part of determining control flow of Android apps, do not offer a complete picture. Our observation is that orthogonal to GUI events, the Android API calls also play an important role in determining the order of callbacks. In the past, such control flow information has been modeled manually. This paper presents a complementary solution of constructing program paths for Android apps. We proposed a specification technique, called Predicate Callback Summary (PCS), that represents the callback control flow information (including callback sequences as well as the conditions under which the callbacks are invoked) in Android API methods and developed static analysis techniques to automatically compute and apply such summaries to construct apps' callback sequences. Our experiments show that by applying PCSs, we are able to construct Android apps' control flow graphs, including inter-callback relations, and also to detect infeasible paths involving multiple callbacks. Such control flow information can help program analysis and testing tools to report more precise results. Our detailed experimental data is available at: http://goo.gl/NBPrKsComment: 11 page

    Security for Service-Oriented On-Demand Grid Computing

    Get PDF
    Grid Computing ist mittlerweile zu einem etablierten Standard für das verteilte Höchstleistungsrechnen geworden. Während die erste Generation von Grid Middleware-Systemen noch mit proprietären Schnittstellen gearbeitet hat, wurde durch die Einführung von service-orientierten Standards wie WSDL und SOAP durch die Open Grid Services Architecture (OGSA) die Interoperabilität von Grids signifikant erhöht. Dies hat den Weg für mehrere nationale und internationale Grid-Projekten bereitet, in denen eine groß e Anzahl von akademischen und eine wachsende Anzahl von industriellen Anwendungen im Grid ausgeführt werden, die die bedarfsgesteuerte (on-demand) Provisionierung und Nutzung von Ressourcen erfordern. Bedarfsgesteuerte Grids zeichnen sich dadurch aus, dass sowohl die Software, als auch die Benutzer einer starken Fluktuation unterliegen. Weiterhin sind sowohl die Software, als auch die Daten, auf denen operiert wird, meist proprietär und haben einen hohen finanziellen Wert. Dies steht in starkem Kontrast zu den heutigen Grid-Anwendungen im akademischen Umfeld, die meist offen im Quellcode vorliegen bzw. frei verfügbar sind. Um den Ansprüchen einer bedarfsgesteuerten Grid-Nutzung gerecht zu werden, muss das Grid administrative Komponenten anbieten, mit denen Anwender autonom Software installieren können, selbst wenn diese Root-Rechte benötigen. Zur gleichen Zeit muss die Sicherheit des Grids erhöht werden, um Software, Daten und Meta-Daten der kommerziellen Anwender zu schützen. Dies würde es dem Grid auch erlauben als Basistechnologie für das gerade entstehende Gebiet des Cloud Computings zu dienen, wo ähnliche Anforderungen existieren. Wie es bei den meisten komplexen IT-Systemen der Fall ist, sind auch in traditionellen Grid Middlewares Schwachstellen zu finden, die durch die geforderten Erweiterungen der administrativen Möglichkeiten potentiell zu einem noch größ erem Problem werden. Die Schwachstellen in der Grid Middleware öffnen einen homogenen Angriffsvektor auf die ansonsten heterogenen und meist privaten Cluster-Umgebungen. Hinzu kommt, dass anders als bei den privaten Cluster-Umgebungen und kleinen akademischen Grid-Projekten die angestrebten groß en und offenen Grid-Landschaften die Administratoren mit gänzlich unbekannten Benutzern und Verhaltenstrukturen konfrontieren. Dies macht das Erkennen von böswilligem Verhalten um ein Vielfaches schwerer. Als Konsequenz werden Grid-Systeme ein immer attraktivere Ziele für Angreifer, da standardisierte Zugriffsmöglichkeiten Angriffe auf eine groß e Anzahl von Maschinen und Daten von potentiell hohem finanziellen Wert ermöglichen. Während die Rechenkapazität, die Bandbreite und der Speicherplatz an sich schon attraktive Ziele darstellen können, sind die im Grid enthaltene Software und die gespeicherten Daten viel kritischere Ressourcen. Modelldaten für die neuesten Crash-Test Simulationen, eine industrielle Fluid-Simulation, oder Rechnungsdaten von Kunden haben einen beträchtlichen Wert und müssen geschützt werden. Wenn ein Grid-Anbieter nicht für die Sicherheit von Software, Daten und Meta-Daten sorgen kann, wird die industrielle Verbreitung der offenen Grid-Technologie nicht stattfinden. Die Notwendigkeit von strikten Sicherheitsmechanismen muss mit der diametral entgegengesetzten Forderung nach einfacher und schneller Integration von neuer Software und neuen Kunden in Einklang gebracht werden. In dieser Arbeit werden neue Ansätze zur Verbesserung der Sicherheit und Nutzbarkeit von service-orientiertem bedarfsgesteuertem Grid Computing vorgestellt. Sie ermöglichen eine autonome und sichere Installation und Nutzung von komplexer, service-orientierter und traditioneller Software auf gemeinsam genutzen Ressourcen. Neue Sicherheitsmechanismen schützen Software, Daten und Meta-Daten der Anwender vor anderen Anwendern und vor externen Angreifern. Das System basiert auf Betriebssystemvirtualisierungstechnologien und bietet dynamische Erstellungs- und Installationsfunktionalitäten für virtuelle Images in einer sicheren Umgebung, in der automatisierte Mechanismen anwenderspezifische Firewall-Regeln setzen, um anwenderbezogene Netzwerkpartitionen zu erschaffen. Die Grid-Umgebung wird selbst in mehrere Bereiche unterteilt, damit die Kompromittierung von einzelnen Komponenten nicht so leicht zu einer Gefährdung des gesamten Systems führen kann. Die Grid-Headnode und der Image-Erzeugungsserver werden jeweils in einzelne Bereiche dieser demilitarisierten Zone positioniert. Um die sichere Anbindung von existierenden Geschäftsanwendungen zu ermöglichen, werden der BPEL-Standard (Business Process Execution Language) und eine Workflow-Ausführungseinheit um Grid-Sicherheitskonzepte erweitert. Die Erweiterung erlaubt eine nahtlose Integration von geschützten Grid Services mit existierenden Web Services. Die Workflow-Ausführungseinheit bietet die Erzeugung und die Erneuerung (im Falle von lange laufenden Anwendungen) von Proxy-Zertifikaten. Der Ansatz ermöglicht die sichere gemeinsame Ausführung von neuen, fein-granularen, service-orientierten Grid Anwendungen zusammen mit traditionellen Batch- und Job-Farming Anwendungen. Dies wird durch die Integration des vorgestellten Grid Sandboxing-Systems in existierende Cluster Scheduling Systeme erreicht. Eine innovative Server-Rotationsstrategie sorgt für weitere Sicherheit für den Grid Headnode Server, in dem transparent das virtuelle Server Image erneuert wird und damit auch unbekannte und unentdeckte Angriffe neutralisiert werden. Um die Angriffe, die nicht verhindert werden konnten, zu erkennen, wird ein neuartiges Intrusion Detection System vorgestellt, das auf Basis von Datenstrom-Datenbanksystemen funktioniert. Als letzte Neuerung dieser Arbeit wird eine Erweiterung des modellgetriebenen Softwareentwicklungsprozesses eingeführt, die eine automatisierte Generierung von sicheren Grid Services ermöglicht, um die komplexe und damit unsichere manuelle Erstellung von Grid Services zu ersetzen. Eine prototypische Implementierung der Konzepte wird auf Basis des Globus Toolkits 4, der Sun Grid Engine und der ActiveBPEL Engine vorgestellt. Die modellgetriebene Entwicklungsumgebung wurde in Eclipse für das Globus Toolkit 4 realisiert. Experimentelle Resultate und eine Evaluation der kritischen Komponenten des vorgestellten neuen Grids werden präsentiert. Die vorgestellten Sicherheitsmechanismem sollen die nächste Phase der Evolution des Grid Computing in einer sicheren Umgebung ermöglichen
    • …
    corecore