38,352 research outputs found

    Security is an Architectural Design Constraint

    Get PDF
    In state-of-the-art design paradigm, time, space and power efficiency are considered the primary design constraints. Quite often, this approach adversely impacts the security of the overall system, especially when security is adopted as a countermeasure after some vulnerability is identified. In this position paper, we motivate the idea that security should also be considered as an architectural design constraint in addition to time, space and power. We show that security and efficiency objectives along the three design axes of time, space and power are in fact tightly coupled while identifying that security stands in direct contrast with them across all layers of architectural design. We attempt to prove our case utilizing a proof-by-evidence approach wherein we refer to various works across literature that explicitly imply the eternal conflict between security and efficiency. Thus, security has to be treated as a design constraint from the very beginning. Additionally, we advocate a security-aware design flow starting from the choice of cryptographic primitives, protocols and system design

    Linking Quality Attributes and Constraints with Architectural Decisions

    Get PDF
    Quality attributes and constraints are among the main drivers of architectural decision making. The quality attributes are improved or damaged by the architectural decisions, while restrictions directly include or exclude parts of the architecture (for example, the logical components or technologies). We can determine the impact of a decision of architecture in software quality, or which parts of the architecture are affected by a constraint, but the difficult problem is whether we are respecting the quality requirements (requirements on quality attributes) and constraints with all the architectural decisions made. Currently, the common practice is that architects use their own experience to design architectures that meet the quality requirements and restrictions, but at the end, especially for the crucial decisions, the architect has to deal with complex trade-offs between quality attributes and juggle possible incompatibilities raised by the constraints. In this paper we present Quark, a computer-aided method to support architects in software architecture decision making

    A Framework for Constraint-Based Deployment and Autonomic Management of Distributed Applications

    Get PDF
    We propose a framework for deployment and subsequent autonomic management of component-based distributed applications. An initial deployment goal is specified using a declarative constraint language, expressing constraints over aspects such as component-host mappings and component interconnection topology. A constraint solver is used to find a configuration that satisfies the goal, and the configuration is deployed automatically. The deployed application is instrumented to allow subsequent autonomic management. If, during execution, the manager detects that the original goal is no longer being met, the satisfy/deploy process can be repeated automatically in order to generate a revised deployment that does meet the goal.Comment: Submitted to ICAC-0

    A Middleware Framework for Constraint-Based Deployment and Autonomic Management of Distributed Applications

    Get PDF
    We propose a middleware framework for deployment and subsequent autonomic management of component-based distributed applications. An initial deployment goal is specified using a declarative constraint language, expressing constraints over aspects such as component-host mappings and component interconnection topology. A constraint solver is used to find a configuration that satisfies the goal, and the configuration is deployed automatically. The deployed application is instrumented to allow subsequent autonomic management. If, during execution, the manager detects that the original goal is no longer being met, the satisfy/deploy process can be repeated automatically in order to generate a revised deployment that does meet the goal.Comment: Submitted to Middleware 0

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    A Flexible and Secure Deployment Framework for Distributed Applications

    Get PDF
    This paper describes an implemented system which is designed to support the deployment of applications offering distributed services, comprising a number of distributed components. This is achieved by creating high level placement and topology descriptions which drive tools that deploy applications consisting of components running on multiple hosts. The system addresses issues of heterogeneity by providing abstractions over host-specific attributes yielding a homogeneous run-time environment into which components may be deployed. The run-time environments provide secure binding mechanisms that permit deployed components to bind to stored data and services on the hosts on which they are running.Comment: 2nd International Working Conference on Component Deployment (CD 2004), Edinburgh, Scotlan

    Constraint Design Rewriting

    Get PDF
    We propose an algebraic approach to the design and transformation of constraint networks, inspired by Architectural Design Rewriting. The approach can be understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to the design of reconfigurable constraint networks. The main idea is to consider classes of constraint networks as algebras whose operators are used to denote constraint networks with terms. Constraint network transformations such as constraint propagations are specified with rewrite rules exploiting the network’s structure provided by terms

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features
    corecore