
Constraint Design Rewriting

Roberto Brunia, Alberto Lluch Lafuenteb, Ugo Montanaria

a Dipartimento di Informatica, Università di Pisa, Italy
{ bruni,ugo}@ di. unipi. it

b IMT Institute for Advanced Studies Lucca, Italy
{ alberto. lluch}@ imtlucca. it

Abstract

We propose an algebraic approach to the design and transformation of constraint
networks, inspired by Architectural Design Rewriting. The approach can be
understood as (i) an extension of ADR with constraints, and (ii) an application
of ADR to the design of reconfigurable constraint networks. The main idea is
to consider classes of constraint networks as algebras whose operators are used
to denote constraint networks with terms. Constraint network transformations
such as constraint propagations are specified with rewrite rules exploiting the
network’s structure provided by terms.

Keywords: Constraints, Rewriting, Hierarchical Graphs, Architectures

1. Introduction

Architectural Design Rewriting (ADR) [1] is a formal approach to the design
of reconfigurable software systems that harmonizes the principles of software
architectures and process calculi by means of graphical methods. ADR offers a
formal setting where design development, run-time execution and reconfiguration
aspects are defined on the same foot. The flexibility of ADR is witnessed by its
many applications to several aspects of software engineering, including model
driven transformations [2], architectural styles and reconfigurations [1], modeling
of service oriented systems [3], and graphical representation of process calculi [4].
One of the main ideas of ADR is to characterize a class of graphs satisfying
certain spatial constraints by means of a graph algebra.

In this paper we combine some techniques from ADR and from constraint
networks [5, 6] in order to accommodate arbitrary notions of constraints, as those
used in popular applications such as optimization, knowledge representation, and
synchronization, to mention a few [7]. Our proposal can be understood both as
(i) an enrichment of ADR with non-spatial constraints, and (ii) an application of

Research partly supported by the European projects IP 257414 ASCENS and STReP
600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

Preprint submitted to Science of Computer Programming July 30, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/16384770?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{bruni,ugo}@di.unipi.it
{alberto.lluch}@imtlucca.it

the ADR methodology to the design and transformation of structured constraint
networks. The main idea is to model classes of constraint networks as algebras,
whose operators can be used to denote constraint networks with terms. Network
transformations, like constraint propagation, are then specified by rewrite rules
that exploit the network’s structure provided by terms.

ADR graphs can be hierarchical and, indeed, the ADR graph algebra [4]
has primitive operations to encapsulate a graph within a box with tentacles
(a hyper-edge). The resulting structure is compositional in two dimensions:
(i) hyper-edges and nodes can be connected to obtain ordinary graphs using
operators reminiscent of parallel composition and restriction of process algebras;
(ii) the encapsulation operation can conveniently model an abstraction/refinement
step of the design. In particular, if a graph grammar based on hyper-edge
replacement [8] is employed to define an architectural style [9], an ADR graph is
able to model not only a resulting (style-compliant) architecture, but also its
syntax tree, recording all refinement steps of the design process.

The ability of representing both a graph and its syntax tree is particularly
relevant for constraints networks [5, 6]. Constraint networks are hyper-graphs
whose nodes and hyper-edges are respectively interpreted as variables and re-
lations constraining the assignment of values to the variables of their adjacent
nodes. The typical problem (Constraint Satisfaction Problem, CSP) is to de-
termine all the assignments of values to variables which satisfy all constraints.
These problems are clearly NP-complete, thus they cannot be solved efficiently
in general. Special cases allowing for feasible solutions have been sought actively
in the Artificial Intelligence field in the past forty years. Especially useful is
the perfect relaxation method [6], based on dynamic programming. The idea
is to find a derivation, namely a syntax tree, for the given network using a
hyper-edge replacement grammar whose productions are small (in terms both of
the number of tentacles of the hyper-edge in their left members, and in the size
of the graphs in their right members). Then the solution of the original problem
is decomposed into a sequence (or, rather, a tree) of smaller problems, one for
every step in the derivation: considering the grammar rule used in that step, the
CSP problem for the graph in the right hand side is solved and the resulting
relation is assigned to the hyper-edge in the left side, to be recursively employed
in a bottom up fashion in the next step. This algorithm is linear within the
class of constraint networks whose underlying graph is generated by a (finite)
hyper-edge replacement grammar.

It is now clear why ADR graphs are convenient for modeling networks of
constraints: not only the hierarchical structure records the steps of the design
process, but also the same structure can be essential at run time for efficiently
checking the satisfiability of the resulting global constraint. Also, when the more
general case of Constraint Logic Programming (CLP) is considered [10], and a
satisfiability check is required at every step, the condition about the underlying
graph being derivable by a hyper-edge replacement grammar turns out to be
automatically satisfied. The promotion of ADR graphs for supporting the design
and run time evaluation of constraints is the main contribution of this paper.

2

Figure 1: Two hierarchical designs (left, middle) and their flattened version (right).

2. Constraint Design Rewriting

In this section we will first present an algebraic notation for networks of
constraints [6] (Section 2.1). Next (Section 2.2) we will explain how to exploit
the algebraic presentation for providing an efficient mechanism for constraint
solving based on rewriting techniques.

2.1. Constraint Design

Networks of constraints [6] are essentially (hyper-)graphs together with an
interpretation of nodes as variables and (hyper-)edges as relations between ad-
missible values on the attached nodes. We present here an algebraic presentation
of networks of constraints that we call constraint network designs, which allow
us to denote constraint networks as terms over a suitable syntax.

Designs. Networks of constraints have a structural part (i.e., the network) that
essentially amounts to (possibly hierarchical) graphs with interfaces. We will
use ADR designs [1] to model them and the design algebra of [4] (an extension
of the graph algebra of [11]) to build them.

Definition 2.1 (design). A design is a term of sort D defined by the grammar

D ::= Lx[G] G ::= 0 | x | l〈x〉 | G | G | (νx)G | D〈x〉

where l and L are drawn from universes E and D of edge and design labels,
respectively, x is taken from a set N of nodes and x ∈ N ∗ is a list of nodes.

The algebraic reading is as usual, where each syntactic category and vo-
cabulary is considered as a sort and productions are read as operations. This
allows us, for instance, to consider open terms (i.e. terms with typed variables):
they are useful for defining sub-classes of designs (e.g. architectural styles or
encodings) by means of derived operators as we shall see in Example 2.2.

Terms generated by G and D are meant to represent (hierarchical) graphs
and “edge-encapsulated” (hierarchical) graphs, respectively. In the following we
say that a graph is hierarchical if it contains designs, otherwise we call it flat
(idem for designs). The syntax has the following informal meaning: 0 represents
the empty graph, x is a discrete graph containing node x only, l〈x〉 is a graph
formed by an l-labelled hyper-edge attached to nodes x (the i-th tentacle to the
i-th node in x) G | H is the graph resulting from the disjoint union of graphs G
and H up to shared nodes, (νx)G is the graph G after making node x not visible

3

from the outside (we say that x is restricted), and D〈x〉 is a graph formed by
attaching design D to nodes x (the i-th node in the interface of D to the i-th
node in x). We let bxc denote the set of elements x

A term Lx[G] is a design labelled by L, with body graph G whose nodes
x are exposed in the interface. A design Lx[G] is like a procedure declaration
where x is the list of formal parameters. Then, the term Lx[G]〈y〉 represents the
application of the procedure to the list of actual parameters y; of course, in this
case the lengths of x and y must be equal. Restriction (νx)G acts as a binder for
x with scope G and similarly Lx[G] binds names x with scope G. Restrictions
and interfaces lead to the usual notion of free nodes, denoted by the function
fn(·). The set of all (distinct) nodes in a graph or design are denoted with n(·).

Edge and design labels are assigned an arity (i.e., the number of their
tentacles) that we assume to be respected, i.e., designs and graphs are well-typed.
A well-typed design or graph is well-formed if (i) for each occurrence of design
Lx[G] we have bxc ⊆ fn(G); and (ii) for each occurrence of graph Lx[G]〈y〉, the
substitution x/y is a function.We restrict our attention to well-formed designs.

The algebra includes the structural graph axioms of [11] such as associativity
and commutativity for | with identity 0 (axioms DA1–DA3 in Definition 2.2) and
name extrusion (DA4–DA6). In addition, it includes axioms to α-rename bound
nodes (DA7–DA8), an axiom for making immaterial the addition of a node to
a graph where that same node is already free (DA9) and another one ensuring
that global names are not localised within hierarchical edges (DA10).

Definition 2.2 (design axioms). The structural congruence ≡D over well-
formed designs and graphs is the least congruence satisfying

G | H ≡ H | G (DA1) G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)
G | (H | I) ≡ (G | H) | I (DA2) Lx[G] ≡ Ly [G{y/x}] if byc ∩ fn(G) = ∅ (DA7)

G | 0 ≡ G (DA3) (νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)
(νx)(νy)G ≡ (νy)(νx)G (DA4) x | G ≡ G if x ∈ fn(G) (DA9)

(νx)0 ≡ 0 (DA5) Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z 6∈ bxc (DA10)

where in axiom (DA7) the substitution is required to be a function (to avoid node
coalescing) and to respect the typing (to preserve well-formedness).

Example 2.1. For simplicity, in this example we consider hyper-edges that have
two tentacles each. Let a ∈ E, A ∈ D, x, y, z, u, v, w ∈ N . Figure 1 depicts the
designs denoted by terms D1 (left), D2 (middle) and D3 (right) defined below:

D = Ax,y [a〈x, y〉]
D1 = Ax,y [(νz) (D〈x, z〉 | Au,v [(νw)(D〈u,w〉 | D〈w, v〉)]〈z, y〉)]
D2 = Ax,y [(νw) (Au,v [(νz)(D〈u, z〉 | D〈z, v〉)]〈x,w〉 | D〈w, y〉)]
D3 = Ax,y [(νz, w)(a〈x, z〉 | a〈z, w〉 | a〈w, y〉)]

Nodes are represented by circles, edges by small rounded boxes, and designs by
large shaded boxes with a top bar. The first tentacle of an edge is represented by
a plain arrow with no head, while the second one is denoted by a normal arrow.
If a node is exposed in the interface we put it on the outermost layer and overlap
the edges of the various layers denoting this with black boxes on design borders.

4

Hierarchical designs (graphs) can be flattened into flat designs (graphs) by
means of flattening rules Lx[G]〈y〉 ⇒ G{y/x}, which correspond to a sort of
hyper-edge replacement [8]. Such rules may also be included as axioms of ≡D

to consider designs up to flattening and nesting. Another useful operation is
that of unfolding which is very much like flattening but keeping the enclosing
edge being flattened as an additional ordinary edge. Unfolding rules are of
the form Lx[G]〈y〉 ⇒ G{y/x} | L〈y〉. Finally, we shall consider the abstraction
operation that transforms a design in an ordinary edge. Abstraction rules are of
the form Lx[G]〈y〉 ⇒ L〈y〉. The bottom-up application of abstraction rules until
a fixpoint is reached defines an abstraction function ·̂.

Figure 2: An algebra of sequences.

Design Styles. Classes of graphs with particular
shapes can be defined by graph language for-
malisms such as graph grammars. The approach
to graph classes in ADR is based on an algebraic
interpretation of context-free graph grammars
(hyper-edge replacement graph grammars): non-
terminal symbols (design labels) are interpreted
as sorts and productions are interpreted as oper-
ations whose domain and co-domain are given by
the non-terminal symbols in the left- and right-
hand side of the production, respectively.

A design style is a tuple S = 〈Σ,E,A〉 where Σ is the signature of the
style (sorts, labels, operation symbols), E is the set of equations that define
the operations (as derived operators of the design algebra) and A is a set of
axioms preserving ≡D (D1 ≡A D2 implies D1 ≡D D2). Choosing A such that
≡A exactly coincides with ≡D is convenient since one obtains a convenient
correspondence between graph and term rewriting (graph matching based on
subgraph isomorphism corresponds to term matching modulo A). We say that a
design D has type A, written D : A whenever D ≡ Ax[G].

Example 2.2. We define a simple style SL = 〈ΣL,EL,AL〉 that characterise
the set of a-labelled, acyclic, and connected sequences. The operations of the
style include the constant operator α :→ A to introduce elements in the sequence,
and a binary sequential composition ; : A×A→ A. Both are derived operators
defined by the following two equations in EL: α = Au,v[a〈u, v〉] and D1;D2 =
Au,v[(νw)(D1〈u,w〉 | D2〈w, v〉)], where D1,D2 : A. The graphical representation
of both operators is visualised in Fig. 2. We put the operator declaration on the
top bar of the outermost design and we annotate the variables with their names
and types. Note that, implicitly, the type of the outermost box is the type returned
by the operation. Clearly, the style as such constructs hierarchical sequences,
where, e.g., (α; (α;α) (cf. left of Figure 1 and D1 in Example 2.1) and ((α;α);α)
(cf. right of Figure 1 and D2 in Example 2.1) define different designs due to the
different nestings. If flattening is included as an axiom in AL then AL should
also include the associativity of ; so that ≡AL

and ≡D coincide. Then, the two
former terms are identified (cf. right of Figure 1 and D3 in Example 2.1).

5

The example illustrates the two roles of the nesting operator: to enclose a
graph and as a sort of typed interface to enable disciplined graph compositions.

Constraint Network Designs. Interpreting the nodes of a graph as variables
and the arcs as constraints gives rise to a network of constraints [6]. In this
work, we call a constraint network design a pair 〈D, I〉 where D is a design and
I : (E ∪D)→ P (Uk) is a (rank-respecting) interpretation function mapping edge
and design labels to constraints, i.e., U is the domain of variables (nodes) and
P (Uk) is the set of all k-relations on U .

Example 2.3. Let us take the set of natural numbers N as the domain of nodes
and take the interpretation function I that maps labels a and A of our running
example to {(x, y) ∈ N | x < y}. Then, the idea is that, for any design D : A,
the constraint network design 〈D, I〉 constrains the nodes in D to be assigned a
strictly ordered sequence of natural numbers.

We say that 〈D, I〉 is a hierarchical network design whenever D is hierarchical,
otherwise we call it flat network design. It is easy to see that every (hierarchical)
network of constraints can be denoted by a (hierarchical) constraint network
design in a similar way as graphs are denoted by designs in ADR [4]. In addition,
we lift the notion of style to network design style in the obvious way.

Constraint Satisfaction Problem. Solving a network of constraints is called a
constraint satisfaction problem (CSP). We recast here the original presentation
of [6] in terms of designs. Let 〈Lx[G], I〉 be a flat constraint network design, n
abbreviate |n(G)| and 〈n1, . . . , nn〉 be any ordering of the variables (nodes) in
n(G). For the ease of presentation and without loss of generality we assume
that G is in normal form (νz)(b(y) | H), with fn(H) = ∅. In addition we
denote the projection of a vector 〈ni1 , . . . , nim〉 on v = 〈v1, . . . , vn〉 ∈ Un as
v|〈ni1

,...,nim 〉 = 〈vi1 , . . . , vim〉. The solution sol(〈Lx[G], I〉) of 〈Lx[G], I〉 is the
set {v|x | v ∈ Un and H ≡D b(y) | F implies v|y ∈ I(b)}. In other words, the
CSP for a constraint network is to find the set of all the assignments of the
variables connected by the interface arc such that every such assignment can
be extended to an assignment of all the variables in n(G) which satisfies all the
constraints in G, i.e. the constraints imposed by each arc b〈y〉. We say that a
constraint network design 〈D, I〉 is consistent if sol(〈D, I〉) 6= ∅. Otherwise we
say that it is inconsistent. In general, hierarchical networks can be solved by
first unfolding them. We shall see that, when the structure of the network is
exploited, it is just sufficient to abstract them.

Example 2.4. The solution of a constraint network design 〈D : A, I〉 is sol(〈D :
A, I〉) = {(x, y) ∈ N2 | x+ k ≤ y}, where k is the number of occurrences of α in
D, which can be computed by exploiting the structure of D as we shall see.

Consistent Network Design Development. Ideally, constraint network designs
should be developed so to guarantee consistency. However, this is a challenging
task since very easily the choices of the constraint interpretation of I or the
design style may allow the construction of inconsistent networks.

6

s = sol(〈f̂(D1, . . . ,Dn), I〉)
〈f(D1 : Ss11 , . . . ,Dn : S

sk
k), I〉 →p 〈fs(D1, . . . ,Dn), I ∪ {Ss 7→ s}〉

(SOLVEf)

i ∈ [1, k] 〈Di, I〉 →p 〈D′
i, I

′〉 ∀j 6= i. D′
j = Dj

〈f(D1, . . . ,Dn), I〉 →p 〈f(D′
1, . . . ,D′

n), I′〉 (INDf)

Figure 3: Perfect relaxation on generic styles.

Example 2.5. Let us consider the style SL of Example 2.3 and an interpretation
function I ′ such that I ′(A) = I(A) and I ′(a) = {(x, y) ∈ N2 | x > y} then it is
easy to see that any constraint network design 〈D : A, I ′〉 in constraint network
design style 〈ΣL,EL,AL, I

′〉 is inconsistent. Suppose instead that we define
an interpretation I ′′ such that I ′′(A) = I(A) and I ′′(a) = {(0, 1)}. The new
style 〈ΣL,EL,AL, I ′〉 allows us to build the consistent design 〈α, I〉, but also the
inconsistent design 〈α;α, I〉 which results by combining together two consistent
designs. In other words, a style may not guarantee compositional consistency.

Ideally, a style S = 〈Σ,E,A, I〉 would consist of operators f ∈ Σ of functional
type f : S1 × · · · × Sk → S and the interpretation function I would be such that
for any given consistent constraint network designs 〈Di : Si, I〉 we are guaranteed
that 〈f(D1, . . . ,Dn), I〉 is consistent. If this property is shown for all operators
f ∈ Σ then, by induction, any possible constraint network design is guaranteed
to be consistent. However, designing such a compositionally consistent style may
not be easy. Indeed, the style of Example 2.3 does not enjoy this property. The
following style, instead is compositionally consistent.

Example 2.6. The following style is a variant of SL. The signature includes a
family of parametric edge labels a[i,j] and design labels (sorts) A[i,j] (for i < j),
and a subsorting relation A[i,j] ≤ A[k,l] whenever k ≤ i and j ≤ l. The idea is that
an A[i,j]-labelled sequence contains natural numbers in the range [i, j]. The opera-
tions of our style are parametric as well, with a families of operators αi,j :→ A[i,j]

and ; : A[i,j] × A[k,l] → A[i,l] (defined only when j ≤ k), respectively defined

as: α[i,j] = A
[i,j]
u,v [a[i,j]〈u, v〉] and D1;D2 = A

[i,l]
u,v [(νw)(D1〈u,w〉 | D2〈w, v〉)],

where D1 : A[i,j] and D2 : A[k,l]. The interpretation function I is such that
I(A[i,j]) = I(a[i,j]) = {(x, y) ∈ N | i ≤ x < y ≤ j}.

2.2. Constraint Rewriting

Rewriting techniques can be used to specify constraint network transforma-
tions in a declarative way. A typical example is that of constraint relaxation
which provides a simple and efficient mechanism for constraint solving.

Solving Constraint Satisfaction Problems by Rewriting. Constraint propagation
turns a constraint satisfaction problem into an equivalent one that is easier to
solve [12] by enforcing some kind of local consistency. This can be done by
applying a set of relaxation rules. It was proved that a relaxation rule transforms
a network of constraints into an equivalent one [6]. A generic relaxation algorithm
works by applying a number of relaxation rules until no more changes can be
done (in this case, we reach a stable network).

7

s = sol(〈α̂, I〉)
〈α, I〉 →p 〈αs, I ∪ {As 7→ s}〉 (SOLVEα)

s = sol(〈D1 ;̂ D2, I〉)
〈D1 : As1 ; D2 : As2 , I〉 →p 〈D1 ;s D2, I ∪ {As 7→ s}〉 (SOLVE;)

〈D1, I〉 →p 〈D′
1, I

′〉
〈D1 ; D2, I〉 →p 〈D′

1;D2, I′〉
(IND1;)

〈D2, I〉 →p 〈D′
2, I

′〉
〈D1 ; D2, I〉 →p 〈D1;D′

2, I
′〉 (IND2;)

Figure 4: Perfect relaxation on sequences.

Perfect Relaxation. It has been proven [6] that if given a derivation for network
of constraints that provides a proof of its construction with a context-free graph
grammar (a hyper-edge replacement system), the relaxation algorithm which
applies (in reverse order) the relaxation rules corresponding to the derivation, is
perfect. In our setting, a derivation corresponds to a term, each rule can be seen
as an operation (a production of the grammar), and applying them in reverse
order corresponds to applying them bottom-up in the syntax tree.

In general, given a style 〈Σ,E,A, I〉 we can define a set of relaxation rules
SOLVEf for each operator f : S1 . . . Sk → S ∈ Σ as defined in Fig. 3, where
for f defined as f(D1, . . . ,Dn) =E Sx[H] we define fs(D1, . . . ,Dn) = Ssx[H] and

f̂(D1, . . . ,Dn) = Sx[Ĥ]. In words, such a rule SOLVEf is applied to an S-sorted
design whose sub-designs have been already relaxed (ensuring thus bottom-up
application) and replaced by an Ssi -labelled edge (indexed by the corresponding
solution si). The effect of the rule is to replace the change the sort S to Ss

where s is the solution of its CSP. In the computation of s the use of f̂ ensures
that the solutions si are not re-computed.

Then, perfect relaxation can be defined by a set of rules that exploit structural
induction and the set relaxations rules. More precisely, we can define an inference
system with families of rules SOLVEf rule for operator f , and rule INDf for
exploiting induction (cf. Figure 3).

Example 2.7. Figure 4 shows the set of rules that inductively define perfect
relaxation on sequential networks of constraints. Such rules can be used to
infer the sequence of relaxation steps 〈α ; α, I〉 →p 〈αs ; α, I ∪ {As 7→ s}〉 →p

〈αs ; αs, I ∪ {As 7→ s}〉 →p 〈αs ;s
′
αs, I ∪ {As 7→ s,As

′ 7→ s′}〉, where s =
{(x, y) ∈ N2 | x + 1 ≤ y} and s′ = {(x, y) ∈ N2 | x + 2 ≤ y}. Such derivation
provides a solution to the CSP of 〈α;α, I〉.

Rephrasing [6] the above mechanism provides a perfect relaxation algorithm
that applies every relaxation rule only once to each occurrence of a term and
the relation in the interface arc of the resulting design is the solution of the
initial network of constraints. As a consequence a perfect relaxation algorithm
provides a linear solution algorithm for any class of networks whose graphs are
included in the language of some hyper-edge replacement system (a style in our
case). Such algorithms can be understood as an application of the dynamic

8

programming solution method (e.g. memoization may be applied). Moreover,
it is not necessary to re-compute the all CSPs after a network reconfiguration:
unaffected parts of the design can preserve their annotated solutions.

3. Conclusion

We have proposed an algebraic presentation of constraint design rewriting
inspired by our previous work on ADR [1]. The main idea is to use (i) terms
to denote (possibly hierarchical) networks of constraints and (ii) rewrite rules
to denote the transformation of constraint networks. Our approach has been
exemplified with relaxation-based constraint solving as a significant application.

The actual design process of an architecture enriched with nonstructural
constraints should involve the development of an ADR graph including both
relational/numeric constraints and components/connectors representing require-
ment/specification/software items and their meaning. The seamless combination
of the two is actually possible, and easy. For instance, graph calculi based
on (synchronized) hyper-edge replacement can conveniently represent a large
variety of process algebras [13], while the cc-pi process description language [14]
combines the mobility features of π-calculus with the generality of concurrent
constraint programming based on nominal soft constraints. Here the key issue
is that nodes of the graphs can be considered at the same time as names in
the π-calculus sense (thus representing, channels, links, continuations, security
keys) and as variables required to satisfy constraints involving functional and
quality of service restrictions. As future work, indeed, we may consider design
development procedures in the style of concurrent constraint programming [15]
where (possibly concurrent) agents act on the same constraint network design
applying productions in a consistent way with tell -like operations whose effect is
that of applying a refinement of the design (replacing a variable or constant in a
design term by another term of the same sort).

Requirement specifications can also be expressed as ontologies enriched with
hierarchical networks of constraints [16]. Checking constraint satisfiability (typi-
cally via perfect relaxation) is an important verification step at the requirement
stage. At run-time, instead, constraint rewrite mechanisms can be defined that
recover consistency when a dynamic network of constraints becomes inconsistent
due to changes in the actual constraints during execution.

References

[1] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto, Style based archi-
tectural reconfigurations, Bulletin of the EATCS 94 (2008) 161–180.

[2] R. Bruni, A. Lluch Lafuente, U. Montanari, On structured model-driven
transformations, International Journal of Software and Informatics (IJSI)
2 (1-2) (2011) 185–206.

9

[3] R. Bruni, H. Foster, A. Lluch-Lafuente, U. Montanari, E. Tuosto, A formal
support to business and architectural design for service-oriented systems,
in: Rigorous Software Engineering for Service-Oriented Systems, Vol. 6582
of Lecture Notes in Computer Science, Springer, 2011, pp. 133–152.

[4] R. Bruni, F. Gadducci, A. Lluch-Lafuente, An algebra of hierarchical graphs
and its application to structural encoding, SACS 20 (2010) 53–96.

[5] U. Montanari, Networks of constraints: Fundamental properties and appli-
cations to picture processing, Inf. Sci. 7 (1974) 95–132.

[6] U. Montanari, F. Rossi, Constraint relaxation may be perfect, Artificial
Intelligence 48 (1991) 143–170.

[7] F. Rossi, P. v. Beek, T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence), Elsevier Science Inc., 2006.

[8] F. Drewes, H.-J. Kreowski, A. Habel, Hyperedge replacement graph gram-
mars, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Comput-
ing by Graph Transformations, Volume 1, World Scientific, 1997.

[9] D. L. Métayer, Describing software architecture styles using graph grammars,
IEEE Trans. Software Eng. 24 (7) (1998) 521–533.

[10] U. Montanari, F. Rossi, Perfect relaxation in constraint logic programming,
in: ICLP, 1991, pp. 223–237.

[11] A. Corradini, U. Montanari, F. Rossi, An abstract machine for concurrent
modular systems: Charm, Theor. Comput. Sci. 122 (1&2) (1994) 165–200.

[12] K. R. Apt, The essence of constraint propagation, Theoretical Computer
Science 221 (1-2) (1999) 179–210.

[13] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto, Synchronised
hyperedge replacement as a model for service oriented computing, in: FMCO,
Vol. 4111 of Lecture Notes in Computer Science, Springer, 2005, pp. 22–43.

[14] M. G. Buscemi, U. Montanari, Cc-pi: A constraint-based language for
specifying service level agreements, in: ESOP 2007, Vol. 4421 of LNCS,
Springer, 2007, pp. 18–32.

[15] V. A. Saraswat, M. C. Rinard, Concurrent constraint programming, in:
F. E. Allen (Ed.), POPL, ACM Press, 1990, pp. 232–245.

[16] U. Montanari, E. Vassev, Soft constraints for knowlang, in: B. C. Desai,
E. Vassev, S. P. Mudur, B. C. Desai (Eds.), C3S2E, ACM, 2012, pp. 99–103.

10

	Introduction
	Constraint Design Rewriting
	Constraint Design
	Constraint Rewriting

	Conclusion

