425 research outputs found

    On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard

    Full text link
    Wireless Body Area Networks (WBAN) support a variety of real-time health monitoring and consumer electronics applications. The latest international standard for WBAN is the IEEE 802.15.6. The security association in this standard includes four elliptic curve-based key agreement protocols that are used for generating a master key. In this paper, we challenge the security of the IEEE 802.15.6 standard by showing vulnerabilities of those four protocols to several attacks. We perform a security analysis on the protocols, and show that they all have security problems, and are vulnerable to different attacks

    On a Hybrid Preamble/Soft-Output Demapper Approach for Time Synchronization for IEEE 802.15.6 Narrowband WBAN

    Full text link
    In this paper, we present a maximum likelihood (ML) based time synchronization algorithm for Wireless Body Area Networks (WBAN). The proposed technique takes advantage of soft information retrieved from the soft demapper for the time delay estimation. This algorithm has a low complexity and is adapted to the frame structure specified by the IEEE 802.15.6 standard for the narrowband systems. Simulation results have shown good performance which approach the theoretical mean square error limit bound represented by the Cramer Rao Bound (CRB)

    Design and performance analysis of human body communication digital transceiver for wireless body area network applications

    Get PDF
    Wireless body area network (WBAN) is a prominent technology for resolving health-care concerns and providing high-speed continuous monitoring and real-time help. Human body communication (HBC) is an IEEE 802.15.6 physical layer standard for short-range communications that is not reliant on radio frequency (RF). Most WBAN applications can benefit from the HBC's low-latency and low-power architectural features. In this manuscript, an efficient digital HBC transceiver (TR) hardware architecture is designed as per IEEE 802.15.6 standard to overcome the drawbacks of the RF-wireless communication standards like signal leakage, on body antenna and power consumption. The design is created using a frequency selective digital transmission scheme for transmitter and receiver modules. The design resources are analyzed using different field programmable gate array (FPGA) families. The HBC TR utilizes <1% slices, consumes 101 mW power, and provides a throughput of 24.31 Mbps on Artix-7 FPGA with a latency of 10.5 clock cycles. In addition, the less than 10-4bit error rate of HBC is achieved with a 9.52 Mbps data rate. The proposed work is compared with existing architectures with significant improvement in performance parameters like chip area, power, and data rate

    Performance evaluation of IEEE 802.15.6 CSMA/CA-based CANet WBAN

    Get PDF
    International audienceIn the recent few years, Wireless Body Area networks (WBANs) showed what can be done remotely to greatly improve healthcare systems and facilitate the life to elderly. One of the recent ehealth projects is CANet which aims at embedding a WBAN into a cane to monitor elderly/patients. Our main goal in this paper is to evaluate the performances of the emerging standard IEEE 802.15.6 when applied on different sensors from CANet eHealth project. At this end, we defined a small scenario extracted from CANet, and we assigned IEEE 802.15.6 priorities to the selected cane sensors according to their inherent characteristics. We considered further the mandatory RAP period of IEEE 802.15.6 superframe under the beacon period with superframes mode since it supports both normal and urgent traffic. Our results showed that the contention access behavior of this considered model of simulation depends on several constraints (including the nature of the studied application and the traffic types and frequency). This would be necessarily taken into account to get the most advantage of all features offered by WBANs standard IEEE 802.15.6. Keywords—Medium Access Control (MAC), wireless body area networks (WBANs), E-health, CANet project, wireless sensor networks (WSN), IEEE 802.15.6

    TRW-MAC: A thermal-aware receiver-driven wake-up radio enabled duty cycle MAC protocol for multi-hop implantable wireless body area networks in Internet of Things

    Get PDF
    Implantable Wireless Body Area Network (IWBAN), a network of implantable medical sensors, is one of the emerging network paradigms due to the rapid proliferation of wireless technologies and growing demand of sophisticated healthcare. The wireless sensors in IWBAN is capable of communicating with each other through radio frequency (RF) link. However, recurring wireless communication inside the human body induces heat causing severe thermal damage to the human tissue which, if not controlled, may appear as a threat to human life. Moreover, higher propagation loss inside the human body as well as low-power requirement of the sensor nodes necessitate multi-hop communication for IWBAN. A IWBAN also requires meeting certain Quality of Service demands in terms of energy, delay, reliability etc. These pressing concerns engender the design of TRW-MAC: A thermal-aware receiver-driven wake-up radio enabled duty cycle MAC protocol for multi-hop IWBANs in Internet of Things. TRW-MAC introduces a thermal-aware duty cycle adjustment mechanism to reduce temperature inside the body and adopts wake-up radio (WuR) scheme for attaining higher energy efficiency. The protocol devises a wake-up estimation scheme to facilitate staggered wake-up schedule for multi-hop transmission. A superframe structure is introduced that utilizes both contention-based and contention free medium access operations. The performance of TRW-MAC is evaluated through simulations that exhibit its superior performance in attaining lower thermal-rise as well as satisfying other QoS metrics in terms of energy-efficiency, delay and reliability

    Wireless body area network revisited

    Get PDF
    Rapid growth of wireless body area networks (WBANs) technology allowed the fast and secured acquisition as well as exchange of vast amount of data information in diversified fields. WBANs intend to simplify and improve the speed, accuracy, and reliability of communica-tions from sensors (interior motors) placed on and/or close to the human body, reducing the healthcare cost remarkably. However, the secu-rity of sensitive data transfer using WBANs and subsequent protection from adversaries attack is a major issue. Depending on the types of applications, small and high sensitive sensors having several nodes obtained from invasive/non-invasive micro- and nano- technology can be installed on the human body to capture useful information. Lately, the use of micro-electro-mechanical systems (MEMS) and integrated circuits in wireless communications (WCs) became widespread because of their low-power operation, intelligence, accuracy, and miniaturi-zation. IEEE 802.15.6 and 802.15.4j standards have already been set to specifically regulate the medical networks and WBANs. In this view, present communication provides an all-inclusive overview of the past development, recent progress, challenges and future trends of security technology related to WBANs

    Special Issue on Body Area Networks

    Get PDF
    info:eu-repo/semantics/publishedVersio
    • …
    corecore