1,325 research outputs found

    Towards Security and Privacy in Networked Medical Devices and Electronic Healthcare Systems

    Get PDF
    E-health is a growing eld which utilizes wireless sensor networks to enable access to effective and efficient healthcare services and provide patient monitoring to enable early detection and treatment of health conditions. Due to the proliferation of e-health systems, security and privacy have become critical issues in preventing data falsification, unauthorized access to the system, or eavesdropping on sensitive health data. Furthermore, due to the intrinsic limitations of many wireless medical devices, including low power and limited computational resources, security and device performance can be difficult to balance. Therefore, many current networked medical devices operate without basic security services such as authentication, authorization, and encryption. In this work, we survey recent work on e-health security, including biometric approaches, proximity-based approaches, key management techniques, audit mechanisms, anomaly detection, external device methods, and lightweight encryption and key management protocols. We also survey the state-of-the art in e-health privacy, including techniques such as obfuscation, secret sharing, distributed data mining, authentication, access control, blockchain, anonymization, and cryptography. We then propose a comprehensive system model for e-health applications with consideration of battery capacity and computational ability of medical devices. A case study is presented to show that the proposed system model can support heterogeneous medical devices with varying power and resource constraints. The case study demonstrates that it is possible to signicantly reduce the overhead for security on power-constrained devices based on the proposed system model

    Survey on IoT based Cyber Security Issues and Autonomous Solutions for Implantable Medical Devices

    Get PDF
    In today’s world the technology has got boomed up to the peak. So as a measure of this technology peak we could see that the enhancement of this has raised very large. This technology booming has also impacted health care sector. In our paper we are going to discuss much on implantable medical devices and its uses which plays a major role in patient’s life. This IMD’s are going to be the life changing aspect of each and every patient. These devices are highly controlled IoT devices (i.e.) those devices are connected through internet which will help doctors to track the details of the patients remotely. On the other hand since all these devices are connected to internet, these are easily hacked by the hackers. The factors of how those devices are much vulnerable and what are all the threats that will make these devices to malfunction and lead a problem to the patients is discussed. And also this will lead the health sector to fall in their reputation. IMD’s are of many types which are in existing in the Medical industry. But we are going to consider some IMD’s as example and we have planned to make a detailed study on the problems on those devices. All these devices are vulnerable since it is connected to internet. So our aim is to completely or partially reduce the risks on those devices via communication network. We have also showcased the possible threats and vulnerabilities chances on those devices. The main scenarios of device control issues and possible solutions have been discussed in this article

    A framework to detect cyber-attacks against networked medical devices (Internet of Medical Things):an attack-surface-reduction by design approach

    Get PDF
    Most medical devices in the healthcare system are not built-in security concepts. Hence, these devices' built-in vulnerabilities prone them to various cyber-attacks when connected to a hospital network or cloud. Attackers can penetrate devices, tamper, and disrupt services in hospitals and clinics, which results in threatening patients' health and life. A specialist can Manage Cyber-attacks risks by reducing the system's attack surface. Attack surface analysis, either as a potential source for exploiting a potential vulnerability by attackers or as a medium to reduce cyber-attacks play a significant role in mitigating risks. Furthermore, it is necessitated to perform attack surface analysis in the design phase. This research proposes a framework that integrates attack surface concepts into the design and development of medical devices. Devices are classified as high-risk, medium-risk, and low-risk. After risk assessment, the employed classification algorithm detects and analyzes the attack surfaces. Accordingly, the relevant adapted security controls will be prompted to hinder the attack. The simulation and evaluation of the framework is the subject of further research.</p

    Research on Internet Technology Innovation and Information Security Challenges in New Vehicle Energy Sector

    Get PDF
    With the rapid proliferation and advancement of new energy vehicles, Internet technology has garnered significant attention and application in this field. This study focuses on innovations in Internet technology in the domain of new automotive energy and the associated information security challenges. The innovations in Internet technology relevant to new energy vehicles, including Telematics, intelligent driving, and remote control, are initially explored. Subsequently, the information security challenges brought about by these innovations are analyzed, encompassing various aspects such as data privacy breaches, remote attacks, and malware infections. The significance of information security in the development of new energy vehicles is emphasized. Solutions and suggestions, including the strengthening of encryption technology, the establishment of a robust security framework, and the enhancement of user education and awareness, are put forward. In conclusion, the current state of research on Internet technology innovation and information security challenges is summarized, and it is suggested that future research should delve deeper into the trajectory of Internet technology development in the field of new energy vehicles, along with the attendant information security challenges, to provide theoretical and practical support for promoting the healthy development and secure application of the new energy vehicle industry

    Cyber-Vulnerabilities & Public Health Emergency Response

    Get PDF

    Cross-layer Approach for Designing Resilient (Sociotechnical, Cyber-Physical, Software-intensive and Systems of) Systems

    Get PDF
    Our society’s critical infrastructures are sociotechnical cyber-physical systems (CPS) increasingly using open networks for operation. The vulnerabilities of the software deployed in the new control system infrastructure will expose the control system to many potential risks and threats from attackers. This paper starts to develop an information systems design theory for resilient software-intensive systems (DT4RS) so that communities developing and operating different security technologies can share knowledge and best practices using a common frame of reference. By a sound design theory, the outputs of these communities will combine to create more resilient systems, with fewer vulnerabilities and an improved stakeholder sense of security and welfare. The main element of DT4RS is a multi-layered reference architecture of the human, software (cyber) and platform (physical) layers of a cyber-physical system. The layered architecture can facilitate the understanding of the cross-layer interactions between the layers. Cyber security properties are leveraged to help analyzing the interactions between these layers

    Threat Assessment and Risk Analysis (TARA) for Interoperable Medical Devices in the Operating Room Inspired by the Automotive Industry

    Get PDF
    Prevailing trends in the automotive and medical device industry, such as life cycle overarching configurability, connectivity, and automation, require an adaption of development processes, especially regarding the security and safety thereof. The changing requirements imply that interfaces are more exposed to the outside world, making them more vulnerable to cyberattacks or data leaks. Consequently, not only do development processes need to be revised but also cybersecurity countermeasures and a focus on safety, as well as privacy, have become vital. While vehicles are especially exposed to cybersecurity and safety risks, the medical devices industry faces similar issues. In the automotive industry, proposals and draft regulations exist for security-related risk assessment processes. The medical device industry, which has less experience in these topics and is more heterogeneous, may benefit from drawing inspiration from these efforts. We examined and compared current standards, processes, and methods in both the automotive and medical industries. Based on the requirements regarding safety and security for risk analysis in the medical device industry, we propose the adoption of methods already established in the automotive industry. Furthermore, we present an example based on an interoperable Operating Room table (OR table)

    Intelligent Sensors Security

    Get PDF
    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process

    Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

    Get PDF
    In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies
    • …
    corecore