48 research outputs found

    IoT Light Weight (LWT) crypto functions

    Get PDF
    We are in the era of IoT and 5G technologies. IoT has wide range of applications in Smart Home, Smart cities, Agriculture, Health etc. Due to that, the number of connected sensor devices become increased. Along with that security of these devices become a challenging issue. By the next year there would be a great increase in the number of connected sensor devices. For the power constrained devices like sensors and actuators, they requires lightweight security mechanism. There are several Lightweight (LW) energy efficient Hashing techniques are available. They are photon, quark, spongent, Lesamnta- LW etc. These all are fixed length block sized and key sized LW hashing techniques. All transformation methods used today in LW hash function only support fixed block size and key size and requires high hardware requirements too. In this paper, we compare different types of LW hash families in terms of their design and introduce the possibility of variable length hash function using Mersenne number based transform

    Design and Analysis of Lightweight Trust Mechanism for Secret Data using Lightweight Cryptographic Primitives in MANETs

    Get PDF
    Abstract Lightweight trust mechanism with lightweight cryptography primitives and post-quantum cryptosystems are having important concerns in resource constraint wireless sensor based Mobile Ad Hoc Networks (MANETs). In postquantum cryptosystems, error correcting codes (ECC) help in code based cryptography for lightweight identification, authentication, distance bounding and tag with ownership transfer protocols to provide security. In this work, a novel approach is designed to secure the RFID-Sensor based MANET that uses ECC for assigning identification to resource constrained mobile nodes. This assignment helps to create centralized environment with subgroups, groups and hierarchies. Group or subgroups boundaries are limited through distance bounding protocols. Trust management plays the role of maintaining the relationship between nodes for long endeavor. Probability analysis of distance bounding protocol shows that the proposed approach is protected from mafia fraud, distance fraud, terrorist fraud, and distance hijacking attacks. The success of these attacks on the proposed mechanism dependence on trust score: lesser trust score (≤ 50) increases the chances of these attacks whereas higher trust score protects the network from these attacks and improves the network performance as well. In performance analysis, it is observed that the Zone Routing Protocol (ZRP) outperforms the other MANET routing protocols in terms of network performance and security for the proposed scheme. However, the probabilistic analysis proves that it is still possible to control outliers in the network despite the new inserted defenses with trust management and limited resources

    A Taxonomy and Review of Lightweight Blockchain Solutions for Internet of Things Networks

    Full text link
    Internet of things networks have spread to most digital applications in the past years. Examples of these networks include smart home networks, wireless sensor networks, Internet of Flying Things, and many others. One of the main difficulties that confront these networks is the security of their information and communications. A large number of solutions have been proposed to safeguard these networks from various types of cyberattacks. Among these solutions is the blockchain, which gained popularity in the last few years due to its strong security characteristics, such as immutability, cryptography, and distributed consensus. However, implementing the blockchain framework within the devices of these networks is very challenging, due to the limited resources of these devices and the resource-demanding requirements of the blockchain. For this reason, a large number of researchers proposed various types of lightweight blockchain solutions for resource-constrained networks. The "lightweight" aspect can be related to the blockchain architecture, device authentication, cryptography model, consensus algorithm, or storage method. In this paper, we present a taxonomy of the lightweight blockchain solutions that have been proposed in the literature and discuss the different methods that have been applied so far in each "lightweight" category. Our review highlights the missing points in existing systems and paves the way to building a complete lightweight blockchain solution for resource-constrained networks.Comment: 64 pages, 11 figures

    Security is an Architectural Design Constraint

    Get PDF
    In state-of-the-art design paradigm, time, space and power efficiency are considered the primary design constraints. Quite often, this approach adversely impacts the security of the overall system, especially when security is adopted as a countermeasure after some vulnerability is identified. In this position paper, we motivate the idea that security should also be considered as an architectural design constraint in addition to time, space and power. We show that security and efficiency objectives along the three design axes of time, space and power are in fact tightly coupled while identifying that security stands in direct contrast with them across all layers of architectural design. We attempt to prove our case utilizing a proof-by-evidence approach wherein we refer to various works across literature that explicitly imply the eternal conflict between security and efficiency. Thus, security has to be treated as a design constraint from the very beginning. Additionally, we advocate a security-aware design flow starting from the choice of cryptographic primitives, protocols and system design

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Latest research trends in gait analysis using wearable sensors and machine learning: a systematic review

    Get PDF
    Gait is the locomotion attained through the movement of limbs and gait analysis examines the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among many available technologies, two emerging technologies that play a central role in modern day gait analysis are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis. Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable sensors and Machine Learning (ML). It explores the recent papers along with the publication details and key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations. Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location for a specific application. Finally, it suggests some future directions for gait analysis and its applications

    Efficient and Side-Channel Resistant Implementations of Next-Generation Cryptography

    Get PDF
    The rapid development of emerging information technologies, such as quantum computing and the Internet of Things (IoT), will have or have already had a huge impact on the world. These technologies can not only improve industrial productivity but they could also bring more convenience to people’s daily lives. However, these techniques have “side effects” in the world of cryptography – they pose new difficulties and challenges from theory to practice. Specifically, when quantum computing capability (i.e., logical qubits) reaches a certain level, Shor’s algorithm will be able to break almost all public-key cryptosystems currently in use. On the other hand, a great number of devices deployed in IoT environments have very constrained computing and storage resources, so the current widely-used cryptographic algorithms may not run efficiently on those devices. A new generation of cryptography has thus emerged, including Post-Quantum Cryptography (PQC), which remains secure under both classical and quantum attacks, and LightWeight Cryptography (LWC), which is tailored for resource-constrained devices. Research on next-generation cryptography is of importance and utmost urgency, and the US National Institute of Standards and Technology in particular has initiated the standardization process for PQC and LWC in 2016 and in 2018 respectively. Since next-generation cryptography is in a premature state and has developed rapidly in recent years, its theoretical security and practical deployment are not very well explored and are in significant need of evaluation. This thesis aims to look into the engineering aspects of next-generation cryptography, i.e., the problems concerning implementation efficiency (e.g., execution time and memory consumption) and security (e.g., countermeasures against timing attacks and power side-channel attacks). In more detail, we first explore efficient software implementation approaches for lattice-based PQC on constrained devices. Then, we study how to speed up isogeny-based PQC on modern high-performance processors especially by using their powerful vector units. Moreover, we research how to design sophisticated yet low-area instruction set extensions to further accelerate software implementations of LWC and long-integer-arithmetic-based PQC. Finally, to address the threats from potential power side-channel attacks, we present a concept of using special leakage-aware instructions to eliminate overwriting leakage for masked software implementations (of next-generation cryptography)

    Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography

    Get PDF
    The growth of data-driven technologies, 5G, and the Internet place enormous pressure on underlying information infrastructure. There exist numerous proposals on how to deal with the possible capacity crunch. However, the security of both optical and wireless networks lags behind reliable and spectrally efficient transmission. Significant achievements have been made recently in the quantum computing arena. Because most conventional cryptography systems rely on computational security, which guarantees the security against an efficient eavesdropper for a limited time, with the advancement in quantum computing this security can be compromised. To solve these problems, various schemes providing perfect/unconditional security have been proposed including physical-layer security (PLS), quantum key distribution (QKD), and post-quantum cryptography. Unfortunately, it is still not clear how to integrate those different proposals with higher level cryptography schemes. So the purpose of the Special Issue entitled “Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography” was to integrate these various approaches and enable the next generation of cryptography systems whose security cannot be broken by quantum computers. This book represents the reprint of the papers accepted for publication in the Special Issue
    corecore