46 research outputs found

    Detection of covert Voice over Internet Protocol communications using sliding window-based steganalysis

    Get PDF
    The authors describe a reliable and accurate steganalysis method for detecting covert voice-over Internet protocol (VoIP) communication channels. The proposed method utilises a unique sliding window mechanism and an improved regular singular (RS) algorithm for VoIP steganalysis, which detects the presence of least significant bit embedded VoIP streams. With this mechanism, the detection window moves forward one packet or several packets each time to screen VoIP streams. The optimum detection threshold for the proposed detection metric is computed by modelling the distributions of the new metric for stego and cover VoIP streams. Experimental analysis reveals that the proposed method improves the detection time significantly, utilising less memory resources for VoIP steganalysis, thereby enabling real-time detection of stego VoIP streams. The proposed method also provides a significant improvement on precision in detecting multiple covert VoIP channels when compared to the conventional RS method

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    Програмний модуль захисту графічної інформації цифровими водяними знаками

    Get PDF
    Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету" . Керівник проекту: доцент, к.т.н. Гулак Н.К.Зберігання інформації у цифровому форматі являється найбільш визнаним способом зберігання інформації сучасності. Невід’ємну роль у житті сучасної людини відіграє мультимедійний простір. Ще не так давно для отримання будь-якої інформації люди звертались за допомогою до бібліотек та витрачали на це години, або навіть дні чи тижні, а в наші часи абиякий контент можна дістати за лічені секунди, для цього потрібно мати лише доступ до Інтернету. Втім, така доступність інформації також має свої наслідки. З кожним днем все більше авторів страждають від порушення авторського права та допомогою для них можуть служити стеганографічні та криптографічні способи захисту інформації. Суть різниці цих двох методів полягає в тому, що криптографічні методи захисту інформації маскують файлове наповнення, а стеганографічні методи приховують наявність конфіденційної інформації у файлі. Оскільки криптографічні методи захисту інформації являються менш доступними у деяких куточках земного шару – це призвело до зросту зацікавленості у розвитку стеганографічних методів захисту інформації, що зберігається у цифровому форматі. Поштовхом для розробки методології ЦВЗ(цифрових водяних знаків) стала саме проблематика захищенності прав власності цифрової інформації. Оскільки зберігання інформації у цифровому форматі являється найбільш визнаним способом зберігання інформації сучасності - невід’ємну роль у житті сучасної людини відіграє мультимедійний простір. З кожним днем все більше авторів страждають від порушення авторського права та допомогою для них можуть служити стеганографічні та криптографічні способи захисту інформації

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    PIRANHA: an engine for a methodology of detecting covert communication via image-based steganography

    Get PDF
    In current cutting-edge steganalysis research, model-building and machine learning has been utilized to detect steganography. However, these models are computationally and cognitively cumbersome, and are specifically and exactly targeted to attack one and only one type of steganography. The model built and utilized in this thesis has shown capability in detecting a class or family of steganography, while also demonstrating that it is viable to construct a minimalist model for steganalysis. The notion of detecting steganographic primitives or families is one that has not been discussed in literature, and would serve well as a first-pass steganographic detection methodology. The model built here serves this end well, and it must be kept in mind that the model presented is posited to work as a front-end broad-pass filter for some of the more computationally advanced and directed stganalytic algorithms currently in use. This thesis attempts to convey a view of steganography and steganalysis in a manner more utilitarian and immediately useful to everyday scenarios. This is vastly different from a good many publications that treat the topic as one relegated only to cloak-and-dagger information passing. The subsequent view of steganography as primarily a communications tool useable by petty information brokers and the like directs the text and helps ensure that the notion of steganography as a digital dead-drop box is abandoned in favor of a more grounded approach. As such, the model presented underperforms specialized models that have been presented in current literature, but also makes use of a large image sample space (747 images) as well as images that are contextually diverse and representative of those seen in wide use. In future applications by either law-enforcement or corporate officials, it is hoped that the model presented in this thesis can aid in rapid and targeted responses without causing undue strain upon an eventual human operator. As such, a design constraint that was utilized for this research favored a False Negative as opposed to a False Positive - this methodology helps to ensure that, in the event of an alert, it is worthwhile to apply a more directed attack against the flagged image

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works

    New Digital Audio Watermarking Algorithms for Copyright Protection

    Get PDF
    This thesis investigates the development of digital audio watermarking in addressing issues such as copyright protection. Over the past two decades, many digital watermarking algorithms have been developed, each with its own advantages and disadvantages. The main aim of this thesis was to develop a new watermarking algorithm within an existing Fast Fourier Transform framework. This resulted in the development of a Complex Spectrum Phase Evolution based watermarking algorithm. In this new implementation, the embedding positions were generated dynamically thereby rendering it more difficult for an attacker to remove, and watermark information was embedded by manipulation of the spectral components in the time domain thereby reducing any audible distortion. Further improvements were attained when the embedding criteria was based on bin location comparison instead of magnitude, thereby rendering it more robust against those attacks that interfere with the spectral magnitudes. However, it was discovered that this new audio watermarking algorithm has some disadvantages such as a relatively low capacity and a non-consistent robustness for different audio files. Therefore, a further aim of this thesis was to improve the algorithm from a different perspective. Improvements were investigated using an Singular Value Decomposition framework wherein a novel observation was discovered. Furthermore, a psychoacoustic model was incorporated to suppress any audible distortion. This resulted in a watermarking algorithm which achieved a higher capacity and a more consistent robustness. The overall result was that two new digital audio watermarking algorithms were developed which were complementary in their performance thereby opening more opportunities for further research

    Steganalysis of video sequences using collusion sensitivity

    Get PDF
    In this thesis we present an effective steganalysis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this thesis we present methods that overcome this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. In particular we target the spread spectrum steganography method because of its widespread use. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking and more sophisticated pattern recognition tools. Through analysis and simulations we, evaluate the effectiveness of the video steganalysis method based on averaging based collusion scheme. Other forms of collusion attack in the form of weighted linear collusion and block-based collusion schemes have been proposed to improve the detection performance. The proposed steganalsyis methods were successful in detecting hidden watermarks bearing low SNR with high accuracy. The simulation results also show the improved performance of the proposed temporal based methods over the spatial methods. We conclude that the essence of future video steganalysis techniques lies in the exploitation of the temporal redundancy
    corecore