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Abstract  

 

In this paper we describe a reliable and accurate steganalysis method for detecting covert Voice over IP 

(VoIP) communication channels. The proposed method utilises a unique sliding window mechanism and 

an improved RS algorithm for VoIP steganalysis, which detects the presence of Least Significant Bit (LSB) 

embedded VoIP streams. With the mechanism, the detection window moves forward one packet or several 

packets each time to screen VoIP streams. The optimum detection threshold for the proposed detection 

metric is computed by modelling the distributions of the new metric for stego and cover VoIP streams. 

Experimental analysis reveals the proposed method improves the detection time significantly, utilizing 

less memory resources for VoIP steganalysis, thereby enabling real-time detection of stego VoIP streams. 

The proposed method also provides a significant improvement on precision in detecting multiple covert 

VoIP channels when compared to the conventional RS method. 
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1. INTRODUCTION 

 

Modern steganography is the art of covert communication, which hides the existence of secret messages 

embedded in cover objects over the public channel. Steganography in static cover objects, such as 

plaintext, image files with BMP or JPEG format, and audio files in WAV or MP3 format, has been 

explored extensively [1-3]. See [4] for a good survey of such techniques. Recently network protocols 

and media streams like Voice over IP (VoIP) were used as cover objects to embed secret messages [5]. 

Dittmann et al, for example, reported the design and evaluation of steganography for VoIP [6], indicating 

possible threats as a result of embedding secret messages in such a widely used communication protocol. 

 

Steganalysis is the science of detecting messages hidden using steganography. The goal of steganalysis 

is to distinguish stego objects (objects containing a secret message) from cover objects with little or no 

knowledge of steganographic algorithms. The simplest method to detect steganographically-encoded 

packages/files is to compare them to known originals. Comparing the package against the original file 

will yield the differences caused by encoding the payload – and, thus, the payload can be extracted. 

Nowadays, steganalysis becomes increasingly important in computer forensics, for tracking and 

screening documents/audios/videos that are suspect of criminal and terrorism activities, and for 

information security to prevent leakage of unauthorized data. 
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There have been some attempts to develop the steganalysis techniques for detecting steganography in 

static cover objects such as text, image or audio files. A number of image and audio steganalysis 

methods have been reported in the literature [7-12]. In contrast with image and audio steganalysis, 

steganalysis in media streams (like VoIP) is largely unexplored so far. 

 

Several audio steganalysis approaches, such as the works of Ozer et al [13], Johnson et al [14], and Ru et 

al [15], shall be mentioned here as related work. These approaches can be placed in two groups. One is 

based on the distances computed between a real signal and a self-generated reference signal [15] via 

linear predictive coding (LPC), benefiting from the very nature of the continuous wave-based audio 

signals like G.711 PCM (Pulse-code Modulation). Ozer et al suggested a de-noising function for 

generating reference signals [13]. The other group relies on a statistical model for normal and 

‘abnormal’ behaviour. For example, Johnson et al [14] presented a statistical model that consists of 

errors in representing audio spectrograms using a linear basis. The linear basis was constructed from a 

principal component analysis (PCA) and the classification was conducted using a non-linear SVM 

(support vector machine). 

 

Voice over IP enables the digitalisation, compression and transmission of analogue audio signals from a 

sender to a receiver using IP packets. As the size of the used network and the distance between the 

communicating parties are of little relevance for transmission, VoIP is used for worldwide telephony 

such as Skype. With the upsurge of VoIP applications available for commercial use in recent years, 

VoIP is becoming one of the most interesting cover objects for steganography [5, 6, 16]. VoIP streams 
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are dynamic chunks of a series of packets that consist of IP headers, UDP headers, RTP headers, and 

numbers of audio frames. Those headers and frames have a number of unused fields, providing plausible 

covert channels and thus giving scope for steganography.   

 

Kraetzer and Dittmann’s work [17] is relevant to our work. They suggested a steganalysis method of 

detecting VoIP steganography based on Mel-Cepstrum, which is an excellent feature vector for 

representing the human voice and musical signals in the field of speech and speaker detection. In their 

work a feature based statistical model for the behaviour of the channel over time was computed and 

compared by χ2-testing against standard distributions. However, they assumed the detection probability 

of 52% was the lower boundary for discriminating features. So far there are still few steganalysis 

methods available for detecting VoIP steganography. This was the reason that led us to propose this 

work in the first place. 

 

Unlike image and audio steganalysis, VoIP steganalysis generally starts with a pile of suspect data 

streams (which is often quite large), but little information about which of the streams, if any, contain a 

secret message. There would appear to be two modes that can be used to determine whether a covert 

VoIP communication occurs. One is to perform an off-line steganalysis using an extremely powerful 

computer after all packets have been captured and stored in a buffer; the other is to conduct real-time 

detection of covert VoIP streams. The former has an obvious disadvantage because it needs a large buffer 

to store all streams. In this study we focus on the latter mode, i.e. seeking ways to detect stego VoIP 

streams among all the streams in a rapid and real-time manner.  
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Fridrich’s RS algorithm is regarded as an effective steganalysis method to detect Least Significant Bit 

(LSB) replacement steganography in colour and grayscale images [7]. Dumitrescu et al [8] suggested 

another steganalysis algorithm for LSB replacement embedding, Sample Pair Analysis (SPA). Both 

image steganalysis algorithms seem to follow the same methodology. Dumitrescu also claimed the 

algorithms are applicable to images, but also to other cover objects in principle. However, the 

effectiveness of the conventional RS algorithms for VoIP steganalysis is unknown, and this study is to 

address this issue. 

 

The rest of this paper is organised as follows. In Section 2 a sliding window based steganalysis method 

is proposed for detecting stego VoIP streams, including a steganalysis model for VoIP steganography, 

sliding window detection, VoIP steganalysis algorithms, and the optimum detection threshold. Section 3 

presents experimental results for performance evaluation, such as detection accuracy, detection window 

lengths, computational complexity and detection time. Finally, Section 4 concludes with a summary and 

directions for future work. 

 

 

2. SLIDING WINDOW BASED STEGANALYSIS 

 

2.1 Steganalysis Model for VoIP Steganography 

 

The ‘prisoner’ problem is a de facto model for a covert communication channel [18]. Prior work on 

steganography assumes Alice (sender) and Bob (receiver) share a private key or a public/private key pair 
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and a public function; this function takes the key and stego-object as inputs and outputs the secret 

message. Alice sends Bob a transmitted object which may either be a cover-object or a stego-object, and 

the adversary (Wendy) is free to examine all transmitted objects between Alice and Bob and must decide 

whether such transmissions include a hidden message. 

 

Figure 1 shows a steganalysis model for VoIP steganography on the Internet, in which Alice and Bob use 

VoIP software to communicate secretly, so the VoIP stream transmitted between them contains a secret 

message, and such a stego VoIP stream is denoted by si. Other users like John and Smith use the 

software for normal communications where VoIP streams do not contain any secret message, and they 

are denoted by s1, s2, … si-1, si+1, … sj. As a warden, Wendy monitors the router connected with the 

network so as to detect the stego VoIP stream, si, from all streams, S = {s1, s2, … si, … sj, …}. Assuming 

the stego stream, si, is composed of Ni packets, then  1 2, ,..., iN
i i i is p p p , where j

ip is the jth RTP 

packet in the stream. 

 

In the steganalysis model for VoIP steganography, Wendy captures all the streams passing through the 

router, identifies VoIP streams among all the streams, and then distinguishes stego VoIP streams from 

‘innocent’ VoIP streams. As Wendy’s task is time-consuming, rapid and near ‘real-time’ detection of 

stego VoIP streams should be considered in order to make the detection process more practicable. 

 

For simplicity, Wendy’s task is assumed to make a decision on two choices for each VoIP stream. One 

choice is the null hypothesis H0, i.e. no steganography happens. The other choice is the alternative 

hypothesis H1, i.e. steganography occurs. In general, VoIP streams contain no hidden messages, so the 
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non-existence of steganography is regarded as the conservative hypothesis which requires evidence to 

reject. 

 

2.2 Sliding Window Detection 

 

To achieve real-time detection of VoIP steganography, it needs to rapidly select packets from VoIP 

streams for steganalysis. In a real-time mode, steganalysis may be conducted against only part of 

packets in a VoIP stream rather than the entire stream, as the processed packets in the stream are 

discarded when successive packets arrive. Based on this idea, we propose a steganalysis method using 

sliding windows to improve the detection performance of stego VoIP streams. The definitions below 

introduce the sliding window method for VoIP steganalysis. 

 

Definition 1, the detection window, W, is a set of packets that are sampled for detecting the secret 

message hidden in a VoIP stream. 

 

Definition 2, the detection window length, L, represents the number of packets that the detection 

window contains. 

 

For a stream si, if the last received packet is k
ip , the current detection window is denoted by 

 
 

1 2 1

1 2 1

, ,..., , ,
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k L k L k k
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p p p p k L

    



 



 

When the next packet 1k
ip  arrives, the detection window slides forward one packet. In the perspective of 
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temporal dimension, the detection window moves forward one packet each time, and the new detection 

window is denoted by 

 
 

2 3 1

1 2 1

, ,..., , ,

, ,..., , ,

k L k L k k
i i i i

k k
i i i i

p p p p k L

p p p p k L

    



 



 

Figure 2 illustrates the sliding process of the detection window. 

 

With the sliding window method, only part of packets in a VoIP stream needs to be buffered while the 

stream is being screened, thus the required buffer/storage size can be minimised. Another advantage of 

the method is that the detection time can be reduced significantly to an extent that rapid detection of 

stego VoIP streams would become possible. So the sliding window method would meet the requirement 

of real-time detection of VoIP steganography. 

 

Another possible detection method is based on stream segmentation, in which the detection window 

slides forward L packets rather than one packet once as described above. The basic idea of the stream 

segmentation method is to divide a VoIP stream into multiple segments with each segment containing L 

packets, and detect the presence of the secret message by screening each segment. 

 

The next step is to determine the minimum lengths of sliding windows at different levels of data 

embedding. The minimum sliding window length can be modelled by 

  ])
~

[(min)
~

( 2PPEPf LL      (1) 

where E represents the mean error, P is the practical (real) embedding rate in case of continuously 

embedding secret messages, and LP
~

 is the estimated embedding rate when the sliding window length is 
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more than L (numbers of packets). 

 

2.3 VoIP Steganalysis Algorithms 

 

The conventional RS algorithm for image steganalysis defines regular pixels (R) and singular pixels (S) 

in a cover image using the discrimination function and the flipping operation [7]. Flipping is a 

permutation of gray levels that entirely consists of 2-cycles. The principle of the RS steganalysis method 

is to estimate the four curves of the RS diagram and calculate their intersection using extrapolation. The 

general shape of the four curves varies with the cover image from almost perfectly linear to curved. 

 

In VoIP steganography, the unused header fields are used to embed secret messages. By adopting an 

approach similar to the conventional RS algorithm for image steganalysis, we define regular header 

fields (R) and singular header fields (S) in VoIP streams. According to the operational rules detailed in 

[7], RS algorithm defines eight parameters, i.e. Rp1, Rn1, Sp1, Sn1 and Rp2, Rn2, Sp2, Sn2, which are 

the intersecting points of the four curves (R+, R-, S+, S-) of the RS diagram. All the parameters are 

calculated to decide whether there is an embedded message, and to estimate the embedding rate. The 

parameters of the curves are then determined from the points marked in Figure 3. The x-axis is the 

percentage of header fields with flipped LSBs; the y-axis is the relative number of regular and singular 

groups (header fields). 

 

Let z be the non-embedding point after coordinate transformation, and it can be calculated using the 

following equation [7] 
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    01113221212 2  dndpzdpdpdndnzdpdp     (2) 

where dp1 = Rp1 - Sp1, dn1 = Rn1 - Sn1, dp2 = Rp2 – Sp2, and dn2 = Rn2 – Sn2. And the embedding 

rate p is given by 

 0.5p

z

z
 


           (3) 

Let th1 be the optimum detection threshold for the conventional RS algorithm. If P < th1, it means the 

cover object contains no secret messages; otherwise, there is a secret message embedded in the cover 

object. 

 

For VoIP steganalysis, one of the major problems is how to reduce the detection time so as to achieve 

real-time detection of stego VoIP steams. So the conventional RS algorithm needs to be modified to 

reduce computational complexity, utilising less memory resources, and make the algorithm applicable to 

VoIP steganalysis in a real-time manner. 

 

The main purpose of VoIP steganalysis is to determine whether VoIP streams contain secret messages. 

Analysis of the curves of the RS diagram (Figure 3) reveals stego VoIP streams were already different 

from the original ‘innocent’ VoIP streams after Rp1 and Rn1 had been calculated. This means only Rp1 

and Rn1 should be used for detection purposes, and thus, we suggest the normalized difference between 

Rp1 and Rn1, a statistical parameter, to be the embedding rate (the secret message length divided by the 

stego VoIP stream length), which is given by 

  
11

11

RpRn

RpRn
r 


               (4) 

Let VT be the optimum detection threshold for the VoIP steganalysis method. If r < VT, there are no 
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hidden messages; otherwise, VoIP streams contain secret messages.  

 

Comparing equations (3) and (4) indicates the improved RS algorithm has less computational 

complexity than the conventional RS algorithm. This would help improve the performance of detection 

of VoIP steganography. 

 

2.4 Optimum Detection Threshold 

 

The optimum detection threshold for the above VoIP steganalysis method (VT) is computed by modelling 

the distributions of stego and cover VoIP streams. The proposed mathematical model below requires 

some empirical data. 

 

Let C be the mean loss value due to false detection, C1 the loss of false positive (false alarm), and C2 the 

loss of false negative (detection failure). P(s1) denotes the probability of VoIP streams not containing 

secret messages, and P(s2) denotes the probability that secret messages are embedded in VoIP streams. 

P1(y) and P2(y) are the probability density functions (pdf) of VoIP streams not containing secret 

messages and those containing secret messages, respectively; they are likelihood functions. The mean 

loss C is then given by 

       222111 || sePsPCsePsPCC       (5) 

where    dyypseP
TV

 
 11| ,    dyypseP

TV


 22| , and they denote the probability of false 

positive (false alarm) and the probability of false negative (detection failure), respectively. 
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Assuming the mean loss is the minimum value, then 0



TV

C
. Equation (5) becomes 

       TT VpsPCVpsPC 222111            (6) 

According to the central limit theorem, the likelihood functions, P1(y) and P2(y), should conform to 

Gaussian distributions. Their mean values and mean square deviations can be computed by using 

samples’ mean values and mean square deviations. Let the mean values of P1(y) and P2(y) be 1 and 2, 

and the mean square deviations of P1(y) and P2(y) be 1 and 2, respectively. The probability density 

functions are given by 
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Substituting equations (7) and (8) into equation (6) obtains 
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     (9) 

Assuming 1  2, and using  to represent 1 and 2, the optimum detection threshold, VT, is then 

given by 
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         (10) 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Experimental Setup 
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Figure 4 shows a framework for sliding window based VoIP steganalysis. The steganalysis software 

consists of three modules, an IP packet capturer, a VoIP stream identifier, and a sliding window detector. 

 

The packet capturer was used to collect all IP packets passing through the router and match streams with 

packets. The VoIP stream identifier was employed to identify VoIP streams among all streams. The 

sliding window detector was utilised to detect the existence of the secret message embedded in the 

packets of VoIP streams. Three modules were implemented on the Server with an Intel Xeon 3065 CPU, 

2GB memory, and a 1000MB Ethernet interface card. 

 

In the experiments, ten users in our laboratory employed Stego-Talk software to communicate securely 

with their counterparts at other universities over China Education and Research Network (CERNET). 

The VoIP steganalysis software was connected to the router that forwards packets between a LAN in the 

laboratory and the CERNET. We used G.711 speech codec and LSB steganography algorithms to embed 

secret messages in PCM audio payload at various embedding rates ranging from 0% to 100% in 5 

percent increments. Experimental results are discussed in detail below. 

 

3.2 Comparisons between Detection Methods 

 

Comparisons in detection performance between three detection methods, Sliding window, Segmentation, 

and Entire stream (only one segment), were conducted and the results are shown in Figure 5. The x-axis 

is the length of the secret message continually embedded in VoIP streams. The experiments indicate that 

all the methods could not detect the existence of the hidden message when the secret message length 
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was less than 1 second. As the secret message length increased up to 2 seconds, the sliding window 

method detected the existence of the hidden message. The segmentation method could not detect the 

hidden message until the secret message length was more than 4 seconds. The entire stream method 

could not detect the hidden message at all. 

 

Analysis of the experimental results reveals the sliding window method is more accurate than the 

segmentation method in case of fewer packets containing secret messages. For example, if the length of 

the VoIP stream used to embed a message was less than 2 seconds at a 100% embedding rate, the 

segmentation method would not be able to detect the existence of the hidden message. The 

non-effectiveness of the segmentation method is probably due to the fact that the VoIP stream containing 

a secret message needs to be divided into at least two segments, so steganalysis of each segment would 

be less effective because of less hidden information. 

 

To compare detection accuracy, the sliding window method and the segmentation method were used, 

respectively, to detect VoIP steganography in which secret messages were embedded in VoIP streams at a 

20 percent embedding rate. The detection window length was 300 packets, and the segmentation length 

was also 300 packets. The improved RS algorithm was adopted in the experiments, and the detection 

threshold was set to 0.04. Figure 6 shows comparisons in detection precision between the sliding 

window method (top figure) and the segmentation method (bottom figure). 

 

The experiments indicate that only the sliding window method could correctly detect the existence of 

hidden messages under the experimental conditions. The segmentation method failed to detect stego 
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VoIP streams because it needs a larger embedding message length threshold when compared to the 

sliding window method. So the sliding window method was chosen for the remaining experiments. 

 

3.3 Lengths of Sliding Windows 

 

To obtain the empirical length of sliding windows, a series of experiments were conducted to determine 

the minimum lengths of sliding windows at various embedding rates ranging from 5% to 100% in 5 

percent increments, and the results are shown in Figure 7. Clearly the minimum length of sliding 

windows capable of detecting the existence of hidden messages decreased gradually with increasing 

embedding rate. 

 

The relationship between detection accuracy and the length of sliding windows was used to determine 

the minimum length of sliding windows with reasonable detection accuracy. Practical false alarm rates 

and true detection rates [19] were measured at various lengths of sliding windows at 20% embedding 

rate, and the results are shown in Figure 8. Detection accuracy improved with an increase in sliding 

window lengths at the same false alarm rate, but computational complexity also increased 

correspondingly. Analysis of Figure 8 reveals the length of sliding windows should be approximately 

300 packets in order to achieve 95% true detection with 5% false alarm. 

 

3.4 Optimum Detection Threshold 

 

As the likelihood function, P2(y), varies with the embedding rate, experiments were designated in this 
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study to establish the relationship between the embedding rate and the likelihood function. In the 

experiments, the embedding rate was set to 5%, the length of detection windows was 300 packets (each 

packet with a length of 160ms), and the results are shown in Figure 9. The results were then used to 

obtain the probability density functions for the VoIP streams not containing secret messages and those 

containing secret messages with 5% LSB being replaced, respectively. 

 

In addition, the mean square deviation of the likelihood function has an impact on the performance of 

VoIP steganalysis. Figure 10 shows the mean square deviation of the likelihood function decreased as 

the detection window length increased. 

 

Therefore, equation (10) and experimental data in Figures 9 and 10 enable ones to determine the 

optimum detection threshold at different levels of data embedding. 

 

3.5 Improved RS Algorithm vs. Conventional RS Algorithm 

 

To examine whether or not the improved RS algorithm would affect detection accuracy, a series of 

experiments were conducted by using the sliding window detection method with the improved RS 

algorithm or the conventional RS algorithm under the same experimental conditions.  

 

The detection window lengths in the experiments were set to be 200, 250 and 300 packets in a G.711 

codec, respectively; and the embedding rates were kept at 20%. The conventional RS algorithm and the 

improved RS algorithm were applied to the same detection window lengths. Both algorithms were 
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compared in terms of detection performance, computational complexity and memory resources. 

 

Figure 11 shows comparisons in detection accuracy between the improved RS algorithm using r and the 

conventional RS algorithm using p. The ROC curves for the algorithms show both steganalysis 

algorithms achieved similar detection accuracy. The experimental results indicate there were no obvious 

discrepancies in detection accuracy between using r (the improved RS algorithm) and P (the 

conventional RS algorithm) as the optimum detection threshold. 

 

In view of computational time, both the improved and conventional RS algorithms are o(n) degree since 

their computational complexity has a linear relation to the length of sampled stream data. Table 1 lists 

computational complexity and the detection time in ms for the improved and conventional RS 

algorithms. The results indicate both algorithms made correct judgments; however, the improved RS 

algorithm reduced the detection time from 292 ms to 105 ms, achieving up to 64% performance 

improvement over the conventional RS method, when encrypted secret messages were embedded in 

VoIP streams at 20% embedding rate. 

 

Table 1  Comparisons in Detection Time 

Length of cover objects (bytes)

Mean detection time (ms) 

Improved RS 

algorithm 

Conventional RS 

algorithm 

46,560 (no embedding) 62 172 

78,960 (20% embedding) 105 292 
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The improvement in detection time is due to the fact that the sliding window detection method using the 

improved RS algorithm avoids flipping all the data under the detection window, and it reduces the 

number of the parameters required to be calculated in Figure 3 from 8 to 2. So the size of the required 

buffer would be reduced by 50% when compared to the conventional RS method. 

 

3.6 Multiple Covert VoIP Channels 

 

The previous sections (3.2-3.5) detail experimental results for a single covert VoIP communication 

channel, i.e. only one secret message was embedded in VoIP streams each time. This section deals with 

multiple covert VoIP communication channels where various secret messages were embedded in 

different covert channels simultaneously. 

 

The sliding window method using the improved or conventional RS algorithms was used to 

simultaneously detect multiple covert VoIP channels from all the streams passing through the router. 

Each covert channel contained a secrete message embedded in VoIP streams; different secrete messages 

were hidden in different covert VoIP channels. The detection precision of the sliding window method 

depends on a number of factors such as the detection window length, the used RS algorithm and the 

number of covert VoIP channels. 

 

Figure 12 shows the detection percentage varied depending on the number of covert VoIP channels at 

20% embedding rate. The results indicate the detection percentage decreased gradually as the number of 
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covert VoIP channels increased. The detection accuracy of the conventional RS method reduced 

dramatically with increasing covert VoIP channels; the detection percentage was only 25% when there 

were eight covert VoIP channels. However, the sliding widow method using the improved RS algorithm 

achieved 100 percent detection until the number of covert VoIP channels reached five (i.e. five secret 

messages were embedded in five different covert channels simultaneously); this new method still 

attained over 65 percent of detection even there were eight covert VoIP channels. The experiments 

indicate that the proposed sliding window method provide a significant improvement on precision in 

detecting multiple covert VoIP channels when compared to the conventional RS method.  

 

 

4. CONCLUSIONS 

 

In this paper we have suggested a new approach to detecting covert channels in VoIP communications. 

Our proposed sliding window steganalysis method provides a 64 percent improvement on the detection 

time over the conventional RS method, thereby enabling rapid and real-time detection of stego VoIP 

streams. The proposed method has been proved to be suitable for detecting covert VoIP communications. 

 

Experimental results have shown that the proposed sliding window method using an improved RS 

algorithm can correctly and simultaneously detect up to five covert VoIP channels with 100 percent 

detection accuracy. At this stage, the optimum detection window length is determined by modelling 

empirical data. Building a mathematical model for depicting the relationship between detection accuracy, 

efficiency and the detection window length is the subject of future work. 
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Fig. 1.  A steganalysis model for VoIP steganography 
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Fig. 2. The sliding process of the detection window 
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Fig. 3.  RS-diagram of VoIP streams 
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Fig. 4.  The framework for sliding window based VoIP steganalysis 
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Fig. 5. Comparisons in performance between three detection methods 
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Fig. 6. Comparisons between the sliding window method (top figure) and the segmentation method (bottom figure) 
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Fig. 7. The length of sliding windows vs. the embedding rate 
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Fig. 8.  ROC curves for various sliding window lengths at 20% embedding rate 
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Fig. 9. The probability density functions 
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Fig. 10.  The mean square deviation vs. the detection window length 
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Fig. 11. ROC curves for the algorithms using r and p 
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Fig. 12. Detection percentage vs. the number of covert VoIP channels 


