866 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Formal verification of authentication and service authorization protocols in 5G-enabled device-to-device communications using ProVerif

    Get PDF
    Device-to-Device (D2D) communications will be used as an underlay technology in the Fifth Generation mobile network (5G), which will make network services of multiple Service Providers (SP) available anywhere. The end users will be allowed to access and share services using their User Equipments (UEs), and thus they will require seamless and secured connectivity. At the same time, Mobile Network Operators (MNOs) will use the UE to offload traffic and push contents closer to users relying on D2D communications network. This raises security concerns at different levels of the system architecture and highlights the need for robust authentication and authorization mechanisms to provide secure services access and sharing between D2D users. Therefore, this paper proposes a D2D level security solution that comprises two security protocols, namely, the D2D Service security (DDSec) and the D2D Attributes and Capability security (DDACap) protocols, to provide security for access, caching and sharing data in network-assisted and non-network-assisted D2D communications scenarios. The proposed solution applies Identity-based Encryption (IBE), Elliptic Curve Integrated Encryption Scheme (ECIES) and access control mechanisms for authentication and authorization procedures. We formally verified the proposed protocols using ProVerif and applied pi calculus. We also conducted a security analysis of the proposed protocols

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v

    An introduction of a modular framework for securing 5G networks and beyond

    Get PDF
    Fifth Generation Mobile Network (5G) is a heterogeneous network in nature, made up of multiple systems and supported by different technologies. It will be supported by network services such as device-to-device (D2D) communications. This will enable the new use cases to provide access to other services within the network and from third-party service providers (SPs). End-users with their user equipment (UE) will be able to access services ubiquitously from multiple SPs that might share infrastructure and security management, whereby implementing security from one domain to another will be a challenge. This highlights a need for a new and effective security approach to address the security of such a complex system. This article proposes a network service security (NSS) modular framework for 5G and beyond that consists of different security levels of the network. It reviews the security issues of D2D communications in 5G, and it is used to address security issues that affect the users and SPs in an integrated and heterogeneous network such as the 5G enabled D2D communications network. The conceptual framework consists of a physical layer, network access, service and D2D security levels. Finally, it recommends security mechanisms to address the security issues at each level of the 5G-enabled D2D communications network

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    Formal verification of authentication and service authorization protocols in 5G-enabled device-to-device communications using ProVerif

    Get PDF
    Device-to-Device (D2D) communications will be used as an underlay technology in the Fifth Generation mobile network (5G), which will make network services of multiple Service Providers (SP) available anywhere. The end users will be allowed to access and share services using their User Equipments (UEs), and thus they will require seamless and secured connectivity. At the same time, Mobile Network Operators (MNOs) will use the UE to offload traffic and push contents closer to users relying on D2D communications network. This raises security concerns at different levels of the system architecture and highlights the need for robust authentication and authorization mechanisms to provide secure services access and sharing between D2D users. Therefore, this paper proposes a D2D level security solution that comprises two security protocols, namely, the D2D Service security (DDSec) and the D2D Attributes and Capability security (DDACap) protocols, to provide security for access, caching and sharing data in network-assisted and non-network-assisted D2D communications scenarios. The proposed solution applies Identity-based Encryption (IBE), Elliptic Curve Integrated Encryption Scheme (ECIES) and access control mechanisms for authentication and authorization procedures. We formally verified the proposed protocols using ProVerif and applied pi calculus. We also conducted a security analysis of the proposed protocols
    • …
    corecore