815 research outputs found

    Securing Cluster Formation and Cluster Head Elections in Wireless Sensor Networks

    Get PDF
    In wireless sensor networks, clustering plays a very important role for energy savings at each node because it reduces the number of transmissions through TDMA based communication. For secure clustering, it is very crucial to find compromised nodes and remove them during the initial cluster formation process. If some nodes are compromised and survive from the exclusion process of normal nodes, they can make some nodes have a different membership view in the same cluster and consequently separate a cluster into multiple clusters. To resolve these problems, we propose a robust scheme against such attacks in this paper. First, our scheme generates large sized clusters to improve the quality of clusters. Second, our scheme exploits the verification of two hop distant nodes to maintain the quality of the large sized clusters and avoids the separation of the clusters. In addition, our scheme prefers broadcast transmissions to reduce the energy consumption of nodes. We prove that our scheme generates fewer clusters and is more secure and energy-efficient than its rival scheme through security analysis and simulation results. With regard to CH election, we also propose a scheme which securely elects CHs by recognizing the compromised nodes and depriving them of their CH candidacy. To this aim, each node in a cluster calculates reputation values of other CH candidates according to their behavior and distributes them through a broadcast. Then each node extracts substantial reputation values of CH candidates using the distributed reputation values. Next, each node evaluates the substantial reputation values of other CH candidates and excludes some disreputable nodes from CH candidates. The scheme greatly improves non-manipulability and agreement property of CH election results in comparison with other rival schemes. Moreover, the scheme guarantees higher non-manipulability and agreement property than other rival schemes, even in a loss-prone environment

    Secure Cluster Head Sensor Elections Using Signal Strength Estimation and Ordered Transmissions

    Get PDF
    In clustered sensor networks, electing CHs (Cluster Heads) in a secure manner is very important because they collect data from sensors and send the aggregated data to the sink. If a compromised node is elected as a CH, it can illegally acquire data from all the members and even send forged data to the sink. Nevertheless, most of the existing CH election schemes have not treated the problem of the secure CH election. Recently, random value based protocols have been proposed to resolve the secure CH election problem. However, these schemes cannot prevent an attacker from suppressing its contribution for the change of CH election result and from selectively forwarding its contribution for the disagreement of CH election result. In this paper, we propose a modified random value scheme to prevent these disturbances. Our scheme dynamically adjusts the forwarding order of contributions and discards a received contribution when its signal strength is lower than the specified level to prevent these malicious actions. The simulation results have shown that our scheme effectively prevents attackers from changing and splitting an agreement of CH election result. Also, they have shown that our scheme is relatively energy-efficient than other schemes

    MMEDD: Multithreading Model for an Efficient Data Delivery in wireless sensor networks

    Get PDF
    Nowadays, the use of Wireless Sensor Networks (WSNs) is increasingly growing as they allow a large number of applications. In a large scale sensor network, communication among sensors is achieved by using a multihop communication. However, since the sensor is limited by its resources, sensors' operating systems are developed in order to optimize the management of these resources, especially the power consumption. Therefore, the hybrid operating system Contiki uses a low consumption layer called Rime which allows sensors to perform multihop sending with a low energy cost. This is favored by the implementation of lightweight processes called protothreads. These processes have a good efficiency/consumption ratio for monolithic tasks, but the management of several tasks remains a problem. In order to enable multitasking, Contiki provides to users a preemptive multithreading module that allows the management of multiple threads. However, it usually causes greater energy wastage. To improve multithreading in sensor networks, a Multithreading Model for an Efficient Data Delivery (MMEDD) using protothreads is proposed in this paper. Intensive experiments have been conducted on COOJA simulator that is integrated in Contiki. The results show that  MMEDD provides better ratio message reception rate/energy consumption than other architectures

    A new Itinerary planning approach among multiple mobile agents in wireless sensor networks (WSN) to reduce energy consumption

    Get PDF
    one of the important challenges in wireless sensors networks (WSN) resides in energy consumption. In order to resolve this limitation, several solutions were proposed. Recently, the exploitation of mobile agent technologies in wireless sensor networks to optimize energy consumption attracts researchers. Despite their advantage as an ambitious solution, the itineraries followed by migrating mobile agents can surcharge the network and so have an impact on energy consumption. Many researches have dealt with itinerary planning in WSNs through the use of a single agent (SIP: Single agent Itinerary Planning) or multiple mobile agents (MIP: Multiple agents Itinerary Planning). However, the use of multi-agents causes the emergence of the data load unbalancing problem among mobile agents, where the geographical distance is the unique factor motivating to plan the itinerary of the agents. The data balancing factor has an important role especially in Wireless sensor networks multimedia that owns a considerable volume of data size. It helps to optimize the tasks duration and thus optimizes the overall answer time of the network.  In this paper, we provide a new MIP solution (GIGM-MIP) which is based not only on geographic information but also on the amount of data provided by each node to reduce the energy consumption of the network. The simulation experiments show that our approach is more efficient than other approaches in terms of task duration and the amount of energy consumption

    CDS-MIP: CDS-based Multiple Itineraries Planning for mobile agents in wireless sensor network

    Get PDF
    using multi agents in the wireless sensor networks (WSNs) for aggregating data has gained significant attention. Planning the optimal itinerary of the mobile agent is an essential step before the process of data gathering. Many approaches have been proposed to solve the problem of planning MAs itineraries, but all of those approaches are assuming that the MAs visit all SNs and large number of intermediate nodes. This assumption imposed a burden; the size of agent increases with the increase in the visited SNs, therefore consume more energy and spend more time in its migration. None of those proposed approaches takes into account the significant role that the connected dominating nodes play as virtual infrastructure in such wireless sensor networks WSNs. This article introduces a novel energy-efficient itinerary planning algorithmic approach based on the minimum connected dominating sets (CDSs) for multi-agents dedicated in data gathering process. In our proposed approach, instead of planning the itineraries over all sensor nodes SNs, we plan the itineraries among subsets of the MCDS in each cluster. Thus, no need to move the agent in all the SNs, and the intermediate nodes (if any) in each itinerary will be few. Simulation results have demonstrated that our approach is more efficient than other approaches in terms of overall energy consumption and task execution time

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various military, medical, and commercial scenarios. This is due to their dynamic nature that enables the deployment of such networks, in any target environment, without the need for a pre-existing infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of central networking points, limited wireless range, and constrained resources, have made the quest for securing such networks a challenging task. A large number of studies have focused on intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect complex attacks in real time, various solutions have been proposed to provide cooperative IDSs (CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To overcome these two problems, this research presented a novel CIDS utilizing the concept of social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social communities was intended to establish reliable cooperative detection reporting while consuming minimal bandwidth. On the other hand, DST targeted decreasing false accusations through honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and low bandwidth consumption. The results of this research demonstrated the viability of applying the social communities concept combined with DST in achieving high detection accuracy and minimized bandwidth consumption throughout the detection process
    • …
    corecore