11 research outputs found

    A Comprehensive Survey on Exiting Solution Approaches towards Security and Privacy Requirements of IoT

    Get PDF
    ‘Internet of Things (IoT)’emerged as an intelligent collaborative computation and communication between a set of objects capable of providing on-demand services to other objects anytime anywhere. A large-scale deployment of data-driven cloud applications as well as automated physical things such as embed electronics, software, sensors and network connectivity enables a joint ubiquitous and pervasive internet-based computing systems well capable of interacting with each other in an IoT. IoT, a well-known term and a growing trend in IT arena certainly bring a highly connected global network structure providing a lot of beneficial aspects to a user regarding business productivity, lifestyle improvement, government efficiency, etc. It also generates enormous heterogeneous and homogeneous data needed to be analyzed properly to get insight into valuable information. However, adoption of this new reality (i.e., IoT) by integrating it with the internet invites a certain challenges from security and privacy perspective. At present, a much effort has been put towards strengthening the security system in IoT still not yet found optimal solutions towards current security flaws. Therefore, the prime aim of this study is to investigate the qualitative aspects of the conventional security solution approaches in IoT. It also extracts some open research problems that could affect the future research track of IoT arena

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system

    Intrusion detection for in-vehicle communication networks: An unsupervised kohonen SOM approach

    Get PDF
    The diffusion of embedded and portable communication devices on modern vehicles entails new security risks since in-vehicle communication protocols are still insecure and vulnerable to attacks. Increasing interest is being given to the implementation of automotive cybersecurity systems. In this work we propose an efficient and high-performing intrusion detection system based on an unsupervised Kohonen Self-Organizing Map (SOM) network, to identify attack messages sent on a Controller Area Network (CAN) bus. The SOM network found a wide range of applications in intrusion detection because of its features of high detection rate, short training time, and high versatility. We propose to extend the SOM network to intrusion detection on in-vehicle CAN buses. Many hybrid approaches were proposed to combine the SOM network with other clustering methods, such as the k-means algorithm, in order to improve the accuracy of the model. We introduced a novel distance-based procedure to integrate the SOM network with the K-means algorithm and compared it with the traditional procedure. The models were tested on a car hacking dataset concerning traffic data messages sent on a CAN bus, characterized by a large volume of traffic with a low number of features and highly imbalanced data distribution. The experimentation showed that the proposed method greatly improved detection accuracy over the traditional approach

    A location aided controlled spraying routing algorithm for Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) often suffer from intermittent disruption and variable long delay due to factors such as mobility and energy. In this paper, a Location Aided Controlled Spraying (LACS) routing algorithm is proposed to deal with the challenging issues in DTN routing. Only the routing information carried by the contacted nodes is needed in this algorithm, and there is no need for global networks knowledge and hardware support. The routing process is divided into two stages, i.e., controlled spraying routing stage and single-copy routing stage. The maximum transfer throughput of the contact is checked before each message is forwarded. During the controlled spraying stage, the current node adjusts spraying strategy according to the encounter angle of the contact nodes. During the single-copy stage, a location prediction model based on the semi-Markov process (SMP) is introduced, and the node's behaviors can be captured both in the temporal and spatial domains with this model. The current node predicts the destination node's location, and then decides whether to forward the message to target node based on the time used for meeting the destination node. Simulation results show that the proposed algorithm can achieve better performance than the traditional routing schemes of DTNs in terms of delivery ratio, network overhead and transmission delay under both random node movement model and realistic trace scenario

    A Fast and Scalable Authentication Scheme in IoT for Smart Living

    Full text link
    Numerous resource-limited smart objects (SOs) such as sensors and actuators have been widely deployed in smart environments, opening new attack surfaces to intruders. The severe security flaw discourages the adoption of the Internet of things in smart living. In this paper, we leverage fog computing and microservice to push certificate authority (CA) functions to the proximity of data sources. Through which, we can minimize attack surfaces and authentication latency, and result in a fast and scalable scheme in authenticating a large volume of resource-limited devices. Then, we design lightweight protocols to implement the scheme, where both a high level of security and low computation workloads on SO (no bilinear pairing requirement on the client-side) is accomplished. Evaluations demonstrate the efficiency and effectiveness of our scheme in handling authentication and registration for a large number of nodes, meanwhile protecting them against various threats to smart living. Finally, we showcase the success of computing intelligence movement towards data sources in handling complicated services.Comment: 15 pages, 7 figures, 3 tables, to appear in FGC

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented

    Метод керування доступом в сучасних системах міжмашинної комунікації

    Get PDF
    Метою роботи є знаходження та розробка методу керування доступом в сучасних системах міжмашинної комунікації. Поставлена мета передбачає розв’язання таких завдань: 4. Провести дослідження безпеки технологій ІоТ та міжмашинної комунікації на предмет виявлення їхніх особливостей та недоліків. 5. Провести дослідження принципів, моделей та архітектур контролю доступу в ІоТ технологіях. 6. Розробити підхід контролю доступом для технологій ІоТ та міжмашинної комунікації.The method of work is to find and develop a method of access control in modern systems of machine-to-machine communication. The goal is to ensure the solution of the following tasks: 1. Conduct research on IoT security technologies and machine-to-machine communication to identify their features and shortcomings. 2. Conduct research on principles, models and architectural access control in IoT technologies. 3. Develop an access control approach for IoT and machine-to-machine communication technologies
    corecore