

Future Internet 2020, 12, 119; doi:10.3390/fi12070119 www.mdpi.com/journal/futureinternet

Article

Intrusion Detection for In-Vehicle Communication

Networks: An Unsupervised Kohonen SOM

Approach

Vita Santa Barletta 1, Danilo Caivano 1, Antonella Nannavecchia 2,* and Michele Scalera 1

1 Department of Informatics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy;

vita.barletta@uniba.it (V.S.B.); danilo.caivano@uniba.it (D.C.); michele.scalera@uniba.it (M.S.)
2 Department of Economics and Management, University LUM Jean Monnet, SS 100 km 18,

70010 Casamassima (BA), Italy

* Correspondence: nannavecchia@lum.it

Received: 15 June 2020; Accepted: 11 July 2020; Published: 14 July 2020

Abstract: The diffusion of embedded and portable communication devices on modern vehicles

entails new security risks since in-vehicle communication protocols are still insecure and

vulnerable to attacks. Increasing interest is being given to the implementation of automotive

cybersecurity systems. In this work we propose an efficient and high-performing intrusion

detection system based on an unsupervised Kohonen Self-Organizing Map (SOM) network, to

identify attack messages sent on a Controller Area Network (CAN) bus. The SOM network found a

wide range of applications in intrusion detection because of its features of high detection rate, short

training time, and high versatility. We propose to extend the SOM network to intrusion detection

on in-vehicle CAN buses. Many hybrid approaches were proposed to combine the SOM network

with other clustering methods, such as the k-means algorithm, in order to improve the accuracy of

the model. We introduced a novel distance-based procedure to integrate the SOM network with the

K-means algorithm and compared it with the traditional procedure. The models were tested on a

car hacking dataset concerning traffic data messages sent on a CAN bus, characterized by a large

volume of traffic with a low number of features and highly imbalanced data distribution. The

experimentation showed that the proposed method greatly improved detection accuracy over the

traditional approach.

Keywords: intrusion detection systems; unsupervised learning; self-organizing maps; CAN bus;

Kohonen SOM network; cyber–physical systems; security; vehicle safety; cyber-attacks

1. Introduction

The automotive sector has been undergoing a radical transformation in recent years. Vehicles’

cyber–physical systems are partially or totally controlled by software run by electronic devices

increasingly interconnected with the outside world through networks of various types [1]. A

number of initiatives concerning smart mobility [2] and autonomous driving are, indeed,

experiencing increasing development in urban areas and smart city contexts [3,4].

Automatic systems to maintain the lane, cruising speed, and movement in the queue; to park

automatically; and to check the state of attention and sobriety of the driver [5], are just some of the

advantages. At the same time, these advantages have significantly increased the attack surface area.

There are several access points [6] that an attacker can use to try to compromise the security of the

vehicle: connections to smartphones; USB inputs; the mobile network to receive information,

transmit data, and make calls to external services [7,8]; Wi-Fi connections that can be used to connect

Future Internet 2020, 12, 119 2 of 24

other mobile devices on board the vehicle. Those are just some of the known channels [9] and in this

scenario, continuous software improvements [10,11] become necessary in order to detect and

respond in time to possible attacks. Proper methods and tools capable of managing the complexity

[12] can guarantee not only the protection of the vehicle, but also and above all, that of the people.

In this research, we take into consideration the vehicle’s internal network, the Controller Area

Network (CAN), as it allows safety-critical electronic control units (ECUs) that are attached to

sufficiently broadcast information in the form of CAN packets between them and other connected

busses through several gateways [13].

The CAN bus system presents several critical vulnerabilities [14]. For example, receiving nodes

are unable to verify whether the received packet is legitimate or not since the origin of the packets is

not provided. Consequently, ECUs can be used by attackers to falsify and send fake CAN packets.

This makes a CAN bus system insecure and poorly equipped in order to identify which nodes

launched the attacks.

In view of these considerations, security systems to protect the CAN bus became an urgent

need [15]. Intrusion detection techniques traditionally used in network security cannot be

implemented in the automotive domain. Since network-based attacks are relatively new in the

automotive field, new challenges arise in the development of efficient and adaptable systems for

securing automotive networks [16]. Since the CAN protocol can be frequently modified, a Machine

Learning approach could be the proper way to implement a detection method which, learning by

examples, is able to adapt to any change in the protocol. Most of the intrusion detection systems

(IDSs) based on Machine Learning proposed in the literature are deployed in a supervised manner.

This requires data to be completely labelled, even if this can be unfeasible considering the high

volume of data generated by a real time CAN in milliseconds [13]. Thus, an anomaly-based

detection system implemented using an unsupervised Machine Learning approach is more desirable

and convenient.

In the present work, we introduce a distance-based intrusion detection system aimed at

identifying attacks sent on the CAN bus. The proposed system was based on an unsupervised

Kohonen Self-Organizing Map (SOM) network, an Artificial Neural Network that can be trained

both through supervised and unsupervised learning. The algorithm maps a high-dimensional data

space to a low-dimensional one, preserving the topological properties of input data. It is a power

classifier able to separate normal from anomalous data while preserving the topological relationship

between the features with no need for labels. Due to the powerful capabilities in clustering and

visualization of complex, highly dimensional data, the SOM network extensively evolved, thereby

finding many applications in intrusion detection [17]. The algorithm showed high performance as an

anomaly detector in real-time systems, and compared to other intrusion detection techniques,

revealed better performance by showing a shorter training time and higher detection efficiency [18–

20]. The SOM network is finding applications in new areas of security, never approached in a similar

way before, such as anomaly-based detection [21]. In the light of these, we propose to test the

effectiveness and the efficiency of an unsupervised Kohonen SOM network in the automotive

domain, since, to the best of our knowledge, it was never tested in said area before.

Many hybrid methods based on the integration of the Kohonen SOM network with other

clustering methods were proposed in order to improve detection accuracy and reduce false alarm

rates. One of the most common methods is based on the combination of the Kohonen SOM network

with the k-means algorithm [22,23]. Intrusion detection networks were usually tested on the

well-known KDD99 dataset and on its refined version, the NSL-KDD dataset [24]. These datasets

have large numbers of features and experiments. References [25–28] showed that detection accuracy

achieved its high performance when including all the features in the analysis. The richer the feature

space is, the higher the detection rate achieved [17].

The goal of the present research is to evaluate the performance of an anomaly-based intrusion

detection system using an unsupervised Kohonen SOM neural network for the identification of

attack messages sent on the CAN bus. We propose a novel distance-based procedure to integrate

Future Internet 2020, 12, 119 3 of 24

Kohonen SOM network and k-means algorithm, which greatly improved accuracy in detecting

attack messages compared to the traditional procedure.

The proposed method and the traditional procedure based on the combination of the Kohonen

SOM network and k-means algorithm, were tested on open source data concerning traffic messages

sent on a CAN bus 2.0B with a very complex structure, characterized by large volume of traffic with

low number of features and a highly imbalanced data distribution. The dataset contains more than

2000 different kinds of messages sent totally at random on the CAN bus and all included in the

analysis. Despite the complex structure of the dataset, the proposed method showed high detection

accuracy with a low false negative rate.

The main contributions of the paper are:

 An anomaly-based IDS implemented using unsupervised learning to identify intrusions on an

in-vehicle communication network, in particular, a CAN bus. At the state of the art level, this is

the first work which tests an unsupervised Kohonen SOM network as an anomaly detector in

the automotive domain.

 A novel distance-based procedure to integrate Kohonen SOM network and k-means algorithm,

which greatly improves accuracy in detecting attack messages compared to the traditional

procedure. Moreover, the proposed method significantly reduces false negative rate, which

assumes a great importance in attack detection for in-vehicle CAN buses. Its value should be

very low to ensure the safety of the vehicle.

 The proposed method was tested on real car-hacking data, including DoS, spoofing the drive gear,

spoofing the RPM gauge, and fuzzy attacks. Data were obtained by logging CAN traffic via the

OBD-II port from a real vehicle while message injection attacks were being performed. The

performance of the proposed method was shown via computing evaluation metrics.

 The proposed method was performed with remarkable results both using single datasets only

containing one type of attack and also merging all types of attack into a unique dataset.

 Most of the studies in the literature propose IDSs only able to detect periodic attacks but not

aperiodic violations. The proposed method reveals remarkable performance in detecting both

periodic and aperiodic intrusions.

The paper is organized as follows: Section 2 illustrates related works; Section 3 describes the

CAN message structure; Section 4 explains the theoretical background used in the work; Section 5

shows the experimental process; Section 6 points out results and discussions; Section 7 sets out

conclusions.

2. Related Works

Recent works showed that data generated by connected vehicles can be a great resource for the

development of next generation cybersecurity solutions [29]. In [30,31] the authors highlight the

trend of increasing research interest in applications of Machine Learning (ML) and Deep Learning

(DL) in cybersecurity for the automotive industry.

The learning types and their applicability in the automotive industry are: supervised ML models

which deal with labelled data concerning automotive used to train the ML classification model;

unsupervised/self-supervised ML models that create clusters from various vehicle data streams with no

need for labelled data can be further analyzed to detect abnormal behavior; reinforcement learning

models, although less mature than the first two, provide a means to develop autonomous

cybersecurity solutions that can take human-defined meta-goals as input and make decisions to

achieve that goal [29].

A cybersecurity solution need not to be limited using a single architecture [32] or a single model

[33], and in accordance with that, our research investigates the cybersecurity solutions which

propose a distance-based intrusion detection system based on an unsupervised Kohonen SOM

network. Therefore, our goal is to test the SOM network in order to identify attacks within the CAN

bus.

Future Internet 2020, 12, 119 4 of 24

In the literature there are different ML models applied to automotive cybersecurity solutions

(Table 1), such as the Bayesian network, to determine whether the vehicle is under attack, but also

whether the attack has originated from the cyber or the physical domain [34]; the Deep Neural

Network (DNN) to train in-vehicle network packets exchanged between ECUs to extract

low-dimensional features, and it is used for discriminating normal and hacking packets [35]; the

long short-term memory neural network to detect CAN bus attacks [36]; Convolutional Neural

Networks (CNNs) to classify malware samples [37]; and Generative Adversarial Networks to

generate the adversarial attacks, which can deceive and evade the intrusion detection system [38].

Each of them allows providing a solution for a specific class within the vehicle (network

security, VANET situational awareness, vehicle intelligence, and others [29]), but there is no trace in

the literature of a SOM network application in automotive context. The Kohonen SOM network is a

popular non-linear model of unsupervised neural network for the solution of dimensionality

reduction problems [39] and it found mostly in applications concerning security issues [17] because

of its features of high detection rate, short training time, and high versatility [22].

Starting from the results obtained in the application of the Kohonen SOM network, we

extended this model in the automotive domain. We propose an intrusion detection system to

identify attack messages sent on the CAN bus based on an unsupervised Kohonen SOM network. In

many studies, the SOM network was integrated with other clustering methods in order to improve

the efficiency of the model [17]. Wang et all. in [23] combined the unsupervised SOM network with

the k-means algorithm using two different approaches and tested both methods on the KDD CUP-99

dataset, commonly used to test intrusion detection system. Their methods showed good stability of

efficiency and clustering accuracy. Tan et all. in [22] also proposed an intrusion detection method

based on the integration of the unsupervised SOM network with the k-means algorithm and tested

their model on the NSL-KDD dataset, a refined version of the KDD CUP-99. Both the datasets are

characterized by a high number of features, equal to 41, for each connection record. The proposed

method relatively improved the accuracy of network intrusion and significantly reduced the number

of clustering iterations than the SOM network.

We applied and evaluated the performance of the unsupervised Kohonen SOM network as an

intrusion detection system on an in-vehicle communication network, in particular, on a CAN bus.

We present an intrusion detection system based on a novel distance-based procedure for the

integration of the Kohonen SOM network with the k-means algorithm and compare it with the

traditional procedure. Performance of classification was statistically tested for the two methods

using open source car hacking data concerning the traffic of messages sent on CAN bus 2.0B and

consisting of four datasets, each containing a different type of attack. The same dataset was used to

test the intrusion detection system proposed by [40] and [41]. In the analysis, they individually

considered each dataset containing a unique type of attack, whereas we tested the models first on a

single dataset, and then by merging the four datasets into one containing all the four different types

of attack. The structure of the data was very complex, containing a large volume of traffic with a low

number of features, equal to 4, and a highly imbalanced data distribution.

The experimentation showed a great improvement in the accuracy of attack message detection

and a significantly reduced false negative rate compared to the traditional procedure.

Table 1. Machine learning solution in automotive.

References ML model Solution

[34] Bayesan Intrusion detection

[35] DNN Intrusion detection

[36] LSTM Intrusion Detection

[37] CNN Malware Classification

[38] GAN Attack simulation

[40] DCNN Intrusion Detection

Future Internet 2020, 12, 119 5 of 24

3. Control Area Network (CAN)

A Controller Area Network, or CAN, is the most commonly used network for control in

automotive and manufacturing applications [42]. The CAN interconnects a network of nodes and it

is a serial, multimaster, multicast protocol, so when the bus is free any node can send a message, and

all nodes may receive and act on the message. When a node begins to transmit messages, it

prioritizes the messages. This allows you to transmit until the bus becomes inactive or until it is

replaced by a node with a higher priority message.

There are four types of CAN messages: data frame (CAN 2.0A and CAN2.0B), which is the

standard CAN message broadcasting data from the transmitter to the other nodes on the bus; remote

frame, a message that is broadcast by a transmitter to request data from a specific node; an error

frame may be transmitted by any node that detects a bus error; overload frames are used to

introduce additional delay between data or remote frames . In this research, CAN 2.0B data frame

[40] was taken into consideration (Table 2). The difference between a CAN 2.0A and a CAN 2.0B

message is that CAN 2.0B supports both 11 bit (standard) and 29 bit (extended) identifiers.

Table 2. Controller Area Network (CAN) bus 2.0A and CAN bus 2.0B structure.

Field
CAN

Message

Bits

(Length)
Description

SOF

CAN 2.0A 1 The Start of Frame (SOF) indicates the start of a

new message and the single bit must be dominant

as it is used for synchronizing all nodes
CAN 2.0B 1

Identifier

CAN 2.0A 11

The identifier establishes the priority of the

message: the lower the value, the higher its

priority

CAN 2.0B 11
This identifier is the first part, which is used in

both the standard and extended frames

Identifier

extended

CAN 2.0A - -

CAN 2.0B 18
In CAN 2.0B Extended, the identifier is comprised

of 11 bits Base ID and 18 bits Extended ID

RTR

CAN 2.0A 1
The single remote transmission request (RTR) bit

is dominant when information is required from

another node. All nodes receive the request, but

the identifier determines the specified node. The

responding data is also received by all nodes and

used by any node interested. In this way, all data

being used in a system is uniform [43]

CAN 2.0B 1

SRR

CAN 2.0A - -

CAN 2.0B 1
The Substitute Remote Request (SRR) must be

recessive and used in the extended frame

IDE

CAN 2.0A - -

CAN 2.0B 1

The Identifier Extension (IDE) must be recessive

for extended format and dominant for standard

format

Reserved r0

CAN 2.0A - -

CAN 2.0B 1
Reversed bit must be dominant for standard

format

Reserved r0, r1
CAN 2.0A 2 Bits must be dominant

CAN 2.0B 2 Bits must be recessive for extended format

DLC
CAN 2.0A 4 The data length code (DLC) contains the number

of data bytes CAN 2.0B 4

Data Field CAN 2.0A 64 The actual payload data which can be up to 64 bits

Future Internet 2020, 12, 119 6 of 24

CAN 2.0B 64

CRC
CAN 2.0A 15 Cyclic Redundancy Check (CRC) contains the

checksum of the previous data for error detection CAN 2.0B 15

CRC Delimiter
CAN 2.0A 1

The single bit must be recessive
CAN 2.0B 1

ACK

CAN 2.0A 1
Acknowledge ensures (ACK) that all nodes

involved in the message receive everything

correctly and in case of error, the transmitter is

immediately alerted to send the data packets

again. The transmitter sends recessive, the receiver

asserts dominant

CAN 2.0B 1

ACK Delimiter
CAN 2.0A 1

 The single bit must be recessive
CAN 2.0B 1

EOF
CAN 2.0A 7 End of Frame (EOF) denotes the end of a current

CAN message. Bits must be recessive CAN 2.0B 7

4. Theoretical Background

4.1. Unsupervised SOM Neural Network

The Kohonen Self-Organizing Map (SOM) is a type of Artificial Neural Network (ANN) which

allows the visualization of high-dimensional data on a two-dimensional map. The Kohonen SOM is

a nonlinear mapping network aimed at computing similarities among data in the input layer and

representing them in an output layer of interconnected neurons according to spatial constrains [44].

Most of techniques in a neural network use supervised learning based on back propagation

methods for updating weights and error correction learning. Training of supervised networks

requires a target variable. The Kohonen SOM network differs from other Artificial Neural Networks

since it can be trained by unsupervised learning. The SOM network uses competitive learning in

order to find similarities among data, clustering them into different classes of data [45], and it is

characterized by a feed-forward structure with a single computational layer [46].

The Kohonen output network consists of a competitive layer where an n-dimensional codebook

vector is assigned to each neuron in the map and the vector elements represent weights [47]. SOM

networks try to reproduce the topological order of input data through clusters of neurons and

neighbors whose number is defined by the size of the map [48]. Spatial constraints entail that

neighboring neurons have similar codebook vectors. Input data vectors are assigned to neurons

according to defined measures of distance between them [44] If two different input data vectors are

similar, then they will be mapped in neighboring neurons on the network grid. Hence, input data

vectors mapped on the same neuron or in the neighboring ones are similar.

The SOM algorithm computes similarities between each input data vector and the neurons’

codebook vectors in order to find the most similar. The winning neuron, called Best Matching Unit

(BMU), adjusts its codebook vectors basing on a weighted average in order to move closer to the

input vector. The weight of the attraction between the BMU and the input data vector is one of the

training parameters of the model also called learning rate �. This parameter changes at each iteration,

decreasing during the training process and ensuring the convergence of the model [48].

Additionally, the neighboring neurons adjust their codebook vectors in order to better match with

the input vector, thereby ensuring the spatial constraints in order to preserve the topology of the

map.

Figure 1 shows a simple illustration of the Kohonen SOM algorithm. After determining the

number of neurons in the Kohonen map, a codebook vector is randomly initialized for each neuron.

Then, the algorithm computes the distance between a CAN message vector random selected and all

the neurons’ codebook vectors in the map. The neuron with the smallest distance is the winner, also

called the Best Matching Unit. The algorithm also identifies neurons with similar codebook vectors

as neighboring neurons. Both the BMU and neighboring neurons are updated in order to move

Future Internet 2020, 12, 119 7 of 24

closer to the CAN message vector. The same procedure is repeated for all CAN messages and for a

given number of iterations.

The Kohonen SOM network can be trained using the online and the batch algorithms [49]. In

the online algorithm, the BMU and the neighborhood neurons are adjusted immediately after an

input vector is presented to the network. In the batch algorithm, the BMU and the neighborhood

neurons are updated after all the input data vectors are presented to the network [50].

Figure 1. Kohonen Self-Organizing Map (SOM) neural network.

Formally, we defined the input data vectors Xi, with i=1,…,n, the Kohonen neurons Rj, with

j=1,…,m, and the codebook vectors Wj with j=1,…,m associated to each neuron. The number of

elements of the codebook vector equals the number of variables in the input data vector [51]. We also

set the number of iterations t with t=1,…,s. The number of iterations to complete the leaning process

is expressed in epochs. One epoch indicates the steps of the learning algorithm that allow a complete

presentation of the input dataset to the network in order to be learned.

Many different measures of similarity can be used to measure the distance between input data

vectors Xi and neurons’ codebook vectors Wj [48], such as Manhattan, Tanimoto, Bray Curtis,

Canberra, and Chebyshev distances. However, Euclidean distance normally gives slightly better

classification results and epoch t can be defined as follows:

��(�) = ���(�) − ��(�)� , (1)

where Euclidean distance is computed between the CAN message vector Xi, randomly selected, and

all the codebook vectors Wj with j=1,…,m on the Kohonen map. Subsequently, the neuron associated

to the codebook vector Wj with the minimum distance to Xi is the winning neuron BMU. The

distance to the BMU at epoch t is here denoted with the subscript c:

��(�) = min
�

��(�). (2)

Once BMU is found, the neuron and its spatial neighbors are updated by the following:

��(� + 1) = ��(�) + ℎ��(�)���(�) − ��(�)� (3)

Future Internet 2020, 12, 119 8 of 24

where hjc(t) is the neighborhood function. The rate of change at different neurons around the BMU

depends on the mathematical form of the neighborhood function. This function has a very central

role in SOM networks since it preserves the topological properties of the input data. A variety of

neighborhood functions can be used, but the most applied in SOM neural networks is the Gaussian

neighborhood function:

ℎ��(�) = �(�) ∙ exp �
��� − ���

�

2�(�)�
� (4)

where �(t) is the learning rate function which is a function monotonically decreasing at each iteration

t and rj is the position of neuron j.

The online training algorithm of the SOM can be implemented using a stepwise recursive

procedure. The pseudo-code is detailed in Algorithm 1.

Algorithm 1: Kohonen SOM algorithm.

Input: Input layer consisting of CAN message data vectors Xi with i=1,…,n,

Output: Output Kohonen layer RX containing final codebook vectors Wj associated to neurons Rj

with j=1,…,m,

Results: Assign CAN message data vectors Xi to the winning neuron BMU on the Kohonen map

set(n, m, s) // set number of messages, number of neurons, number of epochs

Wj ⟵ ∅

for j = 1,…, m do

 Wj ⟵ random(Xi) // random codebook vectors initialization

end for

set(�) // set initial learning rate

for t = 1 : s do

for i = 1 : n do

 Xi ⟵ random(Xi) //random selection of a CAN message data vector

 for j = 1 : m do

 �� = ��� − ��� //compute Euclidean distance

 end for

 �� = min
�

�� //compute the winning neuron BMU

 for j = 1 : m do

 �� = �� + ℎ��(�)��� − ��� // update neurons

 end for

end for

update(α)

end for

The batch algorithm is a variant of the traditional online SOM algorithm. Neurons’ codebook

vectors are adjusted only after all the input data vectors Xi in the input layer are assigned to their

winning neuron’s BMU in the Kohonen network. Codebook vectors of BMU and neighbors’ neurons

are updated as follows:

��(� + 1) =
∑ ℎ��(�)(�)��

�
���

∑ ℎ��(�)(�)�
���

 (5)

where c(i) is the index of the winning neuron’s BMU for the input data vector Xi and n is the number

of input data vectors, at iteration t.

Future Internet 2020, 12, 119 9 of 24

4.2. K-Means Clustering Algorithm

The k-means is one of the most used clustering algorithms for large datasets. It is an

unsupervised Machine Learning algorithm which allows one to partition data into K groups,

minimizing the variance within the clusters. After determining the number of K clusters, K input

data vectors are randomly selected as initial cluster centroids. The Euclidean distance is computed to

assign input data vectors to the closest centroids. The K centroids are updated and the input data

vectors are reassigned at each iteration. These steps are iteratively repeated until input data

assignments stop changing and convergence is achieved.

Formally, we defined the input data vectors Xi, with i=1,…,n, the number of clusters K and the

centroids �� with k=1,…,K. The pseudo-code is detailed in Algorithm 2.

Algorithm 2: K-means algorithm.

Input: Input vectors Xi with i=1,…, n // Number of desired clusters K

Output: Final centroids Φ� whit k=1, …, K

Results: Assign cluster membership to all input vectors Xi

Φ� ⟵ ∅

set(K) // set number of clusters

for k = 1,…,K do

 Φ k ⟵ random(Xi) // random centroids initialization

end for

repeat

for i = 1 : n do

 for k = 1 : K do

 �� =‖�� − Φ�‖ // compute Euclidean distances

 end for

� = argmin
�

�� // compute minimum distance

 Φ� = Φ� ∪ {X�} // assign input vector to the closest cluster centroid

end for

Φ�<- Φ� // update centroid Φ� based on current partition

until the class assignment converges

return{Φ�, … , Φ�}

5. Materials and Methods

We tested a distance-based intrusion detection system to identify attack and anomaly messages

injected on a CAN bus. The intrusion detection system was based on a hybrid unsupervised

Kohonen SOM neural network in order to improve the efficiency of the model in detecting attack

messages. We proposed a novel distance-based procedure to integrate the unsupervised Kohonen

SOM network with the k-means algorithm and compared it with the traditional procedure. Both the

methods were tested on open source data containing four datasets, each with a different type of

attack: DoS attack, spoofing the drive gear, spoofing the RPM gauge, and fuzzy attack. The datasets were

created by logging the CAN network 2.0B traffic via the OBD-II port from a real vehicle while

message injection attacks were being performed [40,52]. Each dataset contains a total of 30 to 40

minutes of CAN traffic with 300 intrusions of messages injected for 3 to 5 seconds. The Kohonen

SOM network was first tested on single datasets separately; then, they were merged into a unique

mixed dataset containing all types of attack.

In the DoS attack database, attack messages with dominant CAN IDs are injected on the CAN

bus with the aim of tampering with the accessibility to the network. The spoofing gear and spoofing

RPM datasets contain attack messages concerning, respectively, the driver gear and the RPM gauge

aimed at changing the status on the instrument panel. In the fuzzy dataset, messages of spoofed

Future Internet 2020, 12, 119 10 of 24

random CAN ID and data values are injected in order to damage the vehicle’s functionality, due to

the manipulation of normal CAN ID and data values.

The experimentation was carried out in the following steps (Figure 2):

1. Data pre-processing: Data were pre-processed in order to be given input to the network. We

analyzed open source car hacking data including different kinds of attack messages. In

particular, we considered four different datasets containing DoS attacks, spoofing the drive gear,

spoofing the RPM gauge, and fuzzy attacks. Data are available at [53].

2. Experimental process: We tested the proposed method based on a novel procedure to integrate

the Kohonen SOM network with a k-means algorithm in order to improve the performance of

the model in terms of accuracy in detection of attack messages and reduction of false negative

rate. We also compared the proposed method with the traditional procedure. Both methods

were tested, first, on each attack dataset separately, and then on the mixed dataset.

3. Evaluation of the performances of the models.

Figure 2. Experimentation process.

5.1. Dataset Pre-Processing

The DoS attack, spoofing the drive gear, and spoofing the RPM gauge datasets present quite regular

structures, since messages sent on the CAN bus are characterized by a limited number of different

kinds of CAN ID. Figure 3 shows the frequency distribution of the CAN ID identifiers for each

dataset and for the mixed dataset. The DoS dataset presents a very simple structure since it contains

normal messages sent with 26 unique CAN IDs and a high frequency of attack messages sent with

one different unique CAN ID. Spoofing the drive gear and spoofing the RPM gauge datasets also show

regular structures including a total of 26 unique CAN IDs sending normal messages, one of whom

sends attack messages as well.

Future Internet 2020, 12, 119 11 of 24

Figure 3. CAN ID frequency distribution.

These three datasets are quite simple to analyze and the proposed model completely succeeded

in detecting attack messages when tested on them. The fuzzy dataset presents a very complex

structure which is really difficult to analyze, since messages are sent on the CAN bus using 2017

different unique CAN IDs. Attack messages are sent using all CAN IDs, just 37 of whom are used to

also send normal messages. Moreover, messages sent using 97.1% of unique CAN IDs show a

relative frequency of less than 0.1% and are transmitted totally randomly. Hence, the mixed dataset,

the result of merging all datasets, highlights an even greater complexity in the analysis.

All datasets included the following information: recorded time in seconds, timestamp, identifier

of CAN message in HEX, CAN ID, number of data bytes from 0 to 8, DLC, data values, DATA[0~7],

and a label R or T which represent, respectively, normal or attack messages (Table 3).

Future Internet 2020, 12, 119 12 of 24

Table 3. Car hacking dataset overview.

Timestamp CanID DLC D0 D1 D2 D3 D4 D5 D6 D7 Label

1478193191230940 04f0 8 0 0 0 80 0 67 d1 13 R

1478193191234870 05f0 2 1 0 R

…. … … … … … … … … … … …

1478193191271620 043f 8 1 45 60 ff 6b 0 0 0 T

1478193191272270 316 8 5 23 70 9 23 21 0 70 R

…. … … … … … … … … … … …

In order to run the network, data were properly pre-processed.

CAN ID identifiers and data values were dealt with a semantic approach considering each CAN

ID identifier as a category of messages sent by an ECU and data values as the related value

information [54]. Since SOM networks can process only numerical data, these categorical data were

transformed into a matrix representation using the one-hot encoding technique. Each CAN ID

identifier was represented by a column with value 1 if the message was sent with that CAN ID and 0

otherwise. Data values were merged in a unique string representing the value information of the

CAN message. The new variable obtained was also transformed into a matrix representation using

the one-hot encoding technique.

With regard to time, data were not processed in chronological order, but in relation to CAN

messages period. CAN messages can be periodic, sporadic, or aperiodic. Periodic messages occur at

regular time intervals, sporadic messages are sent with a minimum time interval, and aperiodic

messages are sent at totally random times [41]. Starting from timestamp, we derived a new variable

S whose elements Si, with i=1,…,n, where n is the total number of messages, express the time in

milliseconds between two successive instances sent on the bus with the same CAN ID identifier. The

datasets contained high numbers of periodic, sporadic, and even aperiodic messages with different

CAN IDs sent at different times and with different frequencies. In the analysis we included all kinds

of messages. The analysis of the fuzzy dataset was the most complex since the structure of the dataset

was totally random.

Finally, numerical variables, namely, S and DLC, were normalized in order to avoid bias in the

training process that can be generated when dealing with very large input vectors [47].

Normalization was obtained using a linear transformation to scale numerical variables to have

values between 0 and 1 as follows:

Zn =
�������

���������
. (6)

where Z0 is the value of the generic numerical variable Z before normalization and Zn is the new

value of Z after normalization. Zmin and Zmax, respectively, are the minimum and the maximum value

of Z in sample data.

We define Xi, with i=1,…,n, input data vectors corresponding to CAN messages sent on the

CAN bus. X represents the input layer processed by the SOM network. Labeled data were not

included in the analysis since we trained using unsupervised learning (see Table 4).

Table 4. Processed data.

Input X layer

Input X

CAN message vector
DLC 04f0 05f0 043f … 00080067d113 14560ff6b000 … Time

X1 1 1 0 0 … 0 0 … 0.27

X2 0.1 0 0 1 … 0 1 … 0.84

X3 1 0 1 0 … 1 0 … 0.97

… … … … … … … … … …

Xn 0.5 0 0 0 … 0 0 0.01

Future Internet 2020, 12, 119 13 of 24

5.2. System Architecture

After data pre-processing, we tested a distance-based intrusion detection system aimed at

identifying attack or anomalous messages injected on the CAN bus. We implemented a hybrid

unsupervised Kohonen network in order to classify attack and normal messages based on global and

local similarity among input data vectors [44] using two approaches. The models were tested on

samples of 10,000 CAN messages vectors for each dataset.

Network initial learning parameters were defined using a trial and error process. Since our goal

was to separate input data vectors into two clusters, attack and normal messages, we trained the

network on small maps. Map size does not need to be very large, even with a large number of input

data vectors. Training large maps is a time-consuming process since all input data vectors are

compared with all the neurons in the map [55].

After many trials, on maps of different sizes, we obtained the best performance in terms of

prediction accuracy training for the network on a 2 x 2 (four neuron) map using the Gaussian

neighborhood function. The learning rate was initially set to 0.5 linearly decreasing in a training

process of 100 epochs. The Euclidean distance was used to compute the similarity between input

message data vectors and neurons in the SOM map since it retuned the best results. Data were split

between 80.00% for training the model and 20.00% for testing prediction accuracy.

The unsupervised Kohonen network assigned all input data vectors to the four neurons in the

RX map. In order to classify input messages vectors in two clusters, attack and normal, we combined

the output of the SOM network with the k-means algorithm using two distinct procedures.

Using the traditional procedure, generally used to cluster local data classified by the Kohonen

SOM network [17,22,23], the output of the trained network was given as input to a k-means

algorithm (SOMK-C). The algorithm processed the neurons’ codebook vectors in order to classify the

four neurons into two groups. Input CAN message vectors were then assigned to the same group of

the corresponding neuron.

Compared to the traditional approach, we propose a novel procedure to integrate the Kohonen

SOM network with the k-means algorithm (SOMK-D) (see Figure 4). The proposed approach relies

on the assumption that the Kohonen network classifies input vectors in clusters based on distance

between input vectors and neurons. Thus, in the traditional procedure the k-means algorithm

processed neurons’ codebook vectors, whereas in the proposed approach distance between input

vectors and neurons were processed.

The SOMK-D procedure can be illustrated as follows:

 Input CAN message data vectors were weighted depending on their frequency in the

whole traffic dataset, since the nature of attack and normal messages sent in the CAN bus

differs in terms of structure and frequency.

 Distances between weighted input CAN vectors and neurons in the Rx map were

computed training the Kohonen SOM network.

 Distances were used as input of the k-means algorithm.

 The k-means algorithm was implemented to classify input vectors in two clusters based on

their distance to the corresponding winning neurons’ BMU.

Future Internet 2020, 12, 119 14 of 24

Figure 4. SOMK-D algorithm.

Algorithm 3.1: SOMK-D algorithm.

Input: Input layer consisting of weighted CAN message vectors Xi with i=1, …,n

Output: Output Kohonen layer RX containing final codebook vectors Wj associated to neurons Rj

with j =1,…,m

Results: Compute distances between CAN message vectors Xi and winning neurons BMU in the

Kohonen map

Wj ⟵ ∅

m ⟵ 4 // set number of neurons

for j = 1 : m do

Wj ⟵ random(Xi) // random codebook vectors initialization

end for

� ⟵ 0.05 // set initial learning rate

s ⟵ 100 // set initial learning rate

n ⟵ 10,000 // set number of CAN messages

for t = 1 : s do

for i = 1 : n do

 Xi ⟵ random(Xi) //random selection of a CAN message vector

 for j = 1 : m do

 �� = ��� − ��� //compute Euclidean distance

 end for

 �� = min
�

�� //compute the winning neuron BMU

 for j = 1 : m do

 �� = �� + ℎ����� − ��� // update neurons

 end for

end for

update(�)

end for

for i = 1 : n do

 �� =‖�� − W���‖ // compute distances from CAN message vectors to winning neurons BMU

end for

Future Internet 2020, 12, 119 15 of 24

The algorithm is detailed in Algorithms 3 and 4. Results highlight a great improvement in terms

of detection accuracy and a significant reduction of the false negative rate compared to the

traditional procedure, as shown in Section 6.

The Kohonen neural network was implemented using the R project available at the repository:

http://cran.r-project.org.

Algorithm 3.2: SOMK-D algorithm.

Input: Distances between CAN message vectors Xi and winning neurons BMU in the Kohonen

map // Number of desired clusters K

Output: Final centroids Φ� whit k=1, …, K

Results: Assign cluster membership to all input CAN message vectors Xi

 Φ k ⟵ random(Xi) // random centroids initialization

end for

repeat

 for i = 1 : n do

 for k = 1 : K do

 �� =‖�� − Φ�‖ // compute Euclidean distances

 end for

� = argmin
�

�� // compute minimum distance

 Φ� = Φ� ∪ {��} // assign distances to the closest cluster centroid

 end for

 Φ� ⟵ Φ� // update centroid Φ� based on current partition

until the class assignment converges

return{Φ�, … , Φ�}

5.3. Performance Evaluation Metrics

Traditional classification metrics were used to evaluate the performances of the two explained

methods tested on the described datasets.

In particular, given TP (true positive) and TN (true negative)—the numbers of CAN messages

correctly classified, respectively, as attack or normal; and FP (false positive) and FN (false

negative)—the numbers of CAN messages incorrectly classified, respectively, as attack or normal,

we calculated:

�������� =
�����

�����������
 , (7)

the ratio of correctly classified instances,

��������� =
��

�����
 , (8)

the ratio of correctly detected errors to the total of detected errors,

������ =
��

�����
 , (9)

the ratio of the correctly detected errors to the total of actual errors including not-detected ones,

�1 =
� (���������∙������)

����������������
, (10)

a weighted average of precision and recall.

We also computed the false negative rate (FNR), that is, the fraction of undetected attacks, as –

follows:

��� =
��

�����
. (11)

Future Internet 2020, 12, 119 16 of 24

The FRN measure has great importance in attack detection for in-vehicle CAN buses and its

value should be very small since even a very small number of undetected attacks can cause damage

in the vehicle, impairing safety.

6. Results and Discussion

As described in Section 5, we made a distance-based intrusion detection system aimed at

identifying attack messages injected into the CAN bus. The system was based on an unsupervised

Kohonen SOM network combined with a k-means algorithm using two different approaches. The

models were tested first by individually training DoS, spoofing gear, spoofing RPM, and fuzzy datasets,

and then by merging the four different kinds of attack into a unique mixed dataset. The test was

conducted on samples of 10,000 CAN messages vectors for each dataset. Samples were randomly

selected, balancing the ratio of CAN ID identifiers, and were split into 80.00% training and 20.00%

test sets, again stratifying the CAN ID identifiers for all the datasets with the exception of the fuzzy

dataset. There was a high number of different messages identifiers in the fuzzy dataset—2017 unique

CAN IDs, 97.1% of whom showed a relative frequency less than 0.1%. Since the nature of attack and

normal messages sent in the CAN bus differs in terms of structure and frequency, we weighted

input message data vectors depending on their frequency in the whole traffic dataset. The training

sets were used to train the algorithms and the test sets to evaluate the models’ performances.

We trained the unsupervised Kohonen SOM network on a 2 x 2 (four neuron) map as described

in Section 5.2. The network computed the codebook vector for each neuron in the Kohonen map and

the input CAN message vectors were assigned to the closest neurons. Figure 5 illustrates results of

the unsupervised Kohonen SOM network, respectively, for DoS, spoofing gear, spoofing RPM, fuzzy,

and mixed datasets. In particular, Figure 5 shows input CAN message vectors assigned to neurons in

the map by the Kohonen SOM network for test sets. It is evident that attack and normal messages are

well separated in DoS, spoofing gear, and spoofing RPM datasets. The distinction is less clear in the

fuzzy dataset, due to its more complex structure, and, consequently, in the mixed dataset. Following

the traditional procedure, the codebook vectors computed by the Kohonen SOM network were

given as input to the k-means algorithm, in order to cluster the neurons in two groups, attack and

normal (SOMK-C). In each dataset, the k-means algorithm clustered three neurons as normal,

represented in yellow, and one neuron as attack, the red one. Results for test sets are shown in

Figure 6.

Future Internet 2020, 12, 119 17 of 24

Figure 5. Unsupervised Kohonen SOM network trained on the test set.

Figure 6. SOMK-C trained on the test set.

Figure 7 represents, for each dataset, the distance between each input CAN message vector and

its winning neuron BMU computed by the Kohonen SOM network for the training set. Blue and

green points in the plots represent, respectively, attack and normal messages.

Future Internet 2020, 12, 119 18 of 24

Figure 7. Distances from input CAN message vectors to the winning neurons’ Best Matching Unit

(BMU) computed by the Kohonen SOM network for the training set.

Table 5 shows distance metrics distinguished for attack and normal messages as classified by

the SOMK-C for training set. Plots and related metrics highlight regular patterns and clear

separation in distances in DoS, spoofing gear, and spoofing RPM datasets, which were slightly less

evident in fuzzy and mixed datasets. In light of this, we tried to improve the efficiency of the Kohonen

SOM network in identifying attack messages using a second procedure that takes into account the

evident separation in distances. We tried to enhance the separation between attack and normal

messages by clustering distances from input CAN message vectors and corresponding winning

BMU neurons. With that aim, after computing Euclidean distances between each input CAN

message vector and its winning BMU neuron, we clustered them into two groups using the k-means

algorithm (SOMK-D).

Future Internet 2020, 12, 119 19 of 24

Table 5. Distances between input vectors and winning neurons’ BMU metrics for attack and normal

messages as classified by the SOM network for training set.

Dataset Type Min Median Mean Max
Standard

deviation

DoS
Attack 0.15 0.15 0.26 2.39 0.34

Normal 1.22 1.74 1.67 3.30 0.20

Spoofing

gear

Attack 0.52 0.52 0.65 1.13 0.24

Normal 1.08 1.32 1.28 1.72 0.10

Spoofing

RPM

Attack 0.52 0.52 0.65 1.13 0.25

Normal 1.07 1.32 1.28 1.67 0.10

Fuzzy
Attack 0.20 1.31 1.08 1.66 0.43

Normal 1.09 1.09 1.14 1.26 0.05

Mixed
Attack 0.24 1.32 1.20 1.76 0.27

Normal 0.94 1.12 1.04 1.12 0.09

Figure 8. SOMK-D trained on the test set.

Results for the test sets are shown in Figure 8 where it is evident how this procedure greatly

improves the efficacy of the model in terms of detecting attack messages—completely succeeding in

DoS, spoofing gear, and spoofing RPM datasets.

Evaluation metrics for SOMK-C and SOMK-D procedures are shown in Tables 6 and 7,

respectively, for training and test sets. The SOMK-D approach compared to the SOMK-C, improves

evaluation metrics results in all the datasets. In SOMK-D, values of accuracy, precision, recall and F1

increase to 100.00% for DoS, spoofing gear, and spoofing RPM datasets both in training and test sets.

The false negative ratio (FNR) is, consequently, equal to 0.00% in the same datasets. In the fuzzy

dataset, the SOMK-D improved accuracy from 73.20% to 99.58% in the training set and from 72.55%

to 99.40% in the test set. Precision and recall increased from 0.46% and 0.20%, respectively, to 99.66%

and 98.07% in the training set, and from 0.00% and 0.00%, respectively, to 98.92% and 97.87% in the

test set. The false negative ratio (FNR) was reduced from 99.80% to 1.93% in the training set and

from 100.00% to 2.13% in the test set. A slight overfitting is noted in the mixed dataset.

Future Internet 2020, 12, 119 20 of 24

The Kohonen SOM network was trained for 100 epochs and the output processed by the

k-means algorithm converged in less than 10 iterations in all datasets both for SOMK-C and

SOMK-D.

Table 6. Evaluation metrics for the training sets.

Dataset
Training set (%)

 Accuracy Precision Recall F1 FNR

DoS

SOMK-C 97.78 90.88 100.00 95.22 0.00

CI (95%) 97.45–98.10 90.25–91.51 100,00–100,00 94.75–95.69 0,00–0,00

SOMK-D 100.00 100.00 100.00 100.00 0.00

 CI (95%) 100,00–100,00 100,00–100,00 100,00–100,00 100,00–100,00 0,00–0,00

Spoofing

gear

SOMK-C 95.60 79.70 100.00 88.70 0.00

CI (95%) 95.15–96.05 78.82–80.58 100,00–100,00 88.01–89.40 0,00–0,00

SOMK-D 100.00 100.00 100.00 100.00 0.00

 CI (95%) 100,00-100,00 100,00-100,00 100,00-100,00 100,00-100,00 0,00-0,00

Spoofing

RPM

SOMK-C 95.49 79.04 100.00 88.29 0.00

CI (95%) 95.03-95.94 78.14–79.93 100,00–100,00 87.59–89.00 0,00–0,00

SOMK-D 100.00 100.00 100.00 100.00 0.00

 CI (95%) 100,00-100,00 100,00–100,00 100,00–100,00
100,00–

100,00
0,00–0,00

Fuzzy

SOMK-C 73.20 0.46 0.20 0.28 99.80

CI (95%) 72.23-74.17 0.32–0.61 0.10–0.30 0.16–0.39 99.70–99.80

SOMK-D 99.58 99.66 98.07 98.86 1.93

 CI (95%) 99.43-99.72 99.54–99.79 97.77–98.37 98.63–99.09 1.63–2.23

Mixed

SOMK-C 82.55 61.76 27.91 38.45 72.09

CI (95%) 81.72-83.38 60.69–62.82 26.93–28.90 37.38–39.51 71.10–73.07

SOMK-D 99.86 99.68 99.62 99.65 0.38

 CI (95%) 99.78-99.94 99.56–99.80 99.48–99.75 99.52–99.78 0.25–0.52

Table 7. Evaluation metrics for test sets

Dataset
Test set (%)

 Accuracy Precision Recall F1 FNR

DoS

SOMK-C 97.85 91.21 100.00 95.40 0.00

CI (95%) 97.22–98.49 89.97–92.45 100,00–100,00 94.48–96.32 0,00–0,00

SOMK-D 100.00 100.00 100.00 100.00 0.00

 CI (95%) 100,00-100,00 100,00–100,00 100,00–100,00 100,00–100,00 0,00–0,00

Spoofing

gear

SOMK-C 95.50 79.36 100.00 88.49 0.00

CI (95%) 94.59–96.41 77.58–81.13 100,00–100,00 87.09–89.89 0,00–0,00

SOMK-D 100.00 100.00 100.00 100.00 0.00

 CI (95%) 100,00-100,00 100,00–100,00 100,00–100,00 100,00–100,00 0,00–0,00

Spoofing

RPM

SOMK-C 95.75 80.41 100.00 89.14 0.00

CI (95%) 94.87–96.63 78.68–82.15 100,00–100,00 87.78–90.51 0,00–0,00

SOMK-D 100.00 100.00 100.00 100.00 0.00

 CI (95%) 100,00-100,00 100,00–100,00 100,00–100,00 100,00–100,00 0,00–0,00

Fuzzy

SOMK-C 72.55 0.00 0.00 - 100.00

CI (95%) 70.59–74.51 0,00–0,00 0,00–0,00 –
100,00–

100,00

SOMK-D 99.40 98.92 97.87 98.39 2.13

Future Internet 2020, 12, 119 21 of 24

 CI (95%) 99.06–99.74 98.47–99.37 97.23–98.50 97.84–98.94 1.50–2.77

Mixed

SOMK-C 87.01 61.05 38.41 47.15 61.59

CI (95%) 85.53-88.48 58.92–63.19 36.28–40.54 44.97–49.34 59.46–63.72

SOMK-D 97.60 86.29 100.00 92.64 0.00

 CI (95%) 96.93-98.27 84.78–87.79 100,00–100,00 91.49–93.78 0,00–0,00

7. Conclusions

The great diffusion of embedded and portable communication devices on modern vehicles and

smart transport systems enable communication with internal and external devices, networks,

applications, and services. As vehicle connectivity becomes common, new security risks emerge,

since communication protocols, such as CAN network, are still insecure and vulnerable to attacks.

For this reason, there is an increasing interest in automotive cybersecurity for in-vehicle

communication systems [56].

In this work we propose a distance-based intrusion detection system based on an unsupervised

Kohonen SOM network. The SOM network found general applications in security issues because of

its features of high detection rate, short training time, and high versatility.

In our work, we introduced the Kohonen SOM network as an intrusion detection system for

in-vehicle communication networks aimed at identifying attack messages injected on a CAN bus. In

a previous paper we showed the results of the implementation of a hybrid supervised Kohonen

SOM network combined with other techniques for clustering in order to improve the performance of

the network. In the present work we implemented an unsupervised Kohonen SOM network

combined with a k-means algorithm in order to improve the efficiency of the model in detecting

attack messages. We proposed a novel distance-based procedure to integrate the unsupervised

Kohonen SOM network with the k-means algorithm and compared the proposed method to the

traditional procedure.

We tested both the methods on open source data containing four different datasets: DoS attack,

spoofing the drive gear, spoofing the RPM gauge, and fuzzy attack. We first used the networks on

separate datasets with single kinds of attack, and then merged them all together in a mixed dataset.

The mixed dataset presented a highly complex structure to analyze, characterized by large volume of

traffic with low number of features and highly imbalanced data distribution with more than 2000

different attack types sent totally randomly. Despite the complex structure of the CAN network

dataset, the proposed method showed high performance in detection accuracy—completely

succeeding in DoS attack, spoofing the drive gear, and spoofing the RPM gauge datasets. Moreover, it

significantly reduced the false negative rate, which has great importance in attack detection for

in-vehicle CAN buses in order to ensure the safety of the vehicle.

Due to the availability of the open source data, this work only tested the proposed IDS on a

limited number of attacks. Future works should involve investigating the development of the

Kohonen SOM network as an anomaly detector by extending it to other types of attacks in a CAN

bus.

Author Contributions: Conceptualization, D.C.; data curation, V.S.B., A.N. and M.S.; formal analysis, A.N.;

investigation, V.S.B. and D.C.; methodology, D.C. and A.N.; project administration, D.C.; software, V.S.B., A.N.,

and M.S.; supervision, M.S.; validation, V.S.B. and D.C.; visualization, V.S.B. and A.N.; writing—original draft,

V.S.B. and A.N.; writing—review and editing, D.C. and M.S. All authors have read and agreed to the published

version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2020, 12, 119 22 of 24

References

1. Vasudev, H.; Das, D.; Vasilakos, A.V. Secure message propagation protocols for IoVs communication

components. Comput. Electr. Eng. 2020, 82, 106555, doi:10.1016/j.compeleceng.2020.106555.

2. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment

and Management for Smart City Monitoring. IEEE Commun. Surv. Tutorials 2019, 21, 1533–1560,

doi:10.1109/comst.2018.2881008.

3. Barletta, V.; Caivano, D.; DiMauro, G.; Nannavecchia, A.; Scalera, M. Managing a Smart City Integrated

Model through Smart Program Management. Appl. Sci. 2020, 10, 714, doi:10.3390/app10020714.

4. Baldassarre, M.T.; Barletta, V.S.; Caivano, D. Smart Program Management in a Smart City. In Proceedings

of the 2018 AEIT International Annual Conference; Institute of Electrical and Electronics Engineers

(IEEE), 2018; pp. 1–6,.

5. Zhou, J.; Dong, X.; Cao, Z.; Vasilakos, A.V. Secure and Privacy Preserving Protocol for Cloud-Based

Vehicular DTNs. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1299–1314, doi:10.1109/tifs.2015.2407326.

6. Baldassarre, M.T.; Barletta, V.; Caivano, D.; Scalera, M. Integrating security and privacy in software

development. Softw. Qual. J. 2020, 1–32, doi:10.1007/s11219-020-09501-6.

7. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V. Security and Privacy for Cloud-Based IoT: Challenges. IEEE

Commun. Mag. 2017, 55, 26–33, doi:10.1109/mcom.2017.1600363cm.

8. Challa, S.; Das, A.K.; Gope, P.; Kumar, N.; Wu, F.; Vasilakos, A.V. Design and analysis of authenticated

key agreement scheme in cloud-assisted cyber–physical systems. Futur. Gener. Comput. Syst. 2020, 108,

1267–1286, doi:10.1016/j.future.2018.04.019.

9. Sommer, F.; Duerrwang, J.; Kriesten, R. Survey and Classification of Automotive Security Attacks. Inf.

2019, 10, 148, doi:10.3390/info10040148.

10. Caivano, D. Continuous Software Process Improvement through Statistical Process Control. In

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering; Institute of

Electrical and Electronics Engineers (IEEE), 2005; pp. 288–293.

11. Baldassarre, M.T.; Boffoli, N.; Caivano, D.; Visaggio, G. Managing Software Process Improvement (SPI)

through Statistical Process Control (SPC). Intelligent Tutoring Systems 2004, 3009, 30–46.

12. Baldassarre, M. T.; Barletta, V. S.; Caivano, D.; Raguseo, D.; Scalera, M.; Teaching cyber security: The

hack-space integrated model, CEUR Workshop Proceedings, In ITASEC, 2019, 2315.

13. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.-H. Intrusion detection system for automotive Controller

Area Network (CAN) bus system: a review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 184,,

doi:10.1186/s13638-019-1484-3.

14. Carsten, P.; Andel, T.R.; Yampolskiy, M.; McDonald, J.T. In-Vehicle Networks. In Proceedings of the

Proceedings of the 10th Annual Cyber and Information Security Research Conference on - CISR ’15;

Association for Computing Machinery (ACM), 2015; Vol. 06-08-Apri, pp. 1–8.

15. Gmiden, M.; Gmiden, M.H.; Trabelsi, H. An intrusion detection method for securing in-vehicle CAN bus.

In Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic

Control and Computer Engineering (STA); Institute of Electrical and Electronics Engineers (IEEE), 2016;

pp. 176–180.

16. Young, C.; Zambreno, J.; Olufowobi, H.; Bloom, G. Survey of Automotive Controller Area Network

Intrusion Detection Systems. IEEE Des. Test 2019, 36, 48–55, doi:10.1109/mdat.2019.2899062.

17. Qu, X.; Yang, L.; Guo, K.; Ma, L.; Sun, M.; Ke, M.; Li, M. A Survey on the Development of Self-Organizing

Maps for Unsupervised Intrusion Detection. Mob. Networks Appl. 2019, 1–22,

doi:10.1007/s11036-019-01353-0.

18. Yao, X. Q.,Tang, G., & Hu, X. Method for recognizing mechanical status of container crane motor based

on SOM neural network. In IOP Conference Series: Materials Science and Engineering, October 2018; Vol.

435, p. 12009.

19. Wu, Y.; Yan, P.F. A study on structural adapting self-organizing neural network. Acta Electronica Sinica,

1999, 27, 56–59.

20. Wan, Q.; Wang, C.; Feng, Z. Y.; Ye, J.F. Review of K-means clustering algorithm. Electronic Design Eng.

2012, 20, 21–24.

21. Feyereisl, J.; Aickelin, U. Self-Organising Maps in Computer Security. arXiv preprint arXiv:1608.01668,

2016.

Future Internet 2020, 12, 119 23 of 24

22. Ling, T.; Chong, L.; Jingming, X.; Jun, C. Application of Self-organizing Feature Map Neural Network

Based on K-means Clustering in Network Intrusion Detection. Comput. Mater. Contin. 2019, 61, 275–288,

doi:10.32604/cmc.2019.03735.

23. Huai-Bin, W.; Hong-Liang, Y.; Zhi-Jian, X.; Zheng, Y. A Clustering Algorithm Use SOM and K-Means in

Intrusion Detection. In Proceedings of the 2010 International Conference on E-Business and

E-Government; Institute of Electrical and Electronics Engineers (IEEE), 2010; pp. 1281–1284.

24. Dhanabal, L.; Shantharajah, S.P. A Study on NSL-KDD Dataset for Intrusion Detection System Based on

Classification Algorithms. Int. J. Adv. Res. Comput. Commun. Eng. 2015, 4, doi

10.17148/IJARCCE.2015.4696.

25. De La Hoz, E.; De La Hoz, E.; Ortiz, A.; Ortega, J.; Martínez-Álvarez, A. Feature selection by

multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising

maps. Knowledge-Based Syst. 2014, 71, 322–338, doi:10.1016/j.knosys.2014.08.013.

26. Palomo, E.J.; Domínguez, E.; Luque, R.M.; Muñoz, J.; Luque-Baena, R.M. Network Security Using

Growing Hierarchical Self-Organizing Maps. Intelligent Tutoring Systems 2009, 5495, 130–139.

27. Ippoliti, D.; Zhou, X. A-GHSOM: An adaptive growing hierarchical self organizing map for network

anomaly detection. J. Parallel Distrib. Comput. 2012, 72, 1576–1590, doi:10.1016/j.jpdc.2012.09.004.

28. Zhang, Y.; Bu, W.; Su, C.; Wang, L.; Xu, H. Intrusion detection method based on improved growing

hierarchical self-organizing map. Trans. Tianjin Univ. 2016, 22, 334–338, doi:10.1007/s12209-016-2737-4.

29. El-Rewini, Z.; Sadatsharan, K.; Selvaraj, D.F.; Plathottam, S.J.; Ranganathan, P. Cybersecurity challenges

in vehicular communications. Veh. Commun. 2020, 23, 100214, doi:10.1016/j.vehcom.2019.100214.

30. Liang, L.; Ye, H.; Li, G.Y. Toward Intelligent Vehicular Networks: A Machine Learning Framework. IEEE

Internet Things J. 2019, 6, 124–135, doi:10.1109/jiot.2018.2872122.

31. Ye, H.; Liang, L.; Li, G.Y.; Kim, J.; Lu, L.; Wu, M.; Li, Y. Machine Learning for Vehicular Networks: Recent

Advances and Application Examples. IEEE Veh. Technol. Mag. 2018, 13, 94–101,

doi:10.1109/mvt.2018.2811185.

32. Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: perspectives and

challenges. Wirel. Networks 2014, 20, 2481–2501, doi:10.1007/s11276-014-0761-7.

33. Baldassarre, M.T.; Barletta, V.; Caivano, D.; Scalera, M. Privacy Oriented Software Development; Springer

Science and Business Media LLC, 2019; pp. 18–32;.

34. Bezemskij, A.; Loukas, G.; Gan, D.; Anthony, R.J. Detecting Cyber-Physical Threats in an Autonomous

Robotic Vehicle Using Bayesian Networks. In Proceedings of the 2017 IEEE International Conference on

Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE

Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData); Institute of

Electrical and Electronics Engineers (IEEE), 2017; pp. 98–103.

35. Kang, M.-J.; Kang, J.-W. A Novel Intrusion Detection Method Using Deep Neural Network for In-Vehicle

Network Security. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring);

Institute of Electrical and Electronics Engineers (IEEE), 2016; Vol. 2016-July, pp. 1–5.

36. Taylor, A.; Leblanc, S.P.; Japkowicz, N. Anomaly Detection in Automobile Control Network Data with

Long Short-Term Memory Networks. In Proceedings of the 2016 IEEE International Conference on Data

Science and Advanced Analytics (DSAA); Institute of Electrical and Electronics Engineers (IEEE), 2016;

pp. 130–139.

37. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.B.; Wang, Y.; Iqbal, F. Malware Classification with

Deep Convolutional Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on

New Technologies, Mobility and Security (NTMS); Institute of Electrical and Electronics Engineers

(IEEE), 2018; pp. 1–5.

38. Lin, Z.; Shi, Y.; Xue, Z. IDSGAN: Generative Adversarial Networks for Attack Generation against

Intrusion Detection, arXiv preprint arXiv 2018, 1809, 02077. https://arxiv.org/abs/1809.02077.

39. Torres, J.M.; Comesaña, C.I.; García-Nieto, P.J. Review: machine learning techniques applied to

cybersecurity. Int. J. Mach. Learn. Cybern. 2019, 10, 2823–2836, doi:10.1007/s13042-018-00906-1.

40. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural

network. Veh. Commun. 2020, 21, 100198, doi:10.1016/j.vehcom.2019.100198.

41. Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. SAIDuCANT: Specification-Based Automotive

Intrusion Detection Using Controller Area Network (CAN) Timing. IEEE Trans. Veh. Technol. 2020, 69,

1484–1494, doi:10.1109/tvt.2019.2961344.

Future Internet 2020, 12, 119 24 of 24

42. Cook, J. A.; Freudenberg, J. S. Controller Area Network (CAN). EECS461 2008, 1–8.

43. Chen, S.-H.; Lin, C.-H.R. Evaluation of DoS Attacks on Vehicle CAN Bus System. In Proceedings of the

Human Centred Intelligent Systems; Springer Science and Business Media LLC, 2018; pp. 308–314.

44. Barbieri, N. Fuel prices and the invention crowding out effect: Releasing the automotive industry from its

dependence on fossil fuel. Technol. Forecast. Soc. Chang. 2016, 111, 222–234,

doi:10.1016/j.techfore.2016.07.002.

45. Ciaburro, G.; Venkateswaran, B. Neural Networks with R: Smart models using CNN, RNN, deep learning, and

artificial intelligence principles; Packt Publishing Ltd – Livery Place – 35 Livery Street – Birmingham – B3

2PB - UK, 2017; ISBN 978-1-78839-787-2.

46. Akinduko, A.A.; Mirkes, E.M. Initialization of Self-Organizing Maps: Principal Components Versus

Random Initialization. A Case Study. A case study 2012, 3–20.

47. Shamsuddin, S. M.; Zainal, A.; Mohd Yusof, N. Multilevel Kohonen Network Learning For Clustering

Problems, J. Inf. Commun. Technol. 2008, 7, 1–25.

48. Wehrens, R.; Buydens, L.M. Self- and Super-organizing Maps in R : The kohonen Package. J. Stat. Softw.

2007, 21, 1–19,, doi:10.18637/jss.v021.i05.

49. Kohonen, T.; Self-Organizing Maps, Berlin, Heidelberg: Springer Berlin Heidelberg, Germany, 2001; Vol.

30.

50. Wehrens, R.; Kruisselbrink, J. Flexible Self-Organizing Maps in kohonen 3.0. J. Stat. Softw. 2018, 87, 1–18,

doi:10.18637/jss.v087.i07.

51. Vasighi, M.; Kompany-Zareh, M. Classification ability of self organizing maps in comparison with other

classification methods. Commun. Math. Comput. Chem. 2013, 70, 29–44.

52. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based Intrusion Detection System for In-Vehicle Network. In

Proceedings of the 2018 16th Annual Conference on Privacy, Security and Trust (PST); Institute of

Electrical and Electronics Engineers (IEEE), 2018; pp. 1–6.

53. Car-Hacking Dataset - Hacking and Countermeasure Research Lab.” Available online:

http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset. (accessed: 27 November 2019).

54. Zhou, A.; Li, Z.; Shen, Y.; Zhou; Li; Shen Anomaly Detection of CAN Bus Messages Using A Deep Neural

Network for Autonomous Vehicles. Appl. Sci. 2019, 9, 3174, doi:10.3390/app9153174.

55. Nakayama, K.; Matsuo, Y. MIGSOM: A SOM Algorithm for Large Scale Hyperlinked Documents

Inspired by Neuronal Migration. Intelligent Tutoring Systems 2014, 8421, 79–94.

56. Han, K.; Weimerskirch, A.; Shin, K. Automotive Cybersecurity for In-Vehicle Communication, IQT Q.

2014, 6, 22–25.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open

access article distributed under the terms and conditions of the Creative Commons

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

