19 research outputs found

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    A web interface for meta-heuristics based grid schedulers

    Get PDF
    The use of meta-heuristics for designing efficient Grid schedulers is currently a common approach. One issue related to Grid based schedulers is their evaluation under different Grid configurations, such as dynamics of tasks and machines, task arrival, scheduling policies, etc. In this paper we present a web application that interfaces the final user with several meta-heuristics based Grid schedulers. The application interface facilities for each user the remote evaluation of the different heuristics, the configuration of the schedulers as well as the configuration of the Grid simulator under which the schedulers are run. The simulation results and traces are graphically represented and stored at the server and can retrieved in different formats such as spreadsheet form or pdf files. Historical executions are as well kept enabling a full study of use cases for different types of Grid schedulers. Thus, through this application the user can extract useful knowledge about the behavior of different schedulers by simulating realistic conditions of Grid system without needing to install and configure any specific software.Peer ReviewedPostprint (published version

    Hybrid Meta-heuristic Algorithms for Static and Dynamic Job Scheduling in Grid Computing

    Get PDF
    The term ’grid computing’ is used to describe an infrastructure that connects geographically distributed computers and heterogeneous platforms owned by multiple organizations allowing their computational power, storage capabilities and other resources to be selected and shared. Allocating jobs to computational grid resources in an efficient manner is one of the main challenges facing any grid computing system; this allocation is called job scheduling in grid computing. This thesis studies the application of hybrid meta-heuristics to the job scheduling problem in grid computing, which is recognized as being one of the most important and challenging issues in grid computing environments. Similar to job scheduling in traditional computing systems, this allocation is known to be an NPhard problem. Meta-heuristic approaches such as the Genetic Algorithm (GA), Variable Neighbourhood Search (VNS) and Ant Colony Optimisation (ACO) have all proven their effectiveness in solving different scheduling problems. However, hybridising two or more meta-heuristics shows better performance than applying a stand-alone approach. The new high level meta-heuristic will inherit the best features of the hybridised algorithms, increasing the chances of skipping away from local minima, and hence enhancing the overall performance. In this thesis, the application of VNS for the job scheduling problem in grid computing is introduced. Four new neighbourhood structures, together with a modified local search, are proposed. The proposed VNS is hybridised using two meta-heuristic methods, namely GA and ACO, in loosely and strongly coupled fashions, yielding four new sequential hybrid meta-heuristic algorithms for the problem of static and dynamic single-objective independent batch job scheduling in grid computing. For the static version of the problem, several experiments were carried out to analyse the performance of the proposed schedulers in terms of minimising the makespan using well known benchmarks. The experiments show that the proposed schedulers achieved impressive results compared to other traditional, heuristic and meta-heuristic approaches selected from the bibliography. To model the dynamic version of the problem, a simple simulator, which uses the rescheduling technique, is designed and new problem instances are generated, by using a well-known methodology, to evaluate the performance of the proposed hybrid schedulers. The experimental results show that the use of rescheduling provides significant improvements in terms of the makespan compared to other non-rescheduling approaches

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Implementing Industry 4.0 in SMEs

    Get PDF
    This open access book addresses the practical challenges that Industry 4.0 presents for SMEs. While large companies are already responding to the changes resulting from the fourth industrial revolution , small businesses are in danger of falling behind due to the lack of examples, best practices and established methods and tools. Following on from the publication of the previous book ‘Industry 4.0 for SMEs: Challenges, Opportunities and Requirements’, the authors offer in this new book innovative results from research on smart manufacturing, smart logistics and managerial models for SMEs. Based on a large scale EU-funded research project involving seven academic institutions from three continents and a network of over fifty small and medium sized enterprises, the book reveals the methods and tools required to support the successful implementation of Industry 4.0 along with practical examples
    corecore