
A Web Interface for Meta-Heuristics Based Grid Schedulers

Fatos Xhafa
Department of Languages
and Informatics Systems

Technical University of Catalonia, Spain
Email: fatos@lsi.upc.edu

Joanna Kołodziej
Department of Mathematics

and Computer Science
University of Bielsko-Biała, Poland

Email: jkolodziej@ath.bielsko.pl

Marcin Bogdański
Faculty of Mechanical Engineering

and Computer Science
University of Bielsko-Biała, Poland

Email: marcin.bogdanski@gmail.com

Abstract—The use of meta-heuristics for designing efficient
Grid schedulers is currently a common approach. One issue
related to Grid based schedulers is their evaluation under
different Grid configurations, such as dynamics of tasks and
machines, task arrival, scheduling policies, etc. In this paper
we present a web application that interfaces the final user with
several meta-heuristics based Grid schedulers. The application
interface facilities for each user the remote evaluation of
the different heuristics, the configuration of the schedulers
as well as the configuration of the Grid simulator under
which the schedulers are run. The simulation results and
traces are graphically represented and stored at the server
and can retrieved in different formats such as spreadsheet
form or pdf files. Historical executions are as well kept
enabling a full study of use cases for different types of Grid
schedulers. Thus, through this application the user can extract
useful knowledge about the behavior of different schedulers by
simulating realistic conditions of Grid system without needing
to install and configure any specific software.

Keywords-Web interface, Grid scheduling, Simulation, Meta-
heuristic.

I. INTRODUCTION

Grid computing has emerged as a wide area distributed
platform for solving the large-scale problems in science,
engineering, etc. Computational Grid involves the combi-
nation of many computing resources into a network for
the execution of computational tasks. The resources are
distributed across multiple organizations, administrative do-
mains having their own access, usage policies and local
schedulers. The tasks scheduling and the effective manage-
ment of the resources in such systems are complex and
therefore, demands sophisticated tools for analyzing the
algorithms performances before applying them to the real
systems.

Simulation seems to be the most suitable way to analyze
scheduling algorithms in large-scale distributed dynamic
systems like Grid environment. It simplify the study of
schedulers performances and avoid the overhead of co-
ordination of the resources, which usually happens in the
real-life Grid scenarios. Simulation is also effective in work-
ing with very large problems that require involvement of a
large number of active users and resources, which is usually
very hard to coordinate and build for real-life approaches.
Moreover, in order to make useful the analysis of the

performance and parameters tuning of different scheduling
algorithms, a considerable number of independent runs is
needed to ensure significant statistical results, which can be
easily realized with Grid simulator.

Despite the work on the Grid simulation packages, there
are still few research works on development of full-featured
interfaces for Grid simulation packages. As a matter of fact,
current Grid simulation packages are run through command
line. In this work we propose a user-friendly Web interface
to remote users and benefit from easy use features of
the interface for running the HyperSim-G simulator. The
proposed Web application, namely WEBGRID1, facilitates
the evaluation of the different scheduling heuristics, the
configuration of the schedulers as well as the configuration
of the Grid simulator, under which the schedulers are run.
The simulation results and traces are graphically represented
and stored at the server and can retrieved in different formats
such as spreadsheet form or pdf files. Historical executions
are stored in the system, which enables a full study of use
cases for different types of Grid schedulers.

The rest of the paper is organized as follows. In Sec-
tion II we highlight the Grid scheduling problems types and
selected resolution methods. The HyperSim-G simulator as
well as its integration with various schedulers are briefly
described in Section III. In Section IV we present the main
aspects of the Web application architecture and show its
application in solving a specified instance of Grid scheduling
problem. Finally, we conclude this work in Section V.

II. SCHEDULING IN GRID SYSTEMS

A. Scheduling Problems

The purpose of the schedulers is to efficiently and opti-
mally allocate tasks originated by applications to a set of
available resources. In general, both tasks and resources
could be dynamically added/dropped to/from the system.
Scheduling in Grids remains a challenging NP-complete
global optimization problem because of the large-scale het-
erogeneous structure of the system, and the existence of

1The application is available at the following Web page:
http://weboptserv.lsi.upc.edu/WEBGRID/

2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-4237-9/10 $26.00 © 2010 IEEE

DOI 10.1109/3PGCIC.2010.67

405

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185529825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

local job dispatchers and resource owners geographically
dispersed in different autonomous administrative domains.

The type of the scheduling problem in Grids is specified
by the setting up the main scheduling attributes presented in
Table I.

One of the most useful version of the scheduling problem
is the Independent Job Scheduling, in which tasks are
processed in batch mode. The main characteristics of this
kind of scheduling in distributed systems is the requirement
over tasks, arranged in batches, to be executed independently
on the resources. Independent scheduling is very suitable
to address in Grid systems, which are parallel in nature.
In particular, independent batch especially in the case of
the verification of the security assurance condition. The
absence of dependencies among tasks makes it easier to
pre-empty or re-schedule tasks. The independent scheduling
problem formulation is usually based on the Expected Time
to Compute (ETC) matrix model, in which an instance is
defined by the following input data:

• a number of tasks to be scheduled (size of the batch)
• a number of resources
• the workload of tasks
• the computing capacity of resources
• the ready times indicating when machines will have

finished the previously assigned tasks.
• the ETC matrix of size nb tasks × nb machines,

where ETC[j][m] is the value of the expected time
to compute task j in machine m.

The detailed destription of the types of scheduling prob-
lems in Grids can be found in [16].

The independent task scheduling is usually defined as
a four-objective optimization problem, with the makespan,
flowtime, resource utilization and matching proximity as
the scheduling criteria. In the multi-objective optimization
two fundamental models are used, namely hierarchical and
simultaneous. In the hierarchical case, the objectives are
sorted according to their importance in the model and the
optimization process starts from the most important criterion
(which is usually makespan). In the simultaneous method all
objectives are optimized simultaneously.

Recently in [7] and [8] the independent batch scheduling
problem is addressed as a problem of optimal resource
utilization from the Grid users’ perspective under additional
scheduling criteria: security and task abortion. The Grid
scheduling problem is formalized as a non-zero sum game
of the Grid users, who try to find the best assignment of
their batch of tasks to resources. Two scenarios of the users’
game are applied in this approach: (a) non-cooperative
symmetric game, in which it is assumed that Grid users
cannot cooperate with each other and (b) a Stackelberg
game, which is an asymmetric two-level game, where there
is one player (Leader), who has a privileged access to
resources.

Each game has been translated into a hierarchical bi-
level optimization problem. The joint cost of playing the
game ‘paid’ by the users is defined as the objective for this
problem. The cost of the particular user can be defined as
the sum of four following componets2: (a) Tasks execution
cost, which is calculated as an average completion time of
the player’s tasks on machines, to which they are allocated;
(b) Resource utilization cost, which is calculated for each
Grid user as an average idle time of machines on which his
tasks are executed; (c) Security cost, which is defined as
an average wasted time in the result of machine failures,
because of the high security requirements and (d) Task
abortion cost, which is expressed as an average wasted time
in the result of tasks abortion on machines, because of Grid
dynamics or special policies of the resource owners.

B. Resolution Methods

Heuristic methods are usually applied as the effective tools
in Grid scheduling, which still remains challenging in the
global optimization because of its complexity. The most
commonly used heuristics are ad hoc, local search-based,
population-based and their various hybrids.

Ah hoc Methods: These methods are usually used
for single-objective optimization. They are simple and dis-
tinguished from their low computational cost, thus, they
are also very useful in generating the initial solutions for
population-based schedulers. The Ad-hoc heuristics could
be grouped into an immediate mode heuristics and batch
mode heuristics.

The Immediate Mode Heuristics group includes, among
others, the following schedulers:

• Opportunistic Load Balancing (OLB), where a task is
assigned to the earliest idle machine without taking into
account its execution time in the machine.

• Minimum Completion Time (MCT), in which a task is
assigned to the machine yielding the earliest completion
time.

• Minimum Execution Time (MET), in which a task is
assigned to the machine having the smallest execution
time for that task.

The Batch Mode Heuristics group contains, among others,
the following methods:

• Min-Min: In this method for each task the machine
yielding the earliest completion time is computed, then
the task with the shortest completion time is selected
and mapped to the corresponding machine.

• Max-Min: This method differs to the Min-Min in the
final selection of the task with the latest completion
time.

2Each component of the players’ cost functions can be activated or not
by the web application user. It means that the user can compose his own
versions of the players’ cost functions using the components needed to
solve the problem specified in his scenario.

406

Table I
MAIN ATTRIBUTES OF GRID SCHEDULING

Attribute Type Brief description

Environment
Static The number of resources is fixed and all of them are available
Dynamic The availability of the resources can dynamically change

Grid Architecture
Centralized The schedulers have a full knowledge and control over re-

sources
Decentralized No central entity controlling the resources, the local schedulers

are responsible for managing and maintaining the tasks
Hierarchical The coordination of different schedulers at certain levels, the

full knowledge of resources available for the schedulers at the
lowest level

Task Processing Policy
Immediate Tasks are scheduled as soon as they enter in the system
Batch Available tasks are sampled into a batch and the scheduler

assign the batch to the resources

Tasks Interrelations
Independency Tasks are scheduled independently of each other
Dependency There are precedence constraints among tasks

• Sufferage: The main idea of this method is to assign to
a given machine a task, which would “suffer’ more if
it were assigned to any other machine.

• Relative Cost: In allocating tasks to machines, this
method takes into account both the load balancing of
machines and the execution times of tasks in machines.

• Longest Job to Fastest Resource - Shortest Job to
Fastest Resource (LJFR-SRFR): This method tries to
simultaneously minimize both makespan and flowtime
values: LJFR minimizes makespan and SJFR minimizes
flowtime.

A comparative evaluation of the immediate, batch and ad
hoc methods has been performed in [12].

Local search methods: These methods explore the
optimization domain by starting from an initial solution and
constructing a path in solution space. The most effective
local-based Grid scheduler is Tabu Search (TS) due to its
mechanisms of tabu lists, aspiration criteria, intensification
and diversification (see [13]). TS can be easily hybridized
with more sophisticated schedulers (like GAs) to improve
their efficiency.

Population-based heuristics: In this methods a popula-
tion of individuals, which is evaluated, crossed and mutated,
is used to explore the solution space for the problem along
a number of generations. The most popular in this group of
methods are Genetic Algorithms (GA), addressed by many
authors [11], [15]. Recently, a multi-population hierarchical
GA-based scheduler has been proposed [6]. In this method
a set of dependent genetic processes is executed simultane-
ously. Each process creates a branch in the tree structure of
the whole strategy, by using the GA-based scheduler with
different settings. The search accuracy in a given branch
(expressed as the branch degree parameter) depends on the
mutation probability set for the scheduler activated in this
branch (the higher mutation prob.–the lower accuracy).

For solving game-theoretical scheduling a GA-based hy-
brid, namely GA-PMCT algorithm, has been defined [7].
In this method each component of the hybrid, i.e. GA and

PMCT, operates as a scheduler at the global and players’
levels, respectively. The main scheduling mechanism at
the global level is defined as a GA-based scheduler. At
the players’ level the Players Minimum Completion Time-
(PMCT) has been implemented, which is a modification
of Minimum Completion Time (MCT). This component is
responsible for the optimization of players’ cost functions
(separately for each player) [8].

III. INTEGRATION OF HYPERSIM-G GRID SIMULATOR

WITH HEURISTIC-BASED SCHEDULERS

Using the simulators for the evaluation the Grid sched-
ulers is feasible, mainly because of high complexity of
the Grid environment. Many simulation packages, useful
in the design and analysis of scheduling algorithms in
Grid systems, have been recently proposed in the literature.
Among many others, MicroGrid [10], ChicSim [9] and Grid-
Sim [2] seem to be the most popular in the domain. Some of
them are integrated with the Grid portals in order to provide
the users with an easy access to the simulation packages
as well as the online monitoring of the scheduling process.
A Web-based platform for simulating scheduling methods in
Grid computing with Grid-Sim package was proposed in [5].

We used in our approach the HyperSim-G Grid simula-
tor [14]. It extends the open source, discrete event simulation
package HyperSim [4]. The main flow of HyperSim-G
linked to the scheduling can be briefly described as follows.
When a scheduling event is triggered, the simulator creates
an instance of the scheduling problem, based on the current
tasks and available machines pools. The instance contains:
(a) workload vector of tasks; (b) computing capacity of
machines; (c) prior load of machines and (d) the ETC
matrix. The defined instance is then passed on to the
selected scheduler which computes the planning of tasks to
machines. Finally, the scheduler sends the planning back to
the simulator, which makes the allocation and re-schedules
any tasks assigned to machines not available in the system.
In HyperSim-G the scheduling algorithms are completely

407

Table II
SETTING FOR THE GRID SIMULATOR FOR GENERATING STATIC

INSTANCES IN SMALL GRID ENVIRONMENT

Init. number of hosts 32
Max. hosts 32
Min. hosts 32
Resource capacities (in MIPS) N(1000, 175)
Add host c(9999999999)
Delete host c(9999999999)
Total number of tasks 512
Activation Resource and time interval(250000)
Scheduler strategy GA Scheduler(25, s)
Reschedule True
Workload of tasks N(250000000, 43750000)
Interarrival c(9999999999)
Host selection All
Task selection All
Number of runs 30

separated from the simulator, so the knowledge of the
implementation of the specific scheduling methods is not
needed.

Distributions: A number of distributions, including
Constant distribution, Normal distribution, Uniform distri-
bution, Exponential distribution, Zipf distribution, Triangle
distribution and Trace distribution are implemented in the
simulator. They are useful to model different scenarios in
the Grid system, such as task arrival, machines joining
or leaving the system, etc. In particular, by adequately
choosing deviation values, we can model a wide range
of Grid systems in terms of task heterogeneity, machine
heterogeneity, consistency of computing, etc.

Use of Grid schedulers: The performance of each
type of scheduler can be analyzed in two types of Grid
environment: static and dynamic. In the static case, the
number of tasks and the number of machines are kept
constant during the simulation, while, in the dynamic case,
the numbers of tasks and machines may vary over time.
To exemplify this, in both cases we consider four typical
Grid size scenarios for the experimental study: SMALL (32
hosts/512 tasks), MEDIUM (64 hosts/1024 tasks), LARGE
(128 hosts/2048 tasks), and VERY LARGE (256 hosts/4096
tasks). The user can specify his own scenario changing
the number of tasks and machines. The capacity of the
resources and the workload of tasks are randomly generated
by a normal distribution. It is also assumed that all tasks
submitted to the system must be scheduled and all machines
in the system can be used.

The simulator is highly parameterized in order to simulate
the real-life Grid systems. An example of the simulator
setting in the case of static scheduling in SMALL Grid
environment is presented in Table II. In the setting, we have
used constant distribution for the static case.

The number of hosts initially activated in the Grid en-
vironment is defined by the parameter Init. number of
hosts. The parameters Max.hosts and Min.hosts specify the
range of changes in the number of active hosts during

the simulation process3. The frequency of appearing and
disappearing resources is defined by given by Add host and
Delete host, according to constant distributions for the static
case, and normal distributions in dynamic case. The initial
number of tasks is given by Init. tasks, which is kept constant
in the static case. New tasks in the dynamic scheduling can
arrive at the system with the frequency Interarrival until
Total tasks is reached. The Activation parameter establishes
the activation policy (it is usually modeled by an exponential
distribution in the dynamic case). The assigned tasks which
have not been executed yet cannot be rescheduled if the
value of the boolean parameter Reschedule is false. The
Scheduler strategy parameter denotes the Scheduler type.
Its value GA Scheduler(25, s) means that the simulator
runs the GA-based scheduler for 25 seconds in simultaneous
optimization mode4.

For specified input parameters, the simulator outputs the
values of makespan, flowtime, total potential time, expressed
as the sum of available times of machines, total idle time
of machines and total busy time of machines, resource
utilization, etc. HyperSim-G can be run in many independent
runs mode, in which the output results are averaged over
the number of independent runs, and the standard deviation
and confidence interval (95%) are computed. The detailed
description of HyperSim-G structure and parametrization
can be found in [14]. The simulation results and traces are
graphically represented and stored at the server. They can
retrieved in different file formats such as spreadsheet form
or pdf files.

IV. WEB INTERFACE FOR HEURISTIC-BASED

SCHEDULERS

The proposed Web application is based on the standard
Client-Server architecture and LAMP (Linux + Apache +
MySQL+ PHP) implementation. The general structure of the
application is presented in Fig. 1.

The user plays role of the client of the application. He
submits his requests by filling in the formulaires in order to
specify the scheduling attributes, the general parameters of
the simulator and the parameters of selected scheduler. The
user’s requests are processed by the “Management” module
and then managed as a queue by the Condor system [3] in
order to allow the multiple simultaneous executions of the
application and simulator by many users and to monitor the
state of the submitted simulations. The application admin-
istrator is able to manage users, monitor executions, set up
some global parameters (maximum number of executions,
maximum number of hosts, tasks) etc.

To run the simulator each user must firstly register in
the system by selecting the ‘Register’ option on the main

3In the case of dynamic scheduling, they are different from the initial
number of hosts.

4Similarly, the parameter h can be used to indicate hierarchic mode
optimization, e.g. GA Scheduler(25, h).

408

Figure 1. The architecture of Web application.

page of the application. Registering is also necessary for
checking and analysis (by the particular user as well as by
the administrator) of the current and previous simulation
results. The results are graphically represented, they can
be exported as a spreadsheet or pdf document. All users’
account details and the results of his simulation are stored
in the application database.

A. Experimental study example: Evaluation of the GA-based
scheduler in the SMALL Grid scenario

In this section we show by example the use of the Web
application in the evaluation of GA-based schedulers in the
SMALL Grid scenario. Once logged into the application
(after selecting the ‘Login Simulator’ option on the main
page), through the option of New execution the user can set
the simulator parameters specified in Table II by filling in
the formulaire ‘Simulator parameters’. The snapshot of this
formulaire is presented in Fig. 2.

The user can the select the type of the scheduler (e.g. GA
scheduler) and confirm parameters setting by pressing the
‘Next’ button. It leads the user to the ’Genetic Algorithm
parameters’ formulaire, the snapshot of which is presented
in Fig. 3. The algorithm parameters values in our experiment
are specified in Table III.

The simulation is activated by pressing the ‘Run’ button
on the last form. By selecting View result option, the user
can consult the simulation result as well as the corresponding
trace of the simulation (see Fig. 4). The table with experi-
mental results on the Web page reports the averaged, maxi-
mal and minimal values of the main schedulers performance
metrics achieved in the 30 independent runs of the simulator

Figure 2. The snapshot of the simulator parameters formulaire.

Figure 3. The snapshot of the Genetic Algorithm parameters formulaire.

under the same configuration of scheduler’s and simulator’s
parameters. The results of the simulations as well as their
traces can be graphically represented (see Fig. 5).

V. CONCLUSIONS AND FUTURE WORK

In this work we have presented a Web interface for
the HyperSim-G Grid simulator, which allows the user to
select, through a user-friendly interface different scheduler
types. The scheduler types include ad hoc, local search

Table III
GA SETTINGS FOR STATIC SCHEDULING IN SMALL GRID SCENARIO

Parameter
evolution steps 2560
population size 60
intermediate pop. 58
selection method LinearRanking
crossover method CX
cross probab. 0.8
mutation method Rebalancing
mutation probab. 0.2
replace only if better false
replace generational false
initialization LJFR-SJFR

409

Figure 4. The snapshot of the simulation results.

Figure 5. The snapshot of the graphical representation of the simulation
results.

and population based schedulers. The Web application is
meant to facilitate the experimental study and analysis of
the performance of Grid scheduling using various meta-
heuristics as schedulers. Additionally, the users can trace
the state of the simulations, export the simulation results
and make graphical representation of the results, which can
as well be received by email. The application is based
on Condor queueing system, which enable the multiple
simultaneous runs of the simulator by many users with fast
response time. We have exemplified the usefulness of the
approach for the experimental evaluation of Grid schedulers
through a step-by-step procedure for the case of the GA-
based scheduler in several Grid scenarios.

REFERENCES

[1] S. Ali, H.J. Siegel, M. Maheswaran and D. Hensgen: “Task ex-
ecution time modeling for heterogeneous computing systems”,
Proceedings of Heterogeneous Computing Workshop, 2000, pp.
185–199.

[2] R. Buyya and M.M. Murshed: “Grid-Sim: a toolkit for the
modeling and simulation of distributed resource management

and scheduling for grid computing”, Concurrency and Com-
putation: Practice and Experience, 14(13-15), 2002, pp. 1175-
1220.

[3] Condor High Throughput Computing System:
http://www.cs.wisc.edu/condor/

[4] http://opensimulator.org/wiki/Hypergrid

[5] O. Kang and S. Kang: “Web-based Dynamic Scheduling Plat-
form for Grid Computing”, International Journal of Computer
Science and Network Security, 6(5), 2006, pp. 67-75.

[6] J. Kołodziej, F. Xhafa and Ł. Kolanko: “Hierarchic Genetic
Scheduler of Independent Jobs in Computational Grid Envi-
ronment”, Proc. of 23rd ECMS, Madrid, 9-12.06.2009, in J.
Otamendi, A. Bargieła, J.L. Montes and L.M. Doncel Pedrera
eds., IEEE Press, Dudweiler, Germany, 2009, pp. 108–115.

[7] J. Kołodziej and F. Xhafa: “A Game-Theoretic and Hybrid
Genetic meta-heuristic Model for Security-Assured Scheduling
of Independent Jobs in Computational Grids”, Proc. of CISIS
2010, Cracow, 15-18.02.2010, in L. Barolli, F. Xhafa and S.
Venticinque eds., IEEE Press, , USA, 2010, pp. 93–100.

[8] J. Kołodziej, F. Xhafa and M. Bogdański: “Secure and Task
Abortion Aware GA-based Hybrid Metaheuristics for Grid
Scheduling”, Accepted for publication in Proc. of PPSN XI,
September 10-15, 2010, Cracow, Poland, LNCS, Springer Vlg.

[9] K. Ranganathan and I. Foster: “Simulation studies of compu-
tation and data scheduling algorithms for data grids”, J. Grid
Comput., 1(1), 2003, pp. 53-62.

[10] H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,
K. Taura, and A. Chien: “The microgrid: a scientific tool for
modeling computational grids”, Journal of Sci. Program., 8(3),
2000, IOS Press, pp. 127-141.

[11] F. Xhafa and A. Abraham: “Meta-heuristics for Grid Schedul-
ing Problems”. In Meta-heuristics for Scheduling in Distributed
Computing Environments, Chapter 1, Series Studies in Com-
putational Intelligence, Springer Vlg., 2009, pp. 1–37.

[12] F. Xhafa, L. Barolli and A. Durresi: “Batch Mode Schedulers
for Grid Systems”. International Journal of Web and Grid
Services, 3(1), 2007, 19–37,.

[13] F. Xhafa, J. Carretero, E. Alba, B. Dorronsoro: “Tabu
Search Algorithm for Scheduling Independent Jobs in Com-
putational Grids”, Computer And Informatics Journal, special
issue on “Intelligent Computational Methods”, J.Burguillo-
Rial, J.Kołodziej and L. Nolle eds., 28(2), 2009, pp 237–249.

[14] F. Xhafa, J. Carretero, L. Barolli and A. Durresi: “Re-
quirements for an Event-Based Simulation Package for Grid
Systems”. J. of Interconnection Networks, World Sci. Pub.,
8(2), 2007, pp. 163–178.

[15] F. Xhafa, J. Carretero, A. Abraham: “Genetic Algorithm
Based Schedulers for Grid Computing Systems”. International
J. of Innovative Computing, Information and Control, (5),
2007, pp. 1–19.

[16] Xhafa, F., Abraham, A.: “Computational models and heuristic
methods for Grid scheduling problems”, Future Generation
Computer Systems, 26, 2010, pp. 608–621.

410

