3,184 research outputs found

    Impact of malicious node on secure incentive based advertisement distribution (SIBAD) in VANET

    Get PDF
    Last decade has seen an increasing demand for vehicle aided data delivery. This data delivery has proven to be beneficial for vehicular communication. The vehicular network provisions safety, warning and infotainment applications. Infotainment applications have attracted drivers and passengers as it provides location based entertainment services, a value add to the traveling experience. These infotainment messages are delivered to the nearby vehicles in the form of advertisements. For every advertisement disseminated to its neighboring vehicle, an incentive is awarded to the forwarder. The incentive based earning foresee a security threat in the form of a malicious node as it hoards the incentives, thus are greedy for earning incentives. The malicious behavior of the insider has an adverse effect on the incentive based advertisement distribution approach. In this paper, we have identified the malicious nodes and analyzed its effect on incentive based earning for drivers in vehicular networks. © 2017 IEEE

    Security and privacy issues in some special-puropse networks

    Get PDF
    This thesis is about providing security and privacy to new emergent applications which are based on special-purpose networks. More precisely, we study different aspects regarding security and privacy issues related to sensor networks, mobile ad hoc networks, vehicular ad hoc networks and social networks.Sensor networks consist of resource-constrained wireless devices with sensor capabilities. This emerging technology has a wide variety of applications related to event surveillance like emergency response, habitat monitoring or defense-related networks.Ad hoc networks are suited for use in situations where deploying an infrastructure is not cost effective or is not possible for any other reason. When the nodes of an ad hoc network are small mobile devices (e.g. cell phones or PDAs), such a network is called mobile ad hoc network. One of many possible uses of MANETs is to provide crisis management services applications, such as in disaster recovery, where the entire communication infrastructure is destroyed and reestablishing communication quickly is crucial. Another useful situation for MANETs is a scenario without fixed communication systems where there is the need for any kind of collaborative computing. Such situation can occur in both business and military environments.When the mobile nodes of a MANET are embedded in cars, such a network is called Vehicular Ad hoc Network (VANET). This kind of networks can be very useful to increase the road traffic safety and they will be deployed for real use in the forthcoming years. As a proof of that, eight important European vehicle manufacturers have founded the CAR 2 CAR Communication Consortium. This non-profit organisation is dedicated to the objective of further increasing traffic safety and efficiency by means of inter-vehicle communications.Social networks differ from the special-purpose networks commented above in that they are not physical networks. Social networks are applications that work through classic networks. They can be defined as a community of web users where each user can publish and share information and services. Social networks have become an object of study both in computer and social sciences, with even dedicated journals and conferences.The special-purpose networks described above provide a wide range of new services and applications. Even though they are expected to improve the society in several ways, these innovative networks and their related applications bring also security and privacy issues that must be addressed.This thesis solves some security and privacy issues related to such new applications and services. More specifically, it focuses on:·Secure information transmission in many-to-one scenarios with resource-constrained devices such as sensor networks.·Secure and private information sharing in MANETs.·Secure and private information spread in VANETs.·Private resource access in social networks.Results presented in this thesis include four contributions published in ISI JCR journals (IEEE Transactions on Vehicular Technology, Computer Networks (2) and Computer Communications) and two contributions published in two international conferences (Lecture Notes in Computer Science).Esta tesis trata diversos problemas de seguridad y privacidad que surgen al implantar en escenarios reales novedosas aplicaciones basadas en nuevos y emergentes modelos de red. Estos nuevos modelos de red difieren significativamente de las redes de computadores clásicas y son catalogadas como redes de propósito especial. Específicamente, en este trabajo se estudian diferentes aspectos relacionados con la seguridad de la información y la privacidad de los usuarios en redes de sensores, redes ad hoc móviles (MANETs), redes ad hoc vehiculares (VANETs) y redes sociales.Las redes de sensores están formadas por dispositivos inalámbricos muy limitados a nivel de recursos (capacidad de computación y batería) que detectan eventos o condiciones del entorno donde se instalan. Esta tecnología tiene una amplia variedad de aplicaciones entre las que destacan la detección de emergencias o la creación de perímetros de seguridad. Una MANET esta formada por nodos móviles conectados entre ellos mediante conexiones inalámbricas y de forma auto-organizada. Este tipo de redes se constituye sin la ayuda de infraestructuras, por ello son especialmente útiles en situaciones donde implantar una infraestructura es inviable por ser su coste demasiado elevado o por cualquier otra razón. Una de las muchas aplicaciones de las MANETs es proporcionar servicio en situaciones críticas (por ejemplo desastres naturales) donde la infraestructura de comunicaciones ha sido destruida y proporcionar conectividad rápidamente es crucial. Otra aplicación directa aparece en escenarios sin sistemas de comunicación fijos donde existe la necesidad de realizar algún tipo de computación colaborativa entre diversas máquinas. Esta situación se da tanto en ámbitos empresariales como militares.Cuando los nodos móviles de una MANET se asocian a vehículos (coches, camiones.), dicha red se denomina red ad hoc vehicular o VANET. Este tipo de redes pueden ser muy útiles para incrementar la seguridad vial y se espera su implantación para uso real en los próximos años. Como prueba de la gran importancia que tiene esta tecnología, los ocho fabricantes europeos más importantes han fundado la CAR 2 CAR Communication Consortium. Esta organización tiene como objetivo incrementar la seguridad y la eficiencia del tráfico mediante el uso de comunicaciones entre los vehículos.Las redes sociales se diferencian de las redes especiales descritas anteriormente en que éstas no son redes físicas. Las redes sociales son aplicaciones que funcionan a través de las redes de computadores clásicas. Una red de este tipo puede ser definida como una comunidad de usuarios web en donde dichos usuarios pueden publicar y compartir información y servicios. En la actualidad, las redes sociales han adquirido gran importancia ofreciendo un amplio abanico de posibilidades a sus usuarios: trabajar de forma colaborativa, compartir ficheros, búsqueda de nuevos amigos, etc.A continuación se resumen las aplicaciones en las que esta tesis se centra según el tipo de red asociada:·Transmisión segura de información en escenarios muchos-a-uno (múltiples emisores y un solo receptor) donde los dispositivos en uso poseen recursos muy limitados. Este escenario es el habitual en redes de sensores.·Distribución de información de forma segura y preservando la privacidad de los usuarios en redes ad hoc móviles.·Difusión de información (con el objeto de incrementar la seguridad vial) fidedigna preservando la privacidad de los usuarios en redes ad hoc vehiculares.·Acceso a recursos en redes sociales preservando la privacidad de los usuarios. Los resultados de la tesis incluyen cuatro publicaciones en revistas ISI JCR (IEEE Transactions on Vehicular Technology, Computer Networks (2) y Computer Communications) y dos publicaciones en congresos internacionales(Lecture Notes in Computer Science)

    Secure Authentication and Privacy-Preserving Techniques in Vehicular Ad-hoc NETworks (VANETs)

    Get PDF
    In the last decade, there has been growing interest in Vehicular Ad Hoc NETworks (VANETs). Today car manufacturers have already started to equip vehicles with sophisticated sensors that can provide many assistive features such as front collision avoidance, automatic lane tracking, partial autonomous driving, suggestive lane changing, and so on. Such technological advancements are enabling the adoption of VANETs not only to provide safer and more comfortable driving experience but also provide many other useful services to the driver as well as passengers of a vehicle. However, privacy, authentication and secure message dissemination are some of the main issues that need to be thoroughly addressed and solved for the widespread adoption/deployment of VANETs. Given the importance of these issues, researchers have spent a lot of effort in these areas over the last decade. We present an overview of the following issues that arise in VANETs: privacy, authentication, and secure message dissemination. Then we present a comprehensive review of various solutions proposed in the last 10 years which address these issues. Our survey sheds light on some open issues that need to be addressed in the future

    SMART: A Secure Multi-Layer Credit Based Incentive Scheme for Delay-Tolerant Networks

    Get PDF

    Security Issues in Vehicular Ad Hoc Networks

    Get PDF

    CENTRALIZED SECURITY PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSN) is an exciting new technology with applications in military, industry, and healthcare. These applications manage sensitive information in potentially hostile environments. Security is a necessity, but building a WSN protocol is difficult. Nodes are energy and memory constrained devices intended to last months. Attackers are physically able to compromise nodes and attack the network from within. The solution is Centralized Secure Low Energy Adaptive Clustering Hierarchy (CSLEACH). CSLEACH provides security, energy efficiency, and memory efficiency. CSLEACH takes a centralized approach by leveraging the gateways resources to extend the life of a network as well as provide trust management. Using a custom event based simulator, I am able to show CSLEACH\u27s trust protocol is more energy efficient and requires less memory per node than Trust-based LEACH (TLEACH). In terms of security, CSLEACH is able to protect against a wide range of attacks from spoofed messages to compromised node attacks and it provides confidentiality, authentication, integrity and freshness

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    A Secure Business Framework for File Purchasing Application in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are gaining growing interest from both industry and academia. Driven by road safety requirements, the car manufacturers, transportation authorities and communications standards organizations are working together to make a quantum step in terms of vehicular information technology (IT) by equipping the vehicles with sensors, on-board processing and wireless communication modules. VANETs are composed of OBUs (On Board Units) and RSUs (Road Side Units). The communication standard used in VANETs is called DSRC (Dedicated Short Range Communication). With many essential vehicle components (radios, spectrum, standards, etc) coming into place, a lot of new applications are emerging beside road safety, which support not only safety related services, but also entertainment and mobile Internet access services. In this study, we propose a promising commercial application for file purchasing in VANETs, where a legitimate vehicle can purchase digital files/data through a roadside unit (RSU). Due to the high mobility of the vehicles, the contact period between an RSU and a vehicle could be insufficient to download the complete file. To purchase a digital file, a vehicle purchases a permission key from a fixed RSU and then begins to download the file from the RSU via vehicle-to-RSU communications (V2R) when it is in the transmission range of the RSU. Once the vehicle in the process of downloading a file leaves the transmission range of the RSU, its neighboring vehicles with a piece of the file cooperatively help to complete the file transfer via vehicle-to-vehicle (V2V) communications. Such a commercial file purchasing system can obviously initiate a new application scenario. However, it cannot be put into practice unless the security issues, such as the user privacy, incentives for inter-vehicle cooperation, and the copyright protection for the file content are well addressed. In order to deal with these security issues, we develop a secure business framework for the file purchasing system in this study. In this framework, we preserve the user privacy by using the pseudo identity for each vehicle. We stimulate the cooperation between vehicles through micro-payment incentive mechanism and guarantee the secure payment at the same time. To protect the digital file content from unauthorized distribution, we encrypt the file content before delivery to an end user and use digital fingerprint technology to generate a unique copy for each vehicle after delivery. In a word, we propose a file purchasing application in VANETs and also develop a secure framework for this application

    Endeavouring to be in the good books : awarding DTN network use for acknowledging the reception of bundles

    Get PDF
    This paper describes an incentive scheme for promoting the cooperation, and, therefore, avoiding selfish behaviours, in Delay Tolerant Networks (DTN) by rewarding participant nodes with cryptographic keys that will be required for sending bundles. DTN are normally sparse, and there are few opportunistic contacts, so forwarding of other's bundles can be left out. Moreover, it is difficult to determine the responsible nodes in case of bundle loss. The mechanism proposed in this paper contributes to both problems at the same time. On one hand, cryptographic receipts are generated using time-limited Identity Based Cryptography (IBC) keys to keep track of bundle transmissions. On the other hand, these receipts are used to reward altruistic behaviour by providing newer IBC keys. Finally, these nodes need these IBC keys to send their own bundles. When all nodes behave in a cooperative way, this incentive scheme works as a virtuous circle and achieves a Nash equilibrium, improving very much the network performance in terms of latency. The scheme is not difficult to implement, and it can use an already existing IBC infrastructure used for other purposes in a DTN

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system
    corecore