84 research outputs found

    Improved IDMA for Multiple Access of 5G

    Get PDF
    Due to its good performance and low complexity, IDMA is believed to be an important technique for future radio access (FRA). However, its performances are highly affected by the interleaver design. In this paper we propose two contributions to improve the performance of the IDMA. First, we propose a new interleaver design, called "NLM interleaver", which improves the computational complexity, reduces the bandwidth consumption and the memory requirements of the system, provides the quasi-orthogonal spreading codes and interleavers with a high security and offers infinite sets of codes and interleavers based on only one parameter. Second, we propose a new user grouping algorithm based on the correlation function to improve the resources (Codes, Interleavers). All users are divided into several equal-size groups where each group's data transmitted at the same time, over the same frequencies and the same interleaver. The simulation results indicate that the proposed scheme can achieve better performances compared to the existing algorithms

    Low complexity physical layer security approach for 5G internet of things

    Get PDF
    Fifth-generation (5G) massive machine-type communication (mMTC) is expected to support the cellular adaptation of internet of things (IoT) applications for massive connectivity. Due to the massive access nature, IoT is prone to high interception probability and the use of conventional cryptographic techniques in these scenarios is not practical considering the limited computational capabilities of the IoT devices and their power budget. This calls for a lightweight physical layer security scheme which will provide security without much computational overhead and/or strengthen the existing security measures. Here a shift based physical layer security approach is proposed which will provide a low complexity security without much changes in baseline orthogonal frequency division multiple access (OFDMA) architecture as per the low power requirements of IoT by systematically rearranging the subcarriers. While the scheme is compatible with most fast Fourier transform (FFT) based waveform contenders which are being proposed in 5G especially in mMTC and ultra-reliable low latency communication (URLLC), it can also add an additional layer of security at physical layer to enhanced mobile broadband (eMBB)

    Massive Access in Media Modulation Based Massive Machine-Type Communications

    Full text link
    The massive machine-type communications (mMTC) paradigm based on media modulation in conjunction with massive MIMO base stations (BSs) is emerging as a viable solution to support the massive connectivity for the future Internet-of-Things, in which the inherent massive access at the BSs poses significant challenges for device activity and data detection (DADD). This paper considers the DADD problem for both uncoded and coded media modulation based mMTC with a slotted access frame structure, where the device activity remains unchanged within one frame. Specifically, due to the slotted access frame structure and the adopted media modulated symbols, the access signals exhibit a doubly structured sparsity in both the time domain and the modulation domain. Inspired by this, a doubly structured approximate message passing (DS-AMP) algorithm is proposed for reliable DADD in the uncoded case. Also, we derive the state evolution of the DS-AMP algorithm to theoretically characterize its performance. As for the coded case, we develop a bit-interleaved coded media modulation scheme and propose an iterative DS-AMP (IDS-AMP) algorithm based on successive inference cancellation (SIC), where the signal components associated with the detected active devices are successively subtracted to improve the data decoding performance. In addition, the channel estimation problem for media modulation based mMTC is discussed and an efficient data-aided channel state information (CSI) update strategy is developed to reduce the training overhead in block fading channels. Finally, simulation results and computational complexity analysis verify the superiority of the proposed algorithms in both uncoded and coded cases. Also, our results verify the validity of the proposed data-aided CSI update strategy.Comment: Accepted by IEEE Transactions on Wireless Communications. The codes and some other materials about this work may be available at https://gaozhen16.github.i

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&

    Hybrid generalized non-orthogonal multiple access for the 5G wireless networks.

    Get PDF
    Master of Science in Computer Engineering. University of KwaZulu-Natal. Durban, 2018.The deployment of 5G networks will lead to an increase in capacity, spectral efficiency, low latency and massive connectivity for wireless networks. They will still face the challenges of resource and power optimization, increasing spectrum efficiency and energy optimization, among others. Furthermore, the standardized technologies to mitigate against the challenges need to be developed and are a challenge themselves. In the current predecessor LTE-A networks, orthogonal frequency multiple access (OFDMA) scheme is used as the baseline multiple access scheme. It allows users to be served orthogonally in either time or frequency to alleviate narrowband interference and impulse noise. Further spectrum limitations of orthogonal multiple access (OMA) schemes have resulted in the development of non-orthogonal multiple access (NOMA) schemes to enable 5G networks to achieve high spectral efficiency and high data rates. NOMA schemes unorthogonally co-multiplex different users on the same resource elements (RE) (i.e. time-frequency domain, OFDMA subcarrier, or spreading code) via power domain (PD) or code domain (CD) at the transmitter and successfully separating them at the receiver by applying multi-user detection (MUD) algorithms. The current developed NOMA schemes, refered to as generalized-NOMA (G-NOMA) technologies includes; Interleaver Division Multiple Access (IDMA, Sparse code multiple access (SCMA), Low-density spreading multiple access (LDSMA), Multi-user shared access (MUSA) scheme and the Pattern Division Multiple Access (PDMA). These protocols are currently still under refinement, their performance and applicability has not been thoroughly investigated. The first part of this work undertakes a thorough investigation and analysis of the performance of the existing G-NOMA schemes and their applicability. Generally, G-NOMA schemes perceives overloading by non-orthogonal spectrum resource allocation, which enables massive connectivity of users and devices, and offers improved system spectral efficiency. Like any other technologies, the G-NOMA schemes need to be improved to further harvest their benefits on 5G networks leading to the requirement of Hybrid G-NOMA (G-NOMA) schemes. The second part of this work develops a HG-NOMA scheme to alleviate the 5G challenges of resource allocation, inter and cross-tier interference management and energy efficiency. This work develops and investigates the performance of an Energy Efficient HG-NOMA resource allocation scheme for a two-tier heterogeneous network that alleviates the cross-tier interference and improves the system throughput via spectrum resource optimization. By considering the combinatorial problem of resource pattern assignment and power allocation, the HG-NOMA scheme will enable a new transmission policy that allows more than two macro-user equipment’s (MUEs) and femto-user equipment’s (FUEs) to be co-multiplexed on the same time-frequency RE increasing the spectral efficiency. The performance of the developed model is shown to be superior to the PD-NOMA and OFDMA schemes

    Error Correction For Automotive Telematics Systems

    Get PDF
    One benefit of data communication over the voice channel of the cellular network is to reliably transmit real-time high priority data in case of life critical situations. An important implementation of this use-case is the pan-European eCall automotive standard, which has already been deployed since 2018. This is the first international standard for mobile emergency call that was adopted by multiple regions in Europe and the world. Other countries in the world are currently working on deploying a similar emergency communication system, such as in Russia and China. Moreover, many experiments and road tests are conducted yearly to validate and improve the requirements of the system. The results have proven that the requirements are unachievable thus far, with a success rate of emergency data delivery of only 70%. The eCall in-band modem transmits emergency information from the in-vehicle system (IVS) over the voice channel of the circuit switch real time communication system to the public safety answering point (PSAP) in case of a collision. The voice channel is characterized by the non-linear vocoder which is designed to compress speech waveforms. In addition, multipath fading, caused by the surrounding buildings and hills, results in severe signal distortion and causes delays in the transmission of the emergency information. Therefore, to reliably transmit data over the voice channels, the in-band modem modulates the data into speech-like (SL) waveforms, and employs a powerful forward error correcting (FEC) code to secure the real-time transmission. In this dissertation, the Turbo coded performance of the eCall in-band modem is first evaluated through the adaptive white Gaussian noise (AWGN) channel and the adaptive multi-rate (AMR) voice channel. The modulation used is biorthogonal pulse position modulation (BPPM). Simulations are conducted for both the fast and robust eCall modem. The results show that the distortion added by the vocoder is significantly large and degrades the system performance. In addition, the robust modem performs better than the fast modem. For instance, to achieve a bit error rate (BER) of 10^{-6} using the AMR compression rate of 7.4 kbps, the signal-to-noise ratio (SNR) required is 5.5 dB for the robust modem while a SNR of 7.5 dB is required for the fast modem. On the other hand, the fading effect is studied in the eCall channel. It was shown that the fading distribution does not follow a Rayleigh distribution. The performance of the in-band modem is evaluated through the AWGN, AMR and fading channel. The results are compared with a Rayleigh fading channel. The analysis shows that strong fading still exists in the voice channel after power control. The results explain the large delays and failure of the emergency data transmission to the PSAP. Thus, the eCall standard needs to re-evaluate their requirements in order to consider the impact of fading on the transmission of the modulated signals. The results can be directly applied to design real-time emergency communication systems, including modulation and coding

    Low-resolution ADC receiver design, MIMO interference cancellation prototyping, and PHY secrecy analysis.

    Get PDF
    This dissertation studies three independent research topics in the general field of wireless communications. The first topic focuses on new receiver design with low-resolution analog-to-digital converters (ADC). In future massive multiple-input-multiple-output (MIMO) systems, multiple high-speed high-resolution ADCs will become a bottleneck for practical applications because of the hardware complexity and power consumption. One solution to this problem is to adopt low-cost low-precision ADCs instead. In Chapter II, MU-MIMO-OFDM systems only equipped with low-precision ADCs are considered. A new turbo receiver structure is proposed to improve the overall system performance. Meanwhile, ultra-low-cost communication devices can enable massive deployment of disposable wireless relays. In Chapter III, the feasibility of using a one-bit relay cluster to help a power-constrained transmitter for distant communication is investigated. Nonlinear estimators are applied to enable effective decoding. The second topic focuses prototyping and verification of a LTE and WiFi co-existence system, where the operation of LTE in unlicensed spectrum (LTE-U) is discussed. LTE-U extends the benefits of LTE and LTE Advanced to unlicensed spectrum, enabling mobile operators to offload data traffic onto unlicensed frequencies more efficiently and effectively. With LTE-U, operators can offer consumers a more robust and seamless mobile broadband experience with better coverage and higher download speeds. As the coexistence leads to considerable performance instability of both LTE and WiFi transmissions, the LTE and WiFi receivers with MIMO interference canceller are designed and prototyped to support the coexistence in Chapter IV. The third topic focuses on theoretical analysis of physical-layer secrecy with finite blocklength. Unlike upper layer security approaches, the physical-layer communication security can guarantee information-theoretic secrecy. Current studies on the physical-layer secrecy are all based on infinite blocklength. Nevertheless, these asymptotic studies are unrealistic and the finite blocklength effect is crucial for practical secrecy communication. In Chapter V, a practical analysis of secure lattice codes is provided

    An Error Rate Comparison of Power Domain Non-orthogonal Multiple Access and Sparse Code Multiple Access

    Get PDF
    Non-orthogonal Multiple Access (NOMA) has been envisioned as one of the key enabling techniques to fulfill the requirements of future wireless networks. The primary benefit of NOMA is higher spectrum efficiency compared to Orthogonal Multiple Access (OMA). This paper presents an error rate comparison of two distinct NOMA schemes, i.e., power domain NOMA (PD-NOMA) and Sparse Code Multiple Access (SCMA). In a typical PD-NOMA system, successive interference cancellation (SIC) is utilized at the receiver, which however may lead to error propagation. In comparison, message passing decoding is employed in SCMA. To attain the best error rate performance of PD-NOMA, we optimize the power allocation with the aid of pairwise error probability and then carry out the decoding using generalized sphere decoder (GSD). Our extensive simulation results show that SCMA system with “5×10” setting (i.e., ten users communicate over five subcarriers, each active over two subcarriers) achieves better uncoded BER and coded BER performance than both typical “1×2” and “2×4” PD-NOMA systems in uplink Rayleigh fading channel. Finally, the impacts of channel estimation error on SCMA , SIC and GSD based PD-NOMA and the complexity of multiuser detection schemes are also discussed

    Error Correction For Automotive Telematics Systems

    Get PDF
    One benefit of data communication over the voice channel of the cellular network is to reliably transmit real-time high priority data in case of life critical situations. An important implementation of this use-case is the pan-European eCall automotive standard, which has already been deployed since 2018. This is the first international standard for mobile emergency call that was adopted by multiple regions in Europe and the world. Other countries in the world are currently working on deploying a similar emergency communication system, such as in Russia and China. Moreover, many experiments and road tests are conducted yearly to validate and improve the requirements of the system. The results have proven that the requirements are unachievable thus far, with a success rate of emergency data delivery of only 70%. The eCall in-band modem transmits emergency information from the in-vehicle system (IVS) over the voice channel of the circuit switch real time communication system to the public safety answering point (PSAP) in case of a collision. The voice channel is characterized by the non-linear vocoder which is designed to compress speech waveforms. In addition, multipath fading, caused by the surrounding buildings and hills, results in severe signal distortion and causes delays in the transmission of the emergency information. Therefore, to reliably transmit data over the voice channels, the in-band modem modulates the data into speech-like (SL) waveforms, and employs a powerful forward error correcting (FEC) code to secure the real-time transmission. In this dissertation, the Turbo coded performance of the eCall in-band modem is first evaluated through the adaptive white Gaussian noise (AWGN) channel and the adaptive multi-rate (AMR) voice channel. The modulation used is biorthogonal pulse position modulation (BPPM). Simulations are conducted for both the fast and robust eCall modem. The results show that the distortion added by the vocoder is significantly large and degrades the system performance. In addition, the robust modem performs better than the fast modem. For instance, to achieve a bit error rate (BER) of 10^{-6} using the AMR compression rate of 7.4 kbps, the signal-to-noise ratio (SNR) required is 5.5 dB for the robust modem while a SNR of 7.5 dB is required for the fast modem. On the other hand, the fading effect is studied in the eCall channel. It was shown that the fading distribution does not follow a Rayleigh distribution. The performance of the in-band modem is evaluated through the AWGN, AMR and fading channel. The results are compared with a Rayleigh fading channel. The analysis shows that strong fading still exists in the voice channel after power control. The results explain the large delays and failure of the emergency data transmission to the PSAP. Thus, the eCall standard needs to re-evaluate their requirements in order to consider the impact of fading on the transmission of the modulated signals. The results can be directly applied to design real-time emergency communication systems, including modulation and coding
    • …
    corecore