7 research outputs found

    Novel framework using dynamic passphrase towards secure and energy-efficient communication in MANET

    Get PDF
    At Mobile Adhoc Network (MANET) has been long-researched topic in adhoc network owing to the associated advantages in its cost-effective application as well as consistent loophopes owing to its inherent charecteristics. This manuscript draws a relationship between the energy factor and security factor which has not been emphasized in any existing studies much. Review of existing security approaches shows that they are highly attack specific, uses complex encryption, and overlooks the involvement of energy factor in it. Therefore, the proposed system introduces a novel mechanism where security tokens and passphrases are utilized in order to offer better security. The proposed system also introduces the usage of an agent node which communications with mobile nodes using group-based communication system thereby ensuring reduced computational effort of mobile nodes towards establishing secured communication. The outcome shows proposed system offers better outcome in contrast to existing system

    Energy-aware Randomized Neighbor Discovery Protocol based on Collision Detection in Wireless Ad Hoc Networks

    Full text link
    [EN] In wireless ad hoc networks, neighbor discovery is necessary as an initial step. In this work we present LECDH (Low Energy Collision Detection Hello), an energy-aware randomized handshake-based neighbor discovery protocol for static environments. We carried out simulations through Castalia 3.2 simulator and compared LECDH with an existing protocol EAH (Energy Aware Hello) used as reference. We conclude that the proposal outperforms the reference protocol both in one-hop and multi-hop environments in terms of Energy consumption, Discovery time, Number of discovered neighbors, Throughput, and Discoveries per packet sent, for high duty cycles. Moreover, for low number of nodes in LECDH, as the duty cycle is reduced the performance is better according to all 5 metrics in both environments. Overall, we found that our proposal follows more realistic assumptions and still allows nodes to succeed at discovering all their neighbors almost with probability 1. Moreover, a qualitative comparison of the reference solution and our proposal is included in this paper.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR. This work has also been partially founded by the Universitat Politecnica de Valencia through the post-doctoral PAID-10-20 program.Sorribes, JV.; Peñalver Herrero, ML.; Jimenez, JM.; Sendra, S. (2022). Energy-aware Randomized Neighbor Discovery Protocol based on Collision Detection in Wireless Ad Hoc Networks. Mobile Networks and Applications (Online). 28:31-48. https://doi.org/10.1007/s11036-022-01995-731482

    Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks

    Full text link
    [EN] Neighbor discovery is an important first step after the deployment of ad hoc wireless networks since they are a type of network that do not provide a communications infrastructure right after their deployment, the devices have radio transceivers which provide a limited transmission range, and there is a lack of knowledge of the potential neighbors. In this work two proposals to overcome the neighbor discovery in static one-hop environments in the presence of collisions, are presented. We performed simulations through Castalia 3.2, to compare the performance of the proposals against that for two protocols from the literature, i.e. PRR and Hello, and evaluate them according to six metrics. According to simulation results, the Leader-based proposal (O(N)) outperforms the other protocols in terms of neighbor discovery time, throughput, discoveries vs packets sent ratio, and packets received vs sent ratio, and the TDMA-based proposal is the slowest (O(N-2)) and presents the worst results regarding energy consumption, and discoveries vs packets sent ratio. However, both proposals follow a predetermined transmission schedule that allows them to discover all the neighbors with probability 1, and use a feedback mechanism. We also performed an analytical study for both proposals according to several metrics. Moreover, the Leader-based solution can only properly operate in one-hop environments, whereas the TDMA-based proposal is appropriate for its use in multi-hop environments.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Sorribes, JV.; Peñalver Herrero, ML.; Lloret, J.; Tavares De Araujo Cesariny Calafate, CM. (2022). Collision Avoidance Based Neighbor Discovery in Ad Hoc Wireless Networks. Wireless Personal Communications. 125(2):987-1011. https://doi.org/10.1007/s11277-021-09091-x9871011125

    Point coordination mechanism based mobile ad hoc network investigation against jammers

    Get PDF
    In this paper, a jamming attack (a kind of Denial-of-Service attack) was investigated, which interfered with the normal operation of a Mobile Ad Hoc network, which is more vulnerable to various attacks because of its self-configuration, dynamic characteristics, therefore, jammers would affect the network QoS parameters by reducing the throughput and increasing the delay. This problem is solved in this study by enabling the Point Coordination Function, which is a media access mechanism specified by the IEEE standard in some selected MANET nodes (guard nodes) to improve the deficiency of MANET’s performance. The Riverbed modeler was utilized as a simulation tool. In this study, six jammers with two different transmission power values had been applied. In a number of different simulation scenarios with and without jammers, the estimated results showed that the jammers affected the network performance by increasing the delay to 3.0658 sec and decreasing the throughput to 120200.59 bits/sec. After enabling the PCF mechanism in a number of selected nodes, the results allowed the user to solve the problem by improving the network deficiency so that the throughput had been increased to 137478.32 bits/sec and the delay had been decreased to 0.7556 sec. It can be concluded that PCF is a good improvement for different levels of jammer transmission power such as 0.01 W and 0.001 W, and PCF also improved the network’s delay and throughput when the number of PCF enabled nodes had been increased to 10 nodes and 12 nodes, respectively. The improvement is also increased. This study can be used in practice for any ad hoc network when attacked by jammer

    Randomized neighbor discovery protocols with collision detection for static multi-hop wireless ad hoc networks

    Full text link
    [EN] Neighbor discovery represents a first step after the deployment of wireless ad hoc networks, since the nodes that form them are equipped with limited-range radio transceivers, and they typically do not know their neighbors. In this paper two randomized neighbor discovery approaches, called CDH and CDPRR, based on collision detection for static multi-hop wireless ad hoc networks, are presented. Castalia 3.2 simulator has been used to compare our proposed protocols against two protocols chosen from the literature and used as reference: the PRR, and the Hello protocol. For the experiments, we chose five metrics: the neighbor discovery time, the number of discovered neighbors, the energy consumption, the throughput and the number of discovered neighbors versus packets sent ratio. According to the results obtained through simulation, we can conclude that our randomized proposals outperform both Hello and PRR protocols in the presence of collisions regarding all five metrics, for both one-hop and multi-hop scenarios. As novelty compared to the reference protocols, both proposals allow nodes to discover all their neighbors with probability 1, they are based on collision detection and know when to terminate the neighbor discovery process. Furthermore, qualitative comparisons of the existing protocols and the proposals are available in this paper. Moreover, CDPRR presents better results in terms of time, energy consumption and number of discovered neighbors versus packets sent ratio. We found that both proposals achieve to operate under more realistic assumptions. Furthermore, CDH does not need to know the number of nodes in the network.This work has been partially supported by the "Ministerio de Economia y Competitividad" in the "Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento" within the project under Grant TIN2017-84802-C2-1-P. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Sorribes, JV.; Peñalver Herrero, ML.; Tavares De Araujo Cesariny Calafate, CM.; Lloret, J. (2021). Randomized neighbor discovery protocols with collision detection for static multi-hop wireless ad hoc networks. Telecommunication Systems. 77(3):577-596. https://doi.org/10.1007/s11235-021-00763-457759677

    Security and Privacy in Heterogeneous Wireless and Mobile Networks: Challenges and Solutions

    Get PDF
    abstract: The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.Dissertation/ThesisPh.D. Electrical Engineering 201
    corecore