1,026 research outputs found

    EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity

    Full text link
    Electronic information is increasingly often shared among entities without complete mutual trust. To address related security and privacy issues, a few cryptographic techniques have emerged that support privacy-preserving information sharing and retrieval. One interesting open problem in this context involves two parties that need to assess the similarity of their datasets, but are reluctant to disclose their actual content. This paper presents an efficient and provably-secure construction supporting the privacy-preserving evaluation of sample set similarity, where similarity is measured as the Jaccard index. We present two protocols: the first securely computes the (Jaccard) similarity of two sets, and the second approximates it, using MinHash techniques, with lower complexities. We show that our novel protocols are attractive in many compelling applications, including document/multimedia similarity, biometric authentication, and genetic tests. In the process, we demonstrate that our constructions are appreciably more efficient than prior work.Comment: A preliminary version of this paper was published in the Proceedings of the 7th ESORICS International Workshop on Digital Privacy Management (DPM 2012). This is the full version, appearing in the Journal of Computer Securit

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Efficient Verifiable Computation of XOR for Biometric Authentication

    Full text link
    This work addresses the security and privacy issues in remotebiometric authentication by proposing an efficient mechanism to verifythe correctness of the outsourced computation in such protocols.In particular, we propose an efficient verifiable computation of XORingencrypted messages using an XOR linear message authenticationcode (MAC) and we employ the proposed scheme to build a biometricauthentication protocol. The proposed authentication protocol is bothsecure and privacy-preserving against malicious (as opposed to honest-but-curious) adversaries. Specifically, the use of the verifiable computation scheme together with an homomorphic encryption protects the privacy of biometric templates against malicious adversaries. Furthermore, in order to achieve unlinkability of authentication attempts, while keeping a low communication overhead, we show how to apply Oblivious RAM and biohashing to our protocol. We also provide a proof of security for the proposed solution. Our simulation results show that the proposed authentication protocol is efficient

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Privacy-preserving query processing over encrypted data in cloud

    Get PDF
    The query processing of relational data has been studied extensively throughout the past decade. A number of theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, data owners now have the opportunity to outsource not only their data but also data processing functionalities to the cloud. Because of data security and personal privacy concerns, sensitive data (e.g., medical records) should be encrypted before being outsourced to a cloud, and the cloud should perform query processing tasks on the encrypted data only. These tasks are termed as Privacy-Preserving Query Processing (PPQP) over encrypted data. Based on the concept of Secure Multiparty Computation (SMC), SMC-based distributed protocols were developed to allow the cloud to perform queries directly over encrypted data. These protocols protect the confidentiality of the stored data, user queries, and data access patterns from cloud service providers and other unauthorized users. Several queries were considered in an attempt to create a well-defined scope. These queries included the k-Nearest Neighbor (kNN) query, advanced analytical query, and correlated range query. The proposed protocols utilize an additive homomorphic cryptosystem and/or a garbled circuit technique at different stages of query processing to achieve the best performance. In addition, by adopting a multi-cloud computing paradigm, all computations can be done on the encrypted data without using very expensive fully homomorphic encryptions. The proposed protocols\u27 security was analyzed theoretically, and its practicality was evaluated through extensive empirical results --Abstract, page iii

    Authentication under Constraints

    Get PDF
    Authentication has become a critical step to gain access to services such as on-line banking, e-commerce, transport systems and cars (contact-less keys). In several cases, however, the authentication process has to be performed under challenging conditions. This thesis is essentially a compendium of five papers which are the result of a two-year study on authentication in constrained settings. The two major constraints considered in this work are: (1) the noise and (2) the computational power. For what concerns authentication under noisy conditions, Paper A and Paper B ad- dress the case in which the noise is in the authentication credentials. More precisely, the aforementioned papers present attacks against biometric authentication systems, that exploit the inherent variant nature of biometric traits to gain information that should not be leaked by the system. Paper C and Paper D study proximity- based authentication, i.e., distance-bounding protocols. In this case, both of the constraints are present: the possible presence of noise in the channel (which affects communication and thus the authentication process), as well as resource constraints on the computational power and the storage space of the authenticating party (called the prover, e.g., an RFID tag). Finally, Paper E investigates how to achieve reliable verification of the authenticity of a digital signature, when the verifying party has limited computational power, and thus offloads part of the computations to an untrusted server. Throughout the presented research work, a special emphasis is given to privacy concerns risen by the constrained conditions

    Image Watermaking With Biometric Data For Copyright Protection

    Full text link
    In this paper, we deal with the proof of ownership or legitimate usage of a digital content, such as an image, in order to tackle the illegitimate copy. The proposed scheme based on the combination of the watermark-ing and cancelable biometrics does not require a trusted third party, all the exchanges are between the provider and the customer. The use of cancelable biometrics permits to provide a privacy compliant proof of identity. We illustrate the robustness of this method against intentional and unintentional attacks of the watermarked content
    corecore