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1. Introduction

Biometric approach for authentication is appealing because of its convenience and possibili‐
ty to offer security with non-repudiation. However, additional hardware such as biometric
scanners and complex software for feature extraction and biometric template matching are
required if biometric approach is to provide security for protecting sensitive data such as
personal health information.

Cryptographic approach, on the other hand, ties data protection mathematically to the Key
that is utilized to protect it. This allows a data owner to have complete control over one’s
personal information without relying on, or relinquishing control to, a third party authority.
The protection of personal sensitive information is also not tied to complex software and
hardware systems that may need constant patches.

Biometric authentication and authorization for data protection could be thought of as ena‐
bling security based on “what one is.” The lynchpin of biometric security is the use of suffi‐
ciently unique, but often imprecise, physiological or behavioral traits to characterize an
individual for authentication and identification purposes. The characterization is expressed
in form of some biometric signature, which often can be reduced to some feature vector or
matrix representation. For example, a biometric face could be expressed in terms of a linear‐
ized vector of color distribution [1], EigenMap [2], or Eigen Face components [3]. In our re‐
search a fingerprint is expressed in terms of a 320x1 vector of integers containing minutia
point information, and a voice signature is expressed in terms of a 20x1 mean vector and a
20x20 covariance matrix of Mel cepstrum characterizing the multi-variant Gaussian distribu‐
tion of an individual’s voiceprint [4]. The security parameter for assessing the strength of a
biometrically based approach is typically related to the size of the underlying feature vector
(or matrix) and the number of bits for representing a value, as well as the biometric data dis‐
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tribution leading to inter and intra variability --- a main source of false negative or false pos‐
itive alarms when applying biometric approach for security.

On the other hand, cryptographically based security could be thought of as a security ap‐
proach based on “what one knows.” The lynchpin of cryptographic security is the secret key
for decrypting a cipher text that is the encrypted from sensitive data. The security parameter
for assessing the strength of a cryptographic approach is typically the key size in terms of
the number of bits, and information leakage which can be measured by the information gain
on the sensitive data given its corresponding cipher text and the mathematical structure of
the cryptographic mechanism for encryption/decryption. In order to mitigate the risk of in‐
formation leakage, semantic security is desirable. In brief, we say it is semantically secure
with IND-CPA property (INDistinguishability under Chosen Plaintext Attack) [5] if one is
given the cipher texts of some encryption, one could not tell whether the cipher texts corre‐
spond to the encryption of the same text; i.e., the given cipher texts are indistinguishable,
thus thwarting a Chosen Plaintext Attack.

In theory, the size of a biometric signature or the size of a secret key in cryptography could
be increased indefinitely to increase the security strength. However, in practice, the limita‐
tion in the resolution of biometric sensors, among other factors, does not allow the security
strength to be scaled proportionally. On the other hand, cryptographic approach has its own
drawback too. Since the confidentiality of sensitive data is protected through encryption,
one must keep the decryption key as a secret. Generally the secret key is generated and
withheld by the party that handles the decryption of the sensitive data. If the secret key is
compromised, the confidentiality of the sensitive data is compromised.

Figure 1. Cryptographic key (re)generation protocol.

The objective of this research is to investigate a secure computation protocol for (re)generat‐
ing cryptographic key based on biometric signatures. More specifically, we want to protect
sensitive personal data based on strong cryptographic approach (e.g., AES256) [6]. But we
do not store the secret key anywhere. Instead, we (re)generate the secret key based on an
individual’s biometric signatures; e.g., fingerprints or voiceprints. In this research we focus
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on fingerprints. In other words, we use a (cryptographic) key generator to generate the en‐
cryption/decryption key pair, and use the key to encrypt the sensitive personal information.
Afterward, we discard the key generator and the encryption key. Then, we encode the de‐
cryption key using an individual’s biometric signatures. The encrypted personal data and
the encoded decryption key are given to the individual while the original decryption key
will be kept in a separated server without the sensitive personal data. During the retrieval
process, the data owner will use his/her biometric signature to subtract from the encoded de‐
cryption key, and then use it to reconstruct the exact decryption key through SIPPA-2.0 for
decrypting the personal information.

The contribution of this research is a cryptographic key (re)generation scheme based on bio‐
metrics. The scheme is comprised of the following components:

1. A client/server model is developed for privacy preserving cryptographic key regenera‐
tion; where the decryption key --- no (encrypted) personal data --- is stored in the serv‐
er. In this case, the security and the privacy of the data are still preserved even if the
server is compromised. The client party, on the other hand, holds a storage device con‐
taining the encrypted sensitive data and the decryption key encoded with personal bio‐
metrics. Without the individual’s biometrics, decryption key cannot be decoded, thus
the confidentiality of the encrypted sensitive data is still preserved even if the storage
device is compromised or stolen.

2. A 2-party secure computation protocol, referred to as SLSSP(Secure Linear System Solu‐
tion Protocol), is developed for privacy preserving data comparison based on solving lin‐
ear equations that yields a solution; and this solution can be used to estimate the similarity
or the closeness between the source (server side) data and the target (client side) data.

3. A secure information processing protocol, referred to as SIPPA-2.0 (Secure Information
Processing with Privacy Assurance Version 2.0), is developed to realize a 2-party mes‐
sage exchange protocol through which the client and the server could determine how
similar their data are to each other by using SLSSP --- without ever revealing their own
private data. Furthermore, the client can perfectly reconstruct the server side data if the
server provides helper data after the server side determines that the client data is suffi‐
ciently similar; whereas the perfect reconstruction is based on a geometrical relation‐
ship in the vector space among the helper data and the Eigen components of the client
and source data.

4. For proof-of-concept, we implement the cryptographic key regeneration scheme as an
Android application for privacy preserving health data management. More specifically,
the Android application stores in the memory of a smart phone the encrypted health da‐
ta and the decryption key encoded by personal fingerprints. During the health data re‐
trieval process, the Android application receives a fingerprint sample (from a fingerprint
scanner via a Bluetooth channel) and uses it as an offset to the encoded decryption key
to arrive at an estimated decryption key; and then acts as a client to invoke SLSSP and
SIPPA for reconstructing a perfect decryption key based on the helper data of the serv‐
er when the estimated decryption key is sufficiently similar to the actual decryption key.
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2. Problem formulation and Related Work

2.1. SLSSP and SIPPA formulation

The concept of SLSSP (formerly referred to as PPCSC) and SIPPA was first introduced in the
book chapter of Biometrics [7] (INTECH 2011). SLSSP aims at solving the following problem:

Let P1 and P2 be two parties and each has private data (Ai, bi) for i=1,2; whereas Ai is a ma‐
trix and bi is a vector. Both parties wish to compute x in (A1+ A2)x = (b1 + b2) without re‐
vealing its own private data (Ai, bi) to each other.

In section 6 we will present the protocol design of SLSSP --- which is an improved version of
PPCSC. The security and privacy analysis of SLSSP under realistic and reasonable model as‐
sumptions will be presented in the appendix. Specifically, the security and privacy of SLSSP
will be analyzed under these model assumptions; authenticated communication channels
with computational security, the behavior of the participants being rational, and the compu‐
tational power of the adversary is polynomial bounded1. Our SLSSP possess the following
two desirable security properties:

(a) The malicious behavior of a party deviating from semi-honest behavior is detectable
through verifiable correctness of the private message exchange.

(b) The practical implementation of the homomorphic encryption for SLSSP realizes seman‐
tic security with IND-CPA property.

SIPPA-2.0 is the second generation of our secure computation protocol for the following 2-
party scenario; where a client party can reconstruct source data of a server party under the
following conditions:

(a) The client party must possess some client data that is a “sufficiently good approxima‐
tion” of the source data, in order to initiate the SIPPA process.

(b) Rather than revealing the source data of the server party to the client party, only some
helper data related to the Eigen components of the source data is provided (by the server
party) to the client party for reconstructing the source data.

2-party SIPPA-2.0 is a secure process for private data reconstruction with the following de‐
sirable security and privacy properties:

(a) The server party retains complete control over the sharing of helper data – thus keeping
private the source data - based on the “closeness” between the client and server data.

(b) The server party can determine the “closeness” between the client and server data with‐
out the client party ever disclosing it’s data to the server party – thus the privacy of both
client and server data is respected.

1 The analysis presented in the appendix is part of our other paper entitled “SIPPA-2.0 – Secure Information Process‐
ing with Privacy Assurance (version 2.0)” appeared in the proceeding of the PST 2012, Paris, France. It is included to
make this chapter self-sufficient.
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(c) Only if the client and server data are sufficiently close and the server sends the client the
helper data, the client can perfectly reconstruct the source data.

The major improvement of SIPPA-2.0 over the previous one is the use of a newly discovered
computational geometry that allows perfect data reconstruction from the solution x securely
computed in SLSSP. Before we discuss the details of SIPPA-2.0, we first present a survey on
related work.

2.2. Related Work

Our research draws from various other works in the literature of biometrics and secure com‐
putation. We first discuss the major works in biometrics on which we draw upon, and then
the advances in secure computation to which SIPPA-2.0 is related.

Hao et al. [8] [9] were among the pioneers in successfully melding biometrics with cryptog‐
raphy. Iris codes typically contain 10-20% error between samples of the same eye. By utiliz‐
ing a two tier approach of Hadamard and Reed Solomon Codes to correct both random and
burst errors; they achieved a successful Key retrieval rate of over 99%. Our research draws
from their overall approach of appending a random Key with biometrics and then negating
this appended biometrics with another biometric sample to retrieve the original crypto‐
graphic Key. However, SIPPA-2.0 allows us to achieve perfect key reconstruction without
using any error correction codes such as Hadamard or Reed Solomon.

Barni et al. [10] utilize a finger-code approach to represent a fingerprint partitioned into sec‐
tors from a reference point. Their approach is to utilize these finger-codes to perform finger‐
print matching over homomorphic encryption; essentially computing a Euclidean distance
between two sets of finger-codes over homomorphic encryption. In contrast to traditional
matching methods, such an approach is more privacy aware because the matching process
does not expose the biometric sample being matched to the matching agent. Our research
draws a few ideas from them including the use of a reference point and sector segmentation
to represent fingerprints. However, we notice that any approach applying homomorphic en‐
cryption for matching comparison is restricted by using only the matching functions that
can be privately computed via the multiplicative or additive properties of the specific homo‐
morphic encryption. In our research, homomorphic encryption is applied in the (SIPPA-2.0)
protocol layer which allows not only private data comparison, but source data reconstruc‐
tion; thus providing additional flexibility on the choice of matching criteria and functions.

Clancy et al. [11] pioneered the use of fingerprints to generate cryptographic Keys. Their es‐
sential approach is to use Minutia points as the feature set and Reed-Solomon error correc‐
tion to handle noise inherent in biometric samples. To describe their approach in their own
words:

“Fingerprint minutiae coordinates m i are encoded as elements in a Finite Field F and the secret Key
is encoded in a polynomial f(x) over F[x]. The polynomial is evaluated at the minutiae locations, and
the pairs (m i ; f(m i )) are stored along with random (c i ; d i ) chaff points such that d i != f(c i ). Given a
matching Fingerprint, a valid user can separate out enough true points from the chaff points to recon‐
struct f(x), and hence the original secret Key.”
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Clancy et al. in their pioneering work achieved a Key size of 69 bits, with an EER (Equal Er‐
ror Rate) at about 30%. Our research also draws inspiration from Clancy et al. in their over‐
all approach of melding a proven biometric modality such as fingerprints with the field of
cryptography; bringing forth desirable properties such as non-repudiation into the field of
cryptography. In our research we are able to show a much improved result for a similar ap‐
proach that can accommodate an arbitrary large key size and a much better EER. We will
show one such result in the experimental study section of this book chapter.

Recently, non-minutiae methods as features for fingerprint are proposed in addition to the
minutiae methods [39, 40], these methods are viable alternatives to consider in trying to im‐
prove the performance of many cryptographic key generation protocols.In this research we
have primarily focused on minutiae features as data points for our cryptographic key gener‐
ation protocol. On the other hand, Lalithamani et al. [12] proposed a method utilizing can‐
cellable biometrics to transform a fingerprint into a revocable form; this revocable form is
then transformed into an irrevocable viable cryptographic Key. The essence of this approach
relies on image processing to transform noisy biometric samples into standard representa‐
tions, from which a cryptographic Key is derived. Unfortunately, no practical experimental
data was presented utilizing this approach. Nonetheless, this is another indication on the
potential interest in combining biometrics with cryptography.

Various secure computation protocols based on cryptographic approach have been devel‐
oped in the past for privacy preserving data comparison [13] [14]. One main thrust is to rely
on Oblivious Transfer (OT) protocols [15] for private joint table lookup. Privacy protection is
achieved by transmitting encrypted versions of the entire table using pre-computed public
keys. However, even with significant progress in reducing the computational complexity of
OT protocols, the relative enormity of the table size coupled with the complexity of encrypt‐
ing large amounts of data with public key cryptography makes OT based Secure Computa‐
tion protocols impractical for certain viable privacy preserving applications such as
biometrics.

Recent advances in cryptography has led to various cryptosystems that preserve certain op‐
erations such as addition [16], multiplication [17], and XOR [18], in the encrypted domain.
Such cryptosystems are classified into either Partially Homomorphic (PH) [19] [20] or Fully
Homomorphic (FH) [21]. A PH cryptosystem does not allow the evaluation of both addi‐
tion and multiplication in encrypted domain; and a FH allows the evaluation of unlimited ad‐
dition and multiplication operations in encrypted domain. A FH cryptosystem would allow
[13] the secure evaluation of any function in the encrypted domain where the privacy of the
original data is guaranteed if knowing only the function output is not a privacy concern. How‐
ever the only known semantically secure FH cryptosystems are extremely inefficient for prac‐
tical use. To put it in context, recently, one of the leading inventors of such a FH cryptosystem
Craig Gentry, states that performing a single search query utilizing the best available FH cryp‐
tosystem would increase computational complexity by about a trillion [22].

To balance the practical usability and the complexity inherited in a fully homomorphic cryp‐
tosytem, we develop SIPPA-2.0 that allows parallelization while relying only on cryptosys‐
tems that are Partially Homomorphic for cryptographic key generation from biometric data
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such as fingerprints. Over the past few years, privacy preserving protocols based on homo‐
morphic cryptosystems have also been developed; e.g., protocol for secure scalar/dot prod‐
uct between vectors [23], protocol for secure Euclidean distance derivation between vectors
[24], secure Hamming distance protocol [25], secure evaluation of linear systems [26], and k-
mean clustering [27]. These protocols are practically usable in biometric applications and
utilize semantically secure Partially Homomorphic (PH) cryptosystems to achieve metric
specific privacy preserving biometric authentication. SIPPA-2.0 takes the current state-of-
the-art one step further by facilitating not just private data comparison which can be used
for privacy preserving biometric authentication, but also private data reconstruction for bio‐
metric information retrieval.

3. Theoretical Foundation of SIPPA-2.0

The theoretical foundation of SIPPA-2.0 is built upon two main theorems. We first summa‐
rize the important findings of the theorems, and then present the rigorous formulation and
proof, followed by the use of the theorems to realize the SIPPA-2.0 protocol for private re‐
construction of the server source data by the client.

Let P1 and P2 be the SIPPA-2.0 server and client respectively. Let de and dv be the column
vector representing private data of P1 and P2 respectively. Let (λDe vde ) and (λDv vdv ) be the
2-tuples of the most significant Eigen value and the corresponding unity normalized Eigen
vector of the matrices de•de T and dv•dv T respectively.

If the deviation between the most significant eigenvector of de•de T and dv•dv T (similarity
score) correlates to the distribution of the instances of de and dv as classified by being from
the same or different biometric source, this provides a basis for a good threshold function.
SIPPA-2.0 can then be utilized to provide secure and private derivation on this deviation,
without each party revealing their private biometric data to each other.

We will show in theorem 1 below that there is an algebraic relationship between the sym‐
metric matrix representation of the client and the server data in the Eigen vector space; and
the algebraic relationship guarantees the existence of a bisector vector that allows each party
to use it to determine whether the client and server data are sufficiently similar. Second, the
source data can be perfectly reconstructed by the client if a carefully scaled Eigen value of
the symmetric matrix representation of the source data is given. In other words, this scaled
Eigen value serves as the helper data --- and the only data --- that the server needs to share;
thus the privacy of the server side source data is preserved.

Theorem 1: Consider (de•de T + dv•dv T)x = λde v de + λdv v dv, the solution x = v satisfying
(de•de T + dv•dv T)v = λde v de + λdv vdv has a unity scalar projection onto the unity normal‐
ized vde and vdv , and is a bisector for the interior angle between vde and vdv .
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Proof: By the definition of Eigen vectors and values, de•de T•vde = λde vde . Since de T•vde is a
scalar, de and vde has the same directionality. Furthermore, de/|de| = vde because vde is a uni‐
ty normalized vector. Similarly, dv/|dv| = vdv , and the following results can be established:

de/|de| = vdede•deT•vde = λdevde฀ (de/|de|)•(|de|•deT•vde) = (vde)(λde) ฀ λde = deT•de

dv/|dv| = vdvdv•dvT•vdv = λdvvdv฀ (dv/|dv|)•(|dv|•dvT•vdv) = (vdv)(λdv)฀ λdv = dvT•dv

To prove theorem 1, we need to prove that (1) v has a unity scalar projection onto the unity
normalized de and dv, and (2) v is a bisector.

To prove v has a unity scalar projection onto the unity normalized vde and vdv, it is sufficient
to show vde• v = vdv•v = 1, or (de/|de|)•v = (dv/|dv|)•v = 1. Since v is a solution to (de•de T

+ dv•dv T)x = λde vde + λdv vdv , we re-write the RHS and the LHS as below:

LHS = (de•de T + dv•dv T)v = de•(de T•v) + dv•(dv T•v)
= |de|•de•(deT•v/|de|) + |dv|•dv•(dvT•v/|dv|)

RHS = λde vde + λdv vdv = de T•de•(de/|de|) + dv T•dv•(dv/|dv|)

= |de|•de + |dv|•dv because de T•de = |de|2 and dv T•dv = |dv|2

Comparing the terms on the RHS and LHS, when de and dv are linearly independent,
deT•v/|de| = 1 ฀ (de/|de|)•v= vde•v= 1 and dv T•v/|dv| = 1 ฀ (dv/|dv|)•v= vdv•v= 1.
Therefore, v has a unity scalar projection onto the unity normalized de and dv. This com‐
pletes the proof for (1).

The scalar projection of v onto vde is one, and so as the scalar projection of v onto vdv . By the
theorem of bisector, v is the bisector of the interior angle of vde and vdv . This completes the
proof for (2).

Theorem 2: Consider (de•de T + dv•dv T)x = λde vde + λdv vdv , de can be efficiently reconstruct‐
ed − with an accuracy proportional to the closeness between vde and vdv − by a party with dv,
λdv,, and vdv when (i) the interior angle between vde and vdv is less than 90 degree and (ii) the
party is given x and λde/ de T•x. Specifically, de = (est_v de/| est_v de |)(λde/ de T x); where

est_vde = vdv + [|vdv |•tan(2cos-1(vdv•x/(|v dv|•|x|) ))]•[(x-v dv)/|x-vdv |]

Proof: Let x = vde + e1 and x = vdv + e2. We can derive the length of te (as shown in Fig. 2),
which is a vector with the same directionality as that of the vector e2 when the interior angle
between vde and vdv is less than 90 degree. Specifically, vdv and e2 are orthogonal (i.e., they
are perpendicular of each other). The length of te=|te|=[|v dv|•tan(2cos-1(vdv•x/(|vdv |•|
x|)))] because e1 = e2 and the angle between vdv and (vdv + te) is twice the angle between vdv

and x (theorem 1). Therefore, te=|te|•[e2/|e2|]=[|vdv |•tan(2cos-1(vdv•x/(|vdv |•|x|) ))]
•[e2/|e2|]. Since vdv + te (=est_vde ) produces a vector with the same directionality as vde ,
and vde is a unity normalized vector, we can conveniently derive vde by normalizing est_vde ;
i.e., vde = est_vde /| est_vde |. Finally, since de•de Tx≈ λde vde , we can derive de from (λde/ de
T•x)•vde or (λde/ de T•x)•( est_vde /|est_vde |) with an approximation error proportional to
the closeness between vde and vdv . Q.E.D.
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Figure 2. Geometric relationship between x and eigenvector of data.

3.1. Secure Computation of Angular Deviation

In SIPPA-2.0, private reconstruction of the server source data by a client relies on the helper
data. The server provides the helper data only if the target data of the client is sufficiently
close to the source data. But how could the server determine the closeness between the tar‐
get data and the source data while the client can keep the target data private? As shown in
figure3, vde, vdv and x all converge to each other when de and dv converge to each other. In
addition, the matrices de•de T and dv•dv T can be thought of as the mapping functions for
the eigenvectors and x. The difference between de and dv proportionality affects the differ‐
ence in the mapping functions, which subsequently introduces an angular deviation on the
angle between the unity normalized Eigen vectors as well as the magnitude deviation as
measured by the Euclidean distance between the two Eigen vectors scaled by the corre‐
sponding Eigen values. Therefore, angular deviation and magnitude deviation between the
client and server Eigen vectors can be used to obtain the information about the closeness be‐
tween the target and the source data.

Figure 3. Relationship between source and target data in Eigen space.

In SIPPA-2.0, if angular deviation is used as the metric to determine closeness, then both the
server and the client can privately and precisely determine whether the data of the other
party is sufficiently similar without revealing one’s own private data. Recall from theorem 2
the angular deviation can be derived from 2cos-1(vdv•x/(|vdv |•|x|)) or 2cos-1(vde•x/(|vde |•|
x|)). If x is known, each party with one’s own Eigen vector can derive the angular deviation.

Generation of Cryptographic Keys from Personal Biometrics: An Illustration Based on Fingerprints
http://dx.doi.org/10.5772/51372

199



Therefore, a key aspect to realize SIPPA-2.0 is a 2-party secure computation protocol
through which the client and the server can collaborate to solve for x in the algebraic system
(de•de T + dv•dv T)x = λde vde + λdv vdv while each party will keep one’s data, Eigen value
and Eigen vector private. Furthermore, the security and privacy of SIPPA-2.0 will defer to
the security and privacy of the 2-party secure computation protocol for solving the algebraic
system. In this research we show one such protocol, referred to as SLSSP (Secure Linear Sys‐
tem Solution Protocol), that we developed. As formulated in section 3, SLSSP is a novel and
general two-party secure computation protocol to solve for x in (A1+ A2)x = (b1 + b2) with‐
out each party revealing their private data (Ai, bi) to each other.

There are two noteworthy points about SLSSP. First SLSSP is readily available to realize SIP‐
PA-2.0 with (A1, b1) and (A2, b2) being (de•de T, λde vde ) and (dv•dv T, λdv vdv ) respective‐
ly. Second, SLSSP has the same problem formulation as that of PPCSC (Privacy Preserving
Collaborative Scientific Computation). Our focus on SLSSP is to also achieve desirable secur‐
ity properties so that SLSSP is secure and private under realistic and reasonable assump‐
tions discussed in section 3.

4. Procotol design for SLSSP and SIPPA

4.1. SIPPA2.0 Protocol

There are three major aspects of SIPPA-2.0: (1) derivation of the eigenvalues and the corre‐
sponding unity normalized eigenvectors of the symmetric matrix representation of the data;
(2) derivation of a vector x which provides for the two parties to determine the deviation
between their respective eigenvectors, which is formulated as a two-party secure computa‐
tion SLSSP [28]; and if required: (3) reconstruction of the source data based on helper data
composed of a scalar eigenvalue combined with a scalar derived from the vector product be‐
tween the transpose of the linearized source data vector and the vector x. The steps for the
SIPPA2.0 protocol are detailed below using the notation introduced in the previous section:

Step 1: Derive, by the respective party, the most significant eigenvalue and its corresponding
unity-normalized eigenvector of de•deT and dv•dvT . This step yields (λde vde ) for SIPPA2.0
server and (λdv vdv ) for SIPPA2.0 client.

Step 2: Compute x such that (de•de T + dv•dv T)x = λde vde + λdv vdv utilizing SLSSP. The vec‐
tor x is known to both parties following SLSSP. The details on SLSSP will be presented later
in this section.

Step 3: The party that wishes to determine the deviation between its eigenvector and the oth‐
er party’s eigenvector can do so utilizing x (derived in step 2). Suppose that the party with
vde wishes to determine the angular deviation between vde and vdv , this can be done by ob‐
taining the angle between vde and x. i.e. cos-1(vde•x/(|vde |•|x|)). The angular deviation be‐
tween vde and vdv is then

2cos-1(vde•x/(|vde |•|x|)).
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Step 4: If de and dv are sufficiently similar as determined by either the angular distance or
the Euclidean distance between vectors vde and vdv as measured by some pre-defined thresh‐
old, proceed to send the following helper data: λde/de T•x.

Remark: We can also only send (λde)0.5 as the helper data to allow perfect reconstruction of
de= (est_vde /|est_vde |)(λde)0.5 because (1) λde=de T•de = |de|2 (from Theorem 1), (2) de/|de|
= vde or de= |de|•vde, (from Theorem 1) and (3)est_vde /|est_vde |=vde (from Theorem 2) if we
are to realize unconditional source data reconstruction.

Step 5: Derive estimated vde- est_vde as stated in theorem 2, and then derive de = (est_vde /|
est_vde |)(λde/de Tx).

SIPPA-2.0 relies on the protocol SLSSP to solve for x in step 2. To provide semantic security,
Pailler encryption is adopted in the protocol design for SLSSP. Pailler encryption is operated
over Integer domain on scalar values. Yet SIPPA-2.0 deals with Real Number domain and
matrix operations. Therefore, prior to presenting the details on the protocol for SLSSP, we
will first discuss two related issues: (i) homomorphic matrix addition and multiplication
with encrypted matrices, and (ii) the fixed point representation of real numbers.

4.2. Homomorphic Matrix addition and Multiplication with Encrypted Matrices.

All matrix operations described in this section require knowledge of only the Pailler public-
key pair(g , n). Encrypted matrices and vectors are denoted M P (g ,n), v P (g ,n)respectively,
where each element of the matrix or vector is an element encrypted utilizing the Paillier
public-key pair (g , n). Specifically, the decryption of any element M i , j

P (g ,n) equals M i , j i.e.

M i , j =  PD( M i , j
P (g ,n)). The operator “[+]” denotes homomorphic addition of matrices or vec‐

tors; whereas the operator “[X]” represents multiplication of matrices, where one of the two
matrices are encrypted.

4.2.1. Paillier Cryptosystem:

The Paillier encryption scheme is a probabilistic, asymmetric, public-key cryptosystem
whose security is based on the hypothetical intractability of the Decisional Composite Resi‐
duosity Assumption (DCRA). The Paillier encryption function PE(m, r), a bijection
(ZnxZn

* →Zn2
* ) encrypts a message mby raising a basis gto the power m, then multiplying gm

with a random rnand reducing the product (gm.rn) modulo n2where nis the public modulus.
An important consequence of this approach is that the Paillier Cryptosystem is additively
homomorphic, specifically the following properties hold:

1. ((PE(m1, r1) .  PE(m2, r2)) mod n2)=  PE(m1 +  m2 ,   r1 .  r2 )

2. ((PE(m1, r1) .  gm2) mod n2)=  PE(m1 +  m2 ,   r1)

3. ((PE(m1, r1)m2) mod n2)=  PE(m1. m2 ,   r1)
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Paillier Key Generation:

1. Choose a modulus n=p .  q. The modulus is chosen in accordance with the RSAES-
OAEP [2] specification, where nhas the properties of a well-chosen RSA modulus.

2. Choose a random g ∈  Zn2
* ensure that the order of gin modulo n2is a multiple ofn, if not

choose anotherg until the requirement is met.

3. Compute λ = λ(n) =lcm((p - 1),  (q - 1)), where λ(n) is the Carmichael function.

4. LetL (u)=
(u - 1)

n , compute μ= (L(gλ mod n2))-1 mod n.

5. The Paillier public-key pair is (g, n).

6. The Paillier private-key pair is (λ, μ).

The Paillier Encryption function PE(m, r):

Given a Paillier public-key pair, choose a message to be encrypted m ∈  Zn, and a randomr
chosen  uniformly  fromZn

* ,  then  the  Paillier  encryption  function  is  defined  as
PE(m, r)= (gm . rn) mod n2.PE(m, r)is  a  bijection  (ZnxZn

* →Zn2
* )which  produces  a  ciphertext

(c ∈Zn2
* ).

The Paillier decryption function PD(c):

Given a Paillier public-key, private –key pair and a Paillier ciphertext c∈Zn2
* , then the Pailli‐

er decryption function is defined as:

PD(c)= (L (c λmod n 2).μ) mod n (1)

4.2.2. Homomorphic addition of two matrices:

1. Given two encrypted mXnmatrices A P (g ,n) and B P (g ,n), their homomorphic addition
( A P (g ,n) + B P (g ,n))=  A + B P (g ,n) =  C P (g ,n)) is carried out by multiplying each ele‐
ment of Awith its matching element in Bi.e.

C i , j
P (g ,n) = ( A i , j

P (g ,n)⋅ B i , j
P (g ,n)) mod n 2 (2)

4.2.3. Multiplication with encrypted matrices.

1. Given an encrypted mXbmatrix A P (g ,n) and a bXnplain-text matrixB,
( A P (g ,n) X B)=  AB P (g ,n) =   C P (g ,n), where C P (g ,n) is an mXnmatrix, which can be
computed in the following manner:

C i , j
P (g ,n) = (∏

k=1

b ( A i ,k
P (g ,n))Bk , j) mod n 2 (3)
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2. Given an plain-text mXbmatrixA and an encrypted bXnmatrix
B P (g ,n)(A X B P (g ,n))=  AB P (g ,n) =   C P (g ,n), where C P (g ,n) is an mXnmatrix,

which can be computed in the following manner:

C i , j
P (g ,n) = (∏

k=1

b ( B i ,k
P (g ,n))Ak , j) mod n 2 (4)

4.3. Fixed Point Representation.

The Paillier cryptosystem operates over a finite field Zn, we extend the cryptosystem to op‐
erate over the reals utilizing a simple Fixed Point representation scheme. Let s∈Zbe some
exponent of 10, then for every r ∈  R, ris represented as( 10sr ) ∈  Z. An approximation of

  r , can be obtained byr
~

= 10sr
10s  ∈  R, specifically:

1. For anyr ∈  R+, a Paillier ciphertext is obtained by PE ( 10sr , x), where xis some ran‐

dom andr
~

= PD(PE ( 10sr , x))
10s .

2. For anyr ∈  R-, a Paillier ciphertext is obtained by PE (n + 10sr , x), where nis the Pailli‐

er modulus and r
~

=  PD(PE (n + 10sr , x)) -  n
10s

It is to be noted that representing reals with a fixed point representation introduces errors
due to truncation, which is directly proportional to the size of schosen. The domain of the

encryption function is also truncated from  Zn to{0,1, …. n - 1
10s }, whereas extending the fixed

point scheme to include negative reals further reduces the encryption domain to

{0,1, …. n - 1
2 * 10s }. Since division operations are not properly defined in Paillier, we hold off

on downscaling operations in the encrypted domain. A record of the change in scale is kept

after each operation in the encrypted domain; this record is utilized to obtain r
~
 upon de‐

cryption of the result.

4.4. SLSSP protocol details

Step # PARTY α

Private Data:

mXm Matrix A1, mX1 vector b1

Step # PARTY β

Private Data:

mXm Matrix A2, mX1 vector b2

α1 Generate a random mXm matrixP1.

Generate a random 1Xn vector vT.

Obtain a Paillier Public Key and Private Key pair i.e.

(gα,nα) and (λα,μα) respectively.

β1 Generate a random mXm matrix P2.

Obtain a Paillier Public Key and Private Key pair

i.e. (gβ,nβ) and (λβ,μβ) respectively.
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α2 Compute and Send ( A1 P (gα ,nα) )and

( b1 P (gα ,nα) ) to PARTY β.

β2 Receive ( A1 P (gα ,nα) ) and ( b1 P (gα ,nα))from

PARTY α.

α3 Receive( A2 P (gβ,nβ) ) and ( b2 P (gβ,nβ) ) from

PARTY β.

β3 Compute and Send ( A2 P (gβ,nβ) ) and

( b2 P (gβ,nβ) ) to PARTY α.

α4 Compute and send to PARTY β:

( P1(A1 + A2) P (gβ,nβ) )
β4 Receive and decrypt matrix obtained from step

α4 to obtain a mXm matrix: ( P1(A1 + A2) )

α5 Compute ( (P1(b1 + b2)v T ) P (gβ,nβ) ) β5 Compute the Moore–Penrose Pseudoinverse of

( (P1(A1 + A2)) ) to obtain R = ((P1(A1 + A2)))-1

α6 Send the following to party β:

Y P (gβ,nβ) = ( ( (P1(b1 + b2)v T ) ) P (gβ,nβ))
β6 Receive from PARTY α (Step α6), and decrypt to

obtain Y = P1(b1 + b2)v T

α7 Send ( v -1 P (gα ,nα) )to PARTY β, where v -1 is the

conjugate transpose ofv divided by its magnitude

squared.

β7 Receive v -1 P (gα ,nα) from step α7 and compute

X 1, utilizing Y. Send X 1 to PARTY α.

X 1 = R*(Y) P (gβ,nβ)

α8 Receive X 1from partyβ, (step β7) and compute

the solution x P (gβ,nβ) by homomorphically

multiplying v -1to X 1

β8 Compute the solution x P (gα,nα) by

homomorphically multiplying (R*Y)to

( v -1 P (gα ,nα) )

α9 Send x P (gβ,nβ) to PARTY β β9 Receive x P (gβ,nβ) from PARTY α and decrypt

to Obtain the solution x

α10 Receive x P (gα,nα) from PARTY β and decrypt to

Obtain the solution x

β10 Send x P (gα,nα) to PARTY α.

VERIFICATION PHASE:

α10 Compute the mx1 vector using the information

obtained in step α3:

cα =  ( ((A1 + A2)x) - (b1 + b2) P (gβ,nβ) )

β10 Compute the mx1 vector using the information

obtained in step β2:

cβ =  ( ((A1 + A2)x) - (b1 + b2) P (gα ,nα) )

α11 For each element in cαi ,1, utilizing the zero-

knowledge proof protocol specified in the

appendix, verify with party β that cαi ,1is an

encryption of some element within a setγ, where

the set γcontains a finite list of fixed point

elements close to zero.

For each verification request from PARTY β,

require that one PARTY α’s verification request is

processed reciprocally. Abort at any cαi ,1 if PARTY

β is unable to prove that the decryption of cαi ,1∈γ

β11 For each element in cβi ,1, utilizing the zero-

knowledge proof protocol specified in the

appendix, verify with party α that cβi ,1is an

encryption of some element within a setγ,

where the set γcontains a finite list of fixed

point elements close to zero.

For each verification request from PARTY α,

require that one PARTY β’s verification request

is processed reciprocally. Abort at any cβi ,1

ifPARTY α is unable to prove that the decryption

of cβi ,1∈γ

Table 1. SLSSP protocol details
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Figure 4. SLSSP protocol illustration.

5. Biometric Crypto Key Experiment & Application Showcase

5.1. Generation and retrieval of cryptographic keys from fingerprints

A modified finger-code approach is used to represent a fingerprint as an attribute vector.
Several concentric circles are extended from a chosen core point; these concentric circles are
further divided into sectors. Each of the sectors forms the boundary of one coding region
representing the fingerprint. The Euclidean distance of the farthest and closest minutia
points within each coding region in relation to the core point is normalized to a value be‐
tween 0 and 255. These values make up the above described attribute vector. The length of
the attribute vector; i.e., the number and area of each coding region is a variable chosen for
optimal performance.
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In this proposed method, generation of a cryptographic Key utilizable with strong symmet‐
ric encryption algorithms such as AES256 is straightforward. The Key generation phase es‐
sentially involves generation of a vector called the k-vector, whose length exactly equals the
attribute vector. The k-vector consists of a series of random integers between 0 and 255. A fin‐
gerprint template attribute vector (T) is obtained to lock the k-vector (K); elementary addition
of the two vectors (K + T) produces the locked vector (KL). The unlocking process begins by
deriving an error laden version of K. This is done by procuring a fingerprint sample attrib‐
ute vector (S), and elementary subtraction (KL - S) to obtain an error laden k-vector (KE). KE

typically is not exactly identical to K. It cannot be directly utilized for the decryption of data
encrypted with K. Measuring any physical object produces an error between measurements.
Hence it is unlikely that matching minutia points in T and S will completely cancel each oth‐
er during the locking and unlocking process. Our secure computation protocol, SIPPA is uti‐
lized to determine the deviation between KE and K. If the party with KE deems sufficient
similar, it will send helper data (as described in the SIPPA section 6) which allows the party
with KE to derive K.

A perfect copy of K is retained at a 3rd party called the SIPPA server, and the SIPPA client
engages with the SIPPA server utilizing KE to obtain a reconstruction of K, if the server
deems similarity. SIPPA also guarantees that no information that each of the parties possess‐
es will leak to the other party in the case where T & S are dissimilar.

Figure 5 details the exact parameters utilized by us in our Key generation and retrieval algo‐
rithm, A Futronic FS88 [28] fingerprint scanner was utilized to capture fingerprints and a
commercial algorithm (Neurotechnology’s Verifinger v6.3 [29]) was used to extract minutia
and core point coordinates from fingerprints.

5.2. Secure Computation of Angular Deviation

In order to assess SIPPA-2.0’s usability in privacy preserving fingerprint biometrics, we con‐
ducted our performance analysis with the publicly availalble CASIA-FingerprintV5 data‐
base [38]. The database contains five diffrent digital impressions of each finger from 500
subjects. Each of these fingerprint images were converted to our custom fingercode format
(as described in figure 8), which yields a 320x1 vector. NEUROtechnology’s Verifinger SDK
was utilized to orient and extract minutia, corepoints from the fingerprint images.For each
session, a random key of size 320x1 of integers in the range 0 and 255 (i.e., 320x256=81920
bits) was generated (R), to which the fingercode vector (T) is added to obtain the vector (R
+T). Party A possesses the key vector (R), whereas Party B possesses the vector (R+T). An
impostor session is generated by subtracting the fingercode vector of a finger other than (T)
from (R+T) to yield (IM), whreas a true user session is generated by subtracting the finger‐
code vector of a diffrent impression of (T) to yield (TU). SIPPA-2.0 is utilized as the match‐
ing function which compares [(R) vs (IM)] or [(R) vs (TU)] where the similarity score can
either be the angle between the securely computed vector (X) (vector X is the final output of
SIPPA-2.0) and (R), or the euclidean distance between the vector (X) and (R).
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Figure 5. Cryptographic locking and unlocking illustration.

Because of the overheads involved in the matrix encryption and decryption process within
our secure computation protocol (SLSSP), it becomes impractical to directly engage in SIP‐
PA-2.0 with a 320x1 vector. An experiment was conducted to determine the performance of
SIPPA-2.0 with various vector sizes, i.e., the 320x1 vector was split into 10x1, 16x1 and 20x1
vectors. Each of these splits yields a vectorX i, 100 such experiments were conducted (dual-
core 3Ghz machine with 4Gb RAM) with actual fingerprint data at each split size(10,16,20).
The average time to process the 320x1 vector at each of the three diffrent split parameters is
reported in figure 6.

Figure 6. SIPPA-2.0 complexity performance.
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Due to SIPPA-2.0’s complexity constraints, an extensive experiment directly utilizing SIP‐
PA-2.0 was ruled out. Since SLSSP is theoretically guaranteed to produce a correct solution
x, we conducted our experiment by replacing SLSSP with a standard linear algebra package
(EJML) to solve for xin the algebraic system (de•de T + dv•dv T)x = λde v de + λdv v dv. The
error between SLSSP’s solution x, and the solution produced EJML was determined experi‐
mentally to be always less than 4.77E-8 in over 6800 trials.

Figure 7. SIPPA-2.0 Performance (Split 10x1), ED(R vs. X).

Figure 8. SIPPA-2.0 Performance (Split 10x1), Ang(R vs. X).

To assess SIPPA-2.0’s ability to securely distinguish between True Users and Impostors we
obtained over 20,000 unique True User sessions (20k-TU) and 20,000 unique Impostor ses‐
sions (20k-IM) from the extensive CASIA-FingerprintV5 database as described in the previ‐
ous paragraphs. The ROC plot for (20k-TU) with (20k-IM) is provided in figure 7, a SIPPA-2.0
split dimension of 10X1 was utilized, and the 32 Euclidean distance (ED) scores ( ED(R vs.
x) ) per session was aggregated into one similarity score by obtaining their Geometric Mean.
The ROC plot (20k-TU) with (20k-IM) where a SIPPA-2.0 split dimension of 10X1 was utiliz‐
ed, and the 32 dot product(Ang) scores( Ang(R vs. x )) per session was aggregated into one
similarity score by obtaining their Geometric Mean is provided in figure 8. Experiments were
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also conducted at other split dimensions i.e. 15, 20; however they produced inferior or simi‐
lar results with an exponentially increased processing times. No obvious methods (addi‐
tion,  scaling etc.)  of  combining the ED and Ang scores yielded better results suggesting
possible dependency (between the two) that will deserve further research. Of the over 50,000
instances where helper data was sent to reconstruct the random key R, R was always recon‐
structed successfully except 6 instances out of the over 50,000 instances. We postulate that
this is due to the sensitivities in finite precision arithmetic. In these 6 instances, the number
of errors in the 320 integers constituting the random key R ranges between one and four. To
safeguard against this remote possibility, R can be encoded in error correction codes, allow‐
ing for correcting R when the reconstruction fails due to a few errors.

5.3. Android app prototype for emergency health data retrieval

For proof of concept, we show a use case of SIPPA-2.0 for emergency health data manage‐
ment on an Android device. The diagram in figure 9 shows a scenario on an emergency res‐
ponder using his/her Android phone to retrieve the emergency health data from the
Android phone of an unconscious individual. In the enrolment process, the emergency
health data of the individual is first encrypted and stored in the Shared Preference of his/her
Android device. Furthermore, the fingerprint of the individual, together with a random
noise vector generated by a third party, are used to encode the decryption key, and the en‐
coded decryption key is also stored in the Shared Preference.

Figure 9. Use Case on applying SIPPA for emergency health data on an Andriod device.
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Figure 9.1. Figure 9 Legend.

Figure 10. UML class diagram of the overall structural design.
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During the retrieval process, the emergency responder will first establish a WiFi connection
with the individual’s Android device and retrieve the encrypted personal emergency health
data and the encoded decryption key. The emergency responder will then use a built-in or
wireless bluetooth fingerprint scanner to capture the indvidual’s fingerpint for decoding the
decryption key. The decoded fingerprint is then transmitted to the third party for noise re‐
moval to arrive at a sufficently close decrpytion key. The third party then acts as a SIPPA-2.0
client to interact with the SIPPA-2.0 server, and reconstruct the orginal decryption key based
on the helper data provided by the SIPPA-2.0 server. The reconstrcted original key is sent
back to the emergency responder for decrypting the personal emergency health data. The
UML class diagram in figure 10 illustrates the overall structural design.

6. Conclusion

In this book chapter we present a novel mechanism for generating and retrieving crypto‐
graphic keys from fingerprints. Our approach brings together the worlds of biometrics and
cryptography bytackling the problem of generating revocable repeatable keys (binary strings)
from biometric  channels  which are  by their  nature noisy.  Our scheme efficiently  gener‐
ates strong keys (256 bits) from fingerprint biometrics where there is no direct mapping of
a key to the fingerprint from which it was generated. The entire key space is utilized where
different  keys can be produced from the same fingerprint  for  varying applications.  Our
scheme makes possible various new applications where there is a requirement for the strong
coupling of an identity to cryptographic applications. For instance, data can be encrypted
utilizing biometrics such as fingerprints where the key is linked to a person’s physiology,
oran individual’s identity can be verified without the need for a central database of finger‐
prints.Such approaches allow for users to retain complete control of their data. It is not nec‐
essary for them to store their private data at a third party, thus alleviating privacy concerns.
A use case utilizing our cryptographic key generation protocol  is  also presented;  where
health data is encrypted with a user’s fingerprint and privately stored in a user’s smart‐
phone for secure retrieval during emergency scenarios. We also present our newly devel‐
oped secure computation protocol called SIPPA-2.0, which is central to the cryptographic
key generation protocol.Additionally, SIPPA-2.0 is shown to be provably correct, with an
included security analysis proving SIPPA-2.0 to be secure under the semi-honest and semi-
malicious models. Experiments revealing acceptable computational performance including
ROC’s indicating usability in practical scenarios are also presented.

Our future plans for this research include exploiting the parallelizability of our protocol to
increase performance through a parallel architecture, and exploring recent non-minutia
based fingerprint representation/comparison developments to improve segregation per‐
formance.
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7. Appendix: Security Analysis

We approach the security analysis of SLSSP through the following steps. We first define the
notion of perfect secrecy. We then analyze the cryptographic primitives employed by SLSSP
and the protocol itself using the notion of perfect secrecy. To show that SLSSP is secure un‐
der semi-honest and semi-malicious models, we adopt a zero-knowledge proof protocol that
can verify a given cipher text in SLSSP is indeed a Paillier encryption of its corresponding
message; thus providing a mechanism to detect malicious behavior and to guarantee cor‐
rectness with perfect secrecy.

7.1. General Assumptions

Throughout this section the security analysis is carried out in the Random Oracle model
[36]; i.e., every party is assumed to have access to a Random Oracle where ideal hash func‐
tions and true random generators are available.

Perfect Secrecy:

Given a Cryptosystem, Plaintext (M), a Key (K) and Ciphertext (C); Perfect Secrecy [30] or
Information Theoretic Security is an attribute assigned to Cryptosystems where knowledge of
the Ciphertext provides no additional information about the original Plaintext independent
of the computational power of an adversary. More specifically, a Cryptosystem has Perfect
Secrecy if uncertainty within the Plaintext equals uncertainty within the Plaintext given the
Ciphertext; i.e. utilizing Shannon Entropy, Perfect Secrecy can be defined as
H (M | C)= H (M ).

7.2. Security Analysis of cryptographic primitives in SLSSP

Multiplication of candidate matrix with a random matrix.

At time t1, Alice wants to securely send an nXn matrix A∈GL n(Z p)(p is a prime)[31] to Bob
over an authenticated channel [32], where Eve can intercept and store any messages over the
channel. Eve is assumed to possess unbounded computational power. Alice wants to be as‐
sured that the matrix A is being sent with Perfect Secrecy; i.e., Eve should not be able to ob‐
tain any information about A due to knowledge of data sent over the channel.

Alice also has access at some time t0 (t0 < t1 ) to a secure channel [32] with Bob. Alice shares a
random nXn matrix Rchosen uniformly from GL n(Z p) with Bob. At time t1, through the au‐
thenticated channel Alice sends C =(A*R)to Bob. To decrypt and obtain matrixA, Bob calcu‐
latesA= (C*R -1). Alice and Bob, discard Rand do not use it to encrypt any other messages.
Assuming that Eve only has knowledge ofC , to prove Perfect Secrecy it will be sufficient to
show thatH (A|C)= H (A). Let (A∈GL n(Z p)),  be the set of possible plaintexts, i.e, the sam‐
ple space forA. Let (C∈GL n(Z p)),  be the set of possible ciphertexts, i.e. the sample space
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forC . Let (R∈GL n(Z p)),  be the set of possible keys, i.e., the sample space forR. Note that

s =|GL n(Z p)|=  ∏
i=0

i=n-1 (p n - p i) 33 .

1. Let (k∈R)be a possible key, then PR(k )=  1
s

2. Let (l∈C)be a possible ciphertext, and given the independence of Aand Rthen:

PC(l)= ∑
m∈A ,  k∈R
l =(m*k )

PA(m)PR(k )
(5)

3. Since

PR(k )=  1
s
: (6)

PC(l)= 1
s

* ( ∑m∈A,k∈ℛ
l=(m*k)

PA(m)) (7)

4. Becausel ,  muniquely determine k(given landm there exists exactly one k that satisfies the
encryption equation (l =(m*k )), every m∈Aoccurs exactly once in the above summation;
therefore PC(l)=   1

s

5. Since PC(l) = PR(k ) for all landk , H (C)= H (R)

6. Since knowledge of (A, R) or(A, C) is sufficient to completely know
(A, C , R), H (A, R, C)= H (A, R)=  H (A, C)

7. Since M and K are independent, H (A, R)= H (A) + H (R)

8. By the chain rule for conditional entropy, H (A, C)= H (A|C) + H (C)

9. From (5),(7),(8) we obtainH (A|C)= H (A); Proving Perfect Secrecy.

7.3. Security Analysis of the SLSSP protocol:

In an ideal Secure Computation protocol, where there are no assumptions made about mali‐
ciousness or computational capabilities of the parties involved; no participant learns any‐
thing about any other’s private input(s) apart from any advantage obtained from the
malleability of a legitimate output. In the semi-honest model[37], the parties involved are
limited to PP [34] complexity, are assumed to follow the defined protocol honestly but are
allowed to retain a transcript of all communication, which they can utilize to obtain informa‐
tion about other party’s private input(s). In the semi-malicious model[37], parties are still re‐
stricted to PP complexity, whereas they are allowed to manipulate the secure computation
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protocol, retain a transcript of all communication, which they can utilize to influence the
outcome of the protocol and to obtain information about other party’s private input(s). It is
assumed in all these models that secure channels are utilized for inter-party communication.

The SLSSP protocol is secure under the semi-honest model, since through the entire proto‐
col, each party only observes encrypted versions of each other’s private input(s). The en‐
cryption primitives utilized in SLSSP have been shown in this section to be at least IND-
CPA. Even though both parties have access to the encryption oracle, and SLSSP is a multi-
step protocol, they do not gain any advantage by observing multiple versions of each other’s
encrypted private input(s). The SLSSP protocol can further be made secure under the semi-
malicious model by utilizing the following Zero-Knowledge protocol (ZKP) which guaran‐
tees correctness of SLSSP’s output.

Zero-Knowledge proof that a Paillier encrypted message encrypts a particular plaintext:

The Paillier encryption function P(m, r)is a Bijection(ZnxZn
*  →Zn 2

* ), which maps every plain‐

text (m∈  Zn), random (r∈  Zn
* ) pair to a unique Ciphertext(c∈  Zn 2

* ). The prover P could
therefore send rtoa verifier V, which would be sufficient to establish thatc encrypts a partic‐
ular messagem. Revealingr may however jeopardize certain desirable qualities of the Paillier
Cryptosystemincluding its indistinguishability under a chosen plain text attack (IND-CPA).
However, since Paillier encryption is semantically secure (IND-CPA), the verifier V will not
be able to tell whether a given cipher text c is indeed the encryption of a message m. To solve
this problem without leaking additional information, we adapt from [35] an honest verifier
Zero-Knowledge protocol which can be formulated as below:

The honest Verifier V knows m and possesses a Paillier Ciphertextc = g m' . r n mod n 2, and
knows only the Paillier public-key pair (g , n). V, not knowing r or the corresponding pri‐
vate-key pair(λ, μ), would like to verify thatc is the encryption of a particular messagem,
where the prover P possesses (g , n) and randomr .

1. V homomorphically subtracts mfromc; i.e., computes z as an encryption of (m’-m) ↔
z = (c.g -m) mod n 2). Note that ifm' =m, then zis an encryption of Zero; i.e.,z = r n mod n 2

Remark: This step may require using the fixed point representation discussed in section 6.3
to computez = (c.g -m) mod n 2).

2. P chooses a randomq ∈  Zn
*  and computes an encryption of zero:h =  g 0 . q n mod n 2. P

sends h to V.

3. V chooses a random e (e ≠  an,   a∈  Z)∈  Zand sends eto P. (This step stages a commitment
from P through his chosen q that defines an encrypted zero so that V can tie it to a random e
to verify the r used in encrypting m.)

4. P computesk =  qr e mod n. P sends k to V.

Remark: Even V knows h and n, q cannot be derived under DCRA (Decisional Composite Re‐
siduosity Assumption).
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5. V checks and accepts that m' =mif

gcd (h , n)=1 , gcd (k , n)=1and (g 0 . k n mod n 2)= (h .z e  mod n 2) i.e.,
(g 0 . k n mod n 2)=  (qnr en)mod n 2

Completeness –Prover P and verifier V are assumed to be honest:

1. Assume thatm' =m,then zas computed by V in Step-1 of the Zero-Knowledge protocol is
an encryption of zero, i.e.z = r n mod n 2.

2.(g 0 . k n mod n 2), from the verification in Step-5 of the protocol can be rewritten as
(q n . r en mod n 2).

3. Due to assumption in (1), (h .z e  mod n 2), from the verification in Step-5 can be rewritten as
(q n . r en mod n 2).

4. From (1),(2),(3), we get that, i f (m ' =m),  then ((g 0 . k n mod n 2)= (h .z e  mod n 2))

5. Assume thatm' ≠m, then zas computed by V in Step-1 of the protocol equals
(g m ' - m . r n mod n 2) where (g m ' - m ≠1).
6.(g 0 . k n mod n 2), from the verification in Step-5 of the protocol can be rewritten as
(q n . r en mod n 2).

7. Due to assumption in (5)(h .z e  mod n 2), from the verification in Step-5 can be rewritten as
(q n . (g m ' - m . r n)e mod n 2).
8. From (5), (6), (7) we get that:if  (¬ (m ' =m)),   then (¬ ((g 0 . k n mod n 2)= (h .z e  mod n 2))).
9. Since the verifier V, checks the equality in Step-5 of the protocol as a condition for accept‐
ance, from (4), (8), it is shown that the verifier V is correct in his conviction i.e. it is indeed
true that:(m ' =m) if and only if ((g 0 . k n mod n 2)= (h .z e  mod n 2)).
Soundness – Assuming a cheating prover P* and honest verifier V:

1. Assume that a cheating prover P* is trying to convince V thatm' =m, where in actuality,
(m ' - m) ≠0.Therefore P* would try to show that(g 0 . k n mod n 2)= (h .z e  mod n 2), where P*
has control over kand h and no knowledge of zsince (m ' - m) ≠0.

2. Any choice of ksent by party P* in Step-4 of the protocol will yield the n th power of k in
modulo n 2 for the left hand side of the verification equation(g 0 . k n mod n 2).

3. Since the P* has to show that (g 0 . k n mod n 2)= (h .z e  mod n 2) and has no control over z e;  
either h must equal (k n . z -e mod n 2) or k n must equal (h .z e).
4. (3) presumes knowledge ofzande. It is to be noted that h must be committed before V
sendse to P*. Hence P* can at best guess z and e, then computes and sends
 h =  k n . z -e mod n 2,  before knowledge ofe.
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5. When computingk , P* has knowledge ofe, and no knowledge of z.Since
(m' ≠  m), z = (g m ' - m . r n mod n 2) where (g m ' - m ≠1), (h .z e)contains a term ((gm ' - m)e) which
is not a power ofn, (g (m'- m))cannot be a power of nbecause of domain restrictions).

6. From (4),(5) P* cannot successfully convince V thatm' =m, when in actualitym' ≠m.
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