222 research outputs found

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Short-Term and Long-Term Solutions for Secure Verification of Aircraft- Reported ADS-B Location in Air Traffic Networks

    Get PDF
    Automatic dependent surveillance-broadcast (ADSB) is the foundation of next-generation air traffic management systems. The precision granted by ADS-B will allow for the network to support the huge growth in air traffic in the coming decades and assist both air traffic controllers and pilots in improving safety in flight. However, the ADS-B protocol has serious security vulnerabilities. Coupled with the importance of ADS-B in the air transportation system, these security issues make ADS-B an appealing target for attack by adversaries. This paper dismisses the need for encryption and focuses security strategies on location verification. Multilateration is combined with data fusion and location tracking for effective and undemanding short-term and long-term location verification. By taking input from air traffic controllers, a secondary location tracking systems allows for a backup record of controlled aircraft that can easily be referred to in emergencies

    Challenges of Implementing Automatic Dependent Surveillance Broadcast in the Nextgen Air Traffic Management System

    Get PDF
    The Federal Aviation Administration is in the process of replacing the current Air Traffic Management (ATM) system with a new system known as NextGen. Automatic Dependent Surveillance-Broadcast (ADS-B) is the aircraft surveillance protocol currently being introduced as a part of the NextGen system deployment. The evolution of ADS-B spans more than two decades, with development focused primarily on increasing the capacity of the Air Traffic Control (ATC) system and reducing operational costs. Security of the ADS-B communications network has not been a high priority, and the inherent lack of security measures in the ADS-B protocol has come under increasing scrutiny as the NextGen ADS-B implementation deadline draws near. The research conducted in this thesis summarizes the ADS-B security vulnerabilities that have been under recent study. Thereafter, we survey both the theoretical and practical efforts which have been conducted concerning these issues, and review possible security solutions. We create a classification of the ADS-B security solutions considered and provide a ranking of the potential solutions. Finally, we discuss the most compatible approaches available, given the constraints of the current ADS-B communications system and protocol

    Addressing Operator Privacy in Automatic Dependent Surveillance - Broadcast (ADS-B)

    Get PDF
    We investigate security of ADS-B system and propose a framework composed of two solutions that would require minimal change to the existing system. The investigation focuses on providing an encrypted ADS-B system that provides confidentiality, availability, and integrity while requiring minimal changes to the existing ADS-B specification. The proposed framework consisting of two solutions is envisioned to be implemented through software updates while providing backwards compatibility. The most challenging requirement during this study was to work within the constraints of the existing ADS-B system

    Interoperable ADS-B Confidentiality

    Get PDF
    The worldwide air traffic infrastructure is in the late stages of transition from legacy transponder systems to Automatic Dependent Surveillance - Broadcast (ADS-B) based systems. ADS-B relies on position information from GNSS and requires aircraft to transmit their identification, state, and position. ADS-B promises the availability of high-fidelity air traffic information; however, position and identification data are not secured via authentication or encryption. This lack of security for ADS-B allows non-participants to observe and collect data on both government and private flight activity. This is a proposal for a lightweight, interoperable ADS-B confidentiality protocol which uses existing format preserving encryption and an innovative unidirectional key handoff to ensure backward compatibility. Anonymity and data confidentiality are achieved selectively on a per-session basis. This research also investigates the effect of false replies unsynchronized in time (FRUIT) on the packet error ratio (PER) for Mode S transmissions. High PERs result in range and time limits being imposed on the key handoff mechanism of this proposal. Overall, this confidentiality protocol is ready for implementation, however further research is required to validate a revised key handoff mechanism

    Security Improvements for the Automatic Identification System

    Get PDF
    The Automatic Identification System (AIS) is used aboard the vast majority of sea-going vessels in the world as a collision avoidance tool. Currently, the AIS operates without any security features, which make it vulnerable to exploits such as spoofing, hijacking, and replay attacks by malicious parties. This paper examines the work that has been done so far to improve AIS security, as well as the approaches taken on similar problems in the aircraft and vehicular mobile ad-hoc network (MANET) industries. The first major contribution of this paper is the implementation of a Software Defined Radio (SDR) AIS transmitter and receiver which can be used to conduct vulnerability analysis and test the implementation of new security features. The second contribution is the design of a novel authentication protocol which overcomes the existing vulnerabilities in the AIS system. The proposed protocol uses time-delayed hash-chain key disclosures as part of a message authentication code (MAC) appended to automatic position reports to verify the authenticity of a user. This method requires only one additional time slot for broadcast authentication compared to the existing standard and is a significant reduction in message overhead requirements compared to alternative approaches that solely rely on public key infrastructure (PKI). Additionally, there is an embedded time stamp, a feature lacking in the existing system, which makes this protocol resistant to replay attacks. A test implementation of the proposed protocol indicates that it can be deployed as a link layer software update to existing AIS transceivers and can be deployed within the current AIS technical standards as an expanded message set

    2018 FSDG Combined Abstracts

    Get PDF
    https://scholarworks.gvsu.edu/fsdg_abstracts/1000/thumbnail.jp

    Emerging Informatics

    Get PDF
    The book on emerging informatics brings together the new concepts and applications that will help define and outline problem solving methods and features in designing business and human systems. It covers international aspects of information systems design in which many relevant technologies are introduced for the welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that helps better conceptualise and design new world-class solutions. The book provides four flexible sections that accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each chapter presents a clear basis through the problem conception and its applicable technological solutions. I hope this will help further exploration of knowledge in the informatics discipline
    corecore