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The Federal Aviation Administration is in the process of replacing the 

current Air Traffic Management (ATM) system with a new system known as 

NextGen.  Automatic Dependent Surveillance-Broadcast (ADS-B) is the aircraft 

surveillance protocol currently being introduced as a part of the NextGen system 

deployment.  The evolution of ADS-B spans more than two decades, with 

development focused primarily on increasing the capacity of the Air Traffic Control 

(ATC) system and reducing operational costs.  Security of the ADS-B 

communications network has not been a high priority, and the inherent lack of 

security measures in the ADS-B protocol has come under increasing scrutiny as the 

NextGen ADS-B implementation deadline draws near. 

  



 

  

The research conducted in this thesis summarizes the ADS-B security 

vulnerabilities that have been under recent study.  Thereafter, we survey both the 

theoretical and practical efforts which have been conducted concerning these 

issues, and review possible security solutions.  We create a classification of the 

ADS-B security solutions considered and provide a ranking of the potential 

solutions.  Finally, we discuss the most compatible approaches available, given the 

constraints of the current ADS-B communications system and protocol. 
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CHAPTER 1 

INTRODUCTION 

 

Over the past two decades, the Federal Aviation Administration (FAA) has been 

working on a replacement for the current air traffic control (ATC) system in a project 

known as NextGen.  Developed in cooperation with other aviation agencies, the goal of 

NextGen is to shift air traffic surveillance and management technology away from an 

infrastructure based on radar to one that obtains position information from a Global 

Navigation Satellite System (GNSS).  This surveillance paradigm shift offers the potential 

to reduce deployment and maintenance costs, while at the same time increase both the 

capacity and safety of the global air traffic system. 

General Issue 

The new ATC surveillance system being deployed as part of NextGen is called 

Automatic Dependent Surveillance-Broadcast (ADS-B).  The key issue with ADS-B is that 

it was not developed with security as a priority, leaving it susceptible to a number of 

different radio frequency (RF) attacks.  Recent research has demonstrated the ease of 

compromising the security of ADS-B using inexpensive Universal Software Radio 

Peripheral (USRP) hardware and Open Source software [1], [2]. 

These vulnerabilities are generating increasing concern as the deadline for full 

compliance by the aviation industry draws near.  The European Aviation Safety Agency 

(EASA) has mandated all aircraft in European airspace be equipped with ADS-B by 2017, 
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while the FAA has set 2020 as its implementation target.  In addition, countries such as 

Australia have already deployed full continental coverage, with ADS-B surveillance being 

the sole means of ATC in sparsely populated regions of the country.  Although aviation 

agencies previously estimated that 70-80 percent of commercial aircraft worldwide 

would be equipped with ADS-B by 2013 [3], a recent report by the Department of 

Transportation’s Inspector General [4] indicates that compliance within the aviation 

industry is running behind schedule.  The report cites concerns over system 

vulnerabilities as one of the principle causes for fleet-wide delays in ADS-B equipment 

installation. 

Problem Statement 

The implementation of a new aircraft surveillance system is a non-trivial, 

decades-long process that has far reaching implications on all segments of the aviation 

industry.  Not only is there a substantial cost in developing and deploying the system 

infrastructure, there are significant synergies required within the industry to train flight 

crews and air traffic controllers on the use of the new system. 

As reported in [4], the security shortcomings in ADS-B are creating uncertainty 

within the aviation community and reluctance toward making a commitment to 

complying with the NextGen deployment plan.  As the timetable for the scheduled 

implementation of ADS-B grows shorter, solutions to address the vulnerabilities in ADS-

B must be found.  Potential approaches must be evaluated from both a security and a 

cost standpoint.  Therefore, feasible solutions must strike a balance between security 
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improvement and compatibility with the current ADS-B communications system. 

Research Objectives 

The purpose of this research is to review the strengths and weaknesses of 

proposed ADS-B security schemes, considering both the security offered by the scheme 

and its compatibility with the current air traffic management (ATM) system 

infrastructure.  We begin with a discussion of the ATM system in Chapter 2, giving an 

overview of the evolution of our ATC system, NextGen and the ADS-B protocol.  In 

Chapter 3 we present a summary of the ADS-B vulnerabilities that have been discussed 

in the recent literature.  Building on this discussion, a model of the ADS-B network is 

outlined in Chapter 4 and the required security attributes of the network are identified.  

In Chapters 5 and 6, we discuss the various ADS-B security proposals.  We conclude our 

research in Chapter 7, where we develop a ranking system to evaluate the various 

security schemes and identify the most beneficial approaches, considering their security 

features and cost-effectiveness of the various proposals. 
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CHAPTER 2 

AIR TRAFFIC MANAGEMENT SYSTEM OVERVIEW 

 

Air Traffic Control System History 

Our current air navigation and ATC systems trace their origins back to the 1920s.  

During this early period in air navigation, the Post Office Department utilized lighted 

beacons as a navigational aid to pilots flying postal delivery aircraft at night.  In the 

1930s these visual aids were replaced by non-directional radio beacons (NDBs), which 

transmit pulses of electromagnetic energy modulated with Morse Code. 

By the late 1930s commercial air travel was becoming a popular mode of 

transportation and the volume of air traffic increased dramatically.  As it became more 

difficult to keep track of the increasing number of aircraft in operation, the airlines 

developed a system of radio stations to help monitor their en route air traffic. These 

initial radio stations were located in Chicago, Newark and Cleveland and were the 

precursor to our current air traffic control system. The Bureau of Air Commerce 

acquired the radio stations in 1936 and in so doing formed what is considered the First 

Generation of ATC.  

This First Generation ATC system consisted of no automation and very little radar 

coverage.  The fledgling ATC system relied on manual methods of tracking aircraft using 

progress strips for each flight. By the late 1950s the volume of aircraft in operation had 
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increased to the point that manual tracking was no longer feasible.  In 1959 the Second 

Generation ATC system was introduced, which automated many of the flight monitoring 

tasks through the use of computers for processing air traffic data and ground based 

radar to help track individual aircraft.  Two years later, another major improvement to 

the ATC system was made when the FAA incorporated ground based equipment to 

interrogate a transponder located on the aircraft, allowing each air traffic radar target to 

be uniquely identified. 

In the late 1960s, air traffic was again taxing the capabilities of the National 

Airspace System (NAS).  By the early 1970s, advances in computer technology made it 

possible for Upgraded Third Generation development (UG3d) of the ATC system.  UG3d 

provided the FAA with the ability to upgrade equipment used in both the terminal and 

en route air traffic control structures.  Through the increased automation of controller 

tasks and the ability to receive timely flight tracking information, UG3d enabled air 

traffic controllers to safely accommodate and monitor the increasing volume of air 

traffic. 

Air Traffic Control System Today 

With the exception of introducing Global Positioning System (GPS) technologies 

in the late 1990s, the current NAS infrastructure has undergone few changes since the 

improvements incorporated into UG3d.  Currently the NAS consists of a large number of 

facilities including approximately 750 ATC installations, over 18,000 airports and more 

than 4,500 air navigation stations.  The 750 ATC facilities are comprised of 21 Air Route 
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Traffic Control Centers (ARTCCs), 197 Terminal Radar Approach Control (TRACON) 

facilities, more than 450 airport control towers and numerous Flight Service Station 

(FSS) facilities.  

ARTCCs are responsible for controlling en route traffic within designated control 

sectors, with the majority of the en-route traffic traveling along designated airways at 

and above 18,000 feet.  TRACON facilities control aircraft within an approximate 30 

nautical mile radius of the larger airports within the ATC system, while airport control 

towers are responsible for controlling aircraft within a 5 nautical mile radius of the 

airport.  FSS facilities are auxiliary components of the ATC system and provide general 

information to pilots such as weather and traffic advisories. 

Current NAS aircraft surveillance techniques fall into three basic categories: 

Procedural ATC, Primary Surveillance Radar (PSR) and Secondary Surveillance Radar 

(SSR).  Procedural ATC is what is known as a dependent surveillance technique, which 

means it depends on input from individual aircraft.  With Procedural ATC, pilots are 

required to periodically report their position using radio communications, and it is 

predominately used for oceanic and remote area flight operations where there is little 

or no radar coverage.  PSR is a non-cooperative and independent surveillance system 

typically used by TRACON facilities and in busy terminal areas.  These high definition 

radar systems determine aircraft position via target range and azimuth from the station 

and do not depend on any input from the aircraft.  SSR is a cooperative and partially-

independent surveillance system typically used for en-route tracking by ARTCCs.  The 
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SSR radar system is a lower-resolution system than PSR, and determines aircraft position 

through a combination of radar target return and aircraft transponder reply when 

interrogated by a ground station.  

 

Many of the current ATC facilities have been in service for more than 50 years.  

These installations, and in particular the ground-based SSR and PSR radar systems, are 

very costly to operate and maintain.  Increased air traffic, aging equipment and a desire 

to leverage technological advancements necessitate a comprehensive overhaul to the 

NAS.  In its current form, the air transportation system performs adequately but it is 

once again approaching its capacity limits.  Without a makeover, the expected growth in 

air traffic will likely create costly flight delays and increased flight safety hazards.  

NextGen and Automatic Dependent Surveillance-Broadcast 

In response to these concerns, the FAA began the development of NextGen, 

which incorporates new technologies to meet anticipated future NAS demands. The 

primary goal of NextGen is to significantly increase the safety and capacity of the air 

traffic management system.  The upgrade incorporates a fundamental conversion of the 

entire NAS, including the addition of satellite-based technologies for surveillance 

operations and the shutdown of many legacy ground-based radar systems currently in 

use.  A key component of NextGen is the position reporting and tracking offered by ADS-

B. 
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The ADS-B surveillance system is automatic in that it requires no pilot or 

controller intervention. It is dependent surveillance because the aircraft provides input 

to the air traffic control system based on information derived from the aircraft’s GPS 

receiver.  As a broadcast protocol, ADS-B will continually transmit an updated position 

and other data to nearby ground stations and aircraft on a regular interval.  This 

broadcast occur every several hundred milliseconds, compared with PSR which updates 

aircraft position information once every 4 to 5 seconds.  As a result, ADS-B provides 

much a higher surveillance rate and accuracy than PSR and SSR.  For example, at 

distance of 60 nautical miles from the ground station, ADS-B provides ±20 meters of 

precision compared to ±300 meters offered by the SSR radar system. 

ADS-B has the potential to improve safety through enhanced pilot and controller 

situational awareness, better inflight collision and runway incursion avoidance, and the 

ability to implement accurate ATC surveillance in remote geographic areas with no 

current radar coverage.  Better position monitoring accuracy should allow the air traffic 

control system to handle a higher volume of aircraft through condensed aircraft 

separation standards, more direct traffic routings and optimized departures and 

approach procedures. Another potential benefit of the NextGen ADS-B infrastructure is 

a reduction in air traffic control system maintenance and operating costs, since the new 

system is comprised of simple UHF radio stations that are significantly cheaper to install 

and maintain than the aging surveillance radar ground stations [5]. 
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ADS-B System Description 

The FAA’s NextGen implementation plan includes a network of approximately 

800 ADS-B ground stations, placed 150 to 200 miles apart.  These stations will receive 

signals from two competing ADS-B data link standards: Universal Access Transceiver (UAT) 

and Extended Squitter (1090ES).  The UAT data link was specifically designed for ADS-B 

and has a much larger (272-bit) message data block than 1090ES (56-bit) in order to 

accommodate supplementary aviation services information.  It establishes a channel 

with a data rate of 1 Mbps and operates at 978 MHz.  The message format of UAT is 

incompatible with any existing ATM system protocol, and thus requires aircraft to be 

equipped with new avionics.   

To minimize the cost impact on commercial and military aviation fleets, the FAA 

decided to employ a separate data link protocol based on an existing interrogation 

equipment mechanism in the SSR Mode S transponder called extended squitter.  The 

term squitter refers to the periodic broadcast of aircraft tracking data.  When a Mode S 

transponder is interrogated by SSR, its response to the interrogation message is called a 

squawk.  The transponder also periodically sends out aircraft tracking data without 

being interrogated in what is called a squit transmission.  The 1090ES protocol extends 

the original 56-bit Mode S message to 112-bits, hence the term extended squitter. 



10 
 

  

Figure 1.  ADS-B protocol hierarchy [6]. 

The relationship between the Transponder and ADS-B protocols is shown in 
Figure 1.  The purpose here is to show the relationship between the legacy transponder 
components Mode 3/A, Mode C and Mode S, as well as to emphasize that the 1090ES 
protocol is built on the existing Mode S protocol.  It also demonstrates that the UAT 
protocol is a completely separate protocol from 1090ES.  Table 1 shows the relative 
message sizes for the existing transponder protocols and the two ADS-B protocols. 

 

Table 1.  Comparison of Transponder Modes to ADS-B  [7]. 
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The 1090ES protocol is based on the traditional Mode S system and adds the 

message fields for ADS-B surveillance data, which allows the ADS-B function to be 

incorporated in current Mode S transponders.  Since it is based on existing avionics 

equipment, the cost of equipping a fleet of aircraft with 1090ES is substantially less than 

it would be for purchasing entirely new UAT-compatible avionics. 

ADS-B is separated into two functional operations; ADS-B OUT and ADS-B IN.  

ADS-B OUT is the continuous broadcast of aircraft position data along with identity, 

altitude, speed and rate of climb/descent.  ADS-B IN is an optional service that allows 

properly equipped aircraft to receive and display detailed information on other aircraft 

operating in the same area (see Figure 2).   

 

Figure 2.  Overview of ADS-B system architecture [7]. 
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To facilitate interoperability between aircraft using different frequencies, the 

system incorporates a support component called Automatic Dependent Surveillance-

Rebroadcast (ADS-R).  ADS-R receives the traffic information broadcasts on the 

1090MHz or 978 MHz links and rebroadcasts the information to aircraft on the opposite 

data link frequency [8], [7].  Since the UAT protocol will primarily be used by general 

aviation aircraft, we will limit our discussion of ADS-B security solutions to the 1090ES 

protocol. 

The 1090ES data link utilizes a standardized message format and transmission 

protocol, consisting of a preamble (consisting of two synchronization pulses) followed 

by a 112 bit message, as shown in Figure 3. 

 

Figure 3.  1090ES Data Link Message Format. 

The downlink format field DF (alternatively UF for uplink messages) assigns the type of 

the message.  A downlink format value of 17 indicates that the message is an extended 

squitter, enabling the transmission of 56 arbitrary bits in the Data Block field.  The CA 

field indicates information about the capabilities of the Mode S transponder, while the 

24 bit AA field carries the unique International Civil Aviation Organization (ICAO) aircraft 

address which enables aircraft identification.  Finally, the PI-field provides a 24 bit cyclic 
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redundancy check (CRC) to detect and correct possible transmission errors.  Using the 

24-bit parity information and a fixed generator polynomial of degree 24, it is possible for 

recipients to correct up to 5 bit errors in 1090ES messages [7].  This error correction 

limit is important, as any message exceeding 5 bit errors is dropped as a corrupt 

message.  Currently the message drop rate in the ADS-B network is about 33%, so there 

are a significant number of bit errors occurring in the ADS-B messages.  The majority of 

these errors appear to be the result of congestion on the ADS-B communication 

frequencies. 
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CHAPTER 3 

ADS-B VULNERABILITIES 

 

The initial development to extend the Mode S protocol for use in the ADS-B 

surveillance system was begun over 20 years ago [9].  At the time, the primary concern 

of the developers was on increasing the ATC surveillance system operational capacity, 

reliability, accuracy and range [10].  There was no emphasis on providing security to the 

new system, and as a result ADS-B contains many security weaknesses that potential 

attackers can exploit.  These vulnerabilities inherently stem from the nature of 

broadcast communication when used without additional security measures.  Unlike 

traditional point-to-point wired networks which present physical access barriers, there 

are no impediments for an attacker trying to access a wireless broadcast network.  The 

security issues caused by the open nature of the ADS-B network are compounded by the 

fact that the messages are broadcast as unencrypted plaintext. 

As a result of the broadcast characteristics and unencrypted message format of 

the network, access control mechanisms for ADS-B are very challenging to implement. 

Adding to the security problems caused by accessibility, recent work by Magazu [2] and 

Costin et al. [1] demonstrates that the widespread obtainability of inexpensive RF 

implementation hardware and software has facilitated the ability of hackers to design 

successful exploits.  In the remainder of the chapter we present an overview of the 

various ADS-B passive and active attack vulnerabilities, discussed in increasing order of 
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difficulty and complexity [7]. 

Eavesdropping 

Passive listening to the unsecured transmissions is the simplest and most direct 

form among the many security vulnerabilities present in ADS-B.  Since ADS-B messages 

are sent plaintext over a broadcast communications network, the protocol’s 

susceptibility to eavesdropping is well known and has been a topic of discussion since its 

early development.  Although many aviation services and hobbyists gather and 

disseminate this information with non-nefarious intentions, reconnaissance through 

passive listening often forms the basis for a number of more sophisticated network 

attacks.  By combining ADS-B provided data with other publicly available data sources 

(e.g. official databases provided by aviation authorities), attackers can retrieve enough 

information to launch targeted attacks [6].  On a broadcast network, eavesdropping is 

practically impossible to detect and is difficult to prevent without fully encrypting the 

data. 

Jamming 

Jamming is an active attack that is slightly more complex than eavesdropping, 

affecting either a single node or multiple nodes in an area of a wireless network.  In a 

jamming attack an adversary disrupts the transmission and reception of messages by 

sending a sufficiently high-powered signal on the wireless frequency.  While jamming is 

a problem common to all wireless communications, the impact on aviation is 

exacerbated by unrestricted access to system’s wide open spaces as well as the time-
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critical nature of the transmitted data. 

The two basic categories of jamming attacks on ADS-B are Ground Station Flood 

Denial and Aircraft Flood Denial.  The intent of both of these attacks is to disrupt the 

communications frequency and effectively block the surveillance network.  Since an 

adversary can gain close proximity to a ground station, a Ground Station Flood Denial 

attack is the easier of the two for an adversary to employ.  Jamming a ground station 

can be accomplished using much lower power on the frequency than is required to 

target an airborne node.  Aircraft Flood Denial is slightly more difficult, as the adversary 

does not have ease of proximity to the target.  A successful attack requires a much 

higher powered signal jamming device, and is most likely to pose a threat to landing and 

departing aircraft rather than en-route traffic. 

Message Injection 

Although slightly more difficult to conduct than jamming attacks, recent research 

by Magazu [2] and Costin et al. [1] detailed the relative ease of injecting non-legitimate 

messages into the air-traffic communication system using simple and readily available 

technology.  Since no authentication measures are implemented at the data link layer, 

there is essentially no obstacle for an attacker in building a transmitter that is able to 

produce correctly modulated and formatted ADS-B messages [7].  As with jamming 

attacks, message injection attacks can target both ground-based and airborne targets, 

producing illegitimate ghost targets that appear as valid nodes to the network 

participants. 



17 
 

Message Deletion 

Higher up on the difficulty scale are Message Deletion attacks, where legitimate 

messages are removed from the wireless network using either destructive or 

constructive interference.  In a constructive interference attack, the adversary attempts 

to obscure the sender’s transmission by causing a large number of bit errors.  The 

theory behind a constructive interference attack is to cause a sufficient number of 

errors so that the receiver sees the message as corrupt and drops the message.  Since 

Mode S extended squitters’ CRC can correct a maximum of 5 bit errors per message, an 

adversary will be successful if they can cause a message to exceed this threshold. 

In contrast to generating bit errors, a destructive interference attack tries to 

mask network communications messages by transmitting the inverse of the signal 

broadcast by a legitimate sender.  The theory behind destructive interference is that by 

transmitting an inverse signal, the sender’s signal will be highly attenuated and 

obscured.  In practice, destructive interference is extremely challenging to implement, 

due to very precise and complex timing requirements.  Unlike destructive interference, 

constructive interference does not require precise time synchronization and tends to be 

more effective.  The end result of both of these attacks is that, from the perspective of 

the network participants, a node that was previously part of the network suddenly 

disappears [7]. 

  



18 
 

Message Modification 

The most difficult vulnerabilities to exploit are those involving ADS-B message 

modification.  These attacks are complex to successfully implement because they 

typically require the attacker to access the ADS-B network communications hardware 

during message transmission, which is much more difficult to accomplish.  There are 

two different approaches that an attacker can use for message modification: 

Overshadowing and Bit-Flipping.  An attacker employs overshadowing by sending a high-

powered signal that is precisely timed with the transmission of the target message.  This 

has the effect of replacing the target message in whole or in part, allowing the sender’s 

message to be modified or replaced entirely.  When an adversary uses bit-flipping, the 

attacker converts any number of bits from 1 to 0 (or the other way around) by 

superimposing a false signal over the original signal.  In both cases arbitrary data can be 

injected into the network without the knowledge of any of the participants.  This effect 

can also be achieved by combining message deletion and injection, but message 

modification at the ADS-B network communications hardware level can be regarded as 

more problematic than the injection of a completely new message, since the 

manipulated message was originally considered legitimate by the network [7]. 
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CHAPTER 4 

ADS-B SECURITY REQUIREMENTS 

 

The challenges to addressing security problems in ADS-B stem from its open 

broadcast architecture and the need for security schemes to integrate into the 

operational characteristics of the existing air traffic management system.  In order to 

describe the security requirements of the ADS-B communications network, we begin by 

identifying the properties of the network as outlined by Strohmeier et al. [7]  and then 

discuss the security attributes needed to adequately address the vulnerabilities in the 

system. 

ADS-B Network Properties 

The ADS-B network is a mobile ad hoc network (MANET), consisting of a large 

and variable number of highly mobile nodes moving at velocities of 500 mph1 or more.  

Due to the speed and mobility of its nodes, the ADS-B network is extremely dynamic, 

with very short duration communications between nodes.  Given the 3 dimensional 

space the nodes traverse, we assume that the nodes are not constrained along a 

defined vector, although aircraft frequently operate along designated routes and at 

specified altitudes within the ATC system.  

                                                      
1 Passenger and military jet aircraft typically fly at altitudes between 30,000 – 45,000 feet at speeds 
ranging from 450 – 500 mph.  Turboprop aircraft normally operate at altitudes between 18,000 – 28,000 
feet at speeds in the range 250 – 320 mph.  Smaller general aviation aircraft are predominately powered 
by reciprocating engines, usually operating at altitudes below 18,000 feet and at speeds below 230 mph. 
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The network model is based on single-hop unidirectional broadcast links.  Nodes 

in the MANET use a concept called beaconing to broadcast their position, velocity and 

direction in plaintext on recurring intervals of a few hundred milliseconds.  We consider 

the ADS-B communications network to be a long range network, since it is designed to 

operate over wide coverage areas.  The UHF frequencies utilized by the 1090 ES and 

UAT implementation of ADS-B are both line-of-sight (LOS), and are designed to operate 

at distances of 100 NM or more2. 

Although the ADS-B network has many similarities to wireless sensor networks, 

we assume that ADS-B devices have no energy limitations when actively participating as 

nodes in the network.  Nodes that are equidistant from an ADS-B ground station are 

assumed to have the same signal strength with respect to that ground station.  In 

addition, we assume that ADS-B ground station and aircraft avionics hardware have no 

significant computational constraints associated with sending and receiving messages 

on the network.   

Another concern in some wireless sensor networks is the undetected physical 

capture of legitimate network nodes [11].   Since the aviation industry would consider it 

very undesirable to place any restrictions on ownership of general aviation aircraft, 

controlling legal access to legitimate ADS-B nodes would prove to be difficult if not 

impossible.  As a result, the undetected physical capture of legitimate ADS-B nodes is a 

relatively low priority in the hierarchy of ADS-B vulnerabilities. 
                                                      
2 Aviation distances are normally measured in nautical miles. One nautical mile is equivalent to 1.15078 
statute miles. 
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As a final topic in describing the properties of the ADS-B network, we consider 

the overall network reliability.  Throughout the development of the ADS-B system, 

network reliability has not been an important concern.  As a consequence, the ADS-B 

protocol has no ability to mitigate collisions on the frequency channel.  Due to the 

broadcast nature of the network model, there are no provisions in the protocol for 

handling lost packets.  Although packet loss does not normally cause a problem for the 

sending and receiving of broadcast messages, there is a substantial amount of packet 

loss on the physical layer.  According to [7] and [11], the mean packet error rate is 33%.  

This means that approximately 1/3 of the ADS-B messages currently exceed the 5-bit 

error correction limitation and this error rate will likely escalate as the ADS-B channel 

utilization rate increases due to the expected growth in air traffic density over the next 

several years.  

Required Security Attributes 

As discussed in the previous chapter, recent papers by Giannatto and Markowsky 

[5] and McCallie et al. [8] present several case studies which highlight the need for 

adding security to the ADS-B communications network broadcasts.  In addition, work by 

Costin and Francillon [1], Magazu [2] , and Schäfer et al. [6] demonstrate the ease with 

which inexpensive and readily available hardware can exploit the vulnerabilities 

inherent in the existing ADS-B implementation.    

The system performance standards for ADS-B are outlined in the Radio Technical 

Commission for Aeronautics (RTCA) documents DO-242A, DO-260B and DO-282B.  None 
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of these documents make any mention of security as a part of the requirements 

specification.  Therefore there was never any emphasis put on securing the protocol 

during its initial development.  We can, however, use the network model defined in the 

previous section to identify the desired security attributes for potential ADS-B security 

schemes.  An ideal and comprehensive ADS-B security solution will have the following 

qualities: 

• Compatibility – The security scheme is compatible with the current ADS-B 

infrastructure and protocol, having minimal impact on current air traffic 

management operations. 

• Scalability – The security solution is adaptable to increasing air traffic 

density and can accommodate anticipated growth in traffic volume.  This 

implies that the solution must offer increased network reliability through 

robustness to packet loss. 

• Resistance to Signal Jamming and DoS – The security solution will provide 

protection against malicious narrow band and pulse signal jamming 

attacks.  The solution must also be secure against Denial of Service 

attacks. 

• Data Integrity – The security scheme must provide assurance to the 

receiver that the data received has not intercepted and modified in any 

way by a third party. 
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• Source Integrity – The security approach must provide assurance to the 

receiver that the data received originated from the sender claiming to 

have sent the message. 

• Location Integrity – The security scheme must provide assurance to the 

receiver that the message actually originated from the location claimed in 

the message position data. 

• Responsiveness – Due to the very short communication timeframes in the 

MANET, the security solution must quickly detect and respond to 

incidents on the network. 

Over the past few years there has been a growing body of work investigating 

possible approaches to ADS-B security, with progress in related fields such as wireless 

sensor networks and vehicular ad hoc networks (VANETs) providing researchers with 

ideas for developing security schemes applicable to ADS-B.  Using the security 

requirements listed above as a guide, we will discuss and evaluate several current 

proposals for enhancing ADS-B security. 

ADS-B Security Solutions Taxonomy 

As noted above, there has been a substantial amount of recent research into 

providing ADS-B security, encompassing a variety of approaches.  As shown in Figure 4, 

the proposed ADS-B security solutions can be organized into a taxonomy which groups 

the recent proposed security schemes into two separate and distinctive categories: 

Secure Broadcast Authentication and Secure Location Verification. 
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Figure 4.  Taxonomy of ADS-B Security [7]. 

 

We categorize approaches to Secure Broadcast Authentication as those schemes 

which provide the receiver with verification that messages received actually originated 

from the claimed source and were not intercepted or modified en-route.  These 

approaches are further subcategorized as Cryptographic and Non-cryptographic 

security schemes.  In Chapter 5 we discuss both of these message integrity approaches. 

Secure Location Verification schemes utilize a diverse group of non-

cryptographic techniques to help verify the location claimed by a sender.  Sastry et al. 

[12] distinguish between two different methods of secure location verification: In-

Region Verification and Secure Location Determination.  When a receiver employs in-

region verification, various algorithms are used to analyze the available data and 

attempt to verify the plausibility of the sender’s claimed location and intended vector.  

The receiver then either accepts or rejects the claim based on the probability that the 

sender is in the region claimed in the message.   
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In contrast, the secure location determination method attempts to discover the 

physical location of the sender as a means to cross-check the sender’s claimed location.  

In this method, the receiver tries to compute the sender’s actual location in 3-

dimensional space and compare it to the location claimed in the message.  In Chapter 6 

we discuss secure location verification approaches of both the in-region verification and 

secure location determination types.  
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CHAPTER 5 

SECURE BROADCAST AUTHENTICATION SOLUTIONS 

 

In our description of the ADS-B network model, we noted that communications 

between nodes on the network are unidirectional broadcasts.  Due to this broadcast 

architecture, potential security mechanisms must preserve the open nature of ADS-B so 

as not to restrict or encumber communications on the network.   The lack of support for 

reliable data transfer and two-way communication between nodes in ADS-B makes 

message authentication more challenging than in a point-to-point communications 

network. 

Security solutions in the Secure Broadcast Authentication category have been 

studied as a means for authenticating unidirectional broadcast messages.  Recent work 

in securing MANETs and wireless sensor networks discuss both cryptographic and non-

cryptographic solutions, and in the following sections we analyze their feasibility for 

providing security to the ADS-B communications system.   

  Cryptographic approaches include both symmetric and asymmetric mechanisms 

for message authentication3.   Secure broadcast authentication schemes can be 

implemented either as a global mechanism on the network or designed so as to 

selectively respond to threats detected on the network.  Such reactive authentication 

                                                      
3 Symmetric-key algorithms utilize the same cryptographic keys for both encryption of plaintext and 
decryption of ciphertext, while asymmetric-key cryptographic algorithms require both a private and a 
public key. 
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could prove useful in reducing interference on the network by only requiring additional 

security at times when incidents seem more likely, minimizing additional computational 

and communicational overhead [7].  Non-cryptographic schemes focus on the physical 

layer, identifying solutions based on recognizing unique hardware or software 

characteristics of nodes on the network.  In the following sections we discuss potential 

cryptographic and non-cryptographic security schemes. 

Cryptographic Schemes 

Cryptographic security schemes in wireless networks are an established means 

to secure communication that offer possible application to ADS-B.  However, the open 

nature of the ADS-B architecture presents unique security challenges for cryptographic 

schemes, with a primary issue being the development of a suitable key distribution 

infrastructure.   

Robinson et al. [13] describe the advantages and disadvantages to ad hoc and 

structured key distribution arrangements.  An ad hoc approach to key distribution 

utilizes the preloading of trusted certificates into a node prior to the node joining the 

network.  The trusted certificates would contain collections of public keys, and could be 

self-signed, signed by a local certificate authority (CA) or obtained from a third party 

distributor [13].  The validity of the certificates themselves cannot be verified by the 

node and must therefore be preloaded via a trusted mechanism.  The principle 

advantage of ad hoc key distribution is its simplicity on relatively small networks.  

Having a limited number of certificates and corresponding private keys reduces the 
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probability of having a compromised key or an invalid certificate, assuming that a 

private key is not shared among multiple entities.  The primary drawback to the ad hoc 

key distribution approach is that it does not scale well, since certificate management 

becomes much more challenging as the size of the network grows and the node density 

increases.  Due to the lack of scalability of ad hoc key distribution arrangements, we will 

focus on cryptographic approaches that utilize structured key distribution.  

Whether the cryptographic approach is symmetric or asymmetric, security 

techniques suitable for wireless sensor networks and MANETs cannot be simply 

retrofitted into the existing ADS-B communications system.  This is due to several 

difficulties that the ADS-B network presents.  For one, the ADS-B network is limited by 

the available UHF bandwidth on the 968 and 1090 MHz frequency channels and there 

are currently no plans for increasing the spectrum allocations.  This creates an additional 

problem in that the number of nodes that the ADS-B system can support is limited by 

interference on the designated ADS-B frequency channels.  Security solutions that 

extend the message length will result in increased interference and reduced operational 

capacity [9].  Also, any potential cryptographic schemes must be deployed globally, and 

therefore must be implemented jointly between several international aviation agencies. 

Symmetric-key encryption utilizes algorithms to transform messages from 

plaintext to cyphertext and back using a secret cryptographic key shared by the sender 

and receiver.  The encryption algorithms are designed to produce cyphertext that is 

computationally infeasible to decipher without the shared secret key.   However, a 
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compact encryption scheme must be employed so as not create additional frequency 

congestion and interference problems.   

One potential compact encryption solution is Format Preserving Encryption 

(FPE).  FPE is a symmetric-key encryption algorithm that creates a cyphertext that is the 

same length as the original plaintext message, which means the encrypted messages 

would not add any additional communications load on the ADS-B channel.   An 

alternative compact symmetric-key encryption solution for minimizing additional 

congestion on the ADS-B channel is to utilize a standard encryption algorithm in output 

feedback mode4 with a block size that fits within the ADS-B message length restriction. 

The primary drawback to symmetric-key encryption approaches to ADS-B is the 

problem of key management.  In order for the ADS-B unidirectional broadcasts to be 

received and deciphered, all nodes on the network need access to the secret key.  The 

problem is that anyone with knowledge of the secret shared key can generate valid 

messages, so a single secret key leak will compromise the entire security system.  Since 

the ADS-B network environment is inherently untrustworthy and the open nature of the 

network requires all nodes to have access to the secret key, symmetric-key encryption 

schemes are an impractical approach to securing the current ADS-B implementation. 

  

                                                      
4 Output feedback (OFB) is a mode of operation for a block cipher that permits encryption of differing 
block sizes, but the output of the encryption block function is the feedback (instead of the ciphertext). The 
XOR value of each plaintext block is created independently of both the plaintext and ciphertext. 
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Public Key Infrastructure 

A structured key distribution solution called a Public Key Infrastructure (PKI) is a 

scalable approach to cryptographic key management.  PKI makes use of an asymmetric-

key encryption scheme, where each node on the network has a public-private key pair 

bound to a unique identity by a certificate authority.  While less computationally 

efficient than symmetric-key encryption, asymmetric-key techniques have the 

advantage that a node cannot forge a message on the network.  The unique public-

private key pair guarantees that only nodes whose identities have been verified by the 

CA can communicate over the network.  This means that if a node’s private key is 

compromised, the CA need only revoke a single key pair, as the key pairs of all the other 

network nodes remain valid.  In an asymmetric-key encryption scheme, nodes encrypt 

message with the intended recipient’s public key using a standard asymmetric 

encryption algorithm.  The receiving node then decrypts the message with its private 

key.  Data integrity is ensured since only the sender’s intended recipient can decrypt the 

message. 

When considered as a security solution for ADS-B, asymmetric-key encryption 

has two major drawbacks.  The first issue is that current asymmetric-key schemes have 

no compact encryption implementations, and would result in an increase of the 

transmitted ADS-B message length.  The second problem is that unique encrypted ADS-B 

messages would be required for each recipient.  To maintain a fully-connected network 

of n nodes would necessitate (n2 − n) unique broadcasts rather than n in the current 



31 
 

system [9], which obviously does not scale well as the size of the network increases. 

As a possible answer to these two drawbacks, Costin et al. [1] have suggested 

what they term a “lightweight” PKI solution.  In the lightweight PKI approach, node A 

transmits its digital signature5 over n messages, so that after every n messages, the 

surrounding nodes have received A’s digital signature.  The recipients keep the 

messages until the entire digital signature has been transmitted and they can 

authenticate the buffered messages. The authors suggest that the PKI key distribution 

necessary for this scheme could be done during an aircraft’s scheduled maintenance 

cycle [7]. 

As described by Zhang et al. [14] and outlined in [7], there are several obstacles 

in applying a full cryptographic solution to ADS-B that cannot be easily resolved.  First, 

the open nature of ADS-B is widely seen as a desirable feature of the network.  A 

cryptographic system intentionally obstructs public broadcast communication.  Second, 

key exchange is notoriously difficult in ad hoc networks, which are by definition without 

a centralized institution. The dynamic nature of the network results in too much 

overhead in both the number and the size of messages.  Third, any encryption scheme 

will immediately break compatibility with the existing infrastructure. For these reasons, 

it appears that a traditional, fully-cryptographic approach to securing ADS-B is not 

feasible. 

                                                      
5 Digital signature algorithms take a message and a sender’s private key as input and return a digital 
signature unique to the input.  Upon receipt of a message-signature pair, the receiver can apply a 
verification algorithm to authenticate the signed message using the sender’s public key. 
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Retroactive Key Publication 

A security scheme called Timed Efficient Stream Loss-Tolerant Authentication 

(TESLA) is a variation on traditional asymmetric cryptography that has been proposed 

for use on broadcast networks [15], [16].  With TESLA, senders retroactively publish 

their keys which are then used by receivers to authenticate the broadcast messages.  A 

broadcasting node produces an encrypted message authentication code (MAC) which is 

included with every message.  After a designated time interval or number of messages, 

the key to decrypt the sender’s MAC is published.  Listening receivers who have 

buffered the sender’s previous messages can then decrypt the messages that were 

broadcast.  When applied to ADS-B, this technique imposes a time delay on the 

broadcast due to the need to buffer messages, but it provides integrity and continuity of 

messages sent over the network. 

The TESLA protocol is loss-tolerant and scalable, capable of providing efficient 

broadcast authentication over networks consisting of a large number of nodes.  μTESLA 

is an adaption of the TESLA protocol designed for use on wireless sensor networks.   The 

μTESLA protocol requires nodes in the network to be loosely time synchronized, with 

each node having an upper bound on the maximum clock synchronization error.  

According to Perrig et al. [17], the μTESLA adaptation addresses several inadequacies of 

TELSA in wireless sensor networks: 
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• TESLA uses digital signatures for initial packet authentication, which are 

too computationally expensive for use in sensor nodes.  The μTESLA 

protocol utilizes symmetric-key mechanisms. 

• TESLA discloses a key with each message, generating too many messages 

on the network.  In contrast, μTESLA releases the key once per time 

interval. 

• TELSA stores one-way key chains for all nodes, which is expensive.  The 

μTESLA protocol restricts the number of authenticated nodes. 

As discussed earlier, asymmetric encryption schemes have high computation and 

communication overhead, which limit their usefulness as security approaches on the 

bandwidth-constrained ADS-B network.  The μTESLA protocol overcomes this problem 

by employing asymmetric-key encryption through a delayed disclosure of symmetric 

keys, which results in an efficient broadcast authentication scheme.  When one 

considers the bandwidth and interference limitations on the ADS-B frequency channel, 

the μTESLA design adaptations identify this protocol as a viable scheme for providing 

security in ADS-B.   

To send an authenticated message, a sender computes a MAC on the message 

using a key that is secret at that point in time.  When a recipient gets a message it uses 

its loosely synchronized clock, a upper bound on clock synchronization error and the 

time schedule at which keys are disclosed to verify that the corresponding verification 

key has not yet been disclosed by the sender. If the receiver determines that the key for 
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the message has not yet been disclosed, it is buffered for future authentication.   At the 

scheduled time of key disclosure, the sending node broadcasts the verification key to all 

receivers. Once a recipient gets the disclosed key from the sender, it can readily verify 

the correctness of the key and authenticate the message stored in its buffer. 

μTESLA use one-way key chains that are developed from the MAC included in the 

messages. Each MAC is used to generate a key in the key chain with a one-way 

function 𝐹.  In order to generate the one-way key chain, a sender randomly chooses the 

last key 𝐾𝑛 and repeatedly applies the function 𝐹 to compute all the other keys: 

𝐾𝑖 = 𝐹(𝐾𝑖+1), where 0 ≤ 𝑖 ≤ 𝑛 − 1.   This means that every secret key 𝐾𝑖, where  𝑖 > 0 

is used for sending in the 𝑖𝑡ℎ interval and disclosed to the network after a scheduled 

time period 𝑡.  Instead of adding a disclosed key to each data packet, the key disclosure 

is independent from the broadcast messages, and is tied to time intervals.   

Part of the attractiveness of μTESLA is its ability to tolerate lost messages, and 

Figure 5 shows an example of how μTESLA copes with packet loss on the network.   Each 

key 𝐾𝑖 of the key chain corresponds to a time interval 𝑡𝑖, with all messages sent within 

time interval 𝑡𝑖 authenticated with key 𝐾𝑖.   In this example, the scheduled disclosure 

time period is 2.  The example assumes that the receiving node is loosely time 

synchronized and that key 𝐾0 has been previously authenticated on the network.   
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Figure 5.  Example of μTESLA time-released key chain for source authentication [17]. 

 

In interval 𝑡1 messages 𝑀1 and 𝑀2 are sent and contain a MAC created with 

key 𝐾1.  Message 𝑀3 is sent in interval 𝑡2 and contains a MAC generated using key 𝐾2.  

At this point, the recipient cannot authenticate any of the buffered messages, as key 𝐾1 

has not yet been disclosed by the sender.  Continuing with the example, assume that in 

interval 𝑡3 messages 𝑀4 and 𝑀5 are lost.  Further, let us assume that message 𝑀6 

disclosing key 𝐾1 is also lost, so that the recipient is still unable to authenticate  𝑀1,

𝑀2 or 𝑀3.  In interval  𝑡4 the sender broadcasts key 𝐾2 , which the receiving node 

authenticates by verifying 𝐾0 = 𝐹�𝐹(𝐾2)�, and can determine the missing key 

since 𝐾1 = 𝐹(𝐾2).  Using the disclosed keys, the recipient can authenticate messages 

𝑀1 and 𝑀2  with 𝐾1 , and 𝑀3 with  𝐾2 [17]. 

The μTESLA protocol is attractive as a security solution for ADS-B because it 

preserves the open nature of the broadcast network while avoiding a complex PKI 

infrastructure to ensure a sender’s continuity.   However, there are two obstacles to 
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applying μTESLA to ADS-B.  The primary issue is that, while sufficiently good time 

synchronization could be provided via GPS, it would require modification to the protocol 

to accommodate the GPS timestamp field.  The second problem is that in order for 

μTESLA to be used for verifying the identity of a network node, it needs to be 

reinitialized which leaves it susceptible to memory- based DoS attacks.  In spite of these 

drawbacks, μTESLA is a promising security scheme for integrating into ADS-B. 

Aircraft Address Message Authentication Code 

The cryptographic solutions PKI and μTESLA both have shortcomings in that they 

require modifications to the current ADS-B protocol.  In this section, we discuss a partial 

ADS-B security solution that focuses on establishing message source integrity rather 

than ensuring data integrity.  The purpose here is to demonstrate a compatible security 

scheme that will mitigate threats posed by message injection and modification attacks, 

which are among the most critical vulnerabilities in the current ADS-B implementation. 

The Aircraft Address Message Authentication Code (AA-MAC) security solution 

utilizes a standard hash algorithm such as MD5 or SHA and a secret authentication key 

to perform message integrity.  The AA-MAC message source integrity scheme would 

require a slight modification to the existing protocol in that it would replace the current 

Aircraft Address (AA) field with the MAC, but the ADS-B message is otherwise 

unchanged, as shown in Figure 6. 
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Figure 6.  ADS-B message 24-bit PI field replaced by 24-bit MAC. 

In the current ADS-B protocol, each aircraft is assigned a unique 24-bit Aircraft 

Address that is good for the life of the transponder equipment.  The AA-MAC approach 

proposes a different aircraft identification strategy, assigning a unique identifier to each 

aircraft that is good for the duration of a particular flight.  As with PKI cryptographic 

approaches, the distribution of the secret key presents challenges for AA-MAC.  Several 

secret key distribution strategies have been proposed for PKI, such as distributing keys 

to all aircraft enclosed in tamper-proof hardware, utilizing an out-of-channel solution 

such as a separate dedicated frequency or distributing keys on a per-flight basis.  Since 

MAC requires just one key which is used to uniquely identify a sender on the network, 

the simplest approach would be to distribute the secret key only when an aircraft 

intends to enter the air traffic control system and ADS-B network.   

Every aircraft in the ATC en-route structure needs to file a flight plan prior to 

flight.  The flight plan includes information about the equipment capabilities of the 
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aircraft, its intended route of flight, the expected duration of flight, the amount of fuel 

on board and other details that ATC needs to know for contingency planning.  The flight 

crew could generate a secret key as part of their normal preflight procedure, and simply 

pass that key along to ATC with their flight plan.  This would allow the secret keys to be 

continually updated, with a compromised key having minimal impact on the overall 

system.   

A complication with this approach is that most common hash algorithms 

generate message authentication codes of 128-bits or more, which means the 

generated MAC itself is longer than the entire 112-bit 1090ES message.  The generated 

hash needs to be shortened in order to meet the size limitation of the existing protocol.  

To accomplish this, a sender could compute the MAC using the secret authentication 

key, and then sequentially XOR the hash in 24-bit blocks (using 0 for padding) to 

produce a 24-bit MAC.  This would then be inserted into the ADS-B message, using the 

24-bit space allocated to the AA field. 

This proposal has the potential to offer source integrity to ADS-B by establishing 

the identity of the sender; however there are several issues with this scheme that need 

to be addressed.  One area of concern is the amount of source integrity afforded using a 

message authentication code of just 24-bits, yielding approximately 16.8 million 

different possible codes.  Given that the ADS-B message it being broadcast in plaintext, 

the 24-bit size does not present a formidable computational challenge in forging the 

secret key.  However, due to the mobility and speed of the nodes, the short duration 
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communications on the ADS-B network make the task of determining the secret key and 

forging messages far more difficult for an attacker than in a static a point-to-point 

network. 

Additionally, since most hash functions produce MAC lengths of 128-bits or 

longer, the shortened MAC length increases the potential for collisions between 

duplicate MACs calculated for distinctly different messages.  Appendix A contains a test 

program and supporting functions that were used to test for possible message 

collisions, where distinctly different messages hash to the same MAC.  In the test, we 

randomly altered bits in an ADS-B message, and then computed a 24-bit MAC for both 

the original an altered messages using an MD5 hash function.  The hashes were then 

reduced to 24-bit MACs and compared.  In 10 different tests of 100 million iterations 

each, there were no collisions of duplicate MACs detected.  While certainly not a 

comprehensive test it demonstrates that even with just a 24-bit hash, duplicate MACs 

will be a very rare occurrence. 

The AA-MAC approach as we have described is limited to providing source 

integrity for air-to-ground communications.  The system does not have a mechanism for 

establishing source integrity between aircraft.  Combining AA-MAC with secure location 

verification approaches we discuss in Chapter 6 may offer a more comprehensive 

security scheme.   
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While AA-MAC does not provide data integrity, it is highly compatible with the existing 

1090ES protocol and can be implemented at low cost relative to other security 

proposals, offering a feasible partial security solution for ADS-B. 

Non-Cryptographic Schemes 

As we have seen, cryptographic security schemes are difficult to implement in a 

way that is compatible with the existing infrastructure, primarily due to the problem of 

key distribution and management.  Non-cryptographic approaches to network security 

avoid the challenge of key management and instead involve either some form of 

fingerprinting on the physical layer, or a frequency modulation scheme such as spread 

spectrum. 

Physical Layer 

Schemes such as fingerprinting encompass various methods for authentication 

and identification, either based on hardware or software imperfections or 

characteristics of the frequency channel which are hard to replicate.  Regardless of the 

method employed, the goal is to detect and respond to suspicious activity in a network.  

Identifying signatures for legitimate nodes on the network provides data useful for the 

implementation of systems to detect network intrusions. 

Software-Based Fingerprinting schemes attempt to isolate distinct characteristics 

of the software operating on network equipment.  The development teams for different 

network equipment manufacturers often take widely varied paths when implementing 

software on a given device.  These differences can be cataloged and later exploited to 
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tell apart dissimilar network devices, and can be used to verify their continuity up to a 

certain degree [7]. 

Hardware-Based Fingerprinting approaches seek to identify and catalog unique 

network hardware differences.  Some of these differences can be used for radiometric 

fingerprinting, which takes advantage of differences in the modulation of a radio signal 

to catalog unique device signatures.  Clock skew is another identifiable hardware 

feature that can be used to establish uniqueness between wireless devices.  Since no 

two clocks are perfectly synchronized, time difference can be used to create signatures 

and enable identification.   

The biggest obstacle to hardware or software fingerprinting in ADS-B is the 

difficultly in putting together a meaningful catalog for a fleet of similar aircraft.  

Commercial and military aviation fleets typically consist of hundreds of aircraft fitted 

with very similar or identical hardware, making them nearly impossible to differentiate.  

The similarity between fleet aircraft has the additional impediment that they are easier 

for a potential attacker to study and copy [7].  Hardware solutions such as clock skew 

are difficult to utilize in the current protocol as they would require timestamps included 

in ADS-B messages. Also, it is possible for an attacker to eavesdrop on the 

communication and mimic the appropriate clock skew. 

A third category of fingerprinting is Channel/Location-Based Fingerprinting.  This 

fingerprinting method tries to exploit natural characteristics of the communications 

channel.  Various approaches utilizing received signal strength (RSS), channel impulse 
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response (CIR) and the carrier phase have shown that this can be a viable alternative to 

more traditional authentication and verification measures.  They can be implemented 

relatively easily in wireless systems and can offer reasonable security without adding 

excessive overhead [7].  The drawback to Channel/Location-Based Fingerprinting is that 

it requires two-way communication, and thus is not compatible with the current ADS-B 

communications system. 

Spread Spectrum 

Another non-cryptographic solution used in securing RF communications is a 

method called spread spectrum.   The technology is used in applications that require 

resistance to signal jamming and as a means of protecting wireless communications 

from passive listening.  Spread spectrum methods have also proved beneficial as an aid 

in expanding the utilization of the available radio spectrum. 

There are two approaches to spread spectrum frequency modulation: Frequency 

Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS).  DSSS 

has the advantage of providing higher bandwidth capacity than FHSS, but it is a very 

sensitive to environmental factors.  FHSS is a more robust technology than DSSS, with 

little susceptibility to interference.  In addition, FHSS can accommodate a significantly 

higher number of simultaneously active systems in the same geographic region than 

DSSS systems.  These characteristics make the FHSS technology much better suited to 

the ADS-B network. 
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Spread Spectrum utilizes a key (also called the code or sequence) attached to the 

communication channel.  The way in which the code is attached to the communication 

channel expands the signal bandwidth by several orders of magnitude and determines 

whether the spread‐spectrum technique is Frequency Hopping or Direct Sequence.  The 

baseband signal is intentionally spread over a larger bandwidth by injecting a higher 

frequency signal.  As a result, energy used in transmitting the signal is spread over a 

wider bandwidth, and appears as noise.  The ratio (in dB) between the spread baseband 

and the original signal is called processing gain, with typical spread spectrum processing 

gains ranging from 10dB to 60dB [18]. 

When spread spectrum is applied to the communications channel the effect is to 

diffuse the information into a larger bandwidth.  This diffusion process is what provides 

security and protects the channel from jamming and eavesdropping attacks.  The 

receiving node can remove the spread‐spectrum code in a process called de-spreading.  

The de-spreading operation reconstitutes the information into its original bandwidth so 

that the data can be retrieved.   

There are two primary drawbacks to applying spread spectrum to the ADS-B 

channel.  The first is that the spreading code must be known in advance at both ends of 

the transmission channel, and thus spread spectrum has the same key distribution and 

management issues that encumber cryptographic techniques.  The second issue for 

ADS-B is that spread spectrum is incompatible with the current ADS-B infrastructure, 

requiring substantial changes that would be costly to implement. 
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Due to the need for extensive infrastructure modifications, non-cryptographic 

security schemes such as channel/location-based fingerprinting and spread spectrum 

are not feasible security solutions for the current ADS-B infrastructure.  However, 

channel/location-based fingerprinting does provide a non-cryptographic means of 

authentication while spread spectrum offers protection against signal jamming attacks.   

Based on these desirable attributes, development of a post-NextGen ATC system should 

explore ways to incorporate these non-cryptographic security solutions. 
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CHAPTER 6 

SECURE LOCATION VERIFICATION SOLUTIONS 
 

As an alternative to securing the communication channel of ADS-B, the concept 

of Secure Location Verification is to substantiate the authenticity of location claims 

made by ADS-B network participants.  This approach is inherently different from 

establishing the integrity of broadcast sources and messages.  As described in [12], In-

Region Verification and Secure Location Determination are two different methods of 

location verification, but the underlying principle of both is to confirm a node’s position 

within the network.  The goal of secure location verification schemes is to provide a 

means of cross-checking location claims made by network participants.  Since secure 

location verification creates supplementary position data, these approaches have the 

additional advantage of offering redundancy to the current system.  This additional data 

can be merged with ADS- B and radar information, providing a fallback system in case of 

failure of the primary surveillance system [7]. 

In-Region Verification 

There is a distinction between secure source location verification methods that 

attempt to precisely identify the location of a network participant, and those that 

attempt to determine the plausibility that a sender is in the region claimed in a 

message.  In-Region Verification schemes attempt to do the latter, employing 
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algorithms that utilize estimation methods to determine the probability that a sender’s 

claim is true.  We discuss Distance Bounding and Kalman Filtering as two possible In-

Region Verification solutions with potential application to ADS-B. 

Distance Bounding 

Distance bounding is a location verification method employed in wireless 

networks to localize other network nodes.  The basis of distance bounding protocols is 

built on the fact that electromagnetic waves travel at roughly the speed of light, but 

never faster.  The concept behind distance bounding is to provide a means wherein a 

location claimed by prover P is challenged by a verifier V to demonstrate that P is within 

a certain physical distance of V, as shown in Figure 7. 

 

Figure 7.  Principle of distance bounding protocols [7]. 

The verifier V sends a challenge message indicated by the dashed black arrows in 
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Figure 7 to the prover P who then, after processing the challenge message, sends its 

response.  As indicated by the alternating solid and double-dash arrows in the figure, a 

man in the middle (V’/P’) can only increase the apparent distance by adding further 

processing delay.  This enables V to compute a distance based on the time between the 

V’s challenge and the corresponding response by P.  The distance computed by V serves 

as an upper-distance bound between V and P, and can be used to check the truth of P’s 

claimed location.  When applied to the air traffic surveillance model, the distance-

bounding results of multiple ground stations can be combined to establish the 

probability that a sender is actually in the region claimed in its message. 

There are several potential challenges to implementing distance bounding into 

ADS-B.  The first issue is that distance bounding schemes have been used primarily for 

close-range indoor wireless communications, and have not been successfully tested over 

the long distances and with the high node velocities present in the air traffic control 

system.  Another issue is that there are various practical attacks on distance bounding 

schemes given in the literature, among them a number of relay attacks and distance 

hijacking attacks, so further research into mitigating the effectiveness of the these 

threats is required.  Perhaps the most problematic issue facing distance bounding 

schemes is the fact that it requires a challenge-response protocol, which renders them 

incompatible with the current ADS-B implementation. 
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Kalman Filtering for Intent Verification 

Kalman filtering is a technique used to filter observations from a noisy data 

series by providing estimates for the future state of values in the underlying system.  

The theory behind Kalman filtering requires the observed system to be a linear data 

series and the underlying input variables to follow a normal distribution.  The algorithm 

is recursive and can efficiently update its estimation values in real time, without having 

to save more than the last system state.  The Kalman filtering procedure comprises 

three distinct steps; prediction, observation and update.  In the first step, the current 

system state variables are predicted along with a probability estimate of associated 

uncertainties.  The predicted system state values are based on an estimation of the 

current system state, observations of the state transitions in the system and known 

system input control variables.  The predicted uncertainties are probability estimations 

based on observations of the state transitions in the system, a system data covariance 

estimate and an estimate of system process error. 

In the observation step, the system adjusts its estimation values by measuring 

the residual, which is the discrepancy between the predicted values from the previous 

step and the currently observed system state values.  The observed system values are 

also used to calculate a residual covariance, based on the probabilities from the 

previous step and an estimate of system observation measurement error.  Finally, the 

previously obtained estimates are updated with a weighted average, and the estimates 

with higher probabilities are assigned higher weights. 
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This continuous process of prediction, observation and update is a form of 

feedback control, where the filter estimates the process state at a point in time, and 

then obtains feedback in the form of noisy measurements.  The update step provides 

the feedback, which incorporates the new observation into the existing estimate to 

obtain an improved estimate [19].  Thus, a system employing Kalman filtering is 

constantly updating itself with the most recent observations and revising the values 

used to compute its estimates. 

Figure 8 shows an example of a Kalman filter applied to a single-variable system.  

The figure was generated using a linear Kalman filter implemented in Python, which is 

listed in Appendix B. 

 

Figure 8.  Single-variable Kalman filtering example. 
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In the example, the noisy values are randomly generated from a Gaussian distribution 

with a mean of 1.25 and standard deviation of 0.25.  The figure provides a 

demonstration of the estimation refinement process that takes place in the feedback 

control loop.  As the figure shows, the Kalman filter quickly develops an estimate of the 

actual value.  The estimation values provided by the Kalman filter continually improve in 

accuracy, so that by 30 milliseconds, it has a very close estimation of the actual value of 

1.25 and it maintains a reasonably precise estimation through the remainder of the time 

period.  When employed as means of intent verification in the air traffic management 

system, a multi-variable Kalman filter would be utilized, but the underlying estimation 

refinement process for each input variable would be the same as shown in the single-

variable example. 

Kalman filtering is currently used in airport ground control systems to help 

prevent runway incursion incidents and minimize bottlenecks on airport taxiways.  This 

is accomplished by filtering and verifying data reported by aircraft equipped with ADS-B 

and conducting plausibility checks on these observations.  Krozel et al. [20] propose a 

multi-variable Kalman filtering solution that can be used to verify the intent of an 

aircraft by identifying correlation functions that can in turn be used to evaluate 

relationships between actual aircraft motions and the intended vector information sent 

in the ADS-B message.  The proposal uses data obtained from ATC controller directives 

regarding heading and altitude to determine the target’s geometric conformance.  The 

system then evaluates the actual aircraft heading and altitude and compares it to the 



51 
 

target’s broadcast intentions to determine intent conformance.  The two conformances 

are then analyzed to develop a plausible intent model in terms of the estimated 

horizontal and vertical paths, as well as the anticipated velocity of the target. 

Kalman filtering has two principal weaknesses that leave it vulnerable to possible 

exploitation.  One is that Kalman filters can be tricked by what is termed a frog boiling 

attack.  In this exploit, an adversary jams the message transmission legitimate of a 

legitimate node while continuously transmitting a slightly modified bogus position 

message.  If the adversary transmits the false data slowly enough, the Kalman filter will 

see this injected data as a valid trajectory change.  A second potential weakness of the 

scheme is that it opens up more DoS attack possibilities, since the Kalman filtering 

process requires increased computational complexity at every node in the network [7].  

In spite of these weaknesses, Kalman filtering is very compatible with the existing ADS-B 

infrastructure, offering a highly scalable and relatively low cost means of adding security 

to the current ADS-B communications system. 

Secure Location Determination 

In contrast to In-Region Verification schemes which attempt to determine the 

plausibility of a sender’s claimed location, the general principle behind Secure Location 

Determination is to identify the precise position of a node on the network as a cross-

check of the location claimed by the sender.  Because Secure Location Determination 

solutions are used to verify a sender’s actual location, they are redundant surveillance 

systems and require an infrastructure that is independent of the ADS-B communications 
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system.  We will discuss two potential Secure Location Determination approaches for 

ADS-B, Multilateration and Data Fusion. 

Multilateration 

Multilateration (MLAT) is a low-cost location determination technology that is 

used for airport surface movement as well as for terminal and en route traffic 

surveillance.  MLAT provides excellent performance under a variety of conditions, and is 

especially useful in providing surveillance in remote geographic areas due to its less 

frequent maintenance requirements than radar systems.  MLAT is a completely 

independent surveillance system, and unlike ADS-B, does not require any change or 

modification to existing aircraft avionics or communications systems. 

A multilateration system is based on the time difference of arrival (TDOA) 

principle.  The system requires multiple antennas in separate locations that receive the 

same signal, but at different times due to TDOA.  A typical system consists of four or 

more target tracking antennas and a target processing unit as shown in Figure 9. 

 

Figure 9.  Basic MLAT architecture [7]. 
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The target processing unit calculates a target’s position based on the TDOA of 

the signal as measured at the tracking antennas.  Since the target processing unit knows 

the exact location of each tracking antenna, the measured TDOA at two receivers can be 

used to form a hyperboloid in the region where the target is located.  When the TDOA of 

four or more receiving stations are combined, the result is the intersection of three or 

more hyperboloids.  This intersection allows the target processing unit to identify the 

target’s position in 3-dimensional space, as shown by the red point in Figure 10. 

 

Figure 10.  Intersection of Three TDOA Hyperboloids [21]. 

MLAT is currently used as a ground surveillance technology at various airports, 

but there have been recent studies of Wide Area Multilateration (WAM) for application 

in airborne MANETs.  Recent work with WAM has shown that it is possible to obtain 
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roughly ±30 meter accuracy at a distance of 90 NM from the central station.  This 

compares favorably with the ±20 meter accuracy obtained from ADS-B via its GPS data.  

WAM offers target position accuracy comparable to ADS-B at distance up to 100 NM, 

but beyond that distance WAM precision begins to degrade rapidly [7]. 

In order to achieve sufficient system accuracy, individual tracking antennas in a 

purely hyperbolic system should be as far apart as possible.  However, coverage volume 

and geographic considerations do not always allow for optimum ground station 

placement.  To solve this problem, Xu et al. [21] discuss an elliptic-hyperbolic MLAT 

system that has been the subject of recent research.  In this system, an ellipsoid is 

created by a sender and a receiver, using the known total time between a Mode S 

interrogation and its reply.   The ellipse is formed from the reply time sum of arrivals 

(TSOA) as shown in Figure 11, and tends to intercept the juncture of the MLAT 

hyperboloids.  

 

Figure 11.  Construction of TSOA Ellipse [21]. 



55 
 

A weakness of purely hyperbolic MLAT systems is their lack of precision in 

estimating target altitude.  The system is capable of providing precise 2-dimensional 

latitude and longitude estimates, but has difficulty in accurately determining target 

altitude with its ground-based antenna due to the angle of intersection between the 

hyperbolas.  The elliptical-hyperbolic MLAT implementation significantly reduces 

altitude estimation errors and can yield more accurate 3-dimensional position estimates 

than purely hyperbolic MLAT systems. 
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In spite of the performance potential and low cost of the system, there are some 

unsolved problems to applying MLAT as a secure location determination solution.  The 

first issue is that the system is susceptible to RF interference phenomena which result in 

multipath propagation, where the signal reaches the antenna via different paths.  This 

can distort the TDOA information resulting in an erroneous calculation of target 

position.   

Another technical issue affecting MLAT is the requirement for the target signal to 

be correctly detected at multiple receiving stations in order for the target processing 

unit to determine an accurate position.  The large number of required ground stations 

increases the probability of an equipment failure in the system, which would degrade 

the central station’s ability to provide accurate target position estimates.  As a final 

point, WAM systems may have difficulty scaling to meet increasing air traffic density.  

Since MLAT relies on multiple ground-based antennas, the current WAM 

implementation proposals may reach system capacity in certain regions where 

geographic characteristics prevent the installation of additional tracking antennas.  

Data Fusion 

Data fusion is a recognized method for aggregating data from different sources, 

with the goal of producing information that is more valuable to the end user than the 

original individual data sets.  Data fusion is a multilayered process that uses associations 

and correlations in data from multiple sources to create estimates which are combined 

into a single data set.  The concept can be employed using a variety of approaches 
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including statistical analysis, probabilistic modelling, fuzzy logic and machine learning.  

The type of data fusion approach used depends on the requirements of the application, 

the type of data being analyzed and the desired reliability of the result [22]. 

When considered as an ADS-B security scheme, the literature proposes the use 

of estimation algorithms to check positional data obtained from within the ADS-B 

communications network against data coming in from independent surveillance sources 

such as PSR, SSR and MLAT (see Figure 12).  

 

Figure 12.  ADS-B/SSR Fusion Model [23]. 
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These estimation and verification methods can provide a means of error and 

threat detection, by determining if some of the involved system data is outside normal 

parameters.  This allows automated procedures to be developed which would permit 

quick problem identification and reaction within the air traffic management system.  The 

central concept to utilizing data fusion as a secure location verification paradigm is 

establishing the trustworthiness of the data, thus determining if it has been subject to 

error or malicious modification.  The data trust-worthiness can be calculated by 

analyzing the data associations and correlations using fusion algorithms, which aim to 

expose anomalies in received information and thus to enable the automated detection 

of threats to the system [7]. 

Yong et al. [23] discuss some challenges facing the data fusion of ADS-B and 

radar surveillance information.  One issue is that the two surveillance approaches utilize 

different coordinate systems.  Since ADS-B position data is derived from GPS, it uses the 

WGS-84 coordinate system, while PSR and SSR use polar coordinates.  The authors 

suggest the positional data be transformed to Cartesian coordinates.  Another 

complication is that the system needs to be able to handle time calibration differences 

between the information sources.  The data provided by ADS-B is obtained non-

synchronously with the radar or MLAT data it is being compared against.  Therefore, a 

time bias needs be calibrated prior to applying the data fusion algorithm. 
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Since many of the required components for data fusion are already contained 

within the existing surveillance infrastructure, integrating it as a secure location 

verification solution is relatively straightforward.  The advantages of extending data 

fusion techniques to secure location verification with ADS-B are its compatibility with 

legacy systems and the fact that the ADS-B protocol is not affected by data fusion 

security schemes.  The obvious drawback is the increased cost due to the requirement 

for multiple independent surveillance information sources. 

  



60 
 

CHAPTER 7 

ANALYSIS OF SECURITY SOLUTIONS 
 

After reviewing potential approaches to secure broadcast authentication and 

secure location verification, it is clear that there is no single optimal solution to securing 

ADS-B communications.  Limitations in the existing ADS-B protocol, congestion on the 

1090 MHz channel and the need for compatibility with existing communications 

hardware present challenges to finding viable security solutions and render many 

proposals impractical. 

Cost-Effective Solutions 

A concern that is notably absent in the recent literature on ADS-B security 

solutions is the substantial cost to the aviation industry of installing the required 

avionics equipment to support the ADS-B surveillance system.  Every military, 

commercial and general aviation aircraft operating in the ATC system will require 

additional avionics equipment or modifications to existing equipment in order to 

support ADS-B communications.  In addition, pilots and air traffic controllers need to be 

trained on the new equipment.  According to the airline industry, ADS-B equipment 

could cost airlines, including regional carriers, as much as 5 billion dollars [24] in order to 

meet the FAA mandated implementation deadline of January, 2020.   The price tag for 

modifying the military and general aviation aircraft fleet is equally as staggering.  It is 

unreasonable to expect the airline industry, the DoD and private aircraft owners to 
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invest billions of dollars in new avionics equipment only to have that equipment 

rendered obsolete by modifications to the ADS-B system to support additional security. 

Therefore, any security measures employed in the ADS-B system must take cost 

and compatibility with the existing hardware and protocol into account.  In our analysis 

of security solutions, we place a high degree of emphasis on compatibility of the various 

proposals with the current ADS-B implementation.  Strohmeier et al. [7], develop an 

interesting tabular comparison of the capabilities, security features and feasibilities of 

various security approaches for use with ADS-B.   We expand on the tabular comparison 

in [7] to create a ranking system for evaluating the most cost-effective and feasible 

solutions out of those currently being studied. 

Evaluation of Scheme Implementation Considerations  

Using the security scheme characteristics described in Chapter 5 and Chapter 6, 

we evaluate the various security approaches using three categories; implementation 

complexity, type of security provided and message integrity features provided.  In Table 

2, we evaluate the following security scheme properties: 

• Difficulty - The overall complexity of implementing the approach.  We categorize 

the scheme difficulty as follows: 

o High - Schemes that require regulatory changes such as the need for 

additional frequency bandwidth or major infrastructure modifications are 

considered difficult to implement.  Schemes with High difficulty are 

assigned 0 points in our ranking system. 
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o Moderate – Schemes that require at least some changes to the existing 

infrastructure or modifications to the protocol are considered moderately 

difficult to implement.  Schemes with Moderate difficulty are assigned 0.5 

points in our ranking system. 

o Low - Schemes that require no changes to infrastructure or protocol are 

considered to have a low implementation difficulty.  Schemes with Low 

difficulty are assigned 1 point in our ranking system. 

• Cost - The projected cost of required hardware and software changes.  We 

categorize a schemes cost as follows: 

o High - Proposals that require new avionics and ground station hardware 

or major software design changes are considered costly.  Schemes with 

High cost are assigned 0 points in our ranking system. 

o Moderate – Schemes that require minor hardware and/or software are 

considered moderately costly to implement.  Schemes with Moderate 

cost are assigned 0.5 points in our ranking system. 

o Low - Schemes that require minimal changes to hardware or software are 

considered to have a low implementation cost.  Schemes with Low cost 

are assigned 1 point in our ranking system. 

• Scalability - Considers how well the proposed scheme can adapt to rising air 

traffic density.  We categorize a schemes scalability as follows: 

o High - Highly accommodative schemes are considered scalable.  Schemes 

with High scalability are assigned 1 point in our ranking system. 
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o Moderate – Schemes that will have some difficulty in handling increasing 

traffic density are considered moderately scalable.  Schemes with 

Moderate scalability are assigned 0.5 points in our ranking system. 

o Low - Schemes that will have substantial difficulty in accepting increasing 

traffic density are considered to have low implementation scalability.  

Schemes with Low scalability are assigned 0 points in our ranking system. 

• Compatibility - Evaluates the proposed security solution based on its impact on 

current operations.  Feasible schemes should not excessively impact current 

hardware and software standards.  Our ranking system deducts 0 points for 

schemes that require no changes, 1 point for schemes that require changes to 

the existing infrastructure and an additional 1 point for schemes that require 

changes to the existing ADS-B protocol. 

 
Table 2 lists the security schemes in descending order, from easiest to integrate 

into the current system to the most difficult.  Based on our ranking system for 

Implementation Considerations, the maximum score for a security scheme would be 3, 

having a low implementation difficulty and cost, a high scalability and be completely 

compatible with the existing ADS-B communications system.  From the rankings shown 

in Table 2, we can see that Kalman filtering, MAC and wide-area multilateration security 

schemes are the most compatible with the existing ADS-B infrastructure and protocol.  

All three approaches have a low implementation difficulty, have relatively low cost, are 

scalable and have a high degree of compatibility with the current system. 
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Type 

Implementation Considerations 
Overall 
Score Difficulty Cost Scalability Compatibility 

Kalman Filtering Low Low High No additional messages needed. Separate 
software system. 

  

  1 1 1 0 3 

Message 
Authentication 

Codes 

Low Low High Key distribution infrastructure, minor change 
to ADS-B protocol. 

  

  1 1 1 -1 2 

Wide Area 
Multilateration 

Low Medium Medium Utilizes a separate hardware system. No 
change to existing ADS-B required. 

  

  1 0.5 0.5 0 2 

Data Fusion Low High Medium No change in ADS-B required.  Requires 
independent  system(s). 

  

  1 0 0.5 0 1.5 

μTESLA Medium Medium High Protocol requires a new message type for key 
publishing. 

  

  0.5 0.5 1 -1 1 

Physical Layer 
Authentication 

Medium High Medium Requires additional hardware/software. No 
modifications to the ADS-B protocol. 

  
  0.5 0 0.5 -1 0 

Distance  
Bounding 

High Medium Low New messages and protocol needed.   

  0 0.5 0 -1 -0.5 

Spread Spectrum High High Medium Requires new hardware and a new physical 
layer.  Requires modifications to the ADS-B 
protocol. 

  

  0 0 0.5 -2 -1.5 

(Lightweight) PKI High High Medium Key distribution infrastructure and changes in 
protocol and message handling needed. 

  

  0 0 0.5 -2 -1.5 

Table 2.  Scheme Implementation Considerations 

The most difficult security approaches to integrate are public key infrastructure and 

spread spectrum.  Due to the need to modify the existing hardware and protocol, these 

schemes are the least desirable from an implementation complexity viewpoint.  
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Evaluation of Scheme Security Provided 

We next compare the different security schemes by the type of security provided 

by the approach.  In Table 3, we evaluate the following security scheme properties: 

• Injection / Modification –Indicates whether or not the scheme offers protection 

against target injection and/or message modification attacks.  Schemes that offer 

protection against these attacks are assigned 1 point in our ranking system. 

• Eavesdropping – Specifies if the scheme offers protection against passive 

listening. Schemes that offer protection against these attacks are assigned 1 

point in our ranking system.  

•  Jamming - Considers how well the proposed scheme can protect against signal 

jamming attacks.  Schemes that offer protection against these attacks are 

assigned 1 point in our ranking system. 

• Denial of Service Mitigation - Shows whether or not the proposed security 

solution offers protection against target injection and/or message modification 

attacks.  Schemes that offer protection against these attacks are assigned 1 point 

in our ranking system. 

 
Table 3 lists the security schemes in descending order based on the types of 

security protection offered by the approach.  In our ranking system for Security 

Provided, the maximum score for a security scheme would be 4 if a scheme offered 

protection against all attack categories. 
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Type 

Security Provided 
Overall 
Score Injection / 

Modification Eavesdropping Jamming DoS 
Mitigation 

Spread 
Spectrum 

No Yes Yes Yes   

  0 1 1 1 3 

(Lightweight) 
PKI 

Yes Yes No Yes   

  1 1 0 1 3 

Physical Layer 
Authentication 

Yes No No Yes   

  1 0 0 1 2 

Data Fusion Yes No No Yes   

  1 0 0 1 2 

Message 
Authentication 

Codes 

Yes No No No   

  1 0 0 0 1 

μTESLA Yes No No No   

  1 0 0 0 1 

Wide Area 
Multilateration 

Yes No No No   

  1 0 0 0 1 

Distance  
Bounding 

Yes No No No   

  1 0 0 0 1 

Kalman 
Filtering 

Yes No No No   

  1 0 0 0 1 

Table 3.  Scheme Security Provided 

Most of the security schemes that are currently being explored focus on attacks 

of the message injection and modification type.  There is currently not a great deal of 

interest in protection against passive listeners, even though eavesdropping is often the 

first step in developing more sophisticated and problematic attacks [7].  This is primarily 



67 
 

due to the difficulty in developing adequate protection against passive listening without 

resorting to a full cryptographic solution.  Of the security approaches we have reviewed, 

only spread spectrum and PKI offer protection against passive listening.  In addition, 

spread spectrum is the only security scheme that offers protection against signal 

jamming attacks.  As a result these two schemes score highest in our ranking of Security 

Provided. 

Evaluation of Scheme Message Integrity Provided 

The next comparison table we construct ranks the security schemes by the type 

of message integrity offered.  In Table 4, we evaluate the following security scheme 

properties: 

• Data Integrity –Indicates whether or not the scheme ensures that the data is the 

same as has been provided by the sender and has not been modified by any third 

party.  Schemes that offer this feature are assigned 1 point in our ranking 

system. 

• Source Integrity – Specifies if the scheme can ensure that a message originates 

from the participant that claims to have sent it.  Schemes that offer this feature 

are assigned 1 point in our ranking system. 

• Location Integrity - Considers how well the proposed scheme can determine that 

a message originates from the location claimed in the message.  Schemes that 

offer this feature are assigned 1 point in our ranking system. 
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Table 4 ranks the security schemes in descending order based on the level of 

message integrity that the approach adds to the communications network.  In our 

ranking system for Message Integrity Provided, the maximum score for a security 

scheme would be 3 if a scheme offered data integrity, source integrity and location 

integrity for surveillance communications messages. 

Type 

Message Integrity Provided 
Overall 
Score Data 

Integrity 
Source 

Integrity 
Location 
Integrity 

(Lightweight) 
PKI 

Yes Yes Yes   

  1 1 1 3 

Data Fusion No Yes Yes   

  0 1 1 2 

Physical Layer 
Authentication 

No Yes No   

  0 1 0 1 

Message 
Authentication 

Codes 

No Yes No   

  0 1 0 1 

μTESLA No Yes No   

  0 1 0 1 

Kalman 
Filtering 

No Yes Yes   

  0 1 1 2 

Distance  
Bounding 

No No Yes   

  0 0 1 1 

Spread 
Spectrum 

No No No   

  0 0 0 0 

Wide Area 
Multilateration 

No No No   

  0 0 0 0 

Table 4.  Scheme Features Provided 
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As we can see from the comparison in Table 4, only a full cryptographic public 

key infrastructure can guarantee the integrity of received data [7].  Cryptographic 

security solutions such as PKI, whether implemented symmetrically or asymmetrically, 

are the only security schemes that offer protection in all three message integrity 

categories.  All other security approaches offer only a partial solution.   

Summary of ADS-B Security Schemes 

Table 5 summarizes the scores from Table 2 - Table 4 and provides an overall 

ranking of the ADS-B security schemes discussed.   

Type 
Implementation 
Considerations 

Score 

Security 
Provided 

Score 

Message 
Integrity 

Score 

Overall 
Score 

Kalman Filtering 3 1 2 6 

Data Fusion 1.5 2 2 5.5 

Message 
Authentication 

Codes 

2 1 1 4 

(Lightweight) PKI -1.5 2 3 3.5 

μTESLA 1 1 1 3 

Wide Area 
Multilateration 

2 1 0 3 

Physical Layer 
Authentication 

0 2 1 3 

Spread Spectrum -1.5 3 0 1.5 

Distance  
Bounding 

-0.5 1 1 1.5 

Table 5.  Scheme Ranking Summary 
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To review the scoring system defined in Table 2 - Table 4, the maximum score for 

the Implementation Considerations of a security scheme is 3, the maximum score for 

Security Provided is 4 and the maximum score for Message Integrity is 3 for a maximum 

possible overall score of 10 in our ranking system.  Based on the security scheme ranking 

criteria outlined above, the three most cost-effective and feasible security solutions are 

Kalman filtering, data fusion and message authentication codes.   

As discussed in Chapter 6 and shown in Table 5, Kalman filtering for use in real 

time positional claim verification is among the easiest of the schemes to implement.   

Although Kalman filtering solutions provide limited security and message integrity, their 

low overall adverse impact on the existing ADS-B communications system make them a 

suitable security approach for integrating into the current surveillance system.   

Data fusion schemes can be used to verify positional data obtained from within 

the ADS-B surveillance system against data acquired from other, independent 

surveillance sources such as PSR and SSR.  As with Kalman filtering approaches, data 

fusion provides additional security to the ADS-B surveillance system while also having a 

high degree of compatibility with the current system.   The obvious drawback to data 

fusion is the requirement to maintain redundant sources of surveillance data.   The 

additional maintenance cost implies that the FAA will not achieve the cost reduction 

benefits hoped for as part of the NextGen deployment, but the cost will certainly be less 

than that of other proposed ADS-B security schemes. 
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As we demonstrated with AA-MAC in Chapter 5, message authentication codes 

can be implemented into the existing ADS-B message protocol with a minimal overall 

adverse impact on the existing system.  A security scheme that employs MAC would 

provide protection against message injection and modification attacks, which are 

considered to be among the most critical of the vulnerabilities in the current ADS-B 

surveillance system.  The nominal adverse impact on existing ADS-B communications 

make MAC security schemes worth incorporating into the current system. 

Although spread spectrum and pure cryptographic solutions scored low in our 

ranking system, they are necessary schemes to consider in developing a post-NextGen 

air traffic management system.  As noted earlier in this chapter, spread spectrum is the 

only security scheme that offers protection against signal jamming, while PKI is currently 

the only method for ensuring data integrity.  Therefore, both of these security schemes 

should be considered essential security components in future air traffic management 

systems.  
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CHAPTER 8 

FUTURE WORK & CONCLUSION 
 

The FAA’s NextGen upgrade was intended to increase the air transportation 

system capacity and safety while reducing its operational cost, but recent research 

demonstrates that potential vulnerabilities in the implementation of the ADS-B 

component of NextGen can be easily exploited with inexpensive and readily available 

equipment.  The FAA began to develop NextGen and ADS-B at a time when network 

security was not a concern and the term “cybersecurity” did not exist.    At that time, the 

system development effort was focused on reliability, accuracy, ATC system operational 

capacity, and range [10].  Since then, network attacks have become an everyday 

occurrence and the need for robust security measures are now a crucial network design 

consideration.  In addition, the tragic events of September 11, 2001 exposed how 

vulnerable our global air transportation system is to those seeking to exploit inherent 

weaknesses in the system with nefarious intent. 

The FAA projects a 48% increase in domestic commercial air travel between 2014 

and 2034.  According to the FAA’s most recent Aerospace Forecast, U.S. commercial air 

carrier system enplanements are anticipated to increase from approximately 775 million 

in 2014 to over 1.150 billion by 2034 [25].  Based on this expected increase in air traffic, 

it is clear that aviation authorities urgently need to mitigate the security problems in 

NextGen.  In addition to the expected increase in commercial air travel, as the FAA 

moves to develop rules for integrating Unmanned Aerial Vehicles (UAVs) into the air 
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transportation system the need to safely accommodate the resulting increase in traffic 

density becomes even more critically important.   

As we have shown, there is no single comprehensive security solution to address 

the vulnerabilities in the current implementation of ADS-B.  Given the decades-long 

timeframe required to develop, certify and deploy an air traffic management system and 

its substantial costs to the aviation industry, a complete overhaul of ADS-B is not a 

feasible consideration.  Therefore, any solution to addressing the security shortcomings 

in ADS-B will be a compromise and partial answer to addressing the vulnerabilities in the 

system. 

Viable ADS-B security solutions should seek to apply incremental changes to the 

current system with an emphasis on backwards compatibility.  However, 

implementation expense and complexity of deployment should not be the only factors 

taken into consideration; not having a security solution might prove to be far more 

costly in the long run [7].  In view of this dichotomy, it seems logical to pursue two 

different future research directions; one focused on addressing some of the weaknesses 

in the current system and the other focused on developing a successor to ADS-B using 

the existing system as a case study for future work. 

NextGen Future Research 

In our analysis of cost-effective solutions to establishing secure broadcast 

authentication, we discuss AA-MAC as a security enhancement that has a high degree of 

compatibility with the current ADS-B system.  We acknowledge, however, that we have 
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not addressed the problem of establishing a means of message source integrity for ADS-

B IN aircraft-to-aircraft messages.  Future research into ADS-B message authentication 

and AA-MAC should work on developing source integrity solutions for ADS-B IN to 

mitigate the threat of message injection/modification attacks between airborne ADS-B 

senders and receivers. 

Future work on security enhancements to the current ADS-B system could 

explore the security benefits of integrating AA-MAC for secure broadcast authentication 

with secure location verification techniques.  The current Standard Terminal Automation 

Replacement System (STARS) air traffic control automation systems developed by 

Raytheon assimilates and filters data taken from surveillance radar, ADS-B and 

multilateration using Kalman filtering to verify target surveillance data [26].  Based on 

our findings, it would seem beneficial to pursue research into incorporating message 

authentication codes into these air traffic management automation systems.  Combining 

the plausibility checks and track estimation provided by multilateration, data fusion and 

Kalman filtering with message authentication codes will greatly enhance the security of 

the existing ADS-B implementation. 

Post-NextGen Future Research 

Since there will eventually be a successor to ADS-B, it is also important for air 

traffic control system research to focus on the development of a secure surveillance 

protocol.  Those responsible for creating a post-NextGen system should use the existing 

system as a case study and learn from the shortcomings inherent in the current ADS-B 
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implementation.  Air traffic management communications signal integrity, security, 

resistance to jamming and a wider geographic coverage area are features that need to 

be incorporated into a post-NextGen ATM system. 

The evolution of a post-NextGen system must have secure message 

authentication as a high priority.  Taking into account the frequency capacity and 

message length constraints of the current ADS-B scheme, the most suitable 

cryptographic primitives need to be identified and developed into a post-NextGen 

system.  In addition, an appropriate communication protocol that accommodates both 

air-to-air and air-to-ground messages must be identified.  Equally important, a solution 

to the key management problem must be resolved [8].  A study of public key 

distribution and management for commercial aircraft in [13] defines a generic Airplane 

Asset Distribution System (AADS) and discusses several potential solutions for managing 

public keys that could be applied to a post-NextGen secure authentication scheme. 

Adequate resistance to signal jamming must also be applied in a successor to 

ADS-B.  Spread spectrum signal modulation provides protection against both jamming 

and DoS attacks, and should be considered in a follow-on air traffic management system 

design.   Since FHSS is less susceptible to environmental interference factors than DSSS, 

it would seem that a frequency hopping approach would be more suitable for an air 

traffic management network.  However, this will require additional frequency channel 

allocation for the network.  Based on studies of L-band frequency allocation and 

frequency interference characteristics discussed in [27] and [28], it seems reasonable 
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that as the FAA moves to decommission some of its land-based NAVAIDS, there will be 

additional L-band frequencies that could be re-allocated for use in a future ATM system.  

These additional frequencies could be used in a FHSS scheme and would also mitigate 

concerns over increased congestion on the 1090 MHz band caused by the projected 

growth in air traffic. 

An additional constraint of the current ADS-B implementation is the limited ADS-

B system coverage available for aircraft operating routes that transit over remote 

locations of the globe.  Aircraft operating on routes crossing bodies of water such as the 

Gulf of Mexico are in communication with ADS-B stations placed on oil drilling 

platforms, but no such solution is available for aircraft on long overwater oceanic 

routes. 

Given the LOS range limitations of the 1090 MHz signal, solutions need to be 

developed for providing surveillance to aircraft operating in remote geographic 

locations.  In [29], the authors explore the feasibility of utilizing the Iridium NEXT 

satellite constellation for use as ADS-B orbital stations.  The authors study several cases 

that analyze the coverage rate available from an orbital-based system.  The possibility of 

utilizing sub-orbital ADS-B stations is discussed in [30], where the authors experimented 

with stratospheric balloons to extend the ADS-B signal coverage range to over 300 NM 

as a proof-of-concept for ADS-B range extension.  Development of a post-NextGen ATM 

system should seek to incorporate technologies that will permit accurate and timely 

surveillance of aircraft operating on routes that transit over remote geographic regions. 
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Conclusion 

There is considerable current interest in providing security to NextGen and the 

ADS-B protocol.  In this research, we discuss the existing work being done in ADS-B 

security and analyze cost-effective solutions to mitigating ADS-B vulnerabilities.  

NextGen and its GNSS-based surveillance component offer the potential to increase 

efficiency and capacity in the air traffic management system, but likely leave it more 

vulnerable to attack than the current radar-based surveillance system.   

After reviewing the available alternatives, it is apparent that the solutions 

currently being researched can only be a compromise, providing a less than ideal 

improvement to the security of the present scheme.   In order to implement 

comprehensive security into the ATM system, new message types and protocols need to 

be developed.   The impact of increasing traffic density needs to be taken into account, 

and new protocols must be designed with scalability in mind in order to accommodate 

growth in ATM system communication network load.  In planning for security solution in 

a post-NextGen ATM system, developers will need to incorporate both secure broadcast 

authentication and secure location verification in order to provide a more 

comprehensive security solution than those considered viable for the current 

surveillance system infrastructure.   
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APPENDIX A: AA-MAC TEST PROGRAM 
 

def parse_adsb(msg):  
 ''' 
 Function to parse an ADS-B message into its main components. The Function 
 converts the hexadecimal message into to its binary string equivalent and  
 processes it into the 5 ADS-B message components. 
 
 The function takes 1 parameter: 
 @param msg: String value representing a legitimate 112-bit ADS-B data 
     packet in hexadecimal format. 
 @return: Returns a list of binary strings representing the ADS-B message 
  components. 
 ''' 
 msg = bin(int(msg,16))[2:] 
 
 DF = '' 
 CA = '' 
 AA = '' 
 Data = '' 
 PI = '' 
 for i in range(5): 
  DF += msg[i] 
 for i in range(5,8): 
  CA += msg[i] 
 for i in range(8,32): 
  AA += msg[i] 
 for i in range(32,88): 
  Data += msg[i] 
 for i in range(88,112): 
  PI += msg[i] 
 
 return [DF,CA,AA,Data,PI] 
 
# End Function Code ------------------------------------------------------------ 
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def create_block(hash, b_size=24): 
 ''' 
 Function to create a hash of the designated block size using bit-wise XOR.   
 
 Note that this implementation is designed to be a simple demonstration and is  
 not intended to be computationally efficient.  There are certainly better  
 data structures, such as mult-dimensional arrays, that would yield far more  
 efficient algorithms than this iterative example. 
 
 The function takes 1 required and 1 optional parameter: 
    @param hash: String value representing a legitimate 112-bit ADS-B data 
     packet in hexadecimal format. 
    @param b_size: Integer value of the desired hash block size.  The default 
     value is 24.   
    @return Returns binary string of length b_size. 
 ''' 
  
 # convert the hexadecimal hash value into its binary string equivalent 
 hash = bin(int(hash,16))[2:] 
  
 # setup the values used to iterate over the binary hash string 
 h_size = len(hash) 
 idx = 0 
 b_hash = 0 
 
 # iterate over the binary hash in b_size increments and XOR the substrings 
 if h_size%b_size != 0: 
  n = h_size/b_size 
 else: 
  n = h_size/b_size - 1 
 for i in range(n): 
  idx += b_size 
  if idx < h_size - b_size: 
   b_hash = int(hash[idx:idx+b_size],2) ^ b_hash 
  else: 
   b_hash = int(hash[idx:],2) ^ b_hash 
 
 
 return bin(b_hash)[2:] 
 
 
# End Function Code ------------------------------------------------------------ 
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def test_hash(msg, key, b_size=24, n=1000, xor=True): 
 ''' 
    Test function for detecting message authentication code failures, where the 
    shortened hash is duplicated on distinctly different hash inputs.  The 
    message simulates a message error by randomly changing one of the 112 bits  
    in the ADS-B message.  The test compares the two hashes generated as the 
    MAC to test for collisions due to the shortened hash.  The function 
    prints out the number of collisions detected as a percentage of the total 
    number of iterations.  
 
    The function takes 2 required and 3 optional parameters: 
    @param msg: Hexadecimal string representing a legitimate 112-bit ADS-B data 
     packet. 
    @param key: String value of the secret authentication key. 
    @param b_size: Integer value of the desired hash block size.  The default 
     value is 24. 
 @param n: Integer value of the number of comparison iterations to perform. 
 @param xor: Boolean value to determine if the create_block function is to 
  be used to create the shortened MAC, or is a simple substring of the 
  hash is to be used. 
    ''' 
  
 import numpy as np 
 from Crypto.Hash import MD5 
 
 msg = parse_adsb(msg)[3] 
 
 failure = 0 
 for _ in range(n): 
  # simulate error by modifying a random bit in msg 
  i = np.random.randint(len(msg)) 
  if msg[i] == '0': 
   msg_mod = msg[:i] + '1' + msg[i+1:] 
  else: 
   msg_mod = msg[:i] + '0' + msg[i+1:] 
  h = MD5.new() 
  h.update(msg+key) 
  h_msg = h.hexdigest() 
  h = MD5.new() 
  h.update(msg_mod+key) 
  h_msg_mod = h.hexdigest() 
 
  if xor == True: 
   test_msg = create_block(h_msg, b_size) 
   test_msg_mod = create_block(h_msg_mod, b_size) 
  else: 
   test_msg = bin(int(h_msg,16))[2:b_size+2] 
   test_msg_mod = bin(int(h_msg_mod,16))[2:b_size+2] 
   
  if test_msg == test_msg_mod: 
   print test_msg 
   print test_msg_mod 
   print '\n' 
   failure += 1 
 
 if failure != 0: 
  print 'Failure percentage = {:.6f}%'.format(failure/float(n)) 
 else: 
  print 'Test passed 100%' 
 
 
# End Function Code ------------------------------------------------------------ 
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APPENDIX B: SINGLE-VARIABLE KALMAN FILTER PROGRAM 
 
import random 
import numpy 
import pylab 
 
 
class kalman_linear(object): 
    ''' 
    This class implements a linear Kalman filter and uses the parameter names as 
    defined in [19].  This Kalman filter implementation is adapted from code 
    written by Greg Czerniak [31]. 
 
    Instances of the kalman_linear class have 7 required parameters: 
 
    @param A: Numpy matrix representing the state transition matrix. 
    @param B: Numpy matrix representing the control matrix. 
    @param H: Numpy matrix representing the observation matrix. 
    @param x: Numpy matrix representing the initial state estimate. 
    @param P: Numpy matrix representing the initial covariance estimate. 
    @param Q: Numpy matrix representing the error in process estimate. 
    @param R: Numpy matrix representing the error in measurement estimate. 
    '''   
    def __init__(self,A, B, H, x, P, Q, R): 
        self.state_trans = A 
        self.ctrl = B 
        self.obs = H 
        self.init_state_est = x 
        self.init_cov_est = P 
        self.proc_err_est = Q 
        self.meas_err_est = R 
   
 
# End __init__ Code ------------------------------------------------------------ 
 
 
    def get_state(self): 
        ''' 
        Method to return the inital state estimate. 
 
        @return: Returns a numpy matrix containing the initial state estimate  
            value. 
        ''' 
        return self.init_state_est 
 
   
# End Method Code -------------------------------------------------------------- 
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def step(self, ctrl_vec, meas_vec): 
        ''' 
        Method to perform the Kalman filtering prediction, observation and update 
        steps. 
        ''' 
        # Prediction step  
        pred_state_est = ( self.state_trans * self.init_state_est )\ 
                         + ( self.ctrl * ctrl_vec ) 
        pred_prob_est = ( (self.state_trans * self.init_cov_est )\ 
                        * numpy.transpose(self.state_trans ) )\ 
                        + self.proc_err_est 
 
        # Observation step 
        # residual - the discrepancy between the predicted and actual measurement 
        residual = meas_vec - ( self.obs * pred_state_est ) 
        residual_cov = ( self.obs * pred_prob_est * numpy.transpose(self.obs) )\ 
                       + self.meas_err_est 
 
        # Update step 
        kalman_gain = pred_prob_est * numpy.transpose(self.obs)\ 
                      * numpy.linalg.inv(residual_cov) 
        self.init_state_est = pred_state_est + ( kalman_gain * residual ) 
 
        # Determine the size of and create the identity matrix 
        size = self.init_cov_est.shape[0] 
        id_matrix = numpy.eye(size) 
 
        # Update the covariance based on the results of the previous steps 
        self.init_cov_est = (id_matrix - ( kalman_gain * self.obs ) )\ 
                            * pred_prob_est 
 
# End Method Code -------------------------------------------------------------- 
 
# End kalman_linear Class definition ------------------------------------------- 
 
class noise_generator: 
    ''' 
    This class implements a random noise generator for generating a noisy data  
    series used to test a kalman_linear class instance. 
 
    Instances of the noise_generator class require 2 parameters: 
 
    @param mean: Float value of the mean for creating the Gaussian distribution. 
    @param std_dev: Float value of the standard deviation used to create the  
        Gaussian distribution. 
    '''  
    def __init__(self, mean, std_dev): 
        self.mean = mean 
        self.std_dev = std_dev 
 
 
# End __init__ Code ------------------------------------------------------------ 
 
 
    def get_noise(self):     
        ''' 
        Method to generate a random float value from a Gaussian distrubution. 
 
 
        @return: Returns a random Float value from the generated Gaussian  
            distribution. 
        '''   
        return random.gauss(self.mean, self.std_dev) 
 
 
# End Method Code -------------------------------------------------------------- 
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def get_mean(self): 
        ''' 
        Method to return the mean of the Gaussian distribution.  This value 
        represents the "actual" value that is being obscured by the noisy data. 
 
        @return: Returns the float value passed in as the Gaussian distribution 
            mean. 
        ''' 
        return self.mean 
 
# End Method Code -------------------------------------------------------------- 
 
# End noise_generator Class definition ----------------------------------------- 
 
 
def test_kalman(A, B, H, x, P, Q, R, noise_mean, noise_std_dev, data_size): 
    ''' 
    Test function for testing a kalman_linear class instance on a randomly 
    generated noisy data series. 
 
    The function generates a plot of the noisy data series, the estimated value 
    returned by the linear Kalman filtering function and the actual value that 
    the noisy data would be otherwise obscuring. 
 
    The function takes 10 required parameters: 
 
    @param A: Numpy matrix reperesenting the state transition matrix. 
    @param B: Numpy matrix reperesenting the control matrix. 
    @param H: Numpy matrix reperesenting the observation matrix. 
    @param x: Numpy matrix representing the initial state estimate. 
    @param P: Numpy matrix representing the initial covariance estimate. 
    @param Q: Numpy matrix representing the error in process estimate. 
    @param R: Numpy matrix representing the error in measurement estimate. 
    @param mean: Float value of the mean for creating the Gaussian distribution. 
    @param std_dev: Float value of the standard deviation used to create the  
        Gaussian distribution. 
    @param data_size: Integer value indicating the desired size of the test 
        data series. 
    ''' 
 
    # Create class instances 
    filter = kalman_linear(A,B,H,xhat,P,Q,R) 
    generator = noise_generator(noise_mean, noise_std_dev) 
 
    # Create storage for generated data 
    noisy_data = [] 
    actual_val = [] 
    kalman = [] 
 
    # Create the noisy and filtered linear data series 
    for i in range(data_size): 
        noisy_val = generator.get_noise() 
        noisy_data.append(noisy_val) 
        actual_val.append(generator.get_mean()) 
        kalman.append(filter.get_state()[0,0]) 
        filter.step(numpy.matrix([0]), numpy.matrix([noisy_val])) 
 
     
    # Create plot of the noisy and filtered data 
    pylab.plot(range(data_size), noisy_data, 'r', range(data_size),  
               kalman, 'g', range(data_size), actual_val, 'b') 
    pylab.xlabel('Time') 
    pylab.ylabel('Noisy Data') 
    pylab.title('Estimation of Noisy Data Series with Kalman Filter') 
    pylab.legend(('Noisy Values','Kalman Filtered Values', 'Actual Value')) 
    pylab.show() 
 
 
# End Function Code ------------------------------------------------------------ 
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