5 research outputs found

    Authentication techniques in smart grid: a systematic review

    Get PDF
    Smart Grid (SG) provides enhancement to existing grids with two-way communication between the utility, sensors, and consumers, by deploying smart sensors to monitor and manage power consumption. However due to the vulnerability of SG, secure component authenticity necessitates robust authentication approaches relative to limited resource availability (i.e. in terms of memory and computational power). SG communication entails optimum efficiency of authentication approaches to avoid any extraneous burden. This systematic review analyses 27 papers on SG authentication techniques and their effectiveness in mitigating certain attacks. This provides a basis for the design and use of optimized SG authentication approaches

    Group Authentication Scheme for Neighbourhood Area Networks(NANs) In Smart Grids

    Get PDF
    A Neighbourhood Area Network is a functional component of the Smart Grid that interconnects the end user domain with the Energy Services Provider (ESP) domain. It forms the “edge” of the provider network, interconnecting homes instrumented with Smart Meters (SM) with the ESP. The SM is a dual interface, wireless communication device through which information is transacted across the user (a home) and ESP domains. The security risk to the ESP increases since the components within the home, interconnected to the ESP via the SM, are not managed by the ESP. Secure operation of the SM is a necessary requirement. The SM should be resilient to attacks, which might be targeted either directly or via the network in the home. This paper presents and discusses a security scheme for groups of SMs in a Neighbourhood Area Network that enable entire groups to authenticate themselves, rather than one at a time. The results show that a significant improvement in terms of resilience against node capture attacks, replay attacks, confidentiality, authentication for groups of SMs in a NAN that enable entire groups to authenticate themselves, rather than one at a time

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Key Management Scheme for Smart Grid

    Get PDF
    A Smart Grid (SG) is a modern electricity supply system. It uses information and communication technology (ICT) to run, monitor and control data between the generation source and the end user. It comprises a set of technologies that uses sensing, embedded processing and digital communications to intelligently control and monitor an electricity grid with improved reliability, security, and efficiency. SGs are classified as Critical Infrastructures. In the recent past, there have been cyber-attacks on SGs causing substantial damage and loss of services. A recent cyber-attack on Ukraine's SG caused over 2.3 million homes to be without power for around six hours. Apart from the loss of services, some portions of the SG are yet to be operational, due to the damage caused. SGs also face security challenges such as confidentiality, availability, fault tolerance, privacy, and other security issues. Communication and networking technologies integrated into the SG require new and existing security vulnerabilities to be thoroughly investigated. Key management is one of the most important security requirements to achieve data confidentiality and integrity in a SG system. It is not practical to design a single key management scheme/framework for all systems, actors and segments in the smart grid, since the security requirements of various sub-systems in the SG vary. We address two specific sub-systems categorised by the network connectivity layer – the Home Area Network (HAN) and the Neighbourhood Area Network (NAN). Currently, several security schemes and key management solutions for SGs have been proposed. However, these solutions lack better security for preventing common cyber-attacks such as node capture attack, replay attack and Sybil attack. We propose a cryptographic key management scheme that takes into account the differences in the HAN and NAN segments of the SG with respect to topology, authentication and forwarding of data. The scheme complies with the overall performance requirements of the smart grid. The proposed scheme uses group key management and group authentication in order to address end-to-end security for the HAN and NAN scenarios in a smart grid, which fulfils data confidentiality, integrity and scalability requirements. The security scheme is implemented in a multi-hop sensor network using TelosB motes and ZigBee OPNET simulation model. In addition, replay attack, Sybil attack and node capture attack scenarios have been implemented and evaluated in a NAN scenario. Evaluation results show that the scheme is resilient against node capture attacks and replay attacks. Smart Meters in a NAN are able to authenticate themselves in a group rather than authenticating one at a time. This significant improvement over existing schemes is discussed with comparisons with other security schemes
    corecore