627 research outputs found

    Error-correction coding for high-density magnetic recording channels.

    Get PDF
    Finally, a promising algorithm which combines RS decoding algorithm with LDPC decoding algorithm together is investigated, and a reduced-complexity modification has been proposed, which not only improves the decoding performance largely, but also guarantees a good performance in high signal-to-noise ratio (SNR), in which area an error floor is experienced by LDPC codes.The soft-decision RS decoding algorithms and their performance on magnetic recording channels have been researched, and the algorithm implementation and hardware architecture issues have been discussed. Several novel variations of KV algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward recursive algorithm have been proposed. And the performance of nested codes using RS and LDPC codes as component codes have been investigated for bursty noise magnetic recording channels.Future high density magnetic recoding channels (MRCs) are subject to more noise contamination and intersymbol interference, which make the error-correction codes (ECCs) become more important. Recent research of replacement of current Reed-Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded ECC systems obtains a lot of research attention due to the large decoding gain for LDPC-coded systems with random noise. In this dissertation, systems aim to maintain the RS-coded system using recent proposed soft-decision RS decoding techniques are investigated and the improved performance is presented

    Iterative decoding for magnetic recording channels.

    Get PDF
    The success of turbo codes indicates that performance close to the Shannon limit may be achieved by iterative decoding. This has in turn stimulated interest in the performance of iterative detection for partial-response channels, which has been an active research area since 1999. In this dissertation, the performance of serially concatenated recording systems is investigated by computer simulations as well as experimentally. The experimental results show that the iterative detection algorithm is not sensitive to channel nonlinearities and the turbo coded partial-response channel is substantially better than partial-response maximum-likelihood channels. The classical iterative decoding algorithm was originally designed for additive white Gaussian noise channels. This dissertation shows that the performance of iterative detection can be significantly improved by considering the noise correlation of the magnetic recording channel. The idea is to iteratively estimate the correlated noise sequence at each iteration. To take advantage of the noise estimate, two prediction techniques were proposed, and the corresponding systems were named noise predictive turbo systems. These noise predictive turbo systems can be generalized to other detector architectures for magnetic recording channels straightforwardly

    EQUALISATION TECHNIQUES FOR MULTI-LEVEL DIGITAL MAGNETIC RECORDING

    Get PDF
    A large amount of research has been put into areas of signal processing, medium design, head and servo-mechanism design and coding for conventional longitudinal as well as perpendicular magnetic recording. This work presents some further investigation in the signal processing and coding aspects of longitudinal and perpendicular digital magnetic recording. The work presented in this thesis is based upon numerical analysis using various simulation methods. The environment used for implementation of simulation models is C/C + + programming. Important results based upon bit error rate calculations have been documented in this thesis. This work presents the new designed Asymmetric Decoder (AD) which is modified to take into account the jitter noise and shows that it has better performance than classical BCJR decoders with the use of Error Correction Codes (ECC). In this work, a new method of designing Generalised Partial Response (GPR) target and its equaliser has been discussed and implemented which is based on maximising the ratio of the minimum squared euclidean distance of the PR target to the noise penalty introduced by the Partial Response (PR) filter. The results show that the new designed GPR targets have consistently better performance in comparison to various GPR targets previously published. Two methods of equalisation including the industry's standard PR, and a novel Soft-Feedback- Equalisation (SFE) have been discussed which are complimentary to each other. The work on SFE, which is a novelty of this work, was derived from the problem of Inter Symbol Interference (ISI) and noise colouration in PR equalisation. This work also shows that multi-level SFE with MAP/BCJR feedback based magnetic recording with ECC has similar performance when compared to high density binary PR based magnetic recording with ECC, thus documenting the benefits of multi-level magnetic recording. It has been shown that 4-level PR based magnetic recording with ECC at half the density of binary PR based magnetic recording has similar performance and higher packing density by a factor of 2. A novel technique of combining SFE and PR equalisation to achieve best ISI cancellation in a iterative fashion has been discussed. A consistent gain of 0.5 dB and more is achieved when this technique is investigated with application of Maximum Transition Run (MTR) codes. As the length of the PR target in PR equalisation increases, the gain achieved using this novel technique consistently increases and reaches up to 1.2 dB in case of EEPR4 target for a bit error rate of 10-5

    Applications of iterative decoding to magnetic recording channels.

    Get PDF
    Finally, Q-ary LDPC (Q-LDPC) codes are considered for MRCs. Belief propagation decoding for binary LDPC codes is extended to Q-LDPC codes and a reduced-complexity decoding algorithm for Q-LDPC codes is developed. Q-LDPC coded systems perform very well with random noise as well as with burst erasures. Simulations show that Q-LDPC systems outperform RS systems.Secondly, binary low-density parity-check (LDPC) codes are proposed for MRCs. Random binary LDPC codes, finite-geometry LDPC codes and irregular LDPC codes are considered. With belief propagation decoding, LDPC systems are shown to have superior performance over current Reed-Solomon (RS) systems at the range possible for computer simulation. The issue of RS-LDPC concatenation is also addressed.Three coding schemes are investigated for magnetic recording systems. Firstly, block turbo codes, including product codes and parallel block turbo codes, are considered on MRCs. Product codes with other types of component codes are briefly discussed.Magnetic recoding channels (MRCs) are subject to noise contamination and error-correcting codes (ECCs) are used to keep the integrity of the data. Conventionally, hard decoding of the ECCs is performed. In this dissertation, systems using soft iterative decoding techniques are presented and their improved performance is established

    On Coding and Detection Techniques for Two-Dimensional Magnetic Recording

    Get PDF
    Edited version embargoed until 15.04.2020 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 15/04/2019 by AS, Doctoral CollegeThe areal density growth of magnetic recording systems is fast approaching the superparamagnetic limit for conventional magnetic disks. This is due to the increasing demand for high data storage capacity. Two-dimensional Magnetic Recording (TDMR) is a new technology aimed at increasing the areal density of magnetic recording systems beyond the limit of current disk technology using conventional disk media. However, it relies on advanced coding and signal processing techniques to achieve areal density gains. Current state of the art signal processing for TDMR channel employed iterative decoding with Low Density Parity Check (LDPC) codes, coupled with 2D equalisers and full 2D Maximum Likelihood (ML) detectors. The shortcoming of these algorithms is their computation complexity especially with regards to the ML detectors which is exponential with respect to the number of bits involved. Therefore, robust low-complexity coding, equalisation and detection algorithms are crucial for successful future deployment of the TDMR scheme. This present work is aimed at finding efficient and low-complexity coding, equalisation, detection and decoding techniques for improving the performance of TDMR channel and magnetic recording channel in general. A forward error correction (FEC) scheme of two concatenated single parity bit systems along track separated by an interleaver has been presented for channel with perpendicular magnetic recording (PMR) media. Joint detection decoding algorithm using constrained MAP detector for simultaneous detection and decoding of data with single parity bit system has been proposed. It is shown that using the proposed FEC scheme with the constrained MAP detector/decoder can achieve a gain of up to 3dB over un-coded MAP decoder for 1D interference channel. A further gain of 1.5 dB was achieved by concatenating two interleavers with extra parity bit when data density along track is high. The use of single bit parity code as a run length limited code as well as an error correction code is demonstrated to simplify detection complexity and improve system performance. A low-complexity 2D detection technique for TDMR system with Shingled Magnetic Recording Media (SMR) was also proposed. The technique used the concatenation of 2D MAP detector along track with regular MAP detector across tracks to reduce the complexity order of using full 2D detection from exponential to linear. It is shown that using this technique can improve track density with limited complexity. Two methods of FEC for TDMR channel using two single parity bit systems have been discussed. One using two concatenated single parity bits along track only, separated by a Dithered Relative Prime (DRP) interleaver and the other use the single parity bits in both directions without the DRP interleaver. Consequent to the FEC coding on the channel, a 2D multi-track MAP joint detector decoder has been proposed for simultaneous detection and decoding of the coded single parity bit data. A gain of up to 5dB was achieved using the FEC scheme with the 2D multi-track MAP joint detector decoder over un-coded 2D multi-track MAP detector in TDMR channel. In a situation with high density in both directions, it is shown that FEC coding using two concatenated single parity bits along track separated by DRP interleaver performed better than when the single parity bits are used in both directions without the DRP interleaver.9mobile Nigeri

    ADVANCED SIGNAL PROCESSING FOR MAGNETIC RECORDING ON PERPENDICULARLY MAGNETIZED MEDIA

    Get PDF
    In magnetic recording channels (MRCs) the readback signal is corrupted by many kinds of impairments, such as electronic noise, media noise, intersymbol interference (ISI), inter-track interference (ITI) and different types of erasures. The growth in demand for the information storage, leads to the continuing pursuit of higher recording density, which enhances the impact of the noise contamination and makes the recovery of the user data from magnetic media more challenging. In this dissertation, we develop advanced signal processing techniques to mitigate these impairments in MRCs.We focus on magnetic recording on perpendicularly magnetized media, from the state-of-the art continuous media to bit-patterned media, which is a possible choice for the next generation of products. We propose novel techniques for soft-input soft-output channel detection, soft iterative decoding of low-density parity-check (LDPC) codes as well as LDPC code designs for MRCs.First we apply the optimal subblock-by-subblock detector (OBBD) to nonbinary LDPC coded perpendicular magnetic recording channels (PMRCs) and derive a symbol-based detector to do the turbo equalization exactly. Second, we propose improved belief-propagation (BP) decoders for both binary and nonbinary LDPC coded PMRCs, which provide significant gains over the standard BP decoder. Third, we introduce novel LDPC code design techniques to construct LDPC codes with fewer short cycles. Performance improvement is achieved by applying the new LDPC codes to PMRCs. Fourth, we do a substantial investigation on Reed-Solomon (RS) plus LDPC coded PMRCs. Finally, we continue our research on bit-patterned magnetic recording (BPMR) channels at extremely high recording densities. A multi-track detection technique is proposed to mitigate the severe ITI in BPMR channels. The multi-track detection with both joint-track and two-dimensional (2D) equalization provide significant performance improvement compared to conventional equalization and detection methods

    Non-iterative joint decoding and signal processing: universal coding approach for channels with memory

    Get PDF
    A non-iterative receiver is proposed to achieve near capacity performance on intersymbol interference (ISI) channels. There are two main ingredients in the proposed design. i) The use of a novel BCJR-DFE equalizer which produces optimal soft estimates of the inputs to the ISI channel given all the observations from the channel and L past symbols exactly, where L is the memory of the ISI channel. ii) The use of an encoder structure that ensures that L past symbols can be used in the DFE in an error free manner through the use of a capacity achieving code for a memoryless channel. Computational complexity of the proposed receiver structure is less than that of one iteration of the turbo receiver. We also provide the proof showing that the proposed receiver achieves the i.i.d. capacity of any constrained input ISI channel. This DFE-based receiver has several advantages over an iterative (turbo) receiver, such as low complexity, the fact that codes that are optimized for memoryless channels can be used with channels with memory, and finally that the channel does not need to be known at the transmitter. The proposed coding scheme is universal in the sense that a single code of rate r; optimized for a memoryless channel, provides small error probability uniformly across all AWGN-ISI channels of i.i.d. capacity less than r: This general principle of a proposed non-iterative receiver also applies to other signal processing functions, such as timing recovery, pattern-dependent noise whiten ing, joint demodulation and decoding etc. This makes the proposed encoder and receiver structure a viable alternative to iterative signal processing. The results show significant complexity reduction and performance gain for the case of timing recovery and patter-dependent noise whitening for magnetic recording channels

    Multitrack Detection for Magnetic Recording

    Get PDF
    The thesis develops advanced signal processing algorithms for magnetic recording to increase areal density. The exploding demand for cloud storage is motivating a push for higher areal densities, with narrower track pitches and shorter bit lengths. The resulting increase in interference and media noise requires improvements in read channel signal processing to keep pace. This thesis proposes the multitrack pattern-dependent noise-prediction algorithm as a solution to the joint maximum-likelihood multitrack detection problem in the face of pattern-dependent autoregressive Gaussian noise. The magnetic recording read channel has numerous parameters that must be carefully tuned for best performance; these include not only the equalizer coefficients but also any parameters inside the detector. This thesis proposes two new tuning strategies: one is to minimize the bit-error rate after detection, and the other is to minimize the frame-error rate after error-control decoding. Furthermore, this thesis designs a neural network read channel architecture and compares the performance and complexity with these traditional signal processing techniques.Ph.D

    PARALLEL SUBSPACE SUBCODES OF REED-SOLOMON CODES FOR MAGNETIC RECORDING CHANNELS

    Get PDF
    Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code lower the error-floor at high signal-to-noise ratio (SNR) at the price of a reduced coding gain and a less sharp waterfall region at lower SNR. This architecture fails to deal with the error floor problem when the number of errors caused by multiple dominant trapping sets is beyond the error correction capability of the outer RS code. The ultimate goal of a sharper waterfall at the low SNR region and a lower error floor at high SNR can be approached by introducing a parallel subspace subcode RS (SSRS) code (PSSRS) to replace the conventional RS code. In this new LDPC+PSSRS system, the PSSRS code can help localize and partially destroy the most dominant trapping sets. With the proposed iterative parallel local decoding algorithm, the LDPC decoder can correct the remaining errors by itself. The contributions of this work are: 1) We propose a PSSRS code with parallel local SSRS structure and a three-level decoding architecture, which enables a trade off between performance and complexity; 2) We propose a new LDPC+PSSRS system with a new iterative parallel local decoding algorithm with a 0.5dB+ gain over the conventional two-level system. Its performance for 4K-byte sectors is close to the multiple LDPC-only architectures for perpendicular magneticxviiirecording channels; 3) We develop a new decoding concept that changes the major role of the RS code from error correcting to a "partial" trapping set destroyer
    • …
    corecore