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SUMMARY

The exploding demand for cloud storage is motivating a push for higher areal

densities, with narrower track pitches and shorter bit lengths. The resulting increase in

interference and media noise requires improvements in read channel signal processing to

keep pace. This dissertation develops advanced signal processing algorithms for magnetic

recording systems to increase the areal density. Specifically, we propose new architectures

for the read channel: one is a multitrack detector with 2D noise prediction; the other is a

neural network architecture. We also propose new strategies for tuning the read channel

parameters, one to minimize the bit-error rate and one to minimize the frame-error rate.

The advent of multiple readers in magnetic recording opens the door to multitrack

detection, in which multiple tracks are detected jointly. Multitrack detection is a key

enabler for both coding across tracks and crosstrack noise prediction, neither of which can

be fully exploited using single-track detectors. A dominant impediment in magnetic

recording is pattern-dependent media noise, and its impact will only grow more severe as

areal densities increase. A widely used strategy in single-track detection for mitigating

media noise in a trellis-based detector is pattern-dependent noise prediction. This thesis

proposes the multitrack pattern-dependent noise-prediction algorithm as a solution to the

joint maximum-likelihood multitrack detection problem in the face of pattern-dependent

autoregressive Gaussian noise.

The magnetic recording read channel has numerous parameters that must be carefully

tuned for best performance; these include not only the equalizer coefficients but also any

parameters inside the detector, some of which may be pattern dependent, including signal

levels, predictor coefficients, and residual noise variances. Conventional tuning strategies

based on a minimum-mean-squared error criterion are not optimal in terms of bit-error rate

and frame-error rate. Because the number of states grows exponentially with the number

of tracks being detected, a multitrack detector has far more parameters than a single-track

xvi



detector. This thesis proposes two alternative tuning strategies (1) to minimize the bit-error

rate after detection, and (2) to minimize the frame-error rate after error-control decoding.

We also propose a method to reduce redundant parameters.

Furthermore, this thesis proposes and designs a neural network read channel

architecture, and compares the performance and complexity with these traditional signal

processing techniques.

xvii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

We are living in an increasingly digital world, where the amount of digital data that is

generated and stored continues to grow. For example, more than 500 hours of video are

uploaded to YouTube every minute [1], which requires approximately 1.5 TB of space

(assuming 1080p at 60 FPS). As illustrated in Figure 1.1 (a), the amount of customer

generated data will grow from 33 Zettabytes (1 ZB = 109 TB) in 2018 to 175 ZB by

2025 [2].

Users increasingly store their personal data on cloud storage services such as

Dropbox, Google Drive, and iCloud, which drives the growth of the storage industry. The

International Data Corporation predicts that eventually more bits will be stored on the

public cloud than on consumer devices, as shown in Figure 1.1 (b). Furthermore, cloud

storage generally replicates each user bit and stores multiple copies, as a form of

redundancy against storage errors [3].

Solid-state drives have overtaken hard disk drives as the storage technology of choice

for many consumer devices, largely because solid-state drives have faster read and write

speeds, and lower energy consumption. Nevertheless, hard disk drives dominate in data

centers. This is because a typical hard disk drive (HDD) has a cheaper cost per bit, larger

capacity, and longer endurance.

Areal density is a measure of how many bits can be reliably stored per unit area of

the storage medium. It is a vital metric for HDD’s because it generally dictates the cost

required to store each bit; higher areal density means lower cost. The high demand for

data storage inspires new technologies for HDD’s. New writing and reading methods,
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（a） （b）

Figure 1.1: (a) Annual size of the global datasphere [2]. (b) Where data will be stored in
the datasphere [2].

medium materials, and signal processing techniques are continuously being developed by

researchers and industry so as to increase the areal density of HDD’s.

A conventional HDD uses a single reader (sensor) to recover the stored bits, but an

industry roadmap for HDD technology predicts that multiple readers will soon be the

standard [4]. Hard drives with two readers are just now emerging in the marketplace.

However, none of these products use the technique of multitrack detection, which employs

multiple readers to jointly detect and recover multiple tracks. The concept of multitrack

detection was first proposed in 1993 [5], and has recently become a promising candidate

to break through the current limit of areal density [6].

1.2 Thesis Goal: Advanced Signal Processing for Magnetic Recording

The goal of this thesis is to devise advanced signal processing algorithms for magnetic

recording to reach higher areal density. The thesis will deliver a new architecture for

multitrack detection in a magnetic recording system with two or more read heads, and also

two strategies for tuning related parameters and a neural network for hard-output

detection.

2



1.2.1 Multitrack Detection System Design

One aim of this research is to design a multitrack read channel capable of reading more

than one track at a time. The motivation for this research is the observation that multitrack

detection not only doubles the throughput, but also enables the exploitation of crosstrack

modulation coding, crosstrack error-control coding, and multitrack noise prediction. The

various components of single-track detection including the equalizer, target design,

pattern-dependent noise prediction, coding, are well understood and mature, but their

multitrack counterparts are still being uncovered. We will jointly design an equalizer and

target to deal with multiple waveforms from multiple readers and mitigate intertrack

interference and intersymbol inference. We will model 2D media noise and propose a

multitrack sequence detector with multitrack pattern-dependent noise prediction. We will

also propose a strategy to implement crosstrack error-control coding so that the detector

can work well with a decoder.

1.2.2 Strategies for Choosing Parameters

The conventional parameter choice is based on a minimum-mean-square error criterion.

However, prior work has seldom tied the metrics to the performance that are of interest to

the end user, such as bit-error rate and frame-error rate. Further, including the equalizer

and detector, the number of parameters will typically be in the tens or hundreds so that it

is not practical to optimize via a brute-force search. We propose new strategies for tuning

these parameters based on different criteria. We first propose a tuning strategy aiming at

minimizing the bit-error rate after detection. We then propose a tuning strategy aiming

to minimize the frame-error rate after the error-control decoder, when that decoder works

iteratively with the detector in a turbo fashion. We will optimize the parameter space to

avoid redundant or negligible parameters.

3



1.2.3 Neural Networks for Magnetic Recording

Neural networks have become a popular solution for complex problems. We design and

train a neural network to minimize the bit-error rate for magnetic recording and compare

its performance and complexity with traditional detectors.

This thesis is organized as follows. In the rest of this chapter, we present the

background and related work about multitrack detection for magnetic recording. In

Chapter 2 we provide a multitrack detection framework and its minimum-mean-square

error solution to parameters. In Chapter 3 we propose a strategy to tune the parameters of

any read channel aiming at minimizing bit-error rate. In Chapter 4 we propose a

minimum-frame-error rate tuning strategy when detection iterates with decoding. In

Chapter 5, we develop neural network techniques for magnetic recording. Finally in

Chapter 6, our conclusions and future work are presented.

1.3 Background and Literature Survey

1.3.1 Magnetic Recording System

A typical HDD consists of a number of platters stacked vertically with one read/write head

mounted on the tip of an actuator arm for each platter, see Figure 1.2 (a). As the platters

spin, the drive heads can be moved to reach any point of each platter. Each platter has

thousands of thin concentric bands called tracks. Information bits are read and written by

sectors on a track. The size of a sector is 512 bytes for older HDD’s and 4K bytes for newer

HDD’s. The firmware of a typical HDD is in charge of controlling actuator arms and signal

processing of read and write operations.

A conventional HDD uses a single reader (sensor) to receive magnetic signals. Hard

drives with two readers are just now emerging in the marketplace. For example, Western

Digital launched a product called the HGST Ultrastar DC HC530 in 2018, which uses

two readers to detect and recover a single track with a single-track detector [7]. Seagate

4



Transmitter              Channel               Receiver 

Write head           Magnetic media        Read head 

Platter (media)

Read/Write head

Actuator Arm

(a) (b)

Figure 1.2: (a) Inside look of a typical HDD [9]. (b) The analogy of the magnetic read
channel to a communication system.

Technology will launch a new product called the MACH.2 soon that has two reading arms

working independently [8].

The recording method is also updating rapidly in the HDD industry. The traditional

longitudinal recording has been replaced by perpendicular magnetic recording (PMR) and

shingled magnetic recording (SMR). The perpendicular recording head produces magnetic

flux perpendicular to the recording layer. A small area of grains on the media is polarized to

either negative or positive to represent bits. PMR is reported to have more than three times

the areal density of longitudinal recording [10]. Instead of writing data parallel on non-

overlapping tracks like PMR, SMR records a new track overlapping part of the previously

written track, which allows for higher areal density [11].

Energy-assisted magnetic recording is considered as the next-generation technique for

HDD’s. As the areal density increases, drives need higher energy barriers in media to

maintain thermal stability [12]. Meanwhile, actuator heads must generate stronger

magnetic fields against energy barriers. This is where energy-assisted magnetic recording

technology comes in. With the help of heat (heat-assisted magnetic recording, HAMR) or

microwaves (microwave-assisted magnetic recording, MAMR), heads can easily change

the polar magnetization of media.

A magnetic recording system writes information bits on a disk and reads information

from the disk. It behaves like a communication system, as shown in Figure 1.2 (b). The
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Figure 1.3: A typical read channel for a magnetic recording system.

transmitter consists of an error-control encoder, a modulation encoder, a modulator and a

write head. The write head performs magnetization by hovering near the surface of a

magnetic medium. The magnetic medium can be considered a communication channel

contaminated by both electronic and medium noise. A read head, a read channel, a

modulation decoder and an error-control decoder comprise the receiver [13, 14]. The read

head detects the current magnetization and produces readback waveforms. The so-called

read channel in magnetic recording is the system that converts the readback waveforms

into bits, and includes an analog to digital converter (ADC), a timing recovery block, an

equalizer, and a symbol detector, as shown in Figure 1.3. This thesis focuses on the read

channel.

The timing recovery block corrects and compensates for the misalignment between the

ADC sampling clock and the actual arrival time of the bits. Conventional analog timing

recovery is replaced by a fully digital timing recovery scheme known as interpolated timing

recovery [15]. The sampled signal after ADC is asynchronous but gets synchronized using

interpolation techniques based on the timing information achieved from a digital phase-

locked loop.

As the areal density increased, the conventional peak detector was replaced by the

partial response maximum likelihood (PRML) sequence detector [16] in the 1990s due to

the heavy intersymbol interference (ISI). ISI arises because the tail of one pulse does not

die away before the next pulse is transmitted. Rather than eliminating or canceling the ISI

like the peak detector, the read channel shapes the ISI using an equalizer and the PRML

detector handles it afterward, which enables higher density and paves the way for other

advanced detection and coding techniques. A partial response target is a short small
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channel response g = [1, g1, ..., gµ]T filtering the transmitted bits. Typical classes of the

PR are PR4 (g = [1, 0,−1]T ) and EPR4 (g = [1,−1, 1,−1]T ). A minimum-mean-square

error (MMSE) equalizer chooses the coefficient vector c to minimize the mean-square

error (MSE) between the equalizer output and the target signal, which is achieved by

convolving bits and PR coefficients, i.e.:

MSE = E((cT rk − gTak−d)
2), (1.1)

where rk = [rk, rk−1, ..., rk−Nc+1]
T is the vector of relevant waveform samples and ak−d =

[ak−d, ..., ak−d−µ]T is the vector of written bits with some delay d. After equalization, the

signal is detected by a sequence detector with the target. The generalized partial response

(GPR) extends the integer-valued target to arbitrary coefficients [17], which yields better

performance. The optimization needs a constraint on the target to avoid a trivial solution.

1.3.2 Pattern-Dependent Noise Prediction

Like most communication channels, the magnetic recording channel is corrupted by

thermal noise. The magnetic recording system also needs to combat a unique impediment:

media noise [13]. Media noise is caused by the randomly sized and positioned grains on

the magnetic media. As there are fewer grains per bit, the boundaries of bit transitions

become random and irregular, as shown in Figure 1.4. This effect leads to randomness in

the readback waveforms. A key feature of media noise is that it depends on the data being

written, and in particular is more pronounced in the vicinity of bit transitions. A bit

segment with more transitions has more media noise.

The noise after the PR equalizer is not white. A Viterbi detector [18] that treats the

noise as white is suboptimal. One method to improve performance is to integrate noise

prediction into the sequence detector [19][20]. However, additive Gaussian white noise

only accounts for part of the total noise since media noise can be dominant, especially for
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Figure 1.4: Readback waveforms (red) simulation based on Voronoi grains. The average
grains/bit decreases from top to bottom. When there are only a few grains per bit, the
irregular boundaries corrupt the waveform as shown in the bottom figure.

high areal density disks. To handle the media noise, a pattern-dependent noise whitening

procedure is commonly used, which gives rise to the pattern-dependent noise prediction

(PDNP) detector proposed in [21]. The authors in [21] assume that the read channel is

contaminated with ISI and autoregressive Gauss-Markov noise. At time k the noise nk

with Markov memory length L is dependent on its bit pattern ak, i.e.,

nk = b(ak)
Tnk−Lk−1 + σ(ak)wk, (1.2)

where b(ak) is the pattern-dependent autoregressive filter on the previous noise vector

nk−Lk−1 , wk is a standard normal noise process, and σ(ak) is the pattern-dependent standard

deviation. Based on this model, the Gaussian maximum likelihood (ML) branch metric

from state xk−1 to xk, given observed vector zk−Lk , can be expressed as

MML(zk−Lk , xk−1, xk) = ln σ2(ak) +
([−b(ak)T 1](zk−Lk − Y (xk−1, xk)))

2

σ2(ak)
, (1.3)

where Y (xk−1, xk) is the vector of the ideal channel outputs.
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An alternative route to the PDNP detector of [21] is present in [22], which proposes

the same PDNP strategy from a linear prediction viewpoint, without any assumption on the

noise model. The noise predictor whitens the noise and reduces its variance for each bit

pattern. Later, the PDNP Viterbi algorithm is extended to the Bahl-Cocke-Jelinek-Raviv

algorithm (BCJR) and the soft-output Viterbi algorithm (SOVA) [13].

Pattern-dependent noise prediction is one of the most important signal processing

techniques for magnetic recording in the last 20 years. This technique is widely

recognized and used by the HDD industry and extended into many other fields beyond

data storage, such as signal and image processing, and data science [23].

1.3.3 Two-Dimensional Magnetic Recording

The conventional single-track magnetic recording is predicted to reach its limit at around

1 Tbit/in2 due to the thermal stability [24]. The push for a higher areal density and the

advent of a shingled writing technique motivate the use of two-dimensional magnetic

recording (TDMR). TDMR does not require new media or new head technologies, but

only requires new signal processing and coding methods. The ideal TDMR handles the

2D readback signal in both crosstrack and downtrack directions, like an image. While the

TDMR has a promising future, it is still a long way from productization. Fortunately,

multitrack magnetic recording, which reads and detects several tracks (much fewer

compared to the length of a track), becomes a stepping-stone for TDMR. In the HDD

industry multitrack magnetic recording is sometimes also called TDMR. We will

introduce TDMR detection and multitrack detection separately due to the different models

used.

2D Page Detection

An ideal TDMR system organizes the data to be written in a 2D array whose two

dimensions are comparable in size and interchangeable. In the reading process, sensing
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the magnetization is modeled as convolving with a read-head response [25]. The 2D

readback process is modeled as a matrix channel response capturing all ISI and intertrack

interference (ITI), and then convolved with a matrix of recorded bits.

GPR equalizer and target design for ideal TDMR are studied in [26] and [27]. The 2D

detector and its complexity are discussed in [27] and [28]. Data-dependent noise prediction

(DDNP) for TDMR is proposed in [29], where the noise is predicted using the estimated

noise nearby the current bit. The DDNP detection algorithm is observed to give over 10%

gains in areal density over a 2D soft-output Viterbi algorithm without noise prediction when

no grain flips are considered.

Multitrack Detection

A published roadmap predicted that, in order to realize the benefits of TDMR, multitrack

detection would be required within the next five to ten years [4]. Multitrack detection is

fed multiple readback waveforms and detects multiple tracks. A synchronized written

multitrack detection system is shown in Figure 1.5. Shingled writing enables narrow track

pitches, resulting in significant intertrack interference as well as a nonlinear transition

shift in both downtrack and crosstrack directions. Multitrack detection opens the door to

exploiting error-control coding and modulation coding across tracks, as well as crosstrack

pattern-dependent noise prediction.

The move from single-track to multitrack detection requires a substantial redesign of

many system components, including the geometry of the readers, the equalizers, the

target, and the detection algorithm. The equalizer that takes in multiple streams of

sampled readback waveforms and shapes the signal to fit a target is known as a 2D

equalizer. In [30], the authors use a 2D equalizer and a 1D target to investigate the

optimization of bit geometry and two-reader geometry when detecting a single track. The

performance gain from one reader to two readers is clearly shown.

2D patterns are used for noise prediction in [31], but the tracks are detected
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Figure 1.5: A synchronous written multitrack detection system (M readers detect N tracks).

independently with 1D noise predictors. In [32], decisions from a previously detected

track are used to detect future tracks based on 2D patterns and single-track

pattern-dependent noise prediction (1D-PDNP). In [33], the authors extend this work to

include 2D write precompensation based on three-track patterns.

In [34], [35], and [36], the authors propose an alternative way to implement maximum-

likelihood detection for multihead multitrack systems called the weighted sum subtract

joint detector. This detector uses a different trellis, which is independent of ITI. Therefore

it is efficient to adapt for the time-varying ITI environment.

Synchronization for Multiple Tracks

The conventional way to recover data from readback waveforms of multiple asynchronous

tracks is to synchronize and detect each track separately, which goes back to the single-

track situation. However, ITI should be mitigated as much as possible before detection. An

alternative way is to jointly synchronize and detect multiple tracks simultaneously. [37]

proposes an innovative rotating-target (ROTAR) algorithm to handle the joint detection

of multiple asynchronous tracks. Synchronization for multitrack detection is no longer

performed as a separate block in single-track detection. This algorithm jointly performs

the synchronization and detection using Viterbi detection with a time-varying target. The
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authors show that the ROTAR algorithm outperforms the conventional way by 1 dB when

achieving the BER of 10−4. The time-varying target matched equalizer for an unknown

channel is also proposed in [14].

1.3.4 Minimum-BER Based Detection

The equalizers, targets, and predictors discussed above are designed to minimize the mean-

square error since it is a quadratic function that has a closed-form solution for its single

minimum [38]. Because of this advantage, the MMSE criteria is widely used. However, the

criteria for a hard-decision detector is the bit-error rate (BER) that has no direct relationship

with the MSE. An equalizer that minimizes the MSE does not generally minimize the BER.

As a result, how to choose these parameters based on minimum-bit-error rate (MBER)

criteria has drawn researchers’ attention. The MBER algorithms are studied for different

channels as follows.

Full-Response Channel

In [39], the linear equalizer based on the MBER criterion is studied for a typical linear ISI

channel with Gaussian noise and a memoryless detector. The system diagram is shown

in Figure 1.6. Binary input xk at time k drawn from {±1} passes through a channel with

impulse response hk. rk, the sum of the channel output and Gaussian noise nk with variance

σ2, is the input of a linear equalizer with the coefficient ck at time k. The sign detector

makes the decision x̂k−d on the equalized signal yk at time k, where d accounts for the

delay in the channel and the equalizer. The authors define the signal vector as si = Hx̃i,

where H is the Toeplitz convolution matrix for hk, and x̃i is the ith possible input vector

among all L vectors. The authors show that when a channel is known and equalizable, the

BER is an average of a set of Q functions:

BER =
1

L

L∑
i=1

Q(
cT si
||c||σ

). (1.4)
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Figure 1.6: Block diagram of a channel, equalizer, and a memoryless decision device [39].

There is no unique and closed-form solution for the exact minimum-BER equalizer

coefficients denoted by cEMBER that minimizes (1.4). However, they achieve a lemma that

an equalizer c that minimizes the BER of an equalizable channel must satisfy

c = a
1

L

L∑
i=1

e
1
2
(
cT si
||c||σ )

2

si = af(c), (1.5)

where a > 0 and f(c) can be considered a linear combination of the signal vectors si. This

lemma demonstrates that cEMBER is proportional to the linear combination of all the signal

vectors. If one signal vector’s weight dominates among all the signal vectors, cEMBER will

be approximately proportional to that signal vector. The deterministic EMBER algorithm

is derived as

ck+1 = ck + λf(ck), (1.6)

where λ is the step size. For an adaptive equalization with an unknown channel, the authors

provide the stochastic adaptive minimum-bit-error rate (AMBER) algorithm:

ck+1 = ck + λ1xk−Dyk<0xk−Drk. (1.7)

This algorithm has an expression and complexity similar to the least mean squares (LMS)

algorithm and only has an extra indicator function than the sign-LMS algorithm. The

AMBER algorithm only updates the equalizer when an error is made. The numeric results

demonstrate that the EMBER equalizer in one example with three equalizer coefficients

can outperform the MMSE equalizer by 6.5 dB at BER 10−5. The gap shrinks as the
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number of taps increases. Since the approximation Q(z) ≈ 1
z
√
2π
e−

z2

2 for z > 0 is used in

the derivation, the AMBER algorithm no longer minimizes the BER exactly. However, the

simulation results show that the AMBER algorithm converges to a place closely near the

minimum. The MBER decision feedback equalizer is also explored in [40].

Partial-Response Channel

The BER of ML sequence detection has been studied since it was invented [41] [42].

However, there is no exact expression for the BER. It has been only approximated by the

probability of the minimum distance error event at a high signal-to-noise ratio (SNR).

[43] studies the near MBER equalizer for partial response ML sequence detection. The

authors express the sequenced amplitude margin of bit-error sequence e as

S(e) = 4(δTe δe −Xe), (1.8)

where δe is the convolution of target g and bit-error sequence e, Xe is the correlation

between error signal and δe. Given the bit sequence b and bit-error sequence e, the

probability that this error event happens is

P (error event|b, e) = Pr(δTe δe < Xe). (1.9)

The authors assume that the probability distribution of Xe > δTe δe is Gaussian with mean

µe and variance σ2
e so that (1.9) results in a Q function. Meanwhile, E(1Xe>δTe δeXe)

approximates in proportion to the same Q function, i.e.

P (error event|b, e) = Q(
δTe δe − µe

σe
) ≈ 1

δTe δe
E(1Xe>δTe δeXe) (1.10)

It means minimizing E(1Xe>δTe δeXe) is approximate to minimize the (1.9). It is hard to

directly minimize P (δTe δe < Xe) (i.e. E(1Xe>δTe δe)) because it is non-differentiable.
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However, the stochastic gradient descent algorithm to minimize E(1Xe>δTe δeXe) is easy to

derive.

Based on the algorithm to approximately minimize the probability of error event, the

stochastic gradient search algorithm of an empirical BER is approximated by scaling the

step size with the hamming weight of the bit-error sequence. The simulation results show

that in an idealized optical storage channel, the proposed algorithm outperforms the LMS

by 3.4 dB and 1.2 dB with 3-tap and 5-tap targets at BER of 10−4 and 10−5, respectively.

Furthermore, the AMBER target is explored in [44], where the performance of the

AMBER target is found to be very close to that of the monic constraint MMSE target.

1.3.5 Iterative (Turbo) Decoding

Turbo codes construct a powerful error-control code with two or more easily decodable

codes concatenated in parallel or serial. The receiver consists of two or more decoders

respectively. They share information with each other and form a joint decoder. Turbo codes

have two structures: parallel-concatenated codes (PCC) [45] and series-concatenated codes

(SCC) [46]. We will introduce SCC in detail since it is widely used in magnetic recording

systems.

A generic serial-concatenated encoder/decoder is shown in Figure 1.7. The encoder

consists of an outer encoder and an inner encoder separated by a pseudorandom

interleaver. The decoding is a reverse procedure of the encoding. The pair of a posteriori

(APP) decoders exchange information iteratively. The outer decoder has no access to the

channel observations but a priori information from the inner decoder. The inner code must

be recursive for best performance but the outer code need not be [42].

Techniques for analyzing the convergence of iterative decoding schemes have been

widely studied. Density evolution for low-density parity-check (LDPC) codes was

developed by tracking the probability distributions of extrinsic log-likelihood ratios

(LLRs) [47]. This tracking is simplified considerably when the probability density
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Figure 1.7: A serial-concatenated turbo encoder (a) consists of an outer encoder, an
interleaver and an inner code. A turbo decoder (b) consists of two APP decoders.

function (PDF) depends on only a single parameter. Other single-parameter metrics

include the fidelity of [48] and the mutual information of [49]. In [49], Ten Brink

developed the extrinsic information transfer (EXIT) chart to visualize the evolution of

LLR’s and analyze the convergence behavior. Prior work regarding EXIT chart has been

limited to the design of error-control codes [50, 51, 52], not detectors.

The turbo coding for magnetic recording was studied in [53, 54]. Since the channel is a

PR channel, it naturally leads to a rate-one inner code, similar to a recursive convolutional

code. The inner APP decoder is designed for the precoded PR channel. Any high rate,

block or convolutional code can be a good candidate for the outer code.

1.3.6 Machine Learning for Magnetic Recording

The rise of machine learning has changed all walks of life. Several papers apply machine

learning techniques to magnetic recording channels.

[55] proposes a convolutional neural network (CNN) with three hidden layers.

Waveforms from two readers hanging on two adjacent tracks are the input and the goal is

to detect one track. Simulation results show that CNN can mitigate ITI from the adjacent

track. [56] proposes a deep neural network (DNN) based media noise predictor
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cooperating with a BCJR detector. A 34% BER decrease is reported compared with

conventional 1D-PDNP. [57] proposes to replace the APP detector with a DNN for a 3 × 3

multitrack detection. A window of 15 bits is cast on the equalized waveforms and outputs

the probability of the current bit. The cross entropy loss is used for optimizing. Three

neural networks are designed as follows. The first one is a fully-connected DNN. The

network has five hidden fully-connected layers. The second neural network has five

convolutional neural network layers. Each layer consists of a 2D convolutional layer, a

batch normalization layer and a rectified linear unit (ReLU) activation function. The third

network is a many-to-one recurrent neural network (RNN). At each time step, the input

will go through seven stacks of bidirectional long short-term memory (LSTM) layer.

Among all the three networks, CNN achieves the lowest BER and is chosen to plug in

iterative (turbo) decoding. Compared with a standard BCJR-based 1D-PDNP, a 21.72%

density gain is reported.
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CHAPTER 2

MULTITRACK DETECTION WITH PATTERN DEPENDENT NOISE

PREDICTION

2.1 Introduction

One goal of this chapter is to propose a multitrack detection framework that can detect

multiple tracks with multiple readers. We need to redesign the equalizer and associated

target. A second objective is to develop a multitrack detector with multitrack pattern-

dependent noise prediction (2D-PDNP) to mitigate the 2D media noise. A third objective

is to develop methods for training the parameters involved in the equalizer and the detector.

We will test the structure and these algorithms on a set of quasi-micromagnetic simulated

channel waveforms and compare the performance with a non-PDNP multitrack Viterbi

detector.

This chapter is organized as follows. In Section 2.2, we propose the joint design of a

multiple-input and multiple-output (MIMO) equalizer and a matrix-valued target for

multitrack detection. In Section 2.3, we develop the multitrack pattern-dependent noise

prediction Viterbi algorithm. In Section 2.4, we provide different methods to train the

PDNP parameters for the multitrack detectors. In Section 2.6, we summarize this chapter.

2.2 Joint MMSE Optimization of Equalizer and Target

We consider the multitrack detection problem in which a set of M adjacent tracks are

detected jointly, based on the observations from an array ofN readers. To simplify notation

we focus throughout this section on the case of detecting M = 2 tracks. Generalizing to

M > 2 is straightforward. An example with two readers and two tracks is shown in

Figure 2.1. Each reader produces a readback waveform with ISI, ITI, media noise, and
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Figure 2.1: A multitrack detection example, where two readers (N = 2) are used to detect
two tracks (M = 2).

electronic noise. Each readback waveform is sampled by an ADC, and then passed as

an input to an N -input M -output equalizer. The equalized signal will be fed into a joint

detector. We do not explicitly model any modulation or error-control coding. We assume

that the tracks being detected are synchronous, both with each other and with the ADC

sampling rate.

Here we summarize the MIMO equalizer and target that jointly minimize the equalizer

output MSE, subject to a monic and minimum-phase constraint on the target [25].

The M × 1 vector-valued equalizer output can be written compactly as yk = CT rk,

where rk = [rTk , ..., r
T
k−Nc+1]

T collects the relevant readback samples into a single vector,

where rk = [r
(1)
k , ..., r

(N)
k ]T is the kth vector-valued input to the equalizer, and where rk(i) is

the kth sample from the ith reader, and where C = [CT
0 , ...,C

T
Nc−1]

T represents the MIMO

equalizer, where each Ck is an M ×N matrix-valued coefficient. The typical aim of such

an equalizer is to transform the channel so that it matches a target, which in this case is a

MIMO filter with transfer function G(D) =
∑µ

k=0 GkD
k, where µ is the target memory

parameter.

To avoid a trivial solution, we impose the constraint that G0 is lower triangular with
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ones on the diagonal [42], namely (M = N = 2)

G0 =

 1 0

G
(0)
2,1 1

 . (2.1)

This constraint can be viewed as the generalization of the monic constraint in the single-

track case [58] to the MIMO case. We can view it as a set of four scalar-valued target

filters instead of a single matrix-valued filter, where the ith row and jth column Gij(D) of

G(D) represents the scalar target from the jth track of interest to the ith equalizer output

(i, j ∈ {1, 2}). In terms of these scalar targets, the monic constraint of (2.1) implies that

both G11(D) and G22(D) are monic in the scalar sense, and further that G12(D) is strictly

causal. There are alternatives to this monic constraint that may also perform well. Other

forms of a monic constraint for G0 can be found in [31, 32].

Filtering the vector sequence ak = [a
(1)
k , a

(2)
k ]T ∈ {±1}2 of information bits by the

target results in the signal sk = G0ak−d + BTak, where d is the equalizer delay parameter,

where ak = [aTk−d−1, ... aTk−d−µ]T , and where we have introduced the target “tail” B =

[G1, ...,Gµ]T . In these terms, the M × 1 equalizer error vector at time k can be written as:

ek = CT rk −G0ak–d −BTak.

The MMSE optimization problem is to jointly choose the equalizer C and target (G
(0)
2,1,B)

to minimize the mean-squared errorE(‖e‖2). This is the multitrack (MIMO) version of the

GPR strategy for single-track detection that is reviewed in Section 1.3.1. The closed-form

solution for the equalizer and target is [59]:

[CT ,−BT ] = M−1RT
vaR

−1
vv

G0 = M−1, (2.2)

20



where Rvv = E(vkv
T
k ), Rva = E(vka

T
k−d), vk = [rTk , a

T
k ]T and M is the monic factor in

the Choleskey decomposition I−RT
vaR

−1
vvRva = MD2MT .

2.3 Multitrack Detection with Multitrack PDNP

In this section, we propose the multitrack PDNP Viterbi algorithm. This algorithm can be

viewed as an extension of the 1D-PDNP Viterbi algorithm [21] to the case of multitrack

patterns and MIMO noise prediction (both downtrack and crosstrack).

2.3.1 A Multitrack Pattern-Dependent and Autoregressive Model for Noise

The equalizer derived in the previous section ensures that its output is as close a match (in

a minimum-MSE sense) to a linear convolution of the bit sequences from the two tracks

and the matrix-valued target. Nevertheless, media noise effects such as nonlinear transition

shift diminish the accuracy of the linear convolution model; instead, we adopt a nonlinear

model for the equalizer output at time k:

yk = s(Ak) + nk(Ak), (2.3)

where both the signal s and the zero-mean noise n depend on the 2D pattern:

Ak = [ak+I , ..., ak, ..., ak−J ]. (2.4)

The pattern Ak at time k is a matrix with two rows containing all of the bits from the two

tracks that contribute to the equalizer output at time k. If the noise were independent and

the linear convolution model were accurate, then the signal component would reduce to

s =
∑µ

i=0 Giak−i, so that the pattern would consist of only ak through ak−µ. Instead,

because of nonlinear effects and pattern-dependent noise memory, the pattern includes I

future bits and J past bits for each track.

A key property of media noise is that its characteristics depend on the pattern of bits that
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were written. For example, a pattern with more transitions (both downtrack and crosstrack)

will naturally have more media noise than a pattern with no transitions. To capture this

effect, we model the vector-valued noise nk in (2.3) as a vector-valued pattern-dependent

autoregressive (AR) Gaussian process with memory Np, so that:

nk =

Np∑
i=0

Pi(Ak)nk−i + Λ(Ak)uk, (2.5)

where uk ∼ N (0, I) is a spatially and temporally white sequence of Gaussian noise

vectors, where

Λ(Ak) =

 σ1(Ak) 0

0 σ2(Ak)

 (2.6)

is a pattern-dependent standard deviation matrix, and where {Pi(Ak)} are the

matrix-valued AR filter coefficients, also dependent on the pattern Ak. The zeroth

coefficient P0 is included in the AR filter in order to account for spatial correlation in the

noise; to be realizable we require P0 to be strictly lower triangle, with zeros on and above

the diagonal. This multitrack noise model is an extension of the single-track

pattern-dependent noise model [21], while the coefficient P0 is unique in the multitrack

case. A block diagram showing the AR noise model for the special case of Np = 4 is

shown in Figure 2.2.

2.3.2 The Joint ML Solution to the Multitrack Detection Problem

The Viterbi algorithm is a general solution to the problem of detecting the state sequence

of a finite-state machine based on observations of its output in the face of independent

noise [18]. The proposed model for the equalizer output fits this description precisely; as

illustrated in Figure 2.2, the state of the finite-state machine is

θk = [ak+I−1, ak−1, ..., ak−Np−J ]. (2.7)
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Figure 2.2: The signal and 2D media noise model for the special case of Np = 4, I = 1,
and J = 3.

The total number of states is Q = 4Np+I+J . Observe that the state θk at time k uniquely

determines the previous Np patterns Ak−1 through Ak−Np . Furthermore, the state θk along

with knowledge of the next pair of input bits ak+1 uniquely determines both the current

pattern Ak and the next state θk+1.

We now derive the solution to the joint maximum-likelihood multitrack detector in the

face of pattern-dependent AR Gaussian noise following the derivation for the 1D case [21].

Let L denote the length of the bit sequence on each track being detected, and let L′ =

L+ I + J +Np denote the number of stages in the corresponding trellis diagram. Let y =

[y1, , ...yL′ ] be the observation sequence, and let θ = [θ1, ..., θL′+1] be the state sequence

to be estimated (which is equivalent to estimating the data written on the two tracks of

interest). The ML solution chooses θ to maximize the likelihood function f(y | θ), which
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because of the noise model in Section 2.3.1 can be factored according to

f(y | θ) = f(y1 | θ)
L′∏
k=2

f(yk | y1, ...,yk−1, θ)

=
L′∏
k=1

f(yk | Yk, θk, θk+1),

(2.8)

where Yk = [yk−1, ...,yk−Np ] is the set of Np previous observation vectors. In terms of the

trellis representing all possible trajectories of the state sequence θ, consisting of Q states

and spanning L′ stages, we can interpret the objective function in (2.8) as a path metric

formed by multiplying the branch metrics for each branch in the path. In particular, if

we denote the edge (branch) in the trellis from state θk to state θk+1 by e = (θk, θk+1).

Associated with each edge e is a unique sequence of Np + 1 patterns {Ak−Np , ...,Ak}. The

branch metric for an edge e is then the factor f(yk | Yk, θk, θk+1), which can be expressed

as

f(yk | Yk, e) =
1

2π|Λ(Ak)|
exp(−0.5 ‖ Λ−1(Ak)

Np∑
i=0

Bi(Ak)(yk−i − s(Ak−i)) ‖2),

(2.9)

where Bi = δiI − Pi can be interpreted as the coefficients of a MIMO prediction-error

filter. Taking the negative logarithm of (2.9) and canceling constant terms that are common

to all branches, we arrive at the additive branch metric

γk(e) = log(σ2
1(Ak)σ

2
2(Ak))+ ‖ Λ−1(Ak)

Np∑
i=0

Bi(Ak)(yk−i − s(Ak−i)) ‖2, (2.10)

where σ1 and σ2 are the diagonal components of Λ.

The branch metric in (2.10) can be interpreted as implementing pattern-dependent noise

prediction, but it is worth emphasizing that we did not set out with the goal of predicting

noise in the first place; rather, it is just a byproduct of the ML solution in the face of our

AR model for the noise. The noise prediction that occurs in (2.10) has two components: a
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temporal component, where past noise samples are used to predict current noise samples,

and a spatial component, where noise at one output of the equalizer is used to predict noise

at another output.

The Viterbi algorithm can be used as an efficient solution to the problem of finding

the path through the trellis with the smallest path metric. The pseudocode of the proposed

multitrack PDNP Viterbi algorithm is shown in Algorithm 1, where Φk(q) is the partial

path metric of state q at time k and πk(q) is the surviving state toward state q at time k. The

trellis is set to terminate at state 0.

Algorithm 1 Multitrack Viterbi detection with 2D-PDNP

Input: Equalizer outputs {yk}, s(A),Λ(A),B(A) ∀A
Output: â1, ...âL

1: Φ1(0) = 0, Φ1(p) =∞ ∀p 6= 0
2: for k = 1 to L′ do
3: for q = 0 to Q− 1 do
4: for p ∈ predecessors(q) do
5: (p, q) determines {Ak−Np , ..., Ak}
6: γk(p, q) = log(σ2

1(Ak)σ
2
2(Ak))

+ ‖ Λ−1(Ak)
∑Np

i=0 Bi(Ak)(yk−i − s(Ak−i)) ‖2
7: p∗ = argminp{Φk(p) + γk(p, q)}
8: Φk+1(q) = Φk(p

∗) + γk(p
∗, q)

9: πk+1(q) = p∗

10: end for
11: end for
12: end for
13: Extract {â1, ..., âL} from survivor minimizing ΦL′+1(0)

2.4 Estimation of PDNP Parameters

The proposed multitrack detector described in the previous section requires complete

knowledge of the channel model; in particular, it requires knowledge of the

pattern-dependent AR feedback filter coefficients {Pi}, the pattern-dependent standard

deviation matrices {Λ}, and the pattern-dependent expected equalizer outputs {s}. In

practice these parameters would have to be estimated through a process we refer to as
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training.

2.4.1 Non-Pattern-Dependent Multitrack Noise Prediction

With the equalizer fixed, we turn our attention to the remaining parameters s, {Pi}, and Λ.

In the special case when these parameters are time-invariant (independent of the pattern),

the equalizer output reduces to a stationary vector-valued AR process with nonzero mean s.

We can rephrase the parameter estimation problem as a linear prediction problem, because

the prediction parameters {P̂i} and ŝ that minimize the MSE

MSE = E(‖ yk − ŝ−
Np∑
i=0

P̂i(yk−i − ŝ) ‖2), (2.11)

subject to the causal constraint (P0 strictly lower triangular), are precisely the AR

parameters s and {Pi}, respectively [60].

The MMSE estimate for s is thus ŝ = E(yk), and the MMSE estimate for {Pi} is the

set of prediction coefficients that minimize E (‖ nk − n̂k ‖2), where n̂k =
∑Np

i=0 Pink−i.

In the case of scalar linear prediction, there would be no P0 term, but in the vector case

it can exist as long as the overall linear prediction filter is strictly causal in the space-time

sense [42]: here, this means that P0 is a strictly lower triangular matrix, with zeros on and

above the diagonal.

In terms of the zeroth prediction-error filter coefficient B0 = I − P0, the predictor

“tail” P̃ =
[
P1, ..., PNp

]
, and Nk = [nTk−1, ..., nTk−Np ]

T , the autocorrelation matrix of

the prediction error ek = nk −
∑Np

i=0 Pink−i can be written as

Ree = E((B0nk − P̃Nk)(B0nk − P̃Nk)
T )

= B0RnnBT
0 + P̃RNNP̃T −B0RNn

T P̃T − P̃RNnBT
0

= (P̃−B0RNn
TRNN

−1)RNN(P̃−B0RNn
TRNN

−1)T

+ B0(Rnn −RNn
TRNN

−1RNn)BT
0 , (2.12)
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where Rnn = E(nkn
T
k ) is the autocorrelation matrix of the current noise vector, RNN =

E(NkN
T
k ) is the autocorrelation of the previous noise vectors, and RNn = E(Nkn

T
k ) is

the cross-correlation matrix between the current and previous noise vectors. To minimize

MSE = tr(Ree), we can do no better than zeroing the first term in (2.12) by choosing

P̃ = B0RNn
TRNN

−1. In terms of the monic Cholesky decomposition:

Rnn −RNn
TRNN

−1RNn = MΛ2MT , (2.13)

where M is monic (ones on the diagonal) and lower triangular, and Λ is nonnegative and

diagonal, the trace of the remaining term in (2.12) is minimized when B0M = I (a simple

consequence of the fact that the product of two monic and lower triangular matrices is also

monic and lower triangular), so that the optimal zeroth coefficient is P0 = I−M−1. With

this choice, the optimized autocorrelation matrix reduces to Ree = Λ2. To summarize, for

the special case when the parameters are independent of the pattern, the MMSE estimates

of the PDNP parameters can be written as

s = E(yk),

P0 = I−M−1,

[P1, ..., PNp ] = M−1RNn
TRNN

−1, (2.14)

where M and Λ are the factors specified by the monic Cholesky decomposition of (2.13).

2.4.2 Estimating AR Channel Parameters via Training

In this subsection, we drop the assumption that the parameters are independent of the

pattern, and describe a training process for estimating the parameters of the

pattern-dependent AR feedback filter coefficients {Pi(A)}, the pattern-dependent

standard deviation matrices {Λ(A)}, and the pattern-dependent expected equalizer

outputs {s(A)} (The equalizer remains independent of the pattern.) The procedure is
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straightforward, and requires that a training sequence of Lt known bits be written on each

track, separately from the user data. At time k in the training process, when reading back

the training sequence, the pattern Ak will be known. We can thus organize the readback

data according to the known pattern, and separately implement the linear predictors from

the previous section for each pattern. In this way, each pattern will have its own expected

signals, predictors, and standard deviation matrix. According to the definition in (2.4), the

total number of patterns is 4I+J+1. Suppose we have a basket for each such pattern. The

training steps are as follows.

Step 1 First pass: For each k ∈ {1, ...Lt}, place yk into basket Ak;

Step 2 For each basket A, average its yk vectors to estimate s(A).

Step 3 Empty all baskets.

Step 4 Second pass: For each k ∈ {1, ...Lt}, place nk = yk − s(Ak) and

Nk = [nTk−1, ..., nTk−Np ]
T in the basket Ak;

Step 5 For each basket A, estimate

Rnn = E(nkn
T
k )

RNN = E(NkN
T
k )

RNn = E(Nkn
T
k )

Step 6 For each basket, perform the Cholesky decomposition

Rnn −RNn
TRNN

−1RNn = MΛ2MT

Step 7 For each basket, the predictor coefficient matrices are obtained by P0 = I−M−1

[P1, ..., PNp ] = M−1RNn
TRNN

−1

The standard deviation matrix of the prediction error is Λ.
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2.4.3 Self-Training Scheme for PDNP

Both 1D and 2D PDNP Viterbi algorithms require accurate estimates of the parameters

(including mean offsets, predictor coefficients or matrices, and residual variances or

covariance matrices) of the noise model. These parameters can be estimated through a

training process as described in the previous section, based on the readback waveforms

from a known set of training bits, with the expectation that the noise behavior learned

during training will be applicable when later reading back a sector of unknown bits. In

this subsection, we propose a new “training” strategy called self-training that eliminates

the need for any a priori training. Instead, all parameters can be estimated from scratch,

independently from one sector to the next, through an iterative process that iterates

between a soft-output channel detector and a channel model estimator. No knowledge of

any training bits is required. Importantly, unlike the traditionally trained case (in which a

different set of bits on a different part of the disk are used to estimate the parameters), the

parameters estimated via self-training are based on the same bits, written on the same part

of the disk, as those being detected.

The self-training scheme is shown in Figure 2.3. Similar to the expectation

maximization (EM) algorithm, the rough idea is to iterate between a PDNP detector (that

assumes that the model it receives is accurate) and a model estimator (that assumes the

LLR signs are reliable). The hope is that, as iterations progress, the LLR’s will grow more

reliable, which will in turn result in a better estimate of the model, which will in turn lead

to even more reliable LLR’s, and so on. As shown in the figure, the readback waveform is

first equalized and then fed to a BCJR non-PDNP detector, which produces LLR’s for the

bits. The training proceeds in the traditional way, with two exceptions: the signs of the

LLR’s are used in place of training bits, and only when all of the LLR’s in a block exceed

a threshold in magnitude is the data used at all, for in this case the bit decisions are

expected to be reliable. The estimated model parameters are then fed back to the detector

for the next iteration of the PDNP detector. This process can be iterated several times if
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Figure 2.3: The self-training scheme.

necessary.

2.5 Quantitative Results

2.5.1 Ehime Waveforms

We test our algorithm on simulated waveforms provided by Ehime University, which were

produced by realistic head fields and a Voronoi medium with Stoner-Wohlfarth switching

[30]. Five consecutive tracks are written in a shingled fashion, as shown in Figure 2.4. In

each track, there are 40950 independent pseudorandom bits sequence and 128 bits preamble

and postamble, respectively. A total of 900 readback waveforms are produced with a fixed

bit length of 7.3 nm, track pitches from 16.1 nm to 26.1 nm (2 nm increment), reader widths

from 70% to 145% (15% increment) of a nominal reader width and 25 reader positions

(spanning from the second to fourth tracks at one-eighth of a track increment). Readback

waveforms from different tracks are perfectly synchronized and no modulation coding or

error-control coding is applied.
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Figure 2.4: Geometry of the Ehime waveform model, showing the five-shingled tracks and
25 possible reader locations [30].

2.5.2 PDNP Parameters via Training

In this simulation, no electronic noise is added. We set the number of equalizer coefficients

Nc = 11 and the monic target memory µ = 1 for the following simulations. We train

parameters with samples from track two and three and then test 2D-PDNP on track three

and four.

We first compare the performance of multitrack Viterbi detector (without any noise

prediction) to the proposed multitrack PDNP Viterbi detector. Without noise prediction, the

trellis has only four states and its branch metric is the squared Euclidean distance between

the equalizer output and the target output (when fed by the bits that correspond to the

branch). We test four-bit PDNP (I = 1, J = 0) and six-bit PDNP (I = J = 1), and there

are only two prediction matrices P0 and P1 (Np = 1), so that the number of states with

multitrack PDNP is 16 and 64, respectively.

The results are shown in Figure 2.5, where we plot BER (averaged over the two tracks)

versus track pitch. Every parameter (reader width, reader location, equalizer, and target) is

separately optimized for each point in the curve so as to minimize the resulting BER. The

upper blue curve shows the performance of multitrack Viterbi without noise prediction,

while the lower two curves show performance with four-bit and six-bit PDNP.
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13%

Figure 2.5: BER performance of multitrack Viterbi, multitrack PDNP (4-bit) and
multitrack PDNP (6-bit).

The optimal reader width with multitrack PDNP is 85% for each reader at track pitch

26.1nm, 70% at track pitch 20.1, 22.1 nm and 24.1 nm. The optimal reader width without

multitrack PDNP is 85% for reader one and 100% for reader two at track pitch 26.1 nm,

100% for reader one and 85% for reader two at track pitch 24.1 nm, 85% for reader one

and 70% for reader two at track pitch 22.1 nm, and 70% for each reader at the track pitch

20.1 nm. The optimal reader positions are centered over the tracks of interest for all curves.

At the BER of 0.9%, the benefit of multitrack PDNP is seen to lead to a roughly 13% gain
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Figure 2.6: The bathtub curves with multitrack Viterbi and multitrack PDNP (6-bit).

in areal density. We did not consider pattern lengths longer than six bits because that was

not sufficient training data for each pattern. Generally speaking, multitrack PDNP requires

narrower read width and centered position to reach its optimal BER.

However, readers with narrower width are more challenging to manufacture and the

actuator arm cannot guarantee the reader is always centered on a track. We next investigate

the influence of reader positions on multitrack Viterbi detection and the proposed multitrack

PDNP Viterbi detector. The waveforms are from the dataset with track pitch of 26.1 nm,

130% reader width and normalized reader positions from 0/8 to 8/8 in steps of one-eighth

of a track pitch. The distance between the two readers is fixed to the half of the track

pitch. The results are shown in Figure 2.6, where we plot the BER versus the reader array

center. The upper blue “bathtub” curve shows the BER of the multitrack Viterbi detection,

while the yellow bottom curve shows the BER of the proposed multitrack PDNP Viterbi
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algorithm with six-bit patterns (I = J = 1). The plot clearly shows the proposed PDNP

Viterbi algorithm has a wider bathtub bottom, which means it is less sensitive to reader

positions than multitrack Viterbi detection.

2.5.3 PDNP Parameters via Self-Training

We test the self-training algorithm using the same database of quasi-micromagnetic

simulated waveforms from Ehime University. Independent white Gaussian electronic

noise with zero mean and standard deviation σe = 0.04 was added to each twice

oversampled readback sample. The architecture in Figure 2.3 is tested with an MMSE

equalizer with 22 fractionally spaced coefficients and the central track with track pitch

24.1 nm is detected. For the first pass, the PDNP parameters are initialized to “zero” so

that straight BCJR is executed. We present results for 1D-PDNP with a pattern length of

three bits and two predictor coefficients. Figure 2.7 shows the BER after the second

iteration of the PDNP BCJR versus threshold used in the second model estimation. The

optimal threshold is a trade-off between the reliable decisions enabled by a large threshold

and the quantity of data enabled by a small threshold.

A plot of BER versus iteration number is shown in Figure 2.8 with the track pitch of

26.1 nm and the threshold of six. Interestingly, here we see that the self-training algorithm

outperforms a genie-aided training (which somehow has perfect knowledge of the bits for

model estimation purposes only) at the fourth iteration. These results indicate that the

genie-aided training that minimizes the MMSE does not necessarily minimize the BER.

The fact that MMSE parameters are not optimal with respect to minimizing BER inspires

us to seek better parameters that we will explore in the next chapter. We also test the BER

versus track pitch after iterations and optimal reader width and position as well as threshold.

Further experiment results show that self-training algorithm gives the same performance as

genie-aided training, which is a 4% increase in areal density over a non-PDNP Viterbi

detector.
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Figure 2.7: BER versus threshold at track pitch 24.1 nm in the second model estimation.

This experiment can also be extended and applied to multitrack detection. The equalizer

is replaced with a MIMO equalizer and the 1D-PDNP BCJR detector is extended to the

multitrack BCJR detector with 2D-PDNP presented in Section. 2.3. The model estimation

follows the training process depicted in Section. 2.4, but the training bits are replaced with

the sign of LLR’s above a threshold.

2.6 Summary

In this chapter, we propose a multitrack detection framework that can detect multiple

tracks with multiple readers. Under this framework, we propose the multitrack detector

with 2D-PDNP, which solves the joint maximum-likelihood sequence detection problem

for multitrack detection when the noise is pattern-dependent AR and Gaussian. In contrast
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Figure 2.8: BER evolution of self-training algorithm at track pitch 26.1 nm and threshold
6.

to prior work, our pattern-dependent noise predictor is matrix-valued, so that it

implements both crosstrack and downtrack noise prediction, taking into account

transitions occurring in both downtrack and crosstrack directions. We propose two

methods for training the parameters of PDNP, one based on a minimum MSE criterion and

the other based on a self-training scheme. We also apply these methods to a set of

quasi-micromagnetic simulated channel waveforms. Numerical results show 13% areal

density gain is achieved by multitrack Viterbi with PDNP over multitrack Viterbi without

PDNP.

From the next chapter forward, we will keep using the multitrack detection structure

proposed in this chapter. In Chapter 3, we optimize the PDNP parameters aiming at

minimizing the BER after detection. Later in Chapter 4, we bring decoding into the
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picture and optimize the PDNP parameters to minimize the frame-error rate.
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CHAPTER 3

MINIMUM-BIT-ERROR RATE TUNING

3.1 Introduction

Traditionally, the PDNP parameters are chosen to minimize some form of MMSE

criterion like what we did in Chapter 2, due to its quadratic form which ensures a

closed-form solution and a single local minimum. However, the MMSE parameters do not

necessarily minimize the BER as we demonstrated in Section 2.4.3, which is the more

relevant performance metric from the perspective of the end user interested in maximizing

areal density.

Furthermore, moving from 1D to 2D PDNP detection results in an explosion in the

number of detector parameters, primarily because the number of patterns grows

exponentially in the number of tracks being detected, and further because some of the

parameters (like equalizer coefficients and predictor coefficients) become matrix-valued

instead of scalars. Therefore, a brute-force search for the parameters becomes impossible.

A closed-form solution for the MMSE parameters requires full knowledge of the noise

second-order statistics for each pattern, which can be impractical for a multitrack detector,

where the number of patterns is large and may exceed the amount of training data

available. The job of this chapter is to examine the question of how to choose the

parameters of a PDNP detector and an equalizer in order to minimize the BER. The key

step is to find a reasonable cost function since the BER of a sequence detector cannot be

minimized directly. The solution also needs to fit in the proposed detection structure.

In this chapter, we develop the adaptive minimum-frame-error rate algorithm in

Section 3.2, in the context of single-track detection, extend it to multitrack detection, and

explore its properties in Section 3.3. In Section 3.4, we evaluate the performance of the
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proposed algorithm using simulated waveforms and explore the optimization for

parameter space. In Section 3.5, we summarize this chapter.

3.2 The Cost Function and AMBER Algorithm

We consider the problem of adapting the parameters of a typical magnetic recording read

channel, such as those illustrated in Figure 3.1 [61]. For example, consider the 1D scenario

depicted in Figure 3.1(a), where the readback waveform from a single reader is sampled,

equalized, and fed to a 1D trellis-based detector, which ultimately results in a sequence

of decisions âk about the written bits ak. In this case, the parameters to be adapted are

the coefficients of the equalizer along with any parameters within the detector. As another

example, we consider the multitrack scenario depicted in Figure 3.1(b), where multiple

readback waveforms are sampled and equalized by a MIMO equalizer before being fed

to a trellis-based multitrack detector, which produces decisions âk about the bits written

on the multiple tracks. Throughout this chapter we will use Θ to denote the set of read

channel parameters that are to be optimized. In the case of a PDNP detector, Θ includes the

equalizer coefficients, the pattern-dependent signal levels, the pattern-dependent predictor

coefficients, and the pattern-dependent residual variances.

Before we propose the algorithm, we will first introduce a closely related performance

metric to BER, known as the path metric margin. Roughly speaking, the path metric margin

at time k measures the gap between the metric of a competing path and that of the correct

path. More precisely, assume that the written bits a0 through ak are known, as would arise

during a training phase. In this case, if θk denotes the state at time k of a Viterbi detector,

this implies that the correct path with state sequence {θ0, ... θk} leading to the correct state

θk is known. We define the competing path at time k as the “best of the rest” of the paths that

lead to state θk at time k; in particular, when the Viterbi algorithm aims to find the path with

minimum metric, the competing path at time k is the partial path that leads to to the correct

state at time k, excluding the correct path, with minimal metric. The competing path can
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Figure 3.1: Illustration of the parameters to be optimized, for two scenarios: (a) for single-
track detection using a single reader; (b) for multitrack detection using multiple readers.

be traced back from θk until it merges with the correct path, defining the competing path

sequence {θ̂k−`k , ... θ̂k}, where `k denotes the length of the separation between the correct

and competing paths. Because the competing path starts and ends on the correct path, we

have θ̂k−`k = θk−`k and θ̂k = θk. The path metric margin is then simply the difference

between the competing and correct path metrics:

Mk =

`k−1∑
i=0

γ(θ̂k−i, θ̂k−i−1; Θ)−
`k−1∑
i=0

γ(θk−i, θk−i−1; Θ), (3.1)

where γ(θk, θk−1) is the branch metric from state θk−1 to θk.

A large margin implies that the correct path is easily distinguishable from the incorrect

path, while a small positive margin implies that the correct path is barely preferred over

the incorrect path. A negative margin (when Mk < 0) implies that a Viterbi detector that

ignores the training information would make bit errors, either at or near time k. Note that

one-bit error can result in multiple negative margins. Based on this observation one might

be tempted to choose the parameters Θ to minimize the probability that Mk is negative, or
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(in terms of the unit-step function) so as to minimize the following cost function:

J(Θ) = E(u(−Mk)), (3.2)

where E( · ) is the expectation and u( · ) is the unit step function. However, this function

is not differentiable and is difficult to minimize directly. Therefore, we instead propose to

choose Θ so as to minimize the following cost function:

Jτ (Θ) = E((τ −Mk)u(τ −Mk)), (3.3)

where τ is a small positive threshold. Not only is Jτ (Θ) differentiable, but under certain

circumstances (explained in the next section) minimizing Jτ (Θ) is equivalent to

minimizing J(Θ).

Applying the stochastic gradient algorithm to Jτ (Θ) leads to the AMBER algorithm

for adapting the parameters Θ:

Θk+1 = Θk + λu(τ −Mk)∇ΘMk, (3.4)

where λ is the step size. The unit step factor in (3.4) acts as an indicator function: it

ensures that the parameters only update when Mk < τ . In other words, the parameters

update only when the margin is dangerously small; otherwise, the parameters do not

change. This feature is in stark contrast to MMSE algorithms like LMS and recursive least

squares (RLS), which would continually update the parameters.

The AMBER algorithm of (3.4) is general and can be applied to a wide range of detector

architectures, in any specific application one must first find an expression for the path metric

margin in terms of the detector parameters, so that the gradient in (3.4) can be computed

explicitly. We close this section with three specific examples.
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3.2.1 AMBER for Viterbi without PDNP

We first consider a 2µ-state Viterbi detector without PDNP, where µ is the channel memory.

In this case the only parameters to optimize are the equalizer coefficients and the signal

levels associated with each state transition. The signal levels can be viewed as the entries

of a look-up table, one signal level for each state transition. Each state transition can be

represented by a vector or pattern a of µ + 1 bits (containing the current input bit as well

as the µ previous input bits). We use the notation s(a) to denote the signal level associated

with the bit pattern a. In this case the path metric margin of (3.1) reduces to:

Mk =

`k−1∑
i=0

(yk−i − s(âk−i))2 − (yk−i − s(ak−i))2

=

`k−1∑
i=0

2cT rk−i(s(ak−i)− s(âk−i)) + s2(âk−i)− s2(ak−i), (3.5)

where ak = [ak, ..., ak−µ]T is a vector of bits for the correct path, where âk are the

corresponding bits for the competing path, and where c is the vector of equalizer

coefficients and rk is the vector of relevant waveform samples at time k. Differentiating

Mk with respect to c and s and substituting into (3.4) leads to explicit AMBER update

equations for c and s( · ):

ck+1 = ck + λu(τ −Mk)
l−1∑
i=0

(s(ak−i)− s(âk−i))rk−i,

for each i ∈ {0, 1, ..., l − 1}

s(ak−i)k+1 = s(ak−i)k + λu(τ −Mk)(c
T rk−i − s(ak−i))

s(âk−i)k+1 = s(âk−i)k + λu(τ −Mk)(−cT rk−i + s(âk−i)).

(3.6)

The update equation derived in this way for the equalizer is similar to the NMBER equalizer

that was proposed in [43] with different choices of the step size and threshold.

Since the sign of Mk is invariant to scaling, there are infinitely many combinations of

c and s that achieve the same BER. One way to ensure convergence and avoid numerical
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finite-precision effects is to normalize the equalizer vector after each update so that it has

the same norm.

3.2.2 AMBER for 1D-PDNP

As a second example, consider the AMBER algorithm applied to a single-track PDNP

detector, so that the parameters Θ to be optimized are the equalizer c, the signal levels

s(a), the residual prediction-error variances v(a), and the Np × 1 predictor coefficient

vectors p(a) associated with each bit pattern a. The functional notation for these

parameters will simplify our presentation, but in practice these parameters can be

implemented using one large lookup table, where each row corresponds to a different bit

pattern a, and the first column represents the corresponding signal level, the second

column represents the corresponding noise variance, and the remaining columns represent

the prediction coefficients. The branch metric for an edge (branch) ek = (θk−1, θk)

connecting state θk−1 at time k − 1 to state θk at time k for the PDNP detector, given the

equalizer output vector y, can be expressed as [21]

γk(ek) = ln v(ek) +
([1, −pT (ek)](y

k−Np
k − s(ek)))

2

v(ek)
, (3.7)

where y
k−Np
k = [yk, yk−1, ..., yk−Np ]

T and yk = cT [rk, rk−1, ..., rk−Nc ]
T , where s(ek) =

[s(ak), ..., s(ak−Np)]
T is the signal vector and the pattern {ak, ..., ak−Np} is specified by the

edge ek.

If we plug the PDNP path metric (3.7) into (3.1), we get the following expression for

the path metric margin:

Mk =
l−1∑
i=0

{ln v(âk−i) +
1

v(âk−i)
([1, −pT (âk−i)](y

k−i−Np
k−i − s(â

k−i−Np
k−i )))2

− ln v(ak−i)−
1

v(ak−i)
([1, −pT (ak−i)](y

k−i−Np
k−i − s(a

k−i−Np
k−i )))2}, (3.8)
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where p(a) and v(a) represent the coefficients of noise predictors and variance for pattern

a. Substituting (3.8) into (3.4) leads to the following AMBER update equations for c, s( · ),

p( · ) and v( · ):

ck+1 = ck + λu(τ −Mk)
l−1∑
i=0

{ 1

v(âk−i)
p′(âk−i)(y

k−i−Np
k−i − s(â

k−i−Np
k−i ))R′k−ip

′(âk−i)
T

− 1

v(ak−i)
p′(ak−i)(y

k−i−Np
k−i − s(a

k−i−Np
k−i ))R′k−ip

′(ak−i)
T}

for each i ∈ {0, 1, ..., l − 1}

s(a
k−i−Np
k−i )k+1 = s(a

k−i−Np
k−i )k + λu(τ −Mk)

p′(ak−i)

v(ak−i)
(y

k−i−Np
k−i − s(a

k−i−Np
k−i ))p′(ak−i)

T

s(â
k−i−Np
k−i )k+1 = s(â

k−i−Np
k−i )k − λu(τ −Mk)

p′(âk−i)

v(âk−i)
(y

k−i−Np
k−i − s(â

k−i−Np
k−i ))p′(âk−i)

T

p(ak−i)k+1 = p(ak−i)k + λu(τ −Mk)
p′(ak−i)

v(ak−i)
(y

k−i−Np
k−i

− s(a
k−i−Np
k−i ))(y

k−i−Np
k−i−1 − s(a

k−i−Np
k−i−1 ))

p(âk−i)k+1 = p(âk−i)k − λu(τ −Mk)
p′(âk−i)

v(âk−i)
(y

k−i−Np
k−i

− s(â
k−i−Np
k−i ))(y

k−i−Np
k−i−1 − s(â

k−i−Np
k−i−1 ))

v(ak−i)k+1 = v(ak−i)k − λu(τ −Mk)(
1

v(ak−i)
−

(p′(ak−i)(y
k−i−Np
k−i − s(a

k−i−Np
k−i )))2

v2(ak−i)
)

v(âk−i)k+1 = v(âk−i)k + λu(τ −Mk)(
1

v(âk−i)
−

(p′(âk−i)(y
k−i−Np
k−i − s(â

k−i−Np
k−i )))2

v2(âk−i)
),

(3.9)

where p′(a) = [1,−pT (a)] and R′k−i = [rk−i, ..., rk−i−Np ]. The pseudocode of a PDNP

Viterbi detector whose parameters are adapted according to the proposed AMBER

algorithm is shown in Algorithm 2. Code lines 4 to 9 are the conventional Viterbi detector

with PDNP branch metrics, while lines 10 to 19 implement the AMBER algorithm, which

adapts the parameters of the PDNP branch metrics whenever the margin falls below the

threshold.
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3.2.3 AMBER for 2D-PDNP

Here we show how the AMBER algorithm can be applied to a multitrack detector that

uses 2D-PDNP, where two readers spanning a pair of neighboring tracks are used to jointly

detect the bits on the two tracks. Synchronous samples of the two readback waveforms

are filtered by a two-input two-output equalizer with Nc coefficients (each a 2× 2 matrix),

represented by a 2×2Nc matrix C, resulting in the vector output yk at time k. The equalizer

outputs are then passed to a 2D-PDNP multitrack detector. The 2D bit pattern A is a matrix

of bits with two rows, one for each track. Associated with each 2D bit pattern is a signal

level vector s, a standard deviation diagonal matrix Λ, and a set of matrix-valued predictor

Algorithm 2 A PDNP Viterbi detector with parameters adapted by AMBER

Input: Equalizer outputs {yk}; initial values s0, p0 and v0 for each pattern; step size λ;
threshold τ ; training bits {a1, a2, ..., aL}; termination conditions.

Output: AMBER PDNP parameters s, p and v for each pattern.
1: repeat
2: Φ0(0) = 0, Φ0(p) =∞ ∀p 6= 0
3: for k = 0 to L do
4: for q = 0 to Q− 1 do
5: for p ∈ predecessors(q) do
6: p∗ = argminp{Φk(p) + γk(p, q)}
7: Φk+1(q) = Φk(p

∗) + γk(p
∗, q)

8: πk+1(q) = p∗

9: end for
10: if q is the correct state at time k then
11: Calculate Mk using (3.8)
12: if Mk < τ then
13: Trace back to get the correct bit subsequence {ak, ..., ak−l+1}
14: Trace back to get the competing bit subsequence {âk, ..., âk−l+1}
15: Get the separation length l
16: λH = λwH(âk−l+1

k − ak−l+1
k )

17: Update sk+1, pk+1 and vk+1 for involved patterns using (3.9)
18: end if
19: end if
20: end for
21: end for
22: until Termination conditions are satisfied
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coefficients {P0,P1, ...,PNp−1}. The number of parameters is 2b(5+4(Np−1))+4Nc (for

each of the 2b patterns there are two signal levels, two residual variances, and 4(Np − 1) +

1 predictor coefficients), a number which can easily reach into the hundreds, depending

on the number of bits b in each 2D pattern, the number Np of matrix-valued predictor

coefficients, and the number Nc of matrix-valued equalizer coefficients.

The branch metric for an edge e in the 2D-PDNP Viterbi detector is shown in (2.10).

By plugging (2.10) into (3.1) and applying the AMBER algorithm, we arrive at the update

equations for C, Λ, s and Pi.

3.3 The Exponential Assumption and Hyper-Parameter Optimization

The threshold parameter τ of the AMBER algorithm is not arbitrary. Instead, it must be

chosen carefully to ensure good performance and avoid trivial solutions with bad

performance. In this section, we explore the role of τ and propose a strategy for its

optimization.

3.3.1 Exponential Assumption

The basis for our analysis is the observation that the tail of the PDF for the path margin Mk

often appears to have an exponential shape. For example, consider the upper-left inset of

Figure 3.2, which shows an experimentally measured PDF for the margin Mk in a single-

track PDNP Viterbi detector operating on Ehime waveforms with a track pitch of 22.1 nm

and a 70% centered reader. The bottom of Figure 3.2 shows a close fit between the tail of

the PDF and an exponential distribution (the red dashed curve).

Because we observed similar good fits to an exponential distribution over a wide range

of channel conditions and detector parameters, we were encouraged to adopt the

exponential model for the PDF tail described below, to facilitate analysis. It should be

noted that the tail is not strictly speaking exponentially distributed, and that ultimately the

value of the AMBER algorithm rests not on the exponential assumption that facilitates
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Figure 3.2: Margin PDF and its tail fit to an exponential function.

some of its analysis but on the good experimental results of the algorithm itself (see

Section 3.4).

When the tail of the probability density function for Mk follows an exponential

distribution:

f(m) = a(Θ)eb(Θ)m, m < τ, (3.10)

where a and b are parameters that depend on Θ, then the cost functions (3.2) and (3.3)

reduce to:

J(Θ) =
a(Θ)

b(Θ)
, (3.11)

Jτ (Θ) =
a(Θ)

b2(Θ)
eb(Θ)τ . (3.12)
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Straightforward differentiation of (3.11) and (3.12) results in:

∇ΘJ(Θ) =
1

b2(Θ)
(∇a(Θ)b(Θ)− a(Θ)∇b(Θ)), (3.13)

∇ΘJτ (Θ) =
eb(Θ)τ

b3(Θ)
(∇a(Θ)b(Θ)− (2− b(Θ)τ)a(Θ)∇b(Θ)). (3.14)

Let Θ∗ denote the set of parameters that minimizes J(Θ), so that substituting Θ∗ into

(3.13) yields ∇ΘJ(Θ∗) = 0. Let τ∗ = 1/b(Θ∗). Substituting τ = τ∗ into (3.14) reveals

that the same Θ∗ that minimizes J(Θ) also minimizes Jτ∗(Θ). The implication of this

observation is that, when the margin tail is exponential, and when the AMBER threshold is

chosen carefully (according to τ = 1/b(Θ∗)), the cost function J(Θ) can be minimized by

the AMBER algorithm.

3.3.2 Threshold

As stated there is a circular flaw: the optimal value for τ depends on the optimal value Θ∗

for the parameter set. Clearly there would be no need for AMBER or its threshold if Θ∗

were already known. To help break this cycle, we make use of the following fixed-point

relationship:

Corollary 1. Let Θ(τ) denote the parameter set that minimizes Jτ (Θ). If τ satisfies the

fixed-point relationship τ = 1
b(Θ(τ))

, then τ = τ∗ and Θ(τ) = Θ∗.

Inspired by this corollary, we propose a fixed-point iterative strategy for automatically

finding the best threshold. Starting with an arbitrary threshold, we run the AMBER

algorithm until it converges, fit the margin tail that results to an exponential shape with

parameter b, and then set the new threshold to 1/b. This process is repeated until the

threshold converges. The pseudocode of the proposed iterative algorithm is shown in

Algorithm 3. The convergence condition of the algorithm is described in Appendix A.

As an illustration of how Algorithm 3 works, consider the example of a conventional

ten-coefficient equalizer followed by a single-track two-state Viterbi detector without
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PDNP, so that the parameter set Θ consists of ten equalizer coefficients and four signal

levels. To ensure that the optimal Θ is unique, we constrain both the equalizer energy and

the signal level energy. The input to the detector is the Ehime waveforms described in

Section 2.5.1, based on a 70% centered reader and a track pitch of 24.1 nm.

We sweep the threshold τ from 0 to 3, and for each value we use the AMBER

algorithm to find the Θ(τ) that minimizes Jτ (Θ). We then estimate the path metric

margin PDF and fit its tail (for Mk < τ ) to an exponential shape, resulting in a b parameter

we denote b(Θ(τ)). In Figure 3.3 we plot 1/b(Θ(τ)) versus τ in red (right-hand scale).

The goal of the iterative algorithm is to find the value of τ where the fixed-point

relationship is satisfied, namely where the dashed line (representing τ ) intersects the red

curve (representing 1/b(Θ(τ))). Starting with an arbitrary initial value of τ0 = 2, the

algorithm 3 produces τ1 = 1.1, τ2 = 0.75, and τ3 = 0.75, converging quickly after only

three iterations. The blue trajectory graphically illustrates how the algorithm bounces

between the red and dashed curves until it converges to their intersection. Finally, overlaid

on the same graph, we also plot J(Θ(τ)) from (3.2) as a function of τ in black (left scale).

Observe that the value of τ that minimizes this cost function coincides with the value of τ

that satisfies the fixed-point relationship.

Algorithm 3 Iterative algorithm to ensure optimal τ

Input: Initial threshold τ0, stop criterion ε
Output: Optimal τ and Θ.

1: i = 0
2: repeat
3: Run AMBER to get Θ(τi) that minimizes Jτi(Θ)
4: Fit steady-state margin tail PDF (for m < τ ) to an exponential distribution, and

estimate its b(Θ(τi))
5: Set τi+1 = 1

b(Θ(τi))

6: i = i+ 1
7: until |τi − τi−1| < ε
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Figure 3.3: The fixed-point relationship between τ and 1/b(Θ(τ)). The simulation is run
in training mode.

3.3.3 Hamming-Weighted Step Size

As written, when the margin tail is exponential and the threshold τ is optimized, the

AMBER algorithm of (3.4) minimizes J(Θ) = P (Mk < 0). If each instance of the error

event Mk < 0 led to a single bit error, then this would be equivalent to minimizing BER.

However, because some error events cause more bit errors than others, the AMBER

algorithm as written does not minimize BER. We can improve the BER performance of

the AMBER algorithm by a simple modification of the step size λ in (3.4), namely, by

introducing an adaptive Hamming-weighted step size λ = λ0wH , where λ0 is a fixed

nominal step size, and wH is shorthand for the number of message bits that differ between

the correct subpath {θk−`k , ... θk} and the competing subpath {θ̂k−`k , ... θ̂k}. The

Hamming-weight factor ensures that a large burst of bit errors will cause a bigger change
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in parameters than a small burst of errors.

To illustrate the benefit of the Hamming weight factor, consider again the example from

the previous section (a ten-coefficient equalizer followed by a two-state Viterbi detector

without PDNP, based on a 70% centered reader and a track pitch of 24.1 nm). Let us fix the

equalizer to be MMSE, and further constrain the signal levels to be symmetric: either ±s1

when two consecutive bits are the same, or ±s2 when two consecutive bits are different.

There are thus only two parameters to optimize: Θ = {s1, s2}.

In Figure 3.4 we show a contour plot of BER as a function of the parameters s1 and s2.

Overlaid on the same graph is a pair of trajectories for the AMBER algorithm, both starting

from the same arbitrary initial condition (−1.1, 0.9): The red curve has no Hamming-

weight factor, while the blue curve includes the Hamming-weight factor. In both cases the

initial λ0 is 10−4, and it decays with a half-life of 25. After convergence the BER with the

Hamming factor is 0.0130, while the BER without the Hamming factor is 0.0133. Also

shown in the figure is the MBER point, found by exhaustive search, which achieves BER

= 0.0120, along with the MMSE point, which achieves BER = 0.0164. This example

illustrates not only the benefit of the Hamming weight factor in the step size, but also the

general suboptimality of MMSE with respect to BER, and further the effectiveness of the

AMBER algorithm to seek out the minimum of the BER surface.

3.4 Quantitative Results

We test our algorithm on Ehime waveforms. To better demonstrate the performance of the

AMBER algorithm, no electronic noise is added.

3.4.1 Performance of AMBER PDNP Detection

We use the second track for training parameters, and the third (middle) track to detect in

the following simulation. We now present numerical results for the AMBER algorithm

presented in Section 3.2, which applies to the case of a fixed MMSE equalizer followed by
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Figure 3.4: BER contour with trajectories of AMBER parameters w/o Hamming-weight
factor.

a PDNP Viterbi detector. The parameters to be adapted are the parameters of the PDNP

detector, namely the pattern-dependent signal levels, noise variances, and predictor

coefficients. We consider two-bit patterns, so that the number of patterns is four, and a

single predictor coefficient for each pattern. The total number of parameters being adapted

is thus twelve: four signal levels, four variances, and four predictor coefficients.

To start with, we investigate the convergence properties by plotting BER versus

iterations in Figure 3.5. The AMBER algorithm is tested on waveforms of track pitch 24.1

nm with a 70% centered reader. A decaying step size 10−4 with a half-life of 100

iterations is employed, and the parameters are initialized to those of a non-PDNP Viterbi

detector. We train the parameters on track two by the AMBER algorithm and plot the

training BER curve in blue versus iterations. The red curve is the testing BER achieved by

detecting track three with the training parameters after each iteration. The figure shows
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Figure 3.5: Learning and testing curves for the AMBER PDNP algorithm.

that the AMBER algorithm converges fast and the BER gets close to the MBER line found

via an exhaustive search on track three, and becomes stable after 60 iterations, achieving a

20% reduction in BER compared to MMSE line plotted in black. We also plot the

parameter evolution in Figure 3.6. The signal levels (blue dashed curves), variances (red

solid curves) and predictor coefficients (black dot curves) converge fast.

3.4.2 Performance of AMBER 2D-PDNP Detection

In this simulation, we consider a scenario where two readers detect two tracks. We use

tracks two and three to train the parameters, and we use the resulting parameters to detect

the bits written on track three and four, with eleven matrix-valued equalizer coefficients.

The detector has sixteen 2D patterns, and there are only two prediction matrices P0 and

P1 (Np = 1), so that the number of states with 2D-PDNP is sixteen. The total number of
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Figure 3.6: Parameter evolution for AMBER PDNP.

parameters is 188. We do not consider longer pattern lengths because there are not sufficient

training data for each pattern. MMSE parameters and non-PDNP Viterbi parameters can be

used as initials for the AMBER algorithm. The residual variances for non-PDNP Viterbi

are the same for each pattern and can be arbitrarily chosen since they will not affect the

BER. Partly because of this, we find non-PDNP Viterbi initials usually converge to a lower

BER.

We investigate the convergence properties of the AMBER algorithm by plotting BER

(averaged over the two tracks) versus iterations. In this experiment, there are two 130%

readers one-eighth track offset inside the two tracks of interest, and the track pitch is 26.1

nm. The step size is initialized to 10−5 and decreases exponentially with a half-life of 300

iterations, and the threshold is τ = 1. Figure 3.7 shows the training curve for the AMBER

algorithm (in blue), where we see its convergence after about 450 iterations. The detection
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Figure 3.7: Learning and testing curves for the AMBER 2D-PDNP algorithm.

curve converges 50 iterations faster. Compared with 2D MMSE parameters, 2D AMBER

parameters achieve a 17% decrease in BER.

3.4.3 Optimize the Parameter Space

The number of parameters of 2D-PDNP grows exponentially as the pattern bits increase.

While in principle we could adapt all of them, it may not be necessary or desirable. We can

optimize the parameters space by removing the redundant and negligible parameters.

We divide all parameters to be adapted into three categories: equalizer coefficients,

signal levels and PDNP parameters (including residual variances and predictor

coefficients). We can apply the AMBER algorithm to part of the parameters and keep the

rest MMSE parameters. Let “1” and “0” represent turning on and off the AMBER

algorithm. We use three binary digits to represent the described categories. For example,
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Table 3.1: BER and number of parameters adapted for all parameter schemes.

BER
(×10−3)

#Parameters
to be adapted

111 7.00 188
011 7.09 144
100 7.35 44
110 7.37 76
101 7.39 156
001 7.94 112
010 8.24 32
000 8.63 0

“101” means the scheme of AMBER equalizer coefficients, MMSE signal levels and

AMBER PDNP parameters.

We continue to use the same waveform settings in Section 3.4.2. We test and list the

BER and the number of parameters adapted for each scheme in Table 3.1 in ascending order

by BER. According to the BER, we rank all schemes into three tiers. Tier 1: “111” and

“011”. Tier 2: “100”, “110”, and “101”. Tier 3: “001”, “010”, and “000”. “111” and “011”

have comparable performance but “011” needs fewer parameters. “100” outperforms the

others among tier 2 because of fewer parameters. If a system requires less complexity and

a relatively good BER, then “100” is a perfect choice. We do not recommend the schemes

in tier 3 in any cases.

We can draw the following conclusions from this experiment. It is redundant to adapt

all parameters. Fixing MMSE equalizer coefficients and adapting the remaining parameters

can reach the optimal BER region of the parameter space, compared with the performance

of “111” and “011”. However, according to the performance of “011” and “100”, only

adapting the linear equalizer coefficients has limited ability to reduce BER when signal

levels and PDNP parameters are fixed. We also notice that equalizer coefficients may

“fight” with the others. The roles of the equalizer and predictors have significant overlap,

since both yield an overall filtering operation on the ADC samples, and we find that when

both are adapted they may interfere with each other and perform worse than only one is
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Figure 3.8: BER performance of all schemes.

adapted. Signal levels and PDNP parameters need to be adapted together to reduce the

BER efficiently according to the performance of “011”, “001”, “010” and “111”, “101”,

“110”. However, the BER ordering may vary under different waveform settings.

We also test all schemes at track pitches of 22.1 nm, 24.1 nm and 26.1 nm with 70%,

85% and 100% reader widths, respectively in Figure 3.8. One reader is placed at the

position of -7/8 and the other is placed at the position of -1/8 as labeled in Figure 2.4. As

we can see, “011” and “111” have a similar performance better than others. “100” shows a

similar BER with “101 and “110” at 26.1 nm but better than them at 22.1 nm and 24.1 nm.

At the BER of 10−2, “111” AMFER parameters achieve 5% areal density gain over “000”

MMSE parameters.

In Figure 3.9, we explore the performance and complexity trade-off. The x-axis shows

the complexity measured by the number of parameters while the y-axis shows the grains

per bit required at the BER of 10−2. A better scheme needs a narrower track pitch given
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a fixed BER, in turn, leading to a higher areal density which can be represented as grains

per bit. From the figure, “111” is the best performance-driven scheme, while “100” is a

performance-complexity balanced scheme.

3.5 Summary

In this chapter, we present an adaptive algorithm for tuning the parameters of a PDNP

detector so as to minimize BER. The AMBER algorithm updates the parameters whenever

the path metric margin between the competing path and the correct path in the trellis-based

detector is smaller than a threshold; the parameters are then updated so as to minimize the

proposed cost function. This algorithm applies for all the trellis-based detectors and we

derive the update equations for non-PDNP Viterbi, 1D-PDNP and 2D-PDNP detectors. We
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also provide a fixed-point iterative strategy for optimizing the AMBER threshold. To deal

with the number of parameters exploding problem, we propose the method to adapt part

of parameters and keep the rest MMSE parameters. We also explore the performance and

complexity trade-off for all the schemes.

Results on simulated waveforms demonstrate that the AMBER 2D-PDNP parameters

measurably outperform conventional MMSE parameters. We expect further gains in

performance by increasing the length of the training sequences, pattern lengths, and the

number of prediction coefficients.
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CHAPTER 4

MINIMUM-FRAME-ERROR TUNING FOR TURBO DETECTION

4.1 Introduction

In Chapter 2, the strategy for choosing the read channel parameters is based on the MMSE

criterion. In Chapter 3, we provide the AMBER algorithm to optimize the parameters

aiming to minimize BER. The BER after detection, while more relevant than MSE, is still

not as relevant to the end user as the frame-error rate (FER) after error-control decoding,

because the FER is what ultimately determines areal density. In a state-of-the-art read

channel [62], a soft-output detector and a soft-input error-control decoder work iteratively

in a turbo fashion with soft information transferring between them. The soft-output detector

is typically either the BCJR or SOVA [63].

This chapter aims to define a criterion that quantifies the “quality” of the soft output

and devise an algorithm to choose parameters that can maximize the soft output “quality”

of the detectors for both single-track and multitrack systems.

This chapter is organized as follows. In Section 4.2, we review EXIT charts. In

Section 4.3, we propose the minimum-FER tuning strategy and the adaptive

minimum-frame-error rate algorithm. In Section 4.4, we evaluate the performance of the

proposed algorithm, and compare it to traditional MMSE parameters. In Section 4.5, we

summarize this chapter.

4.2 The EXIT Chart

We consider the magnetic recording read channel illustrated in Figure 4.1 [53]. A vector

r of readback waveform samples is fed to an equalizer, producing a vector y of equalizer

outputs. An APP detector has two inputs: the equalizer output y, and a vector λ2 =
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Figure 4.1: A soft-output detector interacting with an LDPC decoder in an iterative (turbo)
fashion.

[λ2,0, ..., λ2,N−1]
T of a priori LLR’s about the N written coded bits a = [a0, ..., aN−1]

T ,

where λ2,k = ln(P (ak=1)
P (ak=0)

). Based on these inputs, the APP detector estimates the vector

L = [L0, ..., LN−1]
T of APP LLR’s about the written coded bits, where Lk = ln(P (ak=1|y)

P (ak=0|y)).

The difference λ1 = L − λ2 is a vector of extrinsic LLR’s, which are fed as a priori

information to the LDPC decoder. In a symmetric fashion, the LDPC decoder estimates the

APP LLR’s about the coded bits, which after subtracting the decoder a priori information

leads to the vector λ2 of extrinsic information from the decoder. As shown in the figure, λ2

is then interpreted as a priori information by the detector in the next iteration. The detector

and decoder thus work in an iterative (turbo) fashion until a coded frame is successfully

decoded or a maximum iteration number is reached.

As indicated in Figure 4.1, we use Θ to denote all of the parameters to be optimized,

including the equalizer coefficients and any parameters within the detector. For simplicity,

Figure 4.1 omits any interleavers that might be used to prevent burst errors.

A Gaussian distribution is characterized by two parameters, mean and variance. A

Gaussian distribution is said to be consistent when the variance is twice the mean, and is

thus characterized by a single parameter. Likewise, the a priori information λ2 is said

to be consistent when the random variables {z2,k = λ2,kak} are i.i.d. N (µ2, 2µ2) for

some parameter µ2. These random variables will be neither consistent nor independent in

general; nevertheless (as recognized in [49]) they can be roughly approximated as such,

and we will see that optimizing the detector is dramatically simplified when the a priori
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information coming from the decoder is assumed to be consistent.

The quality of the a priori LLR’s is captured by the mutual information I2 , I({λ2,k};

{ak}) between the written bits and the a priori LLR’s [49], which (under the consistent

Gaussian approximation) reduces to (see the Appendix B):

I2 = 1− E(log2(1 + e−Z2)), (4.1)

where Z2 ∼ N (µ2, 2µ2).

The mutual information I1 , I({λ1,k}; {ak}) after the detector will depend in a

predictable way on the mutual information I2 after decoding. Let

I1 = T1(I2) (4.2)

denote the function that relates I2 to I1; it is an increasing function that approaches

T1(I2)→ 1 as I2 → 1. Similarly, let T2 denote the function that relates I1 to I2:

I2 = T2(I1). (4.3)

The T1( · ) and T2( · ) functions are the so-called extrinsic information transfer (EXIT)

functions. Given readback waveforms, the shape of T1 is determined by the parameters of

the equalizer and detector. These transfer functions must be measured empirically because

closed-form expressions for them are unknown. We simplify the calculation of T2 by

implementing a time-averaged version of (4.1), which strictly speaking only applies when

{akλ2,k} are i.i.d. consistent Gaussian, even when they are not:

I2 = 1− 1

N

N−1∑
k=0

log2(1 + e−akλ2,k). (4.4)

Likewise, the mutual information between the extrinsic LLR’s after the detector and the
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written bits can be estimated using:

I1 = 1− 1

N

N−1∑
k=0

log2(1 + e−akλ1,k). (4.5)

A chart showing both T1 and T2 is known as an EXIT chart [49], and is a powerful tool

for understanding convergence of iterative detectors. We illustrate an EXIT chart with an

example.

Example 1. Consider an ISI channelH(z) = 0.5+z−1+0.5z−2 with AWGN, and suppose

the written bits are coded by a rate-8/9 LDPC code of length 16200 from DVB-S2 [64]. A

five-tap equalizer and a two-tap partial-response monic target are jointly chosen according

to the MMSE criterion, followed by a two-state SOVA detector. In Figure 4.2 we plot

the transfer function T1(I2) versus I2 for SNR =
∑

k h
2
k/(2σ

2
n) values of 6.7 dB, 6.3 dB,

and 5.9 dB. T1 curve is found by sweeping through all possible I2 values, or equivalently

through all possible µ2 values, and for each one generate an artificial consistent Gaussian

a priori vector λ2 = µ2a + w2, where the components of w2 are i.i.d. N (0, 2µ2). After

SOVA uses λ2 as a priori information to generate L, the extrinsic information λ1 = L−λ2

is used to estimate I1 via (4.5). Improved estimates are found by averaging these I1 values

over repeated trials. Also shown in the figure is the transfer curve T−12 (I2) for the LDPC

decoder, which is independent of SNR and is found in a symmetric way. For each possible

µ1 generate a consistent Gaussian a priori vector λ1 = µ1a + w1, where the components

of w1 are i.i.d. N (0, 2µ1). The extrinsic information λ2 is achieved by subtracting a priori

information λ1 from the decoder outputs and is used to estimate I2 via (4.4). As shown

in the figure, the T1 curve drops lower as the SNR decreases, and the two curves intersect

when SNR = 5.9 dB. The green dashed staircase curve shows a sample decoding trajectory

for the case when SNR = 6.7 dB. The trajectory starts at (0, 0), bounces between the two

transfer functions, and stops near (1, 1), after the decoding is successful.
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Decreasing SNR

I2

I 1

Figure 4.2: EXIT charts of Example 1 under different SNR’s.

4.3 Adaptive Minimum-Frame-Error Rate Algorithm

Direct optimization of the parameters Θ to minimize FER would require an analytical

expression for FER in terms of the parameters to be optimized; such an expression is

unknown and likely to be unwieldy even if it were known. Instead, we propose to

indirectly optimize FER by optimizing the EXIT chart. It has been shown in [49] that

when the curves in an EXIT chart intersect, there is a high probability of decoding failure.

In contrast, a clear tunnel between the two curves means the decoding is very likely to be

successful. The wider the tunnel is, the faster the convergence will be.

Decoding success is not so much dependent on the entire shape of the two curves in an

EXIT chart, but is instead determined largely by what the two curves look like when they
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are closest to each other. Motivated by this observation, and with the understanding that a

larger gap between the two curves leads to a higher probability of decoding successfully and

faster decoding, we propose to choose the parameters Θ so as to maximize the gap between

the two curves at a particular value I∗2 for I2, where I∗2 is chosen in the “bottleneck” region

of the chart where the two curves are closest. In the example of Figure 4.2, a value of I∗2

around 0.2 would be an appropriate choice when SNR = 5.9 dB.

Since only the T1 curve depends on Θ, maximizing the gap is equivalent to maximizing

T1. Exploiting (4.5), we propose to choose Θ to minimize the following cost function:

J(Θ) =
1

N

N−1∑
k=0

log2(1 + e−akλ
∗
1,k), (4.6)

where {λ∗1,k} are the extrinsic LLR’s produced by the detector when it is fed with a

consistent Gaussian a priori vector λ2 = µ∗2a + w2, where the components of w2 are

i.i.d. N (0, 2µ∗2), where µ∗2 is the value of µ2 that leads to I∗2 in (4.1).

As a result, the cost function does not depend on any features of the decoder or of the

code itself. The proposed cost function requires knowledge of the written bits, which can

be viewed as a form of training.

By either enlarging the bottleneck or opening a tunnel in the EXIT chart, we enhance

the probability that the decoding trajectory passes through the bottleneck region. In the end,

the FER will decrease. We should point out that maximizing T1 at one point I∗2 may cause

the mutual information to degrade at other values of I2; if this effect is undesirable one

could swap different parameter sets for different I2 values, so that the detector parameters

would change from one iteration to the next.

Applying the stochastic gradient algorithm to J(Θ) leads to the adaptive minimum-

frame-error rate (AMFER) algorithm for adapting the parameters Θ:

Θk+1 = Θk +
αak

1 + eakλ
∗
1,k
∇Θλ

∗
1,k, (4.7)
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where α is the step size. Note the factor αak/(1 + eakλ
∗
1,k) in (4.7) can be interpreted as a

time-varying step size that is negligible when akλ∗1,k is large; only when akλ∗1,k is negative

or small will the parameters change significantly.

4.3.1 AMFER for Single Track Detection

The AMFER algorithm of (4.7) is general and can be applied to a wide range of detector

and equalizer architectures. Here we present a concrete example based on a 2µ-state SOVA

detector, where the parameters Θ to be optimized are the equalizer coefficients c, the noise

standard deviation σ, and the signal levels s(ak) associated with each bit pattern ak =

[ak, ..., ak−µ]T . SOVA estimates the extrinsic LLR for ak using:

λ∗1,k = âk∆k − λ2,k, (4.8)

where âk is the bit chosen by the detector, ∆k is chosen from a path metric margin Mk after

time k (see Algorithm 4), and where the path metric margin Mk is the difference between

the survivor path metric and the competing path metric:

Mk =

`k−1∑
i=0

− logP (āk−i) +
(cT rk−i − s(āk−i))2

2σ2

−
`k−1∑
i=0

(− logP (âk−i) +
(cT rk−i − s(âk−i))2

2σ2
)

=

`k−1∑
i=0

âk−i − āk−i
2

λ2,k−i +
1

2σ2
(2cT rk−i(s(âk−i)

− s(āk−i)) + s2(āk−i)− s2(âk−i)), (4.9)

where `k is the separation length of the two paths, and āk is the competing bit. Plugging

(4.9) and (4.8) into the AMFER Algorithm (4.7), along with the relationship between Mk

and ∆k described in Algorithm (4.7), leads to the following update equations for the
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parameters Θ:

ck+1 = ck +
akâk

1 + eakλ
∗
1,k

`k−1∑
i=0

rk−i
σ2

(s(âk−i)− s(āk−i)),

σk+1 = σk −
akâk

1 + eakλ
∗
1,k

`k−1∑
i=0

1

σ3
(2cT rk−i(s(âk−i)

− s(āk−i)) + s2(āk−i)− s2(âk−i)),

for each i ∈ {0, 1, ..., `k − 1} :

s(âk−i)k+1 = s(âk−i)k +
akâk

1 + eakλ
∗
1,k

(
cT rk−i − s(âk−i)

σ2
)

s(āk−i)k+1 = s(āk−i)k −
akâk

1 + eakλ
∗
1,k

(
cT rk−i − s(āk−i)

σ2
). (4.10)

A common modification in iterative detectors (see [57]) is to introduce an extra parameter

that scales the LLR’s after the detector and before the decoder. Instead of choosing this

parameter based on an ad hoc search based on empirical results, as is commonly done, it

can be folded into Θ and optimized by AMFER.

The pseudocode of a SOVA detector whose parameters are adapted according to the

proposed AMFER algorithm is shown in Algorithm 4. Code lines 5 to 18 are the

conventional SOVA detector, while lines 19 and 20 implement the AMFER algorithm.

4.3.2 AMFER for Multitrack Detection

In the multitrack detection system, the equalizer is replaced with a MIMO equalizer and

the detector is replaced with a joint soft-output detector. We focus the case of detecting

two tracks and generalizing more than tracks is straightforward. We implement crosstrack

coding in the following way: a coded frame with a length N is cut into two halves. One is

written on the first track and the other is on the second track. The benefit of crosstrack

coding over single-track coding is that bit errors from one track can be corrected by

information from the other track.
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To embed the joint detector into turbo detection as shown in Figure 4.1. We denote

the first half {λ1,0, ..., λ1,N
2
−1} in λ1 is the APP LLR’s from the first track after detection,

and the second half {λ1,N
2
, ..., λ1,N−1} is the APP LLR’s from the second track. After

decoding, the first half of λ2 is the a priori information for the first track and the second

half is the a priori information for the second track in the next detection. We can still use

Algorithm 4 A SOVA detector with parameters adapted by AMFER

Input: Equalizer input y; I∗2 ; initial values s( · )0, c0 and σ0; step size α; training bits
{a0, a2, ..., aN−1}; termination conditions.

Output: AMFER parameters s( · ), c and σ.
1: Get µ∗2 from I∗2 by inverting (4.1)
2: repeat
3: generate λ2 = µ∗2a + w2,

where the components of w2 are i.i.d. N (0, 2µ∗2)
4: Run Viterbi algorithm to get {âk}
5: Φ0(0) = 0, Φ0(p) =∞ ∀p 6= 0
6: for k = 1 to L do
7: for q = 0 to Q− 1 do
8: for p ∈ predecessors(q) do
9: p∗ = argminp{Φk(p) + γk(p, q)}

10: Φk+1(q) = Φk(p
∗) + γk(p

∗, q)
11: πk+1(q) = p∗

12: if q is the survivor state at time k then
13: Calculate Mk using (4.9)
14: ∆k =∞
15: Trace back to get the competing

bit subsequence {āk, ..., āk−`k+1}
16: for i = 1 to `k − 1 do
17: if âk−i 6= āk−i and ∆k−i > Mk then
18: ∆k−i = Mk

19: Restore previous update on
parameters at stage k − i, if any

20: Update Θk using (4.10)
21: end if
22: end for
23: end if
24: end for
25: end for
26: end for
27: until Termination conditions are satisfied
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(4.7) to update parameters. The detailed update equations for 2D-PDNP SOVA is a direct

extension of 1D-PDNP SOVA depicted in Section 4.3.1.

4.4 Quantitative Results

4.4.1 Linear ISI Example

In this subsection we continue the linear ISI channel of Example 1. We set the maximum

number of decoder iterations to ten, and the maximum number of overall (turbo) iterations

to twenty. For the training process, we train the parameters (the equalizer, signal levels and

residual noise variance) with one frame of 16200 bits for 500 epochs. MMSE initials are

used for the first epoch. In each epoch, we generate different a priori information and the

step size is α = 10−5. The bottleneck point we try to break through is I∗2 = 0.2.

In Figure 4.3 we compare MMSE and AMFER EXIT charts, when SNR = 5.9 dB. The

red curve shows T1 with AMFER parameters, while the orange curve shows T1 with MMSE

parameters. The blue curve shows T−12 for the LDPC decoder, which is independent of the

parameters. From the figure we can see that in the case of MMSE parameters, the two

curves intersect. On the other hand, in the case of AMFER parameters, there is a distinct

gap near I∗2 = 0.2 between the T1 curve and the T−12 curve. We also observe that although

the AMFER curve is not superior to the MMSE curve when I2 > 0.6, the ultimate FER is

dramatically better; the FER with AMFER is 0.068, as opposed to the FER of 0.605 with

MMSE.

In Figure 4.4, we plot the FER versus SNR for both the MMSE and AMFER

parameters. The error bars indicate the 95% confidence interval. At around FER of 10−5,

the AMFER parameters outperform MMSE parameters by 0.4 dB.

4.4.2 Single-Track Detection on Ehime waveforms

We test our algorithm on Ehime waveforms. Despite the fact that the waveforms were not

created using an error-control encoder, we can still test the turbo detector of Figure 4.1
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MMSE (FER = 0.605)

AMFER (FER = 0.068)

I2

I 1

Figure 4.3: EXIT chart with MMSE and AMFER parameters.

through the use of coset leaders; an uncoded block c of written bits can be interpreted as a

codeword in the coset code c ⊕ C for any linear code C. We also consider the written bits

are interleaved and thus an interleaver and a de-interleaver are applied in the system.

We used the first 16200 bits for training the AMFER parameters, and the following

24999 bits to measure FER. Because the codeword length 16200 is much shorter than

24999, we are able to test multiple codewords from a single waveform by looking at

different segments of the waveform. In particular, we consider 8800 consecutive bits as

different starting locations for 8800 different codewords, and these frames are used for

estimating FER. To limit any correlation between consecutive frames, we apply

independent white Gaussian electronic noise with zero mean and standard deviation

σe = 0.04 to each frame. The corresponding power of the added noise within the Nyquist
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0.4 dB

MMSE

AMFER

Figure 4.4: FER vs SNR with MMSE and AMFER parameters.

band is 24.6 dB below the saturation (constant response) signal level for the centered

100% width reader at 22.1 nm track pitch, which for that scenario is 10.1% of the total

noise power (including media noise) [65].

We test the AMFER algorithm in two scenarios. For the first scenario, the detector is

SOVA without any pattern-dependent noise predictor. We consider the case of ten

equalizer coefficients and four signal levels. For the second scenario, the detector is SOVA

with PDNP. We set ten equalizer coefficients and eight patterns. Each pattern has three

parameters (one signal level, one residual noise variance and one noise predictor

coefficient). The update equations can be obtained by plugging the PDNP path metric

(3.7) into (4.8) and applying the AMFER algorithm. The AMFER parameters are

initialized with MMSE parameters and I∗2 = 0.3.
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MMSE PDNP (FER = 0.805)

AMFER no PDNP (FER = 0.212)

AMFER PDNP (FER = 0.009)

MMSE no PDNP (FER = 0.937)

I2

I 1

Figure 4.5: EXIT charts based on different detectors.

We compare the EXIT charts for different schemes in Figure 4.5, assuming the track

pitch is 24.1 nm and a centered reader with 70% width. The dashed curves are for the

detectors without PDNP, while the solid curves are for the PDNP detectors. The MMSE

curves are orange, while the AMFER curves are red. Without PDNP, the MMSE detector

achieves FER = 0.937, while the AMFER detector achieves FER = 0.212, an improvement

by more than a factor of 4. With PDNP, the MMSE detector achieves FER = 0.805, while

the AMFER detector achieves FER = 0.009, an improvement by more than a factor of 89.

The areal density advantage of the AMFER algorithm is illustrated in Figure 4.6, where

we plot FER versus track pitch for the case of a centered reader with 70% width. The legend

in this figure is as same as that in Figure 4.5. The horizontal distance between two curves

translates to areal density gain at a given value of FER. From the figure we see that the areal
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Figure 4.6: Measured FER performance of MMSE and AMFER parameters w/o PDNP.

density advantage of AMFER over MMSE is roughly 5% without PDNP, and it is roughly

7% with PDNP.

4.4.3 Multitrack Detection on Ehime waveforms

We test the AMFER algorithm on a 2D-PDNP SOVA detector with Ehime waveforms

through the use of coset leaders. We detect track two and three with eleven matrix-valued

equalizer coefficients and sixteen patterns. Each pattern has predictor coefficients P0 and

P1. The total number of parameters is 188. The LDPC code has a length of 16200 and

a code rate of 0.89 from DVB-S2 database. We set the maximum number of decoder

iterations to ten and the maximum number of turbo iterations to twenty.

We train the parameters with the first 10000 bits from track two and three. We consider
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MMSE

AMFER 

Figure 4.7: EXIT chats with MMSE parameters (yellow), AMFER parameters trained by
I∗2 = 0.2 (green) and AMFER parameters trained by I∗2 = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

23100 consecutive bits as different starting locations for 23100 different codewords, and

use these frames for estimating FER. We apply independent electronic noise (SNRe = 24.6

dB) to each frame to reduce correlation between consecutive frames. First we test on the

track pitch of 24.1 nm with a 70% reader and an 85% reader, centered on track two and

three. We plot the yellow T1 curve with MMSE parameters and blue T−12 curve based on

the LDPC code in Figure 4.7. The two curves intersect, which leads to a high measured

FER of 0.88. We then train at the I∗2 = 0.2 where we try to break through and plot the T1

curves with the trained AMFER parameters plotted in green. As the figure shows the curve

opens a tunnel around 0.2 but drops rapidly after 0.3. The result is different from what we

get in single-track detection because the parameter space is small in single-track case so

that small changes at one point will not cause big changes at other places. However, we
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Figure 4.8: (a) Average BER measured by the sign of λ1 as turbo iteration increases. (b)
Evolution of measured FER as turbo iteration increases.

do not want to put our efforts in all places of I2 because the bottleneck area is the key to

lowering the FER. One way to fix this problem is to train with I∗2 evenly sampled from 0 to

0.5. We plot the T1 curve with the new AMFER parameters in red. As we can see a clear

tunnel from left to right, and the measured FER = 0.022, an improvement by a factor of 40

over MMSE parameters. However, in practice we do not have to constrain the detector to

use the same set of parameters during the whole turbo detection.

Next we investigate the relationship between BER and FER. We plot average BER

measured by the sign of λ1 versus the turbo iteration in Figure 4.8 (a). The yellow

MMSE curve drops very slowly as opposed to the red AMFER curve. We also label the

BER of the first iteration for each curve. Since there is no a priori information, the BER of

the detection actually only depends on the equalized signal. The lower BER of AMFER

indicates AMFER parameters can help reduce the BER for hard-output detection. In

Figure 4.8 (b) we plot the measured FER versus turbo iteration. We find that the FER

curves have the same trend as BER curves. When z1,k = akλ1,k ∼ N (µ1, 2µ1), we can
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1.1 dB

Figure 4.9: Measured FER vs electronic SNR with MMSE and AMFER parameters.

get BER = P (z1,k < 0) = Q(
√
µ1/2). This equation means when BER decreases, µ1 will

increase, which leads to the increase of I1. Eventually, the FER will decrease. However, in

practice z1,k is not consistent Gaussian and thus a lower BER cannot guarantee a lower

FER. One counter example is AMBER parameters, which lead to a lower BER for

hard-output detectors but perform poorly in turbo detection.

We also test the measured FER under different electronic noise shown in Figure 4.9.

The red curve represents AMFER parameters while the yellow curve represents MMSE

parameters. Given the FER of 0.02, we observe that the AMFER parameters can resist 1.1

dB more electronic noise than the MMSE parameters.

Lastly, we test the measured FER at different track pitches in Figure 4.10 with two

70% centered readers. At 26.1 nm, all 23100 testing frames are decoded successfully with

AMFER parameters. To quantify the areal density gain, we plot the boundary area (gray
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Figure 4.10: Measured FER vs track pitch with MMSE and AMFER parameters. The
dashed line indicates the FER if the next new testing frame is in error.

shade) where the line from 24.1 nm to 26.1 nm could appear (the worst case is the next new

testing frame is in error and the best case is no error in any future frames). At the BER of

10−2, AMFER parameters achieve at least 8% areal density gain over MMSE parameters.

The same method shown in Section 3.4.3 can be applied to avoid redundant or negligible

parameters.

4.5 Summary

In this chapter we demonstrate the close connection between the FER and EXIT charts,

and propose a strategy for adapting the parameters of an equalizer and a soft-output

detector so as to minimize the FER. The AMFER algorithm is general and applies to a

wide range of detectors and read channels, including those using multiple readers and
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multitrack detection. For the cases of single-track detection and multitrack detection,

numerical results using realistic readback waveforms show that the parameters found by

the AMFER algorithm can lead to dramatic improvements in FER and areal density

compared to MMSE parameters.
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CHAPTER 5

NEURAL NETWORK FOR MAGNETIC RECORDING

5.1 Introduction

In previous chapters, we stuck to traditional read channel architectures. In this chapter, we

will propose a neural network architecture for the magnetic recording channel. The object

of this chapter is to construct and design a neural network to mimic a hard-output detector,

and compare the performance and complexity to traditional methods.

This chapter is organized as follows. In Section 5.2, we review some mature neural

network structures. In Section 5.3, we design a neural network for hard-output detection.

We evaluate the performance on Ehime waveforms, and compare it to the AMBER

algorithm. In Section 5.4, we summarize this chapter.

5.2 Classic Neural Network Structures

The artificial neural network is a subset of machine learning, loosely inspired by the

biological brain, first proposed in 1943 by Warren McCulloch and Walter Pitts [66].

A typical neural network consists of an input layer, one or more hidden layers and one

output layer, as shown in Figure 5.1. Deep learning is a neural network with three or more

layers (exclude the input layer). Each layer has several neurons. After the inpu layer, each

neuron is a microprocessor that collects data from all neurons in the previous layer, does

calculations, and transfers one result to the next layer. Denote vector a0 (also written as x

in some cases) to be the data of the input layer. Assume the ith layer has Ni neurons. The

output data of the ith hidden layer is calculated by

ai = g(WT
i ai−1 + bi), (5.1)
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Input Layer

Output Layer

Hidden Layers

…

Figure 5.1: A typical structure of the artificial neural network: one input layer (labeled
in blue), one or more hidden layers (labeled in grey) and one output layer (labeled in red).
Circles represent neurons and arrows represent the direction of data flow.

where Wi = [wi,0, ..., wi,Ni−1
] and bi = [bi,0, ..., bi,Ni−1

]T . wi,j and bi,0 are associated

with the calculation for the jth neuron in ith layer. g(·) represents a nonlinear activation

function, typically, either ReLU:

g(z) = max(0, z), (5.2)

the sigmoid function (also written as σ(·)):

g(z) =
1

1 + e−z
, (5.3)

or the hyperbolic tangent function:

g(z) =
ez − e−z

ez + e−z
. (5.4)

The output layer has the same structure as the hidden layer but the activation function is
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chosen according to users’ demand. The linear, sigmoid and softmax activation functions

are the typical choices. The linear activation means no changes on the result, which fits the

case that the output value is in the interval (−∞,+∞). The sigmoid function is usually

used to measure probability since it ranges from 0 to 1. The softmax function is given by

softmax(zi) =
ezi∑
j e

zj
. (5.5)

Since the sum softmax outputs is one, it is mainly used in classification problems where

softmax(zi) measures the probability of the ith class.

The difference between neural network output ŷ and true output y is measured by a

loss function L(ŷ,y). The cost function is defined as the average loss of all training sets:

J(W1,W2, ...,b1,b2, ...) =
1

Nt

Nt−1∑
i=0

L(ŷi,yi), (5.6)

where Nt is the number of training sets and the cost function needs to be differentiable.

In the training process, the backpropagation algorithm [67] computes the gradient of the

cost function with respect to each weight efficiently. The efficiency makes it easy to apply

gradient methods such as gradient descent and Adam [68].

According to the universal approximation theorem [69, 70], a neural network with

linear output and sigmoidal activation function given enough hidden neurons can

approximate any continuous function on a closed and bounded subset of Rn[71]. But the

required number of neurons can be infeasibly large. In some cases deeper neural networks

can reduce the number.

Deep learning is not newly invented but has become very popular recently because

large and deep neural networks driven by big data can achieve better performance than

small neural networks, as well as the development of powerful computers and machine

learning algorithms.

A convolutional neural network [72, 73, 74] is a special neural network for processing
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data with a grid-like structure, such as time-series data and image data. Commonly used

layers of CNN’s are convolutional layers, pooling layers and fully connected layers. A

CNN must have one or more convolutional layers that perform a bunch of convolution

operations. The pooling layers perform maximizing or averaging operations on the data.

The fully connected layers are the usual neural network layers shown in Figure 5.1.

Convolutional layers requires fewer parameters than fully connected layers because one

convolution block can work for lots of data segments and each output value may depend

only on a small number of input data.

A recurrent neural network [75] is another neural network for processing sequential

data, which has achieved great success in natural language processing and speech

processing. The structure of a standard RNN is shown in Figure 5.2. At ith stage, the

information transferred to the next stage and the output ŷi are calculated as

ai = g1(w
T
a

 ai−1

xi

+ ba)

ŷi = g2(w
T
y ai + by),

(5.7)

where g1(·) and g2(·) are activation functions. Each stage shares the same parameter set

[wa,ba,wy,by]. In some sophisticated cases, there could be more layers between the input

and output layers.

Gradients propagated over many stages in RNN’s could vanish so that the model

cannot deal with the data with long-term interactions. The long short-term memory

(LSTM) layer [76] improves the standard RNN with feedback connections to avoid

vanished gradient problems [71]. The structure of the LSTM cell is shown in

Figure 5.3 [77]. A typical LSTM cell has three types of gates: forget gate, denoted as Γf ;

update gate, denoted as Γu; and output gate, denoted as Γo. The cell state at ith stage,

denoted as ci, is like a conveyor belt running down the entire chain. Adding or removing

information on the belt is controlled by the forget gate and update gate. The forget gate Γf
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…

Figure 5.2: The standard recurrent neural network.

is calculated by

Γf = σ(WT
f

 ai−1

xi

+ bf ), (5.8)

where ai−1 is the previous hidden state and xi is the current input. The sigmoid activation

makes its output between zero and one. One means completely remember and zero means

completely forget. In practice, most results will be close to the two extremes. Then the

update gate will decide whether and what new information will be added to the belt, which

is calculated by

Γu = σ(WT
u

 ai−1

xi

+ bu),

ĉi = tanh(WT
c

 ai−1

xi

+ bc).

(5.9)
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Figure 5.3: Data flow inside a long short-term memory cell.

The final update equation of the new cell state is

ci = Γf � ci−1 + Γu � ĉi, (5.10)

where � is Hadamard product (elementwise product). The update for the new hidden state

ai, which is also used as the stage output, is calculated by

Γo = σ(WT
o

 ai−1

xi

+ bo)

ai = Γo � tanh(ci).

(5.11)

5.3 Neural Network for Hard-Output Detection

The conventional magnetic recording system consists of an equalizer and a sequence

detector as shown in Figure 5.4 (a). The readback waveform vector x is equalized

corresponding to a target. The equalized signal and the target are involved in the
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EQUALIZER
VITERBI

DETECTOR

x

NEURAL NETWORK
x

(a)

(b)

Figure 5.4: (a) A conventional detection system. (b) A neural network detection system.

maximum likelihood detection, performed by the Viterbi algorithm. A neural network

detection does not need a cascade structure. Instead, the system takes into the readback

waveform and outputs the estimated bits ŷ directly, as shown in Figure 5.4 (b).

We design a recurrent neural network to mimic sequence detection. The layers of the

RNN is shown in Figure 5.5. Even though there is a convolutional layer in the network,

we still call it a recurrent neural network since the recurrent layer is the core layer. The

input layer is formed by an N × 1 vector of sampled waveforms. The first hidden layer is

one-dimensional convolutional layer. This layer aims to extract common features shared

during the sequential input. Note that the convolution operation in machine learning does

not reverse the operand, which is different in signal processing. In this chapter, we will

stick to the version of machine learning. In this layer, there are 32 length-15 sequences

convolving with the input vector and the activation function is ReLU shown in (5.2). The
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INPUT x0 x1 … xN-1

OUTPUT

1D CONVOLUTION

BIDIRECTIONAL 

LSTM

LSTM

(unit = 8)

LSTM

(unit = 8)

LSTM

(unit = 8)
…

TIME DISTRIBUTED

DENSE
DENSE(1) DENSE(1) DENSE(1)…

CONV1D(#filter = 32, size =15, activation =ReLU)

…

Figure 5.5: The recurrent neural network aims to do sequence detection. The network
consists of a convolution layer, a bidirectional LSTM layer and a time-distributed dense
layer.

output is an N × 32 matrix as

a1 = g




x ∗ c0

...

x ∗ c31


T . (5.12)

The second hidden layer is a bidirectional LSTM (BLSTM) layer, which has another LSTM

chain running backward. We denote the ith forward output and backward output as afi and

abi . The layer aims to attack the media noise since the current bit suffers from the noise

from both forward and backward directions. The third hidden layer is a time-distributed

dense layer. This layer applies the same densely connected net to every time step during

LSTM cells unrolling. Sigmoid activation function is applied to measure the probability

86



Table 5.1: Output size and number of parameters of each layer in the RNN shown in
Figure 5.5.

Layer Output Size Param #
Input (N,1) 0

1D Convolution (N,32) 512
BLSTM (N,16) 2624

Time-Distributed
Dense (N,1) 17

Output (N,1) 0

that ŷi = 1, denoted as pi. The equation is written as

pi = σ(wT
a

 afi

abi

+ ba). (5.13)

The hard decision that ŷi = 0 or 1 is made according to whether pi is smaller or larger than

0.5. The output size and number of parameters required are listed in Table 5.1. The total

required number of parameters is 3153.

For the training and testing we still use the Ehime waveforms as introduced in

Section 2.5.1. We add electronic noise with σ = 0.04 on the readback waveforms of track

three. We use the first 16000 bits for training and validation and the rest bits for testing.

Since the training data is limited, we truncate 1000 bits and shift sixteen bits to form a

new training frame. In total we create 1000 frames and add independent electronic noise

to reduce the dependence of neighbouring frames.

There is no differentiable cost function for bit-error rate as explained in Chapter 3.

One alternative cost function is the cross entropy loss if we view the detection as a binary

classification problem. The cost function is defined as

J(Θ) = − 1

Nt

Nt−1∑
i=0

yi log pi + (1− yi) log(1− pi), (5.14)

where Θ represents all the weights and bias to be optimized in (5.12)-(5.13) and the
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Training

Validation

Figure 5.6: The BER evolution of training and validation data as the epoch increases.

bidirectional LSTM layer. When the predicted probability approaches to the wrong bit,

the log loss increases sharply. The log loss slowly decreases as the predicted probability

approaches the correct bit. In other words, the log loss especially penalizes those

predictions that are confident but actually wrong. However, we notice that lower log loss

not necessarily means a lower BER. For example, suppose three bits [−1,−1,−1] has two

sets of probabilities: [0.1, 0.6, 0.6] and [0.4, 0.4, 0.4]. The first set has one bit error with a

log loss of 1.11, while the second set has three bit errors with a log loss of 0.92.

We apply the Adam optimization algorithm to minimize the cost function and use a

mini-batch of size sixteen to accelerate the convergence. 900 frames are used to train the

model parameters and the rest 100 frames are for validation. The BER of training and

validation data as the epoch increases is shown in Figure 5.6. The blue curve represents the

training data, while the orange curve represents the validation data. Two curves converge

after the fourth epoch and the narrow gap between the two curves indicates that there is little

overfitting in the model. Next we transfer the weights of trained model to a long model for
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RNN & AMBER

MMSE

Figure 5.7: BER performance of the RNN and conventional structures (with MMSE and
AMBER parameters).

testing. We compare the performance of the RNN and conventional structure in Figure 5.7.

We plot the RNN performance in red and the conventional structure with MMSE PDNP

and AMBER PDNP parameters in blue and orange. The MMSE PDNP is based on twenty

equalizer coefficients and eight patterns with one predictor coefficient and AMBER PDNP

is based on twenty equalizer coefficients and four patterns with one predictor coefficient.

Results show that the RNN outperforms MMSE by approximately 4% area density gain.

The RNN achieves a similar performance as AMBER parameters, but AMBER only needs

to train 32 parameters. We increase the depth of the RNN with more than one BLSTM

layer but cannot achieve further gain.
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5.4 Summary

In this chapter, we design a neural network for single-track hard-output detection. The

network achieves similar BER performance with the traditional detector with AMBER

parameters and is better than MMSE parameters. However, the network requires many

more parameters than the traditional detectors. An extension of neural networks to

multitrack detection is straightforward.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This dissertation proposes signal processing algorithms for magnetic recording. In

particular, a multitrack detection structure and the multitrack detector with 2D-PDNP for

TDMR is proposed. This thesis also proposes three strategies to choose parameters. The

first strategy is a conventional closed-form solution based on the MMSE criterion. The

second strategy is an adaptive algorithm to choose parameters aiming to minimize the

BER after detection. The third strategy is to tune parameters to minimize the FER when

the detector works with an error-control decoder in a turbo fashion. The thesis also

designs a neural network read channel. The thesis reports the results of the proposed

algorithms on simulated waveforms. In this chapter, we summarize all the contributions of

this thesis and then propose a few directions where this work can be extended and

improved.

6.1 Contributions

1. In Chapter 2, we proposed the multitrack pattern-dependent and autoregressive

model for 2D media noise and the joint maximum-likelihood solution to the

detection. The multitrack PDNP can predict current noise via the noise from both

crosstrack and downtrack, so as to mitigate 2D media noise. The equalizer

coefficients are chosen to minimize the MSE between equalized signals and target

output. We presented two strategies for choosing multitrack PDNP parameters. One

requires training: the parameters for each pattern are chosen to minimize the sum

mean-squared prediction error in the training process. The other does not require

training: the parameters are estimated by reliable bits from a PDNP BCJR detector.

The detection and estimation work iteratively until convergence. Numerical results
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on simulated waveforms show PDNP parameters from both strategies outperform

non-PDNP Viterbi detectors.

2. In Chapter 3, we considered the problem of tuning the PDNP parameters to

minimize the BER instead of MSE. In Section 3.2, we proposed a cost function

based on the path metric margin. We discovered that minimizing the cost function is

equivalent to minimizing the probability of detection errors when the tail of the

margin PDF is exponential. We developed the AMBER algorithm by applying a

stochastic gradient on the cost function. To further improve the algorithm, we

proposed strategies to choose the threshold and the step size in the algorithm in

Section 3.3. We implemented the algorithm on both single-track and multitrack

detection, and numerical results show AMBER parameters can reduce the BER

effectively compared with MMSE parameters. In Section 3.4.3, we proposed to

optimize the parameter space by adapting only a subset of the parameters via the

AMBER algorithm.

3. In Chapter 4, we brought error-control coding into the picture. We tuned the PDNP

parameters to improve the quality of extrinsic LLR’s so as to minimize the FER

after decoding. We used mutual information to measure the quality of soft

information and exploited the close connection between the FER and the gap

between the two curves in an EXIT chart. We proposed a cost function and the

AMFER algorithm to lift the curve produced by the detector given a fixed

error-control code. We verified the AMFER algorithm on a simple ISI channel, as

well as single-track and multitrack detection systems, and numerical results revealed

that AMFER parameters can reduce the FER significantly over MMSE parameters.

4. In Chapter 5, we designed a neural network to replace the detector. Numerical results

demonstrated that the network has a better performance than MMSE parameters and

a similar performance from AMBER parameters. We also revealed that the neural
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network requires many more parameters compared to traditional systems.

6.2 Future Work

All the experiments in Chapter 4 are based on an off-the-shelf length-16200 rate-8/9

irregular LDPC code that was designed for television broadcast (DVB-S2), and is not

optimized for magnetic recording. Interestingly, the area below the two curves in an EXIT

chart can be used to estimate the code rate R and channel capacity C, respectively [78,

79]:

R ≈
∫ 1

0

T−12 (x)dx,

C ≈
∫ 1

0

T1(x)dx.

Shannon’s theorem enables reliable communication when R < C. The above integrals

imply that, in terms of the EXIT chart, we need the area under the decoder curve to be less

than the area under the detector curve. Any space between the curves is thus an opportunity

to improve performance: If we are able to exploit the gap to somehow move the decoder

curve closer to the detector curve, without intersecting, we will have effectively designed

a better LDPC code with a higher code rate that is matched to the specific characteristics

of the soft-output detector. A promising approach to achieving the above-described goal

of optimizing the LDPC code to match the channel transfer function is the curve-fitting

approach of [80, 50].

In the bigger picture of overall read-channel design, AMFER can be viewed like this:

given an LDPC code, AMFER optimizes the detector. In prior work, others have solved the

complementary problem: given a channel, optimize the LDPC code. We can investigate the

intriguing possibility of jointly optimizing the soft-output detector and the LDPC decoder

using a combination of the AMFER concept and curve fitting. A promising candidate

for joint optimization is the iterative strategy shown in Figure 6.1, where for each iteration
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Figure 6.1: An iterative approach to jointly optimizing an LDPC code and a soft-output
detector.

curve fitting is used to optimize the LDPC code for a given soft-output detector, and then the

soft-output detector is optimized via AMFER for that given code. In terms of the detector

and decoder curves in the EXIT chart framework, one can imagine that these two curves

are alternatively being optimized to maintain a gap (ensuring low FER) while maximizing

the area under them (ensuring a high capacity and high code rate). The end result could be

a high-rate code with low FER, and a potentially big payoff in terms of areal density gains.

Another direction is to bring modulation coding [81] into the framework, especially in

the 2D case. The modulation coding can avoid bit patterns that cause errors more frequently

at the cost of data redundancy. A set of carefully generated modulation codes could bring

higher areal density against existing read channels.

In Chapter 5, we designed a neural network for a hard output detector. Neural

networks can also function as a soft-output detector and be used in turbo detection. The

input of the neural network will be the sampled readback waveforms and the a priori

information from the decoder. The output will be the extrinsic LLR’s which are used as
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the a priori information for the decoder. The cost function of the neural network can be the

same cost function we present in Chapter 4. We apply the AMFER algorithm on SOVA

detectors instead of BCJR detectors in Chapter 4 because the equation of SOVA is easy to

analyze, even though BCJR detectors are maximum a posteriori detectors and can achieve

better performance than SOVA. We think neural networks have the potential to outperform

AMFER SOVA detectors and provide further areal density gain.
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APPENDIX A

CONVERGENCE CONDITION AND PROOF OF ALGORITHM 3

Denote T (τ) = 1
b(Θ(τ))

and then τn+1 = T (τn). According to Banach fixed point

theorem [82], the convergence condition of this algorithm is: there exists q ∈ [0, 1) such

that

|T (x)− T (y)| < q|x− y|. (A.1)

Proof.

|T (τn)− T (τn−1)| < q|τn − τn−1|

|τn+1 − τn| < q|T (τn−1)− T (τn−2)|

< q2|τn−1 − τn−2|

...

< qn|τ1 − τ0|.

(A.2)

Let ε > 0 be arbitrary, since q ∈ [0, 1), we can find a large n ∈ N so that

qn|τ1 − τ0| < ε.
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APPENDIX B

DERIVATION OF (4.1)

The mutual information between a discrete random variable a ∈ A and continuous random

variable λ is

I =
∑
a∈A

∫ +∞

−∞
P (a, λ) log2

P (λ|a)

P (λ)
dλ.

When P (a = −1) = P (a = 1) = 1/2 and P (λ|a) = 1√
2π2µ

e−
(λ−aµ)2
2(2µ) , I reduces to:

I =
∑

a∈{−1,1}

∫ +∞

−∞
−P (a, λ) log2

1 + e−aλ

2
dλ

= 1− E(log2(1 + e−aλ)).
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