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ABSTRACT

The success o f  turbo codes indicates that performance close to the Shannon 

limit may be achieved by iterative decoding. This has in turn stimulated 

interest in the performance o f  iterative detection for partial-response channels, 

which has been an active research area since 1999. In this dissertation, the 

performance o f  serially concatenated recording systems is investigated by 

computer simulations as well as experimentally. The experimental results 

show that the iterative detection algorithm is not sensitive to channel 

nonlinearities and the turbo coded partial-response channel is substantially 

better than partial-response maximum-likelihood channels. The classical 

iterative decoding algorithm was originally designed for additive white 

Gaussian noise channels. This dissertation shows that the performance o f 

iterative detection can be significantly improved by considering the noise 

correlation o f  the magnetic recording channel. The idea is to iteratively 

estimate the correlated noise sequence at each iteration. To take advantage o f  

the noise estimate, two prediction techniques were proposed, and the 

corresponding systems were named noise predictive turbo systems. These 

noise predictive turbo systems can be generalized to other detector 

architectures for magnetic recording channels straightforwardly.
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Chapter 1

Introduction

1.1 Digital Magnetic Recording

Since the epoch-making invention o f the hard disk drive in 1951, it has been the 

major form for information storage [1]. However, most o f  the useful information 

in the world has not been stored. With the blooming o f  the world-wide-web, 

accessing the information stored everywhere in the world will become routine for 

billions o f  people.

The storage capacity o f today’s hard disk drive is astonishingly large. In 

the disk drive industry, the storage capacity is usually measured by areal density. 

The areal density o f  the first hard disk was 2 Kb/in' [1]. In the 1970s and 1980s, 

the areal density growth rate was approximately 30% per year. In the 1990s, the 

success o f magnetoresistive heads and partial-response maximum-likelihood 

(PRML) technology boosted the growth rate to 60% per year. In this new 

millennium, the hard disk industry is facing a number o f  fundamental challenges. 

Since we are in the information age, one o f  the major challenges is the explosive 

increase in information. To store the information, higher recording capacity will 

be continuously needed. The other challenge is the steadily expansion o f the 

market for new magnetic recording products, e.g., storage devices for various 

mobile internet access equipment, TV set top boxes, and digital cameras. These



market forces put pressure on the disk drive industry to develop new products, 

and at the same time point to a brilliant future.

1.2 Overview of Hard Disk Drive Technology

The major magnetic information storage devices are tape, floppy disk, and hard 

disk drives. Among these devices, the hard disk drive is especially important 

because it provides both large storage capacity and random accessibility. A hard 

disk drive consists o f  four parts [ 1 ], which are, the read/write heads and magnetic 

disks, data detection electronics and write circuit, mechanical servo and control 

system, and interface.

The read/write heads are located on a slider. The encoded information is 

written on the magnetic media through the write head. When a write operation 

request is issued, the write head moves to a proper position over the disk, and the 

disk moves in a circular motion. At the same time, the pattern o f  the write current 

causes corresponding magnetization transitions on the recording media 

immediately under the write head, and the information is stored on the disk in the 

form o f magnetization transitions. The concentric circles where information is 

stored are called tracks. The capacity o f a hard disk drive is commonly measured 

by areal density. The areal density o f recording is then the product o f  the number 

o f tracks per inch (tpi) and the linear density o f information along a track 

measured in bits per inch (bpi). When the information is to be read, a read head is 

positioned over the track. When the disk moves, the magnetization pattern in the



disk causes a corresponding voltage pattern to the read head. The detection 

circuits then retrieve the recorded information through this voltage pattern.

The detection circuits consist o f  many very large scale integrated circuit 

chips. Among these chips, this dissertation is particularly interested in the 

algorithms for the detector chip. The first generation detector was the peak 

detector [1]. Peak detection is simple and reliable. It was so successful that it had 

been the dominant detection method until the end of the 1980s. Since then, the 

partial response channel quickly became the main detector since an efficient 

decoding algorithm, i.e., the Viterbi algorithm, can reliably deal with channel 

interference at high densities. With the discovery o f turbo codes, iterative 

detection has been shown to provide excellent performance [2], [3]. An iterative 

detector usually consists of several constituent decoders. Each constituent 

decoder improves its decisions using the information available from other 

constituent decoder/decoders. The improved decision is then used by other 

constituent decoder/decoders so that the final decisions are reached in an iterative 

fashion. It is widely believed that the next generation o f recording channel 

detection algorithms will be some type o f iterative soft detection algorithm. 

Although its performance is excellent, the implementation o f iterative detection 

algorithms is quite difficult. Both the computation and memory requirements for 

an iterative detector are substantially higher than that for a Viterbi detector.

The spindle speed of today’s commercial hard disk drives is as high as 

12,000 rotations per minute (RPM), and the flying height is as low as 25 nm [1]. 

This extremely small flying height is necessary for sensing the recorded



magnetization patterns, and has been compared with a Boeing 747 jet plane 

constantly flying only several meters above the earth [4]. When a data read/write 

request is issued, the arm where the heads are located must move to the position 

that is immediately above the correct track. For a commercial hard disk drive, 

this time is typically only 2 to 30 milliseconds [1]. The functional part for 

accomplishing this astonishingly fast and accurate movement is the mechanical 

servo and control system.

Hard disk drives serve as the secondary level memory for computer 

systems. The interface is a connector through which the disk drive exchanges 

information with the outside world.

1.3 Channel Model

1.3.1 Continuous time channel model

The magnetic recording channel is inherently nonlinear because o f the hysteresis 

effect o f  the magnetic media. The actual noise in the read process is, in general, 

neither additive nor stationary [5]. The noise can be categorized into media noise 

and electronic noise. The primary noise sources are the magnetic recording 

media, the read/write heads, and the preamplifier. It is possible to describe the 

readback signals using an accurate channel model, but this accurate channel 

usually is too complicated for theoretical analysis and for the performance 

evaluation o f new detection algorithms. To obtain a simpler channel model, it is 

necessary to use some approximations with the trade o ff being accuracy.



The channel can be linearized if  the current into the head is constrained to 

take only two possible values, and the amplitude o f  the current is sufficiently 

large so that magnetic storage media can be completely magnetized in one o f  two 

directions [5]. The read head senses the transitions o f  the magnetization pattern, 

and generates the corresponding voltage pattern. For an isolated transition it 

produces a pulse g(/) or its inverse -g{t), depending on the direction o f  the 

transition. One usually refers to gfr) as the isolated transition response or just 

transition response.

The widely used model for the transition response is the Lorentzian pulse 

shape given by (1.1), where PW50 denotes the width at half amplitude which 

defines the resolution of the recording process,

giO = — ( 1 -1 )
14-

For the Lorentzian channel, recording density is defined as the normalized PW50. 

If we denote user recording density as Du, channel recording density as Dc, user 

bit duration as T„, channel bit duration as Tc, then user recording density is 

defined as

( 1.2 )

and channel recording density is defined as

P W
D ^ = ------------------------------------------------- (1.3)



The advantage o f  using this model is that it describes the shape o f  the isolated 

transition response reasonably well, and requires only the single parameter PW5 0 . 

Fig. 1.1 shows Lorentzian pulses for three different values o f  normalized PW 50. 

Fig. 1.2 shows a real transition response taken from a spinstand. The waveform 

HO = g ( 0  -  g(i -  T) represents two transitions at minimum spacing, and is 

designated dibit response.

1.2

g  0.8
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Fig. l .l .  Lorentzian pulses for recording densities 2.0, 2.5, and 3.0.
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Fig. 1.2. A channel step response captured from a spinstand. Channel density is 

approximately 2 .

In mathematical terms we may describe the data component r(r) of the 

read head output as

r (0 =  (1.4)
i  = —oc

where is the recorded bit sequence with symbol constellation {-1, +1}. Upon 

realizing that h{t) = g{t)  -  g{t -  T) we may equivalently express r{t) as [4]

r(U =  ' ^ b , g i t - k T ) ,  (1.5)
it =—oC

where 6  ̂ = z^ e  {-2 ,0 ,2 } is the transition sequence associated with z^ .

Therefore, r{t) can equivalently be thought o f  as a linear filtered version of the

data sequence or o f  the transition sequence b^.
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Fig. 1.3. Frequency response o f the dibit pulse. Recording density is 2.

The frequency response o f  the dibit response is

/ / ( / )  = - , / r r Pn\, fc -  . (1.6)

where j  = . The frequency response o f the dibit is shown in Fig. 1.3 for a

density of 2 .

If the noise magnitude is not too large, it may be viewed as additive [5]. 

Furthermore, if  the transition response g(t) has negligible excess bandwidth, then 

a stationary model can be used [4], The simplest model for channel noise n(f) 

assumes that the noise is additive white Gaussian (AWGN). With the white noise 

model, the continuous channel model is shown in Fig. 1.4, and the readback 

signal takes the form [6 ]



XO = KO + « (0  • (1.7)

r(t)
H(t)

z(t) y(t)=r(t)+n(t)

Fig. 1.4. Continuous time channel model.

1.3.2 Equivalent discrete time channel model

WTien y(t) is received by a matched-filter, the sampled output sequence has the 

form [7]

m{D) = z{D)R^{D) + n \ D ) .  (1.8)

Here n'{D) is zero-mean colored Gaussian noise with autocorrelation function 

g 'R/j(D), R/j(D) is the autocorrelation o f the Lorentzian pulse, and is the

spectral density o f the noise n(i) in (1.7). Furthermore, Forney [7] showed that

Rjj(D) can be factorized as

Rj^(D) = f ( D ) f ( D - ' ) .  (1.9)

The correlated noise sequence n'(D) can be represented as

n'(D) = n ( D ) f ( D - ' ) .  (1.10)

If we denote c(D)  = nt(D) / / ( £ ) ’ ') ,  we obtain a sequence



c{D) = z (D ) f{D )  + n{D),  (1.11)

where «(£>) is white noise. The cascade o f a matched filter h{-t) with a transversal 

filter characterized by 1//(/) ') is called the whitened matched filter, and is shown 

in Fig. 1.5.

m(t)
Matched 

Filter h(-t) A
y(t) c^=z.*F+n,

Sampler n,

Fig. 1.5. Whitned-matched filter model.

It has also been shown in [7] that the sampled output sequence in (1.8) 

forms a set o f sufficient statistics for the estimation o f  the input sequence z{D). 

For infinite and reasonable finite delays, this channel model is optimal for 

maximum-likelihood estimation o f the entire transmitted sequence.

1.4 Outline of the Dissertation

We have briefly introduced the magnetic recording technology and 

magnetic recording channel models. While PRML magnetic recording systems 

are the state o f the art technology for hard disk drives, the research on more 

advanced detection schemes never stops. The use o f  turbo codes in magnetic

10



recording systems has attracted a great deal o f  interest since 1998. Compared 

with PRML systems, iterative decoding promises a significant performance 

improvement [2], [3]. In Chapter 2, serially concatenated convolutional turbo 

recording systems are discussed, and the performance o f  the serially concatenated 

convolutional turbo codes is studied for various partial response channels by 

computer simulation. Furthermore, the performance o f  serially concatenated 

convolutional turbo codes is experimentally evaluated for an extended partial- 

response class-4 (EPR4) chaimel in a real hard disk drive. The results show that 

the performance improvement obtained in the experiment is consistent with 

simulations. This was the first experimental work published in the literature.

Partial response (PR) channels have been used in many applications, and 

in general, they require a filter to shape the received signal to a given PR target. 

At high density, significant equalization is required for a partial response class-4 

(PR4), EPR4 and even modified E“PR4 (ME“PR4) channels, causing strong noise 

correlation at the detector input, which degrades performance. To improve the 

performance o f  the Viterbi detector, a noise prediction scheme was proposed in 

[8]. The prediction is based on the tentative decisions obtained from the surviving 

path corresponding to each state. This scheme substantially improves the 

performance o f  the Viterbi detector. In Chapter 3, noise predictive turbo systems 

are studied. Computer simulations show that significant signal-to-noise ratio gain 

can be obtained through iterative prediction. The proposed prediction scheme 

using conditional expected decisions is simple and very suitable to be combined

I I



with iterative detectors. As an example, simulation results for a serially 

concatenated convolution turbo coded PR4 system are provided.

Pearl’s belief propagation algorithm is an efficient algorithm for solving 

inference problems. It has been widely used in medical diagnosis systems, 

machine learning, and various decision systems. Recently, it was foimd that the 

iterative soft decoding algorithm for parallel and serially concatenated turbo 

systems is an instance o f the belief propagation algorithm applied on the 

corresponding loopy Bayesian networks [9], [10]. This result provides an 

alternative way to view iterative decoding algorithms, and has motivated much 

interest in the study o f the connections between the belief propagation algorithm 

and iterative decoding.

In magnetic recording, error-correcting codes are required to ensure a low 

bit error rate. The concatenation o f the error-correcting code and the partial- 

response equalized channel can be viewed as two serially concatenated 

convolutional codes. In Chapter 4, iterative detection for magnetic recording 

systems is explained from the viewpoint o f  belief propagation. The suitable 

Bayesian network for the recording system considered is given for both white 

Gaussian noise channels and correlated/signal dependent noise channels. The 

detection for correlated noise recording channels is much more complicated than 

for white Gaussian noise channels. Through probability propagation on the 

corresponding Bayesian networks, the difference o f the two decoding algorithms 

is made explicit. This gives us a better understanding o f iterative detection for

12



magnetic recording channels. This chapter also shows that the noise predictive 

turbo decoding algorithm is a probability propagation process.

Chapter 5 is a summary o f the results in this dissertation, as well as future 

research suggestions.

13



Chapter 2

Performance of Serially Concatenated

Convolutional Turbo Codes for

Magnetic Recording

2.1 Introduction

The use o f turbo codes in magnetic recording systems has attracted a great deal o f  

interest since 1998. Using parallel concatenated convolutional codes in a PR4 

magnetic recording channel led to substantially better performance than the 

uncoded PRML system [2]. A relatively simpler serially concatenated scheme 

was proposed in [11]. In this scheme, the combination o f  the precoder and 

channel is viewed as one of the constituent convolutional codes. Therefore, the 

detector is only composed o f two maximum a posteriori probability decoders 

matched to the precoder/channel and the outer convolutional code, respectively. 

Although much simpler, its performance is comparable to the parallel 

concatenated system.

1 4



Extensive research done by others and us has confirmed the results 

presented in [2] and [11], However, most o f  the research activities have focused 

on Lorentzian channel simulations, which assumed ideal linear superposition 

channel models, perfect timing recovery and gain control. Since iterative 

decoding operates at a lower signal-to-noise ratio (SNR), the performance o f  the 

timing recovery and gain control might be seriously degraded due to inaccurate 

feedback. In order to determine the impact o f  channel nonlinearities and other 

impairments, we have compared simulation and real drive experimental results for 

serially concatenated convolutional turbo codes.

2.2 Lorentzian Channel Simulation

The diagram o f  the Lorentzian channel simulation is shown in Fig. 2.1. The 

details o f  the various components are described in this section.

M M SEPUMUX PrecoderRSC

PUM UX

Lorentzian
C hannel

OE-PUMUX O uter
APP

In n e r
A PP

Fig. 2.1. Diagram o f a serially concatenated system for magnetic recording.
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2.2.1 Encoder, puncturer and precoder

User data iik is encoded by a rate !6, (31,33)<,c/ recursive systematic convolutional 

(RSC) encoder. To achieve a code rate o f k/(k+I),  one parity bit is transmitted 

following every k  information bits. The puncturer and multiplexer (PUMUX) 

block in Fig. 2.1 performs this operation. Following the random interleaver, the 

interleaved data is precoded, and then fed into the channel. Both the 

convolutional code and the precoder were terminated to the zero state at the end 

o f every block. The length o f the interleaver is 4096 bits. The partial response 

targets considered are PR4, EPR4, E"PR4, and a ME‘PR4 target 

( l - £ ) ‘ )(2 + 2£) + D ‘ ) [12]. The precoders are o f the form l / ( l + £)’ ), 

l/(l + D + ) and l/(l + D + D ' + + D * ) . We used these precoders because

they are o f  the same order as the target partial response channels, and they do not 

increase the complexity o f the decoder.

2.2.2 Channel model and signal-to-noise ratio

The equalized channel model comprises a Lorentzian channel, an additive white 

Gaussian noise source n{t) and a minimum-mean-squared-error (MMSE) 

equalizer. The readback signal at the input o f  the MMSE equalizer can be written

as

s ( 0  = ' E  -  kT) -  g(t  ~(k  + l)T)] + n(t) ,  (2.1)

16



where Zk e  (+1} is the precoded data that was written on the magnetic media; T  is 

the sampling interval; g(r) is the step response o f  the Lorentzian channel, which 

was defined by (1.1). The MMSE equalizer w as designed so that the Lorentzian 

dipulse g { t - k T ) - g { t - { k  + \)T) can be equalized to a desired partial response 

target when sampled at the sampling rate o f l/T.

We defined SNR as

5Â R = 101og 2  
Vo--

(2.2)

where a  is the standard deviation of the additive white Gaussian noise. Because 

the maximum amplitude o f (1.1) has been normalized to 1, the SNR is controlled 

only by the amount of added noise.

2.2.3 Iterative decoding

The iterative decoder includes two a posteriori probability (APP) decoders. The 

inner APP decoder is matched to the combination o f precoder/channel, whereas 

the outer APP is matched to the convolutional encoder. The inner APP processes 

not only the channel values but also a priori information about the symbols to be 

detected. The outer APP, on the other hand, processes only the de-interleaved and 

de-multiplexed extrinsic information o f the inner APP decoder. The log- 

likelihood ratio (LLR) of a posteriori probabilities o f  the precoder input .r* can be 

calculated according to

U’.s).Xj =*l_____________________
' ^a^_,(s' )  Yt(s' ,s) ■ p^(s)

( j ’.i) .X j = - l

(2.3)

17



where s ' and 5  denote the states o f the combined trellis o f  the precoder and 

channel at time instant k-I  and k, respectively. Here a* and p* can be calculated 

recursively as

= (2-4)
J'

= - . (2.5)

Since we terminated each block to state zero for the precoder, a  and p are 

initialized as

ag(0) = Oandao(5) = - 0 0 , where 5 ^ 0
(2 .6)

0 \  (O) = Oand P^ (s) = - 0 0 , where.s ^  0,

where N  is the block length o f  the inner APP decoder, and y,^(s',s) is the branch 

transition probability. In the logarithm domain

7 , ( 5 ' , . y )  = - ~ K \ y t  • K  priorM^ (2.7)
z c  z

where y^(5',5) is the ideal channel output for a transition from 5 ’ to 5 , and cr

denotes the noise standard deviation at the input o f  the inner APP decoder. 

Lajjrionixk) is the a priori information about Xk obtained from the extrinsic
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information o f  the outer APP. The extrinsic information passed to the outer APP 

decoder is

) =  U X k  I y ) -  4 .  prioriK  ) ■ ( 2 - 8 )

The decoding process for the outer APP decoder is done similarly. Since it 

matches the binary systematic convolutional code, the algorithm in [13] can be 

employed. The initialization is the same as the inner decoder.

Iterative decoding starts with the inner decoder. During the first iteration, 

the a priori information for the inner decoder is set to zero. After the extrinsic 

information o f  the inner decoder is calculated using (2.8), it is de-interleaved and 

de-multiplexed and then input to the outer decoder as the soft estimate o f the 

channel value. Using this soft estimate, the outer decoder calculates its own 

extrinsic information for both the user bits and their parity bits. The extrinsic 

information o f  the outer decoder is multiplexed and interleaved, and fed back to 

the inner APP decoder. After several iterations, the process is stopped when the 

hard decisions for the user bits carmot be improved.

2.3 Drive Data Experiment
In the Lorentzian channel simulation, we assumed that the channel is a linear 

superposition o f  isolated Lorentzian pulses. Furthermore, we also assumed that 

the readback signal is ideally down sampled. This is an approximation to the real 

disk drive channel. In our experiment, we encoded, permuted and precoded user 

data as in Fig. 2.1. The precoded data was written to a disk drive and then
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oversampled 3.526 times. To cope with channel variations and the need to 

downsample the readback signal, a more complicated scheme was used to process 

the readback signal before decoding. The front end o f the read chaimel is shown 

in Fig. 2.2.

Oversampted data from d n \c

To iterative detector

Cam Control

Down
Sampler

Timing Control Tap Weight 
Control

Fig. 2.2. Front end o f the read channel for the drive data experiment.

2.3.1 Gain control and timing recovery

Generally, the readback data is not zero mean. This mean is removed and the 

zero mean signal is then passed to the variable gain amplifier which compensates 

for the amplitude variations caused by the channel and filters. For fast initial 

adjustment o f the gain and timing phase, a 2T preamble is written prior to the user 

data. A zero phase restart (ZPR) technique was employed for quick timing 

acquisition. In the tracking mode, the timing control block adjusts both the 

sampling rate and the sampling phase o f  the down sampler.
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2.3.2 Adaptive equalization

Adaptive equalization using a least mean square algorithm was used in the real 

data experiment. We trained the equalizer by setting all the initial taps to zero, 

and used enough data to guarantee that all coefficients converged. Automatic 

gain control, timing recovery and adaptive equalization all worked in a decision- 

directed mode. The error signals that were used for these adaptive loops were 

obtained from the difference o f the equalized samples and the signal extracted 

from the Viterbi detector. This Viterbi detector was used specifically to obtain 

better error signals. While we cannot guarantee that we found the optimum loop 

gains for the three feedback loops, the same equalized signal was simultaneously 

used for iterative detection and Viterbi detection, which provided a fair basis for 

comparison.

2.3.3 Lowpass filter

A third order lowpass filter was used in the drive data experiment. The cutoff 

frequency was optimized based on the minimum-mean-squared-error criterion.

2.3.4 Signal-to-noise ratio definition

The definition o f  SNR in (2.2) is suitable for the linear superposition channel 

model, but not for a real disk drive. When channel nonlinearities are considered, 

calculating the actual amount o f channel noise becomes very difficult. To 

circumvent this problem, we defined SNR after equalization as
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SNR = 10 log— ~  (2.9)
2R<y'-

where cr' is the standard deviation o f  the noise sequence which was obtained by 

subtracting the ideal channel output from the equalized channel output and R is 

the code rate.

2.4 Results

2.4.1 Lorentzian channel results

We have simulated rate 16/17 and 32/33 systems on precoded PR4, EPR4, E^PR4 

and ME“PR4 equalized channels, as shown in Fig. 2.1. The user density was 2.7, 

and the maximum number o f  iterations was set to ten. As a baseline, the uncoded 

PR4 system was compared with the serially concatenated systems and the results 

are shown in Figs. 2.3 and 2.4. The bit-error-rate performance o f the ME“PR4 

channel is 4.7 dB better than the uncoded PR4 system at 10'^.

In order to reduce data processing time in the drive data experiment, we 

investigated two stopping criteria for the Lorentzian channel and used one o f them 

in our experiments. The method o f observed hard decisions consists o f  observing 

the hard decisions made by the channel APP in each iteration. If the hard 

decisions do not change in two consecutive iterations, the iteration process is 

stopped.

In [14], the cross-entropy stopping method was simulated for a mobile 

communications system. This criterion calculates the change o f cross-entropy for 

every iteration using the log-likelihood ratios generated in the decoding process.
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We have applied this method to the Lorentzian channel and stopped the iteration 

if

< threshold (2 .10)

where i represents current iteration, and p„or,(0 is the multiplexed and

permuted extrinsic information o f the outer APP decoder. A suitable threshold 

can be obtained by observing the variation o f the left hand o f  (2.10). In Fig. 2.5, 

we have plotted the average required number o f iterations versus SNR for an 

E“PR4 system with a code rate o f 32/33. It can be seen that the cross-entropy 

method is slightly better than the observed hard decision method. Both stopping 

criteria give a much smaller average number o f iterations at high SNR. No extra 

decoding errors were introduced by applying these two methods in our 

simulations.

2.4.2 Drive data experiment results

Drive data were collected at user density 2.25 and code rate 16/17. We simulated 

ideal uncoded EPR4 channels and compared them with drive EPR4 channels. In 

Fig. 2.6, we use the term ideal to refer to a perfectly equalized channel with 

additive white Gaussian noise and the term drive for the real hard disk drive. We 

note that the performance o f the drive channels (both uncoded and turbo coded 

EPR4) are around 0.6 dB worse than that o f ideal channels. At bit-error-rate o f
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10'^, the turbo-coded drive EPR4 system has a 4-dB SNR improvement over the 

uncoded drive EPR4 system. In the drive data experiments, the maximum 

number o f  iterations was initially set at ten and later reduced to six without any 

discernible impact on error, while the observed hard decision stopping criterion 

was applied.

The distribution o f bit errors per sector was also studied on the entire data 

set and the results are shown in Fig. 2.7. It is shown that if  a block cannot be 

correctly detected, the turbo coded EPR4 system tends to have more decoding 

errors in a sector than the uncoded system. It should be noted that these results 

were obtained at an SNR o f  3.9 dB, which is much lower than the normal 

operating SNR.

At the same SNR, the dominant error events were also studied and the 

results are shown in Fig. 2.8. An error event is defined using a reset length o f 

eight bits. The vertical axis is the average error events per sector, and the 

horizontal axis is the length o f the error event. It can be seen that for uncoded 

EPR4, error events shorter than five bits are most frequent. The dominant error 

event for turbo coded EPR4 is the single bit error event. This is due to the 

presence o f  interleavers.

2.5 Conclusions

We have evaluated the performance o f serially concatenated convolutional codes 

for high order partial response systems using a Lorentzian channel model and a 

real hard disk drive. At channel density 2.25 and bit error rate 10'^, a coding gain
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of 4 dB was obtained for the disk drive experiment, which is consistent with that 

o f the simulation results for a Lorentzian channel. We also found that serially 

concatenated convolutional turbo systems tend to exhibit larger number o f  errors 

per sector and that the dominant error event is a single-bit error.

00

  uncoded PR4
PR4 rate 16/17 

- A -  EPR4 rate 16/17 
EEPR4 rate 16/17 

- a -  MEEPR4 rate 16/17

■210

310

10"̂

•5
10 '

«10
19 22 2320 24 2521

SNR [dB]

Fig. 2.3. Performance comparison o f  partial response channels, code rate 16/17.
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-A -  EPR4 rate 32)93 
- t -  EEPR4 rate 32/33 
- a -  MEEPR4 rate 32/33

■210

310

10"̂

•s10
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Fig. 2.4. Performance comparison o f  partial response channels, code rate 32/33.

-A -  cross entropy method 
—t— observing hard decision method8

7

£  5
OO)

3

2
19.6 19.8 20.2 20 4 20.6 20.8 21.220 21

SNR [dB]

Fig. 2.5. Average number o f iterations versus SNR for EEPR4, rate 32/33 system.
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Fig. 2.6. Hard disk drive experiment results for EPR4 channels, code rate 16/17.
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Chapter 3

Noise Predictive Turbo Systems

3.1 Introduction

Partial response channels have been used in m any applications, and in general, a 

filter to shape the received signal to a given PR target is required. The noise 

component at the detector input can be modeled as a white noise process filtered 

by the partial response equalizer. In this chapter, we discuss the application of 

prediction techniques to serially concatenated convolutional turbo systems of 

partial response class-4 magnetic recording channels. The idea can be extended to 

higher order PR channels in a straightforward manner.

Partial-response maximum-likelihood channels have been the dominant 

detector technology for magnetic recording since 1990. At high density, 

significant equalization is required for a PR4 channel, causing strong noise 

correlation at the detector input, which degrades performance. To improve the 

performance o f  the Viterbi detector, a noise prediction scheme was proposed in 

[8]. The prediction is based on the tentative decisions obtained from the surviving 

path corresponding to each state. This scheme substantially improves the 

performance o f  the Viterbi detector.

With the advent o f  turbo codes, iterative soft detection is expected to be 

used in high performance receivers for various applications. Turbo equalization
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for partial response channels involves at least two decoders. One decoder 

matched to the channel and the others matched to the codes concatenated with the 

channel. For convenience, we refer to the channel decoder as the turbo equalizer 

and to the other decoders as the outer decoders. The BCJR algorithm [13] is 

usually used for the turbo equalizer because it provides a soft output to the various 

probabilistic decoding algorithms, which can be applied to the codes concatenated 

with the channel. This algorithm requires that a whole channel output block be 

received before starting the decoding process. The channel output is stored and 

used for every iteration. For a given iteration, the a posteriori probabilities o f  the 

channel symbols generated in the previous iteration or obtained from the outer 

decoders are useful in estimating the noise sequence at the channel output. Signal 

processing techniques, such as linear prediction, filtering and smoothing, can be 

used to reduce the noise.

The decoding techniques in this chapter can be viewed as an extension o f 

Chapter 2. To compare the noise predictive turbo systems with the systems 

described in Chapter 2, we used the same system and the same SNR definition.

3.2 Noise Predictive Turbo Systems

3.2.1 Linear prediction

Linear prediction has been used to de-correlate the noise in partial-response 

maximum-likelihood magnetic recording channels [8]. Because the Lorentzian 

channel is assumed time-invariant, the predictor coefficients can be calculated 

offline and used for all the input signals from the channel.
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Let us denote the noise component in a received signal block for the turbo 

equalizer as n and the P-tap noise predictor as

a = [a,,a3,<33, --,ap]; the mean squared prediction error function can be written 

as [15]

E{el)  = E Oh (3.1)

By minimizing this error function we find the forward predictor coefficients

a.
a.

/-..(O) r«(2)

r« (l) r..(l)
/-.n(2) r..(0)

... r„„iP-lŸ -1

r„„(P-2) fi»(2)
••• r„„(P-2) r..(3) (3.2)

where r„„{k) are the elements o f  the noise correlation vector. Similarly, we find 

that the backward predictor is the time inverse o f  the forward predictor. I f  we 

denote the backward predictor as a', we have

a '= [a ',,a \, - ,a'^]
(3.3)

3.2.2. Noise predictive turbo systems with soft feedback (NPTS/SF)

For a white noise channel, the performance o f the concatenated decoder is near 

optimal, but its performance can be seriously degraded by the noise correlation o f 

a partial response equalized channel. The reason is that the turbo equalizer does
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not take into account the noise correlation. A straightforward way to improve the 

performance is to de-correlate the noise. To predict the noise in the channel 

output y*, knowledge o f  the ideal channel outputs or , m=I,  2....... P, is

needed. Perfect knowledge o f these values is impossible, however, in [8], they 

are obtained from the surviving path for each state and called tentative decisions. 

Since the Viterbi detector only keeps one path for each state, correct tentative 

decisions cannot be guaranteed. Wrong tentative decisions lead to a wrong 

prediction that will enhance the noise in yu instead o f reducing it. The accuracy of 

the prediction is determined by the accuracy o f  the estimates o f  the tentative 

decisions.

In turbo equalization, the log-likelihood ratio o f the a posteriori 

probabilities for the channel symbols, available from the outer decoder/decoders 

or from the turbo equalizer, enables us to find expected values o f  the tentative 

decisions that are not available to the Viterbi detector. In magnetic recording 

applications, the ideal channel output is a discrete random process. In the

sense o f minimum-mean-squared-error, finding the best estimate o f  , denoted 

as y*, is equivalent to minimizing

Var{e,^) = E [ { ÿ , - y , Ÿ ) -  (34 )

It is well known that (3.4) is minimized when is the conditional expected 

value o f y* . Since y^ is a better estimate than the hard tentative decisions, a 

more accurate prediction can be expected.
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Instead o f  finding a tentative hard decision as in [8], using is 

equivalent to use all possible values o f  and scale each value by its a posteriori 

probability. If e  A = ( 4 ) . - 4 , can be represented as

V. = c(ÿ . I y)

= Z '/ ' .P r ( ÿ .  . X . l y X  "
m =0

Since the a posteriori probabilities for the channel symbols are available 

for an entire block we can find both the past and future tentative decisions so that 

the noise prediction can be performed fi"om either side. It is even possible to 

improve the performance by using forward-backward linear prediction. To make 

the a posteriori probabilities o f  the turbo equalizer available for the next iteration, 

they need to be saved. To overcome this problem, we can let the outer decoder 

pass not only extrinsic information but also its a posteriori information to the 

turbo equalizer. After multiplexing and interleaving, it is used to calculate . 

Therefore, the memory required for the implementation o f NPTS/SF is small. We 

will describe two approaches for calculating : one approach uses the APP o f 

the turbo equalizer and the other one uses the APP o f  the outer decoder.

3.2.3 Noise predictive turbo systems with hard feedback (NPTS/HF)

Although “surviving paths” do not exist in a maximum a posteriori probability 

(MAP) decoder, the feedback in this scheme can be obtained similarly to the 

NPML technique [8]. The similarity to the NPML method stems from the fact 

that the feedback is state related. In NPTS/HF, the noise prediction for the 

branches emitting from state Si at time instant k, uses the tentative decision at k-I
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obtained by taking the ideal channel output associated with the more probable 

branch that comes into this state. By repeating this process, we can obtain the 

tentative decisions at time instants k-P, Ar-1. For all the other states at

time k, tentative decisions are calculated in the same fashion. To explain this 

process, an example for a PR4 trellis is given.

io(k-3) s o(k-2)

I 1 "
i ,(k-3) ^  s ,(k-2) 3 i , ( k - I )

s ,(k-3) 5 ,(k-2)

< -----► 3 o(k+l)f X

s  ,(k-I) /  ̂ ,(k) i|(k + I)

/ h - i

i ,(k - I ) f i  ,(k) 5,(k+I)

^ j(k-l)  ̂j(k) ij(k + l)

yk-i ykyk-3 yk-2

Fig. 3.1. Illustration o f finding tentative decisions.

In this example, the bold arrows represent the selected branches for state S(^k). 

For time k-I,  we compare the two joint probabilities, /7(5o(A: -  l),5o(^),y) and 

p(s , (k  - 1), jo(/:),y) [13], o f the previous iteration and make the decision using

(3.6)
^  _  p(5o(Â:-l),5o(Â:),y)

p(5,(A:-l),5o(/:),y)

If > 1, the branch is selected, otherwise the branch

-lX-^o(^)) is selected.

Assume the latter was selected as shown in Fig. 3.1. At time k-2, we 

compare the two joint probabilities for the branches going into state S2(k-J). 

Similarly, the decision can be made using
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Obviously, P  comparisons and selections are made for a f*-tap predictor for each 

State.

Assume the selected path for a 3-tap predictor labeled by the output 

A -3’A - : ’ and Vt-i • The noise for state s^k)  is estimated as

A  = Z " < T v * .,-A - ,X  P = ^-  (3.8)
i=\

The noise estimate will be used to calculate the transition probabilities 

y(.yq(A:),Jo(^ + l)) and 7(^o(A^),5,(A: +1)) in the forward and backward recursions 

respectively in (2.7)

7^(5 ',j) = - A ) - ÿ , ( - ^ \ 4 r  - 4  pricriM- (3-9)ZCT 2.

As we have seen this method is very similar to NPML. The difference is that we 

have to predict the noise in the previous iteration and save it for the consecutive 

iteration. From an implementation point o f  view, it is not necessary to go back P 

steps to search for the tentative decisions at each time instant since {P-l)  

computations have already been performed. For a P-step prediction and an M- 

state partial response target, an M x (P -l)  matrix might be used to save the 

selected paths for time instant k. At time k-^l and for state 5,(A:+/), we compare 

the two branches that come into this state and select one o f  them for time instant 

k. The remained path can be directly obtained from the M x (P -l)  matrix. After 

the prediction is made, the matrix should be updated using the newly selected
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branch. Therefore, only one step needs to be traced back at any given time instant 

for each state.

3.3 Noise Predictive Serially Concatenated Convolutional 

Turbo System with Soft Feedback

3.3.1 Calculation o f the soft tentative decision

In the log-MAP algorithm, the log-likelihood ratio o f the precoder output zt is 

obtained by performing the sum in the numerator and denominator o f  (2.3) as

L{z^ I y) = In = +11 y)

= In

= - 1 1 y)

(3.10)

Note that only one set o f  a ’s. P ’s and y’s needs to be calculated for L(x^ \ y) and 

1 y) • The conditional expected value o f  z* can be calculated from its log- 

likelihood ratio [16]

= E{z,  Iy} = (+l)P(z* = + 1 1y) + ( - l )P (z ,  = - l | y )

= tanh(Z,(z^ | y ) / 2 )

( - 1)
1 + e

(3.11)

(-1 < z ,  < l ) .
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Then, the estimation o f  the noiseless channel output for PR4, given in (3.5), takes 

the form

l y ) - u * - 2  ly)
= tanh(Z,(r* | y ) / 2 ) - t a n h ( |  y)/2). ( - 2 < y ,  < 2 ) .

(3.12)

The above approach for calculating was used in all the simulations in 

this work. Another approach is to calculate recursively from | y) using 

log-likelihood algebra. From the polynomial o f  the precoder, we have

1

= L(x,  © z , . , ) (3.13)

= In

Since the trellis is terminated for each block, the initial values for both L{z_^) and 

A(z_n) - 0 0 . Once we have A(z*), the estimate o f  the noiseless channel 

output follows from (3.12)

y* = tanh(Z.(z*)/2)-tanh(Z,(z*_,)/2)

(3.14)

The forward predicted noise sample for the input y* is
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", (3 . 15)

and the backward predicted noise sample is

" , - n : ï ) ,  (3.16)

where the superscript T stands for vector transpose. The required modification o f 

the channel a posteriori decoder involves only the branch transition probability. 

The modified branch transition probability is

1 1
y*(5',5) = j^ --^ ^ |y i - y , ( y , j ) - n ^ | ' j  + ■L{ x ^ ) j  , (3.17)

where ct’ is the noise variance. Since we predict the noise and subtract it in the 

calculation o f the branch transition probability, the actual noise in each iteration is 

different. It can be approximately estimated from the previous iteration as

<T- = M y - y - n ) ,  (3.18)

where ÿ and n are the hard decision and predicted noise obtained from the 

previous iteration. Our simulations show that the performance o f  NPTS/SF is not 

very sensitive to changes in o ’ for the system considered. Therefore, the 

original o ’ can be used for all iterations in (3.17), avoiding the computation in 

(3.18).

3.3.2 Estimation error for NPTS/SF

For NPTS/HF, i f  the selected paths contain the correct path, the prediction is 

optimal. Otherwise, the prediction is wrong and error propagation occurs. Unlike 

NPTS/HF, NPTS/SF never makes an exact prediction. In this section, we will 

study the characteristics o f the estimation error in (3.4). This is helpful in
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designing prediction schemes. Let us assume that the hard decisions o f 

L(z* I y) and | y) are correct. Fig. 3.2 shows a three-dimension plot o f

y\  versus L(z* | y) and | y) for a PR4 channel. From (3.12) we find that

when the amplitudes o f both L(z* | y ) and | y) are infinite, converges

to one o f  the three correct decision planes {+2, 0, -2}. Since

exponentially converges to , the estimation error is negligible for most values 

o f L(z* I y) and L(z^_, | y ) . We call the regions o f  the L(z* | y) and | y)

plane which correspond to a non-negligible estimation error the transition areas. 

The transition areas are the regions

\ L { z , \ y ) \ < a  (3.19)

and

|^(^*-2 I y)| < (3.20)

where a is the boundary that satisfies a required estimation error. For example,

setting a=6, if  Z,(z  ̂ | y) =-6 and L(z^_, | y) =6, the noiseless channel output is

ÿk = sign{Uz,  I y))-s ign{L{z ,_ .  | y)) ^^21)

and its estimate is

y, = tanh(L(z, | y )/2 )-tan h (L (z^_ , | y ) /2 )  ^2)
= -1 .99 .

The absolute error introduced by using y* is 0.01, which is negligible for making

a prediction. In these regions, the tentative hard decision is correct, but the 

absolute value o f  e* is
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0 < \ y , - y , \ ^ i .  (3 .23 )

The joint region

|/:(z J  y)| < a n  i  y)| < a (3.24)

should be specifically taken care o f  because the transition from = -2  to 

% +2 occurs in this area. The maximum absolute error introduced by 

occurs when

/.(z* | y ) - > O  nA(z*_, | y ) - > 0 '  (3.25)

or

I ( z J  y ) 0^ n  I ( z , . ,  I y ) -> 0- (3.26)

where means approaching from the negative direction, and means 

approaching from the positive direction. It is obvious that the maximum absolute 

error introduced by y* in this area is

0 < | ÿ * - . v , | < 2 .  (3.27)

In a similar way and considering the fact that whenever L(z^ | y) has an 

erroneous sign it tends to have low amplitude, we find that y^ introduces less 

estimation error when the tentative hard decisions are not correct.

3.3.3 Selecting prediction direction

Ideally, noise prediction needs to be performed only for those y* where the 

confidence forx* is low. Since we actually do not know how large the confidence 

o f .r* should be, we predict the noise sample for all the elements o f y in our
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simulations. From (3.12), the confidence o f is determined by the amplitude of 

L{z^ I y) and | y ) . To determine which side to use in the prediction, we

use the following criteria:

i) Consider both and the amplitude o f the predictor coefficients. For 

example, in our simulation, we used a 3-tap linear predictor. For a PR4 channel, 

the amplitudes o f tap-1 and tap-2 are much larger than that o f  tap-3. Therefore, 

the accuracy o f the prediction is not heavily dependent on the values of y^.jOr

ii) The y\ ’s that correspond to the two transition areas are not recommended 

to be used for prediction, especially for the y* ’s that are calculated from the joint 

region (3.24).

We found that the following two empirical criteria work well, at least for a 

third order predictor. Let

c = I y)/2)| + |tanh(z:(z,_,.„ | y)/2%)

-X hm (itanh(Z.(z,,„ | y) /2) |+ |tanh(L(z,_,^„ I y)/2%) (3.28)

or simply

c = (jtanh(A(%,_, | y)/2)(+ |tanh(Z(.r,_, | y)/2)|)

-(]tanh(Z.(x4 ,̂ | y )/2)|+ |tanh(l(x^^, I y)/2)|). (3.29)

If c > 0 , we use forward prediction, otherwise backward prediction is used. For

the first and the last several elements o f y, only one side prediction can be

performed.
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Although forward and backward prediction can also be performed for 

NPTS/HF, we only investigated the performance o f  forward prediction.

3.3.4 Predictor bank

In trying to avoid the use o f  an unreliable , we propose the use o f a predictor

bank with NPTS/SF. The predictor bank consists o f  several linear predictors, 

which we call component predictors. Each component predictor has the same 

length and corresponds to a different set o f past or future neighbors o f . At

each time, only one component predictor is used. This gives us more flexibility to 

avoid using the expected values calculated in the joint region. For example, we 

can chose three out o f the five past estimates ofy* for forward prediction.

3.4 Performance Evaluation and Discussion

3.4.1 Performance evaluation of NPTS/SF

We consider a serially concatenated convolutional PR4 system, shown in Fig. 2.1. 

The channel density is 2.86. In the signal-to-noise ratio region o f interest, we 

observed that most values o f | y) are large enough so that is

approximately the ideal value o f the precoder output . This is equivalent to 

A(Z; I y) being outside the transition regions. The histograms o f L{x^ | y ) and 

A(z* I y) at SNR=19.6 dB for iteration one are shown in Figs. 3.3 and 3.4, 

respectively. It should be noted that at this SNR, the bit-error-rate is
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approximately 10'^, which means the confidences o f  L{x^  ̂ \ y) and A(z* |y )  are 

very low.

For all simulations, a one-step, three-tap linear predictor is used. We 

predicted the noise sample for each y*. The prediction direction was selected 

using (3.29), which means that the tentative soft decisions that were calculated 

from the transition areas and their joint region were also used in the prediction.

To evaluate the performance o f NPTS/SF, we first simulated the system 

without noise prediction. Fig. 3.5 shows the results o f  this serially concatenated 

system for iterations five to ten. It can be seen that between iteration eight and 

ten only a small performance gain can be achieved, which means that increasing 

the maximum number o f  iterations would not give any significant performance 

improvement. Fig. 3.6 compares the performance o f  the NPTS/SF from iteration 

six to twenty with a standard system after ten iterations. The performance gain at 

a bit-error rate o f  5x10^ is approximately 1.7 dB.

At SNR=19.8 dB, Fig. 3.7 shows the absolute value o f  the noise 

autocorrelation r„„(0) to /-««(S) for twenty iterations o f  the noise predictive PR4 

system. It can be seen that r„„(0) to r„„(3) have been reduced with each iteration. 

It can also be seen that the effect o f  noise whitening is concentrated on the first 

several iterations. Since we used a three tap predictor, r„„(4) stays unchanged.

Although we could not simulate the error floor performance o f  the noise 

predictive PR4 system, it is reasonable to expect that it might have been 

significantly improved. This can be verified by the variation of r„„(0) in Fig. 3.7. 

We can see that almost one third o f  the noise energy has been removed by using
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prediction. With less noise energy and whiter noise, the error floor o f the noise 

predictive PR4 should be lower.

NPTS/SF improves the performance o f the system by increasing the 

amplitude o f  which is the information passed to the outer error-

correction decoder. The outer decoder takes this information as its channel value, 

which is now more reliable. For SNR=19.6 dB, block length 4354 bits. Figs. 3.8 

and 3.9 show ) for twenty iterations o f the standard and predictive systems,

respectively. In these two figures, bits 0-4353 on the horizontal axis correspond 

to the first iteration, bits 4354—8707 correspond to the second iteration, and so on. 

For the standard system, we observed approximately an average o f 180 bits in 

error after each iteration for this block. The reason is that at this low SNR the 

iterative decoding system cannot improve its decisions from one iteration to the 

next. This can be explained by Fig. 3.8, where the amplitude o f the turbo 

equalizer output L̂ ^X-Xk) was not improved by iterating. For the noise predictive

system, the number o f erroneous bits decreases with every iteration. The 

decoding is successful at the seventh iteration. This is consistent with Fig. 3.9, 

where the amplitude o f continually improved. Fig. 3.6 shows that at

this SNR, the bit-error rate o f  the predictive systems is approximately 10' ,̂ 

whereas it is much higher for the conventional system.

We should point out that we did not predict the noise samples for the first 

and the last two y*'s. These bits benefit from the initialization in (2.6), and 

therefore they usually have a large LLR o f a posteriori probabilities. We can see
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in Fig. 3.9 that these bits are the isolated points whose amplitude did not improve 

with successive iterations.

We also simulated the same system with a predictor bank, which selects 

three out o f  four past or future tentative decisions. In predicting the noise in >’*, 

we simply looked at the amplitudes o f  | | y)] and

I I y)], and used these amplitudes as the corresponding

confidences for selecting y^_^ or . The simulated performance was worse 

than that o f  the single predictor. Intuitively, we think the performance o f  the 

predictor bank should be better as long as we can properly select the tentative 

decisions. From (3.14) we find that ŷ  ̂ is not determined only by L(x^ | y) .

Therefore, our selection criterion for the predictor bank is not adequate. 

Generally, selecting prediction direction and tentative decisions is more complex 

for a predictor bank because we should take the tradeoff between using unreliable 

tentative decisions and using multi-step prediction into consideration. Multi-step 

prediction is inherently less reliable than single-step prediction.

3.4.2 Performance evaluation o f NPTS/HF

We consider the same system and density as in the previous section. To compare 

NPTS/HF with NPTS/SF, we also used a three-tap linear predictor in this section. 

At channel density 2.86, the bit-error-rate performance o f  NPTS/HF is shown in 

Fig. 3.10 for iterations six to twenty. As a comparison, the performances o f a 

conventional PR4 turbo system at iteration ten and an uncoded PR4 system are
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also shown. It can be seen that at bit-error-rate o f  5x10*^, NPTS/HF has 1.9 dB 

gain over the conventional turbo system.

The performance o f a ME“PR4 channel, which has the same parameters 

except for the precoder which is 1 /{I +D*), was studied in [17]. In

Fig. 3.11, the bit-error rate performance o f NPTS/HF, NPTS/SF, conventional 

PR4 and ME“PR4 turbo systems is compared. It can be seen that both NPTS/HF 

and NPTS/SF outperform the ME“PR4 turbo system.

3.4.3 Performance evaluation at very high density

Performance o f  NPTS is also simulated at a channel density o f  3.19. Fig. 3.12 

compares NPTS/SF with the conventional PR4 turbo system. Fig. 3.13 shows the 

performance comparison o f NPTS/HF and the conventional PR4 turbo system. At 

bit-error-rate 5x10'^, NPTS/SF has approximately 1.5 dB gain over the 

conventional PR4 turbo system, whereas NPTS/HF has a 2-dB SNR 

improvement.

We found that the bit-error-rate o f  NPTS/SF is improved almost equally at 

each value o f SNR, which shows it is reasonable to deduce that additional 

iterations may still improve the bit-error-rate. On the other hand, the performance 

of NPTS/HF was not improved for iterations sixteen to twenty at most points in 

Figs. 3.10 and 3.13. Although the performance o f NPTS/HF is better than 

NPTS/SF within twenty iterations, which one is better with unlimited iterations is 

not known.
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An important phenomenon is shown in Fig. 3.13 where NPTS/HF does not 

converge steadily. We would like to point out that the input data and noise 

sequence at the receiver are identical for NPTS/SF and NPTS/HF. Since it is hard 

to analyze the convergence properties o f conventional turbo systems and noise 

predictive turbo systems, we conjecture that NPTS/HF causes more severe error 

propagation, which in turn leads to convergence problems.

3.5 Conclusions

We have introduced iterative noise prediction techniques, which were shown to be 

powerful methods to improve iterative decoding o f  partial response channels. For 

NPTS/SF, there are two main reasons for its excellent performance. First, the 

availability o f soft tentative decisions y*, which are optimal estimates of the ideal 

channel output in the minimum-mean-squared-error sense; and secondly, turbo 

equalization makes it possible to perform iterative noise prediction with improved 

accuracy.

In the simulation, NPTS/HF shows better performance than NPTS/SF 

within twenty iterations, but the latter has the potential to improve further with 

additional iterations and possibly suffer less error propagation.

Real hard disk drive experiments have shown that the most frequent error 

event for a turbo coded EPR4 system is the single-bit error event [17]. This is 

well suited to the use o f  a short predictor because the single-bit error is likely to 

be corrected by noise prediction, and it also might be avoided in predicting the 

noise sample for other bits. We think that this technique can also improve the
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performance o f  higher order partial response channels as long as its noise is 

correlated.

It has been shown that the correlation and energy o f the noise were 

significantly reduced, and therefore performance o f  the detector improved. These 

techniques are expected to be particularly attractive for very high-density 

magnetic recording where correlated noise will be particularly significant. Since 

NPTS/SF can be implemented with a simple finite-impulse response filter, even 

longer predictors do not increase the detector complexity significantly.

As a conclusion, we would like to highlight other potential applications o f 

iterative estimation, which is the basis of the noise predictive turbo systems. A 

block Viterbi decoder was proposed in [18] to take advantage o f correlated 

channel noise. Using the same idea, a block MAP decoder can be derived 

directly. Straightforward implementation of a block MAP decoder is impractical 

since the number o f branches o f  the trellis increases exponentially with the block 

length. Using the principle o f iterative estimation, we can ignore noise correlation 

in the first iteration, and then estimate the noise component at the channel output 

for the consecutive iterations. With the vector form probability density function 

[6], better decoding results might be obtained by considering noise correlation. 

This iterative approach keeps the number of trellis branches the same as in the 

white Gaussian noise case.

Low-density-parity-check (LDPC) codes were recently rediscovered and 

have been used as powerful error-correction codes [19]. If the combination o f  the 

outer encoder and the interleaver in Fig. 2.1 are replaced with an LDPC encoder.
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we can use the pseudo-posteriori probability to estimate the noise component in 

the received channel output. In our simulations, we used the a posteriori 

probability o f the turbo equalizer to do it. Obviously, the pseudo-posteriori 

probability is much more reliable than the a posteriori probability o f  the turbo 

equalizer after the first iteration. Therefore, using pseudo-posteriori probability 

provides a better starting point. The potential benefits are twofold: less iteration 

is required and probably larger performance gain can be obtained; computation is 

simple since the pseudo-posteriori probability can be viewed as the “soft bits” o f 

the precoder input.

Uz(k-2)) Uz(k))

Fig. 3.2. versus L{z^ | y) and | y).
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Chapter 4

Iterative Detection for Partial Response 

Magnetic Recording Channels — A 

Graphical View

4.1 Introduction

The study o f parallel concatenated convolutional codes (turbo codes) led to the 

invention o f iterative decoding algorithms for serially concatenated convolutional 

codes and the rediscovery o f  low-density parity-check codes. Recently, it was 

recognized that iterative decoding algorithms can be categorized as probability 

propagation algorithms. This insight provides us with a new way to view iterative 

decoding algorithms [9].

The investigation o f  the performance o f  iterative detection on magnetic 

recording channels started in the late 1990s. All the reported results verified that 

iterative soft detection was significantly better than conventional hard detection 

schemes. In this chapter, we seek to understand various decoding techniques for
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partial response equalized magnetic recording channels using graphical models. 

After the introduction o f  Bayesian networks and the belief propagation algorithm, 

we derive the proper Bayesian network and belief passing schemes for correlated 

noise channels. Secondly, noise predictive turbo systems were recently proposed 

in [20], and shown to have excellent performance. We will show that this 

technique is also a belief propagation algorithm applied to the parameterized 

Bayesian network o f a serially concatenated system. Finally, the concept of 

iterative noise estimation will be introduced, and its possible application to signal 

dependent noise channels will be discussed.

4.2 System Model

We consider a partial response magnetic recording system. The major 

components in this system are the encoder o f a single recursive systematic 

convolutional code (RSC), the inner encoder and the detector. The inner encoder 

represents the combination o f  the precoder and equalized channel. Assume that 

the recording channel is equalized to a partial response target o f  the form

( 1 - D ) ( l + D r , «  = 1 , 2 , 3 .  (4.1)

It is well known that the inner encoder can be viewed as a non-systematic and 

non-binary convolutional code, and the recording system is essentially a serially 

concatenated convolutional code. The codewords o f  the inner encoder are the 

noiseless channel outputs. After transmission, noise is added to the codeword. In 

this chapter, the added noise takes into account the equalized channel noise and
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misequalization. In addition, we assume the information data Uk is an independent 

and identically distributed, equally-likely binary sequence taken from {0, +1}.

Inner
Encoder

RSC
DecoderRSC Inner

Decoder

Fig. 4.1. Diagram o f a concatenated magnetic recording system.

Particularly, the rate K recursive systematic convolutional encoder output is 

punctured to give a code rate o f 16/17. Therefore, the encoding process can be 

represented as

U (U, P) Y, (4.2)

where U is the systematic part and P is the parity part o f the codeword.

4.3 Bayesian networks and the belief propagation 

algorithm

4.3.1 Bayesian networks

Bayesian networks are directed acyclic graphs, where nodes represent the random 

variables and edges represent probabilistic dependencies among the nodes. Fig.

4.2 shows a simple (actually a very simple) Bayesian network for uncoded partial 

response equalized magnetic recording channels. Here [Ui, &/?] is the binary data
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written into the channel. [5/, S?] are the state variables o f  the channel, and [Xi, 

.Yj] and \Yi, Y2] are sampled noiseless channel outputs and noise corrupted 

channel outputs, respectively. For simplicity, we assume the equalized channel 

noise and misequalization are a white noise process in this example.

u,0
■ : 6

o
■6 S .

6

0

Ô

Ô
Fig. 4.2. A simple Bayesian network for uncoded megnatic recording systems.

In a Bayesian network, if  there is a directed edge from node A to node B, A is 

called a parent o f  B  and B is called a child o f  A.  If we denote the set o f the 

parents o f node A as pa {A}, these relationships hold for nodes 5/ and S2 in Fig.

4.2,

pa{S/}  = {[//}, p a{S 2 } = {Sj, tA}. (4.3)

Similarly, if  we denote the set o f children o f  node A as c{A},  these relationships 

hold for nodes S/  and S2 in Fig. 4.2.
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c{5/} = {%/, S2 }, c{5,} = {X2 }. (4.4)

In addition to represent probabilistic dependencies among variables, a Bayesian 

network also clearly shows conditional probabilistic independence. That is the 

probability o f  a node is independent to the non-parent nodes given the values o f  

its parent nodes. The probabilistic dependencies naturally enable us to model a 

problem as a Bayesian network, and the probabilistic independencies help us to 

simplify the inference problems.

Assume that our task is to determine the probability that Ui is u/ based on 

the observation [T/ = yi,  T? = y?]. This problem can be solved by the joint 

distribution, e. g., P(U/, U2, Si, S2, Xi,  X 2, T/, T^), represented by Fig. 4.2,

F*(C/, — \Ŷ  — y  I, y ̂  )

= a  ' ^ P ( u ^ , U J , S ^ , S , , X ^ , X , , y ^ , y , ) ,  (4.5)
( .S2 . t / ;  .'^1  .'V j )

where a  is a constant independent o f U/. According to the chain rule [10]

P ( M , , f / , ,5 , ,5 , ,^ , ,^ , ,y , ,y , )
= P (w ,)P((/, |m ,)P(5, \u^,U,). . .P(y,  \ u ^ , U , , S ^ , S , , X ^ , X , , y l ) .  (4.6)

A straightforward calculation of this probability is not efficient. Using the 

conditional probabilistic independence represented by the Bayesian network we 

can simplify the computation. For example, we can find

P (n  = y , \ u „ U „ S „ S „ X „ X „ Y ,  := y )  = P(V, = y ,  \ X , ) .  (4.7)
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If we also note that the probabilities /*(5, | | , 

P{X^ \pa{Xy}) ,  and P{X^ \ pa{X^})  are either zeros or ones, this detection 

problem can be easily solved. Through this example, we find that the general 

magnetic recording channel can be represented by the framework o f Bayesian 

networks, and the Bayesian networks provide us with a convenient way to take 

advantage o f  the conditional probabilistic independence inherent in the recording 

process.

4.3.2 Probability propagation algorithm

Detection in an uncoded magnetic recording system is the process o f  determining 

the probability o f  each user bit using the observed noisy channel output. Once we 

obtained the Bayesian network for the system, this task can be efficiently solved 

by applying Pearl’s probability propagation algorithm on the network. In this 

algorithm, probability information is passed across each node (except the 

observation nodes) o f  the Bayesian network so that the posteriori probabilities for 

each node can be calculated conditioned on the observation [10]. The messages 

can be categorized into two types according to the parent-child and child-parent 

relationships among the nodes. The parent-child message is a vector o f 

probabilities. Each value o f an element o f  the vector is a probability o f the parent 

node conditioned on all the information available for a child node from the sub

network that is separated by the edge between the parent node and the child node. 

For example, the parent-child messages that state 5/ passed to state S2 in Fig. 4.2 

is
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{P(5, = 5* I  State^^ , 5, s  [5 ,..... 5„ ]}, (4.8)

where State^ _,̂  ̂ denotes the mentioned information about the sub-network

consisting o f nodes Ui, S/, X /, and Y i , [10]. To the local environment o f node S2, 

this information can be viewed as the a priori information o f  Si.

To update the belief (a posteriori probability) o f  node 5?, the message 

passed from its children is also required. Generally, this child-parent type 

message is also a vector o f probabilities. Each probability is the likelihood o f the 

current state o f  the sub-network that is separated by the edge between S2 and Aj 

conditioned on the value o f 8 2

{P{Statex, ), S. 6 [5 , ] } ,  (4.9)

where the sub-network consists o f  the nodes A3 and Tz

After receiving messages from all its parent nodes and children nodes, 8 2  

can calculate its a posteriori probability using these messages. To ensure the

message passing can be continuously performed on its parent and children nodes,

8 2  also needs to calculate the child-parent type message for all of its parent nodes 

and the parent-child type message for all o f its child nodes. From the example of 

message passing for 8 2  we can see that both o f the two type messages must be 

ready for a node before updating the probabilities o f  the node. In this chapter, 

only a functional description o f  Pearl’s belief propagation algorithm is given. The 

initialization o f  Bayesian networks and the mathematical part o f the algorithm 

have been thoroughly discussed in [9] and [10].
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4.4 Bayesian Network for Serially Concatenated Magnetic 

Recording Systems

4.4.1 Probability propagation on the Bayesian network of the recording 

system with white Gaussian noise

When the outer encoder o f  Fig. 4.1 is a rate 16 recursive systematic convolutional 

encoder (RSC), and we assume the channel noise to be additive white Gaussian 

noise (AWGN), the recording system turns out to be a serially concatenated 

convolutional coded system. The turbo decoding algorithm [21] has been shown 

to be an instance o f  the probability propagation algorithm [9], which also 

mentioned that the classical decoding algorithm for serially concatenated turbo 

codes [22] can be derived from the probability propagation algorithm. Two 

suitable Bayesian networks for serially concatenated convolutional codes were 

given in [10] and [9]. The Bayesian network for this magnetic recording system 

can be obtained by slightly modifying the Bayesian network given in [10]. Fig. 

4.3(a) shows a section o f  the Bayesian network for a rate 16/17 serially 

concatenated recording system. This high rate code was obtained by 

systematically puncturing the first to fifteenth parity bits in each sixteen parity 

bits. As an extension, the message passing schedule will be given for this 

network which indicates how the decoding algorithm can be obtained by applying 

the probability propagation on Fig. 4.3(a). It is worth to point out that a different 

message passing schedule usually leads to a different decoding algorithm, and in 

many cases there are different message passing schedules for a given Bayesian 

network. The general description o f the iterative decoding algorithm for a white
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Gaussian noise channel through graphical models can be found in [23], [10], and

[9]. The main focus o f  this chapter is to describe (without proof) probability 

propagation on Bayesian networks for magnetic recording systems with both 

white Gaussian noise and correlated/signal dependent Gauss-Markov noise. 

Therefore, although we can find some content o f this section in [10], [9], the 

Bayesian networks for serially concatenated convolutional codes transmitted 

through a white noise channel will be described because a slightly different 

Bayesian network and message-passing scheme form the basis o f iterative 

decoding for correlated noise channels.

(L. s.)

Ô  Ô  Ô  -► z

(a)
6 6 Ô

(c)

Fig. 4.3. Bayesian network for a serially concatenated magnetic recording system, 

white Gaussian noise, code rate 16/17.

In Fig. 4.3(a), [ui, uj. ........ u/e] represents a segment o f  user bits. The

nodes in the second line, denoted (U, Si), represent the combination o f the hidden 

state nodes and information nodes o f the recursive systematic convolutional code
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[10]. Due to the effect o f  puncturing, the length o f the convolutional codeword, 

(U, X), is seventeen bits. Under these assumptions, the channel is viewed as a 

non-systematic and non-binary convolutional encoder. The state o f the channel is 

denoted as Sj, and its codeword is Y. Z is the observed channel output, which is 

the noisy version o f V.

Fig. 4.3(b) shows the Bayesian network for the convolutional code and 

puncturer, and Fig. 4.3(c) shows the Bayesian network for the random interleaver 

and the equalized channel. Obviously, both o f the two individual networks are 

singly-connected models. Applying the forward-backward message passing 

schedule on the two Markov-type models [10], the optimal decoding algorithm 

which is the same as the BCJR algorithm can be obtained. Since the proof is 

straightforward, the mathematical details will be ignored.

Although the Bayesian network for the serially concatenated recording 

system is loopy, probability propagation can still be applied by ignoring the loops. 

However, this leads to a non-optimal decoding algorithm, and the decoding result 

is not guaranteed to be useful.
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Fig. 4.4. Probability propagation schedule for serially concatenated 

magnetic recording systems.

Fig. 4.4 shows the message passing process for the serially concatenated 

recording system. One decoding iteration consists o f  six message-passing steps, 

and the six message passing steps can be divided into two parts. Each part 

corresponds to the message passing in a constituent code. The iteration starts from 

the Bayesian network for the channel. When the channel output Z is observed, 

messages propagate up to the state vertices by step one. According to Section

4.3.2, this child-parent type message is a vector o f  likelihood, and each element o f  

the vector is the probability o f [Kt =yk,  Z* = z*] conditioned on S2.k = S2,k- The state 

vertices temporarily save the up-going message for the computation o f  steps two 

and three. Here, updating the a posteriori probability o f node 5̂ ,* is not necessary 

because our task is to determine the a posteriori probability o f  each node o f U. In 

step two, messages are passed between state nodes from left to right. This is
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equivalent to the computation o f  a ’s in the BCJR algorithm. Step three is a child- 

parent type message passing between the state nodes from right to left, and the 

computation involved in this step is exactly the same as the calculation o f  P in the 

BCJR algorithm [10].

In step four, the channel decoder calculates the a posteriori probability 

(belief) o f  each symbol o f the codeword (U, X) and passes it according to the 

permutation to the state nodes (U, S,) o f  the convolutional code in the same 

fashion with step one. After the forward-backward probability propagation in the 

outer code, steps five and six, the a posteriori probability o f each state given the 

observed channel output is calculated. If the decoding is not performed in an 

iterative fashion, each state node o f  the convolutional code passes its a posteriori 

probability to the corresponding information node o f  U to calculate the a 

posteriori probability o f  each information symbol. In iterative decoding, the 

process restarts from step one after the sixth step with the consideration o f  the 

newly calculated probabilities (extrinsic information). Since the Bayesian network 

o f  Fig. 4.4 is a loopy structure, the probability propagation procedure never self- 

terminates. Some termination criterion must be applied.

4.4.2 Probability propagation on the Bayesian network of the recording 

system with correlated Gauss-Markov noise

We have derived the Bayesian network for serially concatenated convolutional 

codes for white Gaussian noise channels, and described the probability 

propagation schedule for that network. Now, we will discuss the Bayesian
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network and its probability propagation for correlated noise channels with Gauss- 

Markov statistics.

As we can see in Fig. 4.1, the convolutional decoder is not connected with 

channel directly. Therefore, its probability propagation should not be changed for 

a particular channel. On the other hand, the channel decoder needs to be tuned to 

the signal and noise statistics because o f  the noise memory. The decoding 

algorithm for this channel decoder is essentially a merge o f the maximum 

likelihood sequence detection (MLSD) [24] algorithm for correlated/signal 

dependent noise channels and the BCJR algorithm. The probability r^(s',s) in the 

BCJR algorithm and its modified version are given in [25], respectively

= Pr{5* =s',z^ I = 5 ’}, (4.10)

Y\(s ' , s)  = Pr(5* =s,z^ \  S’*., = ) ,  (4.11)

where L is the length o f the memory o f  the Gaussian-Markov noise. Obviously, 

the probability r \ (s ' , s )  for the additive correlated noise charmel is also

dependent on the noise component o f the previous L channel outputs. According 

to (4.11), the suitable Bayesian network can be obtained. An example for L equal 

one is given in Fig. 4.5. Comparing Figs. 4.5 and 4.4, we find that the Bayesian 

network for the system with correlated channel noise is not much different from 

that for white Gaussian channel noise. Although the Bayesian network for the 

inner encoder with correlated channel noise has cycles (the lower part o f  Fig. 4.5), 

the probability propagation algorithm can solve the decoding problem exactly for 

this channel. The reason is that the edges between the observation nodes consist 

o f  a part o f  each cycle. Since we do not update the probabilities o f  the

6 8



observation nodes, there is no message passing along these edges. Therefore, the 

effect o f  each observation node will not be multiply considered. The message 

passing scheme for Fig. 4.4 also applies to Fig. 4.5 except for step one.

LO iO

t  1

--~
2

-  —

2
r ^  1 r

1 ' 1 ' 1 '

1 r w

• •  o — < y o
Fig. 4.5. Bayesian network for serially concatenated convolutional system, Z.=l.

The computation complexity o f  the iterative decoding algorithm for the 

correlated (more complicated if  noise is signal dependent) noise channels 

compared with that for white Gaussian noise channels is made explicit by 

comparing the Bayesian networks in Figs. 4.4 and 4.5. Since the probability 

propagation steps two to six involve the same nodes, computations are exactly the 

same in these steps for the two Bayesian networks. We note that is a

function o f the noise sample added in yk and j )  is a function o f  the noise 

sequence added to the codeword segment . By clustering the noise segment 

added to y*_^ into one node, the Bayesian network for the inner encoder with
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correlated channel noise can be converted to a singly connected structure, which 

is identical to the Bayesian network for white channel noise. Fig. 4.6. According 

to Section 4.3.2, the message passed from node Yk to state S2. * is a vector of 

likelihood, and each element o f  the vector corresponds to a particular state o f the 

sub-network. To calculate the likelihood, each configuration o f  the noise

component in has to be considered. Assume Y|^&{y^,y^, the

number o f  messages passing from Yk in Fig. 4.6 is times more than that for Fig. 

4.3(c). Since each operation to calculate this message for the correlated noise 

channel involves the computation o f vectors, the complexity o f  the decoding 

algorithm for a correlated noise channel is not practical, especially when K  and L 

are large.

O 0

o o
[ 0 , z , ] Q  [ n „ z j Q  [m, z j Q  - - - [n,^, [n,;, z, ([_) [",6,

Fig. 4.6. Transformed Bayesian network for the inner encoder with correlated

channel noise, Markov memory length L = \ .
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4.5 Iterative decoding combined with Iterative noise 

estimation

We have discussed that decoding for correlated noise channels is too complicated 

when channel noise memory (Z) and noiseless channel output levels (K) are large. 

Using classical decoding algorithms, e. g., the BCJR algorithm or the soft Viterbi 

algorithm, is equivalent to ignore the states o f  the sub network involving the 

previous L noisy channel outputs. This naturally motivated us to design sub- 

optimal iterative decoding algorithms considering the trade off between 

complexity and optimality. In [25], the optimal maximum likelihood sequence 

detector (MLSD) for correlated/signal dependent noise channels was derived and 

several suboptimal sequence detectors with lower complexity were discussed. 

Sub-optimal iterative decoding schemes can be derived by merging the branch 

matrix calculation techniques o f the sub-optimal MLSD detectors with the BCJR 

algorithm. In this section, we will propose an iterative way, namely iterative 

noise estimation, to simplify the computation o f  the detector for correlated noise 

channels.

4.5.1 Iterative noise estimation concept

It was pointed out that the fi-amework o f  realizations based on Tanner graphs 

seems to be an ideal tool to model the more complicated channels, in particular, 

channels with memory [23]. The idea o f iterative noise estimation is similar to the 

idea proposed in [23].
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A common way to simplify the detector is using decision feedback. The 

simplicity o f  current iterative detectors (compared to performance) is also a result 

o f  taking this approach, where each constituent decoder takes the extrinsic 

information o f  other decoders as the feedback. For a constituent decoder, the a 

posteriori probabilities o f other constituent decoders can be obtained along the 

decoding iterations without much effort, and it also can be used to estimate the 

channel noise components. In this method, the conventional decoding algorithm 

is used in the first iteration, which ignores the correlation information. The 

decoding result o f  the first iteration is then used to estimate the desired 

information, such as channel state, channel symbols or noise component in the 

channel output. Through the estimate o f signals and noise, the correlated/signal 

dependent Markov noise can be considered in the consecutive iterations. As the 

iteration proceeds, more and more accurate estimates can be obtained which in 

turn leads to more and more accurate decoding results. This technique takes 

advantage o f the a priori knowledge o f channel statistics in a similar fashion to 

the decoding algorithm o f serially concatenated convolutional codes, where a 

priori information is not considered in the first iteration.

4.5.2 Noise predictive turbo systems (NPTS)

An example o f the application o f iterative noise estimation is the noise predictive 

turbo system [20]. As discussed earlier, yk passes the likelihood o f all the states o f 

the sub network given a particular value o f node S2.k- The truth is that the noise 

segment has only one configuration in the observed channel output, but we
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have to consider all its possible configurations because this noise segment is not 

accessible before decoding. This leads to inefficient computations. To overcome 

this problem, NPTS simplifies the computation by estimating the true 

configuration o f  . According to Pearl’s belief propagation algorithm, the a  

posteriori probability o f each node can be updated during massage passing. It is 

necessary to update the a posteriori probability o f each node o f Y for noise 

predictive turbo systems because this probability will be used to calculate the 

optimal estimate o f  the true configuration o f conditioned on the observation.

After the estimation of 0 % ^, the calculation o f the desired likelihood 

usually involves matrix operations. NPTS simplifies the computation further by 

using linear prediction techniques, which avoid matrix operations. The suitable 

Bayesian network for NPTS is identical to that for white noise channels except 

that the observation node is a combination o f Z* and the introduced parameter 0*, 

where 0* accounts for the influence o f 0 %%̂ on

Although NPTS is efficient, and its performance for the magnetic 

recording channel has been verified by computer simulations [20], it cannot be 

directly used for signal dependent noise chaimels. For signal dependent noise 

channels, the parameter 0* also depends on the symbols o f permuted codeword 

(U, P), see [26] for details o f  the signal-dependent autoregressive channel model. 

In this case, denoting the data memory length as /  [26], and denoting T (U , P)*_;

as the permuted version o f (U ,P ))_ ,, the noiseless chaimel output can be 

estimated using the conditional expected value o f  the look-up table corresponding
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to T (U ,P )i_ /. To find the conditional expected value, the probability o f  the 

vector T (U , P)*.^ is needed, and it can be calculated from

p (t (U,P)Î_, I  z ) =  P{{U,P),_,  I  Z) P{^ i U, P) ,_„ ,  I  Z> P{ ^ {U ,P ) ,  I  Z \  (4.12)

where P{{U,X)/^ | Z) is the a posteriori probability o f  the symbols written on the

channel. Once we have the estimated noiseless channel output, the signal- 

dependent noise can be estimated by simply subtracting the noiseless channel 

output from the noisy channel output.

4.6 Conclusions

Iterative detection techniques for various magnetic recording channels have been 

reviewed from the viewpoint o f  probability propagation, and the suitable 

graphical models for these channels were given. This review provides us an 

alternative approach to understanding the detection process for magnetic 

recording channels. In Section 4.5.1, the technique used in noise predictive turbo 

systems was generalized as the concept o f  iterative chaimel noise estimation. The 

possible application o f  this concept to signal dependent noise channels was 

discussed.

7 4



Chapter 5

Conclusions

5.1 Summary of the Dissertation

High performance and high complexity are the two features o f iterative detection 

algorithms. It maybe difficult to implement these algorithms using today’s 

technology, but advances in microelectronics will enable us to build soft iterative 

detectors in the near future. Compared to their excellent performance, the 

complexity o f iterative detectors is low. Therefore, it is a promising approach to 

meet the demand for high performance detectors for very high recording densities.

The turbo coded ME“PR4 serially concatenated system exhibits near 5 dB 

performance improvement over the uncoded PR4 system. In the simulation 

results, turbo EPR4 systems outperform turbo E"PR4 systems. The possible 

reason is that different precoders were used for the two systems. Precoding 

significantly affects the performance of serially concatenated iterative systems.

Since iterative detectors are expected to work at very high densities, the 

white noise channel models are not realistic. The closed transitions o f the 

magnetization patterns and equalization will lead to intolerable signal dependent 

and correlated noise. This indicates that the correlation and signal dependency of 

the noise should be considered in order to significantly improve the performance. 

Noise predictive turbo systems are proposed in this dissertation, which consider
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the correlation o f the noise. The performance improvement o f  noise predictive 

turbo systems at channel density 3.18 is not significantly better than at channel 

density 2.86. The reason is that at very high densities, the system failed to 

accurately estimate the noise sequence. Recent results show that substituting the 

single convolutional code by a low-density parity-check code (LDPC) can achieve 

almost the same performance without turbo equalization [27]-[30]. This sheds 

light on the advantages o f  using iterative noise prediction combined with LDPC 

codes. With turbo equalization, the LDPC decoder provides a better estimate of 

the noise sequence. This better noise estimate can lead to improved performance.

It is said that Pearl’s belief propagation algorithm is an alternative way to 

understand iterative detection. Chapter 4 gives the suitable Bayesian networks for 

a magnetic recording system for both additive white and correlated Gaussian 

noise channels. Through the viewpoint o f  probability propagation, the two 

decoding difficulties, e.g., large number o f the configurations o f the sub-networks 

(Section 4.4.2) and the matrix computation, for the correlated noise channels are 

made clear. Noise predictive turbo systems consist o f two steps, namely the 

iterative noise estimation and prediction. These two steps are aimed at solving the 

corresponding two difficulties.

5.2 Future Research Directions

The idea o f noise predictive turbo systems is completely described in this 

dissertation, but the understanding o f it is far from conclusive because theoretical 

analysis o f  the noise predictive turbo systems is difficult. To overcome this
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problem, more research through computer simulations for the noise predictive 

LDPC systems is in order.

The error propagation issue is the fatal drawback o f  noise predictive 

maximum likelihood (NPML) systems [8]. Since error propagation is hard to 

control, it precludes this technique from many applications. Fortunately, the soft 

feedback prediction scheme (NPTS/SF) seems to have less error propagation 

problems than the conventional hard feedback prediction. This shows that the 

soft feedback prediction might be a practical technique. It is important to 

investigate the extent o f  the error propagation problem for soft feedback noise 

predictive turbo systems.

At very high recording densities, signal dependent noise is dominant. It is 

necessary to take into account the signal dependent noise for any good detection 

algorithm. The channel model in [26] is an accurate and simple model for 

designing practical detectors. In [26], signal dependent noise is modeled as a 

filtered value, which is a function o f a channel input symbol segment. It is 

obvious that the a posteriori probability o f  each symbol and each symbol segment 

can be routinely obtained during turbo equalization. Therefore, the signal 

dependent noise can be similarly estimated by the conditional expected value. It 

is important to investigate the accuracy o f this estimate. I f  it is accurate, the 

signal-dependent noise can be reduced by subtracting the estimate from the 

received channel output in each iteration.
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