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ABSTRACT 

 
Future high density magnetic recoding channels (MRCs) are subject to more noise 

contamination and intersymbol interference, which make the error-correction codes 

(ECCs) become more important.  Recent research of replacement of current Reed-

Solomon (RS)-coded ECC systems with low-density parity-check (LDPC)-coded 

ECC systems obtains a lot of research attention due to the large decoding gain for 

LDPC-coded systems with random noise. In this dissertation, systems aim to maintain 

the RS-coded system using recent proposed soft-decision RS decoding techniques are 

investigated and the improved performance is presented.   

        The soft-decision RS decoding algorithms and their performance on magnetic 

recording channels have been researched, and the algorithm implementation and 

hardware architecture issues have been discussed. Several novel variations of KV 

algorithm such as soft Chase algorithm, re-encoded Chase algorithm and forward 

recursive algorithm have been proposed. And the performance of nested codes using 

RS and LDPC codes as component codes have been investigated for bursty noise 

magnetic recording channels.  

Finally, a promsing algorithm which combines RS decoding algorithm with 

LDPC decoding algorithm together is investigated, and a reduced-complexity 

modification has been proposed, which not only improves the decoding performance 

largely, but also gurantees a good performance in high signal-to-noise ratio (SNR), in 

which area an error floor is experienced by LDPC codes.  
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Chapter 1 
 
 
Introduction to Magnetic Recording 
Systems 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2  

 
1.1  Introduction 
 

A magnetic recording system such as a hard disk drive normally includes the disk, the 

read and write head, the read/write electronics and the controller. The disk is coated 

with the recording media on which the user data is stored. The disk consists of 

concentric tracks, each track is further divided into sectors where the user data is 

stored in bit cells, typically each sector contains 512 bytes of user data plus some 

overhead. Using write and read heads mounted at the end of the arm, we can write 

and read user data from the hard disk. The controller interfaced with the host 

computer controls the arm motion, and performs error-correcting encoding and 

decoding. The write process is generally a non-linear process which uses a square 

wave to magnetize the recording media. If the amplitude of the write current is large 

enough, the media is magnetized to saturation, and the magnetization is a spatial copy 

of the write current. When the system reads the data from the recording media, the 

read head such as an inductive head or a magnetoresistive (MR) head is used to 

capture the changes in magnetization on the disk. The readback signal is amplified 

and further processed by the read channel detector, which translates the analog 

waveform into data kx̂  which will be sent to the error-correction code (ECC) decoder. 

Fig. 1.1 shows a diagram of a longitudinal magnetic recording system. 
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Fig. 1.1.  A schematic diagram of a magnetic recording system using longitudinal 
recording techniques. 

 

1.2  Partial Response Channel and Detection 
 

A magnetic head senses the transitions in the direction of magnetization, which 

corresponds to a step signal in the write current. The magnetic recording channel 

response is thus characterized by the step response ( )ts . Given a sequence of 

transitions recorded on the media, the readback signal is equal to the sum of signals 

from each transition. So the channel with discrete-time transfer function can be 

generally represented as ( ) ∑
=

=
N

i

i
i DgDG

0
where 10 =g , D  is the unit-delay operator 
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corresponding to one modulation interval  T  of the channel, are termed partial 

response (PR) channels. In real magnetic recording systems, the readback isolated 

pulse ( )ts  cannot be ideal, which means that some signal will leak to the adjacent 

transition, and the isolated pulses from each transition start to overlap, which is called 

inter-symbol interference (ISI). The closer each transition is, the larger the ISI will be, 

as well as the recording density.  

           Although most of the density increase is due to the improvement of the heads 

and recording media, digital signal processing and coding do have played an 

important role recently, especially since the implementation of the first commercial 

partial response maximum-likelihood (PRML) channel detector. The read head senses 

the transitions in the direction of magnetization, which corresponds to a step signal in 

the write current. The magnetic recording channel response is thus characterized by 

the step response ( )ts . A commonly used model of ( )ts  for longitudinal recording is 

the Lorentzian function [1], which is:  

                                       ( ) 2

50

0

21 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

PW
t

V
ts ,                                                         (1.1) 

where 0V  is the peak amplitude of ( )ts , 50PW is a parameter specifying the pulse 

width at half the peak amplitude and is determined by the transition width in the 

recording media and the head-to-media distance. Besides longitudinal recording 

techniques, perpendicular recording has become a promising technique for the next 

generation of magnetic recording systems. As the channel density becomes larger and 
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larger, the super-paramagnetic effect becomes the major obstacle to further increasing 

the recording areal density. Perpendicular magnetic recording enables high-density 

magnetic recording. In a perpendicular recording channel model, the isolated 

waveform reproduced from a recording transition can be approximated by a 

hyperbolic-tangent function [2]:  

                                  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= t

T
Vts

50
0

3lntanh .                                                          (1.2) 

        A common measure of the recording density for longitudinal recording is  

TPWSc /50= with T  is the symbol period, and for perpendicular recording is 

TTK /50=  where 50T  is time width required for ( )ts to rise from 2/0V−  to 2/0V+ . 

The read signal can be considered as the superposition of the channel step responses, 

each corresponding to a change (-1 to +1 or +1 to –1) in the channel input kx : 

( ) ( ) ( ) ( )tnkTtsxxty
k

kk +−−= ∑ −1  or simplified as ( ) ( ) ( )tnkTtpxty
k

k +−= ∑ , with 

( )n t as the noise and ( ) ( ) ( )Ttststp −−=  as the channel pulse response which 

depends on the symbol period T  of the channel. Besides the additive noise ( )tn  

introduced by channel, another noise called transition jitter noise is also a dominant 

noise for high density channels. The jitter noise kt∆  is modeled as a random shift in 

the transition position whose probability distribution function is truncated Gaussian 

with zero mean and variance 2
jσ  with jσ being a percentage of T . So the readback 

signal if we consider transition jitter noise can be written as [3], [4] 
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                                      ( ) ( ) ( )tntkTtpxty
k

kk +∆+−= ∑ .                                  (1.3) 

And ( )ttp ∆+  can be approximated as ( ) ( ) ( )tp
dt
dttpttp ∆+≈∆+ . A system model 

can be represented as in Fig. 1.2, where the readback signal ( )ty  is filtered by a low-

pass filter and sampled at the symbol rate. The received sequence, ks , is then 

equalized to the sequence kc , and afterwards a MLSE detector such as the Viterbi 

detector (VD) [5] will be used to determine the most likely input sequence k

^
x .  

 

Fig. 1.2. System model for a longitudinal magnetic recording system. 

       It is shown in Fig. 1.2 that, in order to achieve the best channel detection 

performance, one needs to make the difference between the equalizer output kc  and 

the desired output kd  as small as possible. A straight forward way of designing the 

equalizer is setting ( ) 1=DG , which corresponding to a zero-forcing equalization. 

However, the equalizer designed by such method will lead to a noise enhancement 

[1]. Another commonly used method is the minimum mean-squared error (MMSE) 
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approach [1], [4]. Let kw be the difference between the desired output kd  and the 

equalizer output kc , according to Fig. 1.2, it is shown that [4], [6] 

                                   ( ) ( ) }]{[}{ 22
kkkkk gxfsEwE ∗−∗=                                  (1.4) 

where }{•E  represents the expectation operation and ∗  represents the convolution 

operation. So given the channel input and a PR target T
110 ][g −= Lg,,g, LG , we want 

to design the coefficients T
0 ][ MM f,,f,f LL−=F  to minimize (1.4) subject to certain 

constraints, which will give [6] 

                                            
( ) ICRCXI 1

xs,
1T

xs,
T −−−

=λ
1 ,                                        (1.5) 

                                             ( ) ICRCXG 1
xs,

1T
xs,

−−−λ= ,                                         (1.6) 

                                              GCRF xs,
1−= ,                                                            (1.7) 

 

where λ  is the Lagrange multiplier, and the L -element column vector I has a first 

element 1 and all other elements are zero. X  is an LL×  autocorrelation matrix of the 

input sequence kx ,  xs,C  is an LN ×  cross-correlation matrix of sequences ks  and 

kx , and R  is an NN ×  autocorrelation matrix of a sequence ks . 

          Of particular interest in longitudinal magnetic recording are partial response 

polynomials of the form ( ) ( )( )nDDDG +−= 11 , where L,2,1,0=n . For 0=n , the 
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channel is the D−1  or “dicode” partial response channel. The channel for 1=n  is 

termed as the class-IV partial response (PR4) channel and the channel for 2=n  is 

termed as the extended class-IV partial response (EPR4) channel [7]. Higher values 

of n  result in more ISI and permit higher recording densities. In practical systems, a 

generalized partial response (GPR) target [8], [9] with arbitrary coefficients other 

than an integer-coefficient PR target is used which leads to a considerably better 

equalization performance. In perpendicular magnetic recording, the response to the 

magnetization pattern in the perpendicular media corresponds to a low-pass-filtered 

waveform of the write current. Unlike a longitudinal recording channel, this channel 

passes the DC component and thus presents challenges for read-channel design. In [2 

], several classes of ( )1−L -th order GPR targets in terms of 

( ) ( )( )2
2101 −

−++α−= L
L DpDppDDG L are proposed for both additive white 

Gaussian noise (AWGN) and media noise channels. In this polynomial, the parameter 

( )10 ≤α≤α for the ( )Dα−1 operator is selected to adjust the DC component of the 

overall target response. For 0=α or 1, this polynomial denotes the PR1-based DC 

full response or PR4-based DC-free response, respectively. 

         In Fig. 1.2, after the equalizer output, a maximum likelihood sequence estimator 

(MLSE) such as hard-decision Viterbi decoder is used to estimate the data sequence. 

In the next generation systems, a soft-output Viterbi algorithm (SOVA) [10] or a 

Bahl-Cocke-Jelinek-Raviv (BCJR) [11] algorithm could be used to supply soft 

information to the ECC decoder to improve the decoding performance.  
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1.3  Modulation Codes and Precoding 
 

Magnetic recording systems use modulation codes to reduce ISI, as well as provide 

timing information, error monitoring information, etc. [1]. Since in magnetic 

recording systems, the readback signal only responds to transitions, a precoding 

process needs to be done for the input data, i.e. convert the data sequence to a 

sequence that each bit in the modulation code is a transition marker, where “0” 

represents an non-transition and “1” represents a transition. This process can be done 

by a precoder, which can be taken as a rate-1 encoder, such as the 

one ( )211 D/ ⊕ precoder used in EPR4 systems. Since the EPR4 polynomial is 

321 DDD −−+ , this choice of precoder does not increase the decoder complexity. 

Also, the modulation codes must have a constraint on the maximum run of non-

transitions. The commonly used modulation codes are run-length-limited (RLL) 

codes and maximum-transition-run (MTR) codes [1], [12], [13]. For example, for a 

( )k,d  RLL code, the maximum run-length of “0”s between two “1”s is d  and the 

maximal run length of “0”s is k . The effect of placing d  zeros between successive 

“1”s is to spread the transitions apart enough to reduce the overlapping of the channel 

response due to successive transitions, which will reduce the ISI. Setting a upper limit 

of continuous “0”s with k  ensures that transitions occur frequently enough for timing 

recovery. Therefore, when modulation codes are used, and errors happen, by looking 

at the violation of the code constraint, we will be able to tell if an error occured. 
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              In the dissertation, we assume that the magnetic recording system exhibits 

perfect synchronization. And since we are mainly focus on the algorithms evaluation 

and development of ECC decoding algorithms, no modulation codes have been used 

in our simulation. 

 

1.4 Signal-to-Noise Ratio (SNR) 
 

Noise in the read signal comes from two major sources: the electronics noise arises 

from the read head and the pre-amplifier; the media noise exists because of the media 

defects and the imperfect magnetic domain alignment in the media. Electronics noise 

is white Gaussian noise and can be modeled as an additive component at the output of 

the recording channel. Media noise at low to middle recording densities can also be 

modeled as white Gaussian noise, but it undergoes the same read process as the user 

data; at high recording densities, media noise can be modeled as transition position 

jitter, the pulse amplitude and width jitter and partial-erasure effects.  

          Assume the step response of the magnetic recording channel is given as ( )ts , 

the SNR is defined as  

                                           
jitterAWGN NN

T/V
SNR

+
=

2
0                                                   (1.8) 

where 0V  is the peak amplitude of ( )ts , and if we assume that the single-sided power 

spectrum density is 0N , then the in band additive noise power 
T

N
N AWGN 2

0=  and the 
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jitter noise power jitterN  is given as ( ) dtts
dt
d

T
N jjitter ∫

∞+

∞−
σ=

2
21  where 2

jσ  is the 

variance of the jitter. And 

( ) ( ) ( ) dtts
dt
d/N

V

dtts
dt
dT/T/N

T/V
NN
T/V

SNR

jj
jitterAWGN

∫∫
∞+

∞−

∞+

∞−
σ+

=

σ+

=
+

= 2
2

0

2
0

2
2

0

2
0

2
0

212

                                                                                                                                  (1.9) 

Since (1.9) gives an SNR in the form of energy per bit over total noise power, the 

definition of such SNR is invariant to channel density changes, which is different 

when coding is applied. For a Lorentzian response, the noise power of jitter noise 

is ( )
50

22
0

2
2

2
1

PWT
V

dtts
dt
d

T
N j

jjitter ⋅

σπ
=σ= ∫

∞+

∞−
. For the noise power of jitter noise for 

other channels, the interested reader can refer to [14]. 

 

1.5  Error-Correcting Codes 
 
Better equalization targets achieve better performance; however, the performance of 

the best equalization with ML detection cannot exceed the Matched Filter Bound 

(MFB) of the channel. In order to further improve the performance and maintain 

reliable information retrieval, a channel coding strategy needs to be used. Error-

correction codes ensure higher noise tolerance at the receiver by adding redundancy 

into the user data to achieve a better separation of the data sequence. The code rate R  

is given as the ratio of the length information K  over the length of the code 

transmitted given a certain encoding scheme. In magnetic recording channels, the 
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code rate can also be represented as 
c

u

S
S

R =  where uS is the user density and cS  is 

the channel density. In [15], it is shown that on Lorentzian channels with only 

AWGN, the effective SNR is given as 

                                     
( )

2

2

0

2

2

2

u
eff S

R
/N

dtts
SNR ∫

+∞

∞−≈                                              (1.10) 

for high user density. From (1.10), it can be seen that the effective SNR is 

proportational to the square of the code rate R , which is different for most 

communication channels such as the AWGN channel which is proportional to the 

code rate. In other words, the coding gain of an encoding scheme should be larger to 

compensate for the code rate loss in magnetic recording systems. 

           In current magnetic recording systems, Reed-Solomon (RS) codes [16] have 

been used, in a configuration which includes: an RS encoder, a modulation encoder 

such as RLL encoder, a PR channel, a Viterbi detector, a modulation decoder and an 

RS decoder (See Fig. 1.3). Recently, with the invention of turbo codes [17] and turbo 

equalization, and the re-discovery of low-density parity-check codes, other coding 

systems have been the focus of attention of the magnetic recording industry.  Turbo 

codes, introduced by Berrou et al. in 1993, provide a large coding gain for the 

memoryless AWGN channel and bring the system performance to within 1 dB of the 

Shannon capacity limit. In addition, another category of capacity-achieving codes, the 

low-density parity-check (LDPC) codes [18], [19] using message passing decoding 

algorithms [20] exhibit a performance within 0.13 dB of the AWGN channel capacity 
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limit, which is closer than any other code discovered to date. The original turbo and 

LDPC codes were designed for memoryless AWGN channels, but researchers have 

applied these codes to magnetic recording channels [21]-[23].   

 

Fig. 1.3. Current magnetic recording system. 

 

1.6 Problem Statement 
 

Since large coding gains have been reported by replacing RS codes with LDPC codes 

for magnetic recording systems, LDPC codes have been considered as possible ECC 

codes for the next generation of magnetic recording systems.  

       However, the uncertainty of the performance of LDPC codes at high SNR is 

still a problem for magnetic recording systems where burst noise is the dominant 

noise. Compared to LDPC codes, RS codes have the ability to correct error bursts and 

the performance at high SNR is determined [24]. Also, the replacement of current 

RS-coded magnetic recording systems with an LDPC-coded system means a radical 

change of the system circuitry, which makes manufacturers hesitant to replace RS-

coded systems with LDPC-coded systems. Moreover, in 1999, Guruswami and Sudan 

(GS) [25] proposed a new algorithm to improve the decoding capability of RS codes 

beyond the traditional error-correction capability, the half minimum distance. Later, 

Koetter and Vardy (KV) [26] further improved the GS algorithm by utilizing the soft 
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information from the channel output, which gives a more than 1-dB gain for low rate 

RS code on an AWGN channel. 

      All the above motivates us to research soft-decision RS decoding algorithms 

over magnetic recording channels, which includes performance evaluation, 

performance improvement of the algorithms and reduced-complexity 

implementations. 

 

1.7 Overview of the Dissertation 
 

In this dissertation, the soft-decision RS decoding algorithms for magnetic recording 

channels have been researched. The algorithm implementation and hardware 

architecture issues and performance evaluations have been discussed for both 

longitudinal and perpendicular magnetic recording channels.  

          Several variations of the KV algorithm such as the soft Chase algorithm [27], 

the re-encoded Chase algorithm [28] and the forward recursive algorithm [29] have 

been proposed. The performance of nested codes with RS and LDPC codes as 

component codes have been investigated for bursty noise magnetic recording 

channels. Also, a recently proposed iterative decoding algorithm [30] for RS codes 

has been investigated and a reduced-complexity modified algorithm [31] has been 

presented. 

Chapter 2 gives an overview of the decoding algorithms for RS codes which includes 

traditional hard-decision algorithms as well as newly proposed interpolation-based 

soft-decision RS decoding algorithms such as GS, KV and re-encoding algorithms.  
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Chapter 3 investigates the application of soft-decision RS decoding algorithms on 

magnetic recording systems, in terms of performance, reduced-complexity 

implementation and burst noise protection capability.  

Chapter 4 gives a hardware implementation and an architecture discussion of the 

major step in the interpolation-based soft-decision RS decoding algorithms. 

Chapter 5 proposes a new reliability-based soft-decision RS decoding algorithm 

called forward recursive algorithm, and evaluates its performance and 

implementation. 

Chapter 6 discusses the performance of nested code schemes using RS codewords or 

LDPC codewords as component codes, and investigates their performance on bursty 

noise channels.  

Chapter 7 investigates the performance of iterative RS decoding algorithms for 

magnetic recording channels. 

Chapter 8 gives the conclusions and discussion for future research. 
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2.1  Introduction 
 

Reed-Solomon (RS) codes were proposed by Reed and Solomon in [1], and have 

found a lot of applications such as in magnetic recording systems, deep space 

communication systems, etc., because of their property of preventing burst errors. 

The original method of generating an RS code can be described as follows:  

           Let denote the information sequence be ( )110 ,,, −= kfff Lf , where each entry 

f is an element of a finite field ( )qGF  with 1+= nq (The detailed finite field 

operations such as addition, multiplication, etc., can be found in [2, p. 93]). The 

RS ( )kn,  codes with codelength n  and information length k  can be generated by 

evaluating the information polynomial ( ) 1
1

1
10

−
−+++= k

k xfxffxf L   over the 

nonzero distinct elements of ( )qGF , that is: 

                ( ) ( ) ( ) ( )},,,|,,,{c: 110110 qGFxxxxfxfxfRS nn ∈= −− LL ,                   (2.1) 

where the distinct elements are 1,,1,0, −=α= nix i
i L  with α  as the primitive 

element in ( )qGF . The generation of an RS codeword can also be represented in a 

matrix form  
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              (2.2) 

           Also, RS codes can be taken as the subset of Bose-Chaudhuri-Hocquenghem 

(BCH) codes, which leads to an efficient systematic encoding method for RS codes. 

Given an information polynomial ( ) 1
110

−
−+++= k

k xfxffxf L with 

degree ( )( ) kxf <deg , and a generator polynomial ( ) ( )( ) ( )txxxxg 22 α−α−α−= L , 

the RS codeword can be encoded as the coefficients of  polynomial ( ) ( ) ( )xgxfxc =' . 

For implementation purposes, we would like to send out the information symbols 

directly, and attach the generated parity check information at the end of information 

sequence. Let ( ) ( ) ( )xgxfxxb t mod2= , the RS codeword consists of 

( )110,1210 ,,,,,,' −−= kt fffbbb LLc , where the parameter t  satisfies knt −=2 . The 

systematic encoding method for RS codes can also be interpreted as the generator 

matrix 'G  multiplying with the information vector Tf , i.e. TfG'c'T = . By carefully 

selecting the generator matrices G and G' such that -1GG' is non-singular, we can 

obtain the transformation between generalized RS codewords and RS codewords as 

Tc'GG'c -1T =  (Detailed discussion can be found in [3]). It has been proved that RS 

codes are maximum-distance separable (MDS) codes, and the minimum distance of 

an ( )knRS ,  is 1min +−= knd  [4, p. 188].  
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2.2  Hard-Decision Decoding of RS Codes 
 

Suppose an RS codeword generated systematically by 

        ( ) ( ) }1,,1,0,|,,,{: 110 −=∈= − nixgxfoftcoefficienccccRS in LLc              (2.3) 

is sent out, and because of the noise introduced by the channel, we will get a noise 

contaminated hard-decision vector ecy +=  for the input of RS decoder, where e  

represents an error vector. The error polynomial is given as:  

                                           ( ) 1
110

−
−+++= n

n xexeexe L ,                                       (2.4) 

where we assume v  errors occur, that is v  coefficients of ( )xe  are nonzero, and the 

locations of these v  errors are vlll ,,, 21 L . Then the error polynomial given above can 

be re-written as:  

                                     ( ) v

v

l
l

l
l

l
l xexexexe +++= L2

2

1

1
,                                         (2.5) 

with 
vlll eee ,,,

21
L as the error magnitudes. If we evaluate the RS decoder input y or its 

polynomial represented as ( ) ( ) ( ) ( ) ( ) ( )xexgxfxexcxy +=+=  with t2  distinct 

elements t22 ,,, ααα L , we will obtain syndromes  

                               ( ) ( ) v

v

jl
l

jl
l

jl
l

jj
j eeeeyS α++α+α=α=α= L2

2

1

1
,                  (2.6) 

for tj 2,,2,1 L=  because ( ) ( )( ) ( )txxxxg 22 α−α−α−= L  becomes zero at those 

distinct elements. So now the decoding problem becomes solving t2  equations to 
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find out the v  error locations vlll ,,, 21 L  and their magnitudes 
vll ee ,,

1
L , that is v2  

constraints. It is obvious that we will have a correct answer as long as tv ≤ .  

             The set of equations are not easy to solve directly. Here we would like to 

define some intermediate variables that can be computed from syndromes and from 

which we can find the error locations and its magnitudes. Let viX il
i ,,1, L=α= , and 

define a so-called error location polynomial ( )xΛ  as:  

                    ( ) ( )( ) ( )v
v

v xXxXxXxxx −−−=Λ++Λ+=Λ 1111 211 LL ,              (2.7) 

so if we know the coefficients of ( )xΛ  and find the zeros of ( )xΛ , we will obtain the 

error locations. What is the connection between this error location polynomial and the 

syndromes we compute above? Let us multiply both sides of the above equation by 

( ) vj
il Xe

i

+  and let 1−= iXx  for vi ,,2,1 L= , then we will get 

( ) ( ) 01 1
1 =Λ++Λ+ −−+ v

ivi
vj

il XXXe
i

L  

or  

                                 ( ) ( ) ( )( ) 01
1 =Λ++Λ+ −++ j

iv
vj

i
vj

il XXXe
i

L                        (2.8) 

Furthermore, let us sum up the equations from (2.8) for vi ,,1L= , we get 

( ) ( ) ( )( ) 0
0

1
1 =Λ++Λ+∑

=

−++v

i

j
iv

vj
i

vj
il XXXe

i
L  

or 
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                    ( ) ( ) ( ) 0
0 00
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= ==
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j
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v

h
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iii
L                       (2.9) 

From (2.9), we know that 

                          02211 =Λ++Λ+Λ+ −+−++ jvvjvjvj SSSS L                                    (2.10) 

More generally, we have 

               vjSSSS vjjvvjvj ,,2,12211 LL =−=Λ++Λ+Λ +−+−+ ,                    (2.11) 

and writing the above equations in a matrix format, 
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The solution of this matrix can be obtained as long as the matrix is nonsingular, and 

in [5, Theorem 7.2.2], it is proved that when there are fewer than t  errors, the 

syndrome matrix is nonsingular. So by computing the coefficients of ( )xΛ  using 
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and finding the zeros of ( )xΛ  using Chien search [6], the location of the errors are 

obtained. 
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             Now we have the error location polynomial ( ) ( )∏
=

−=Λ
v

i
i xXx

1
1  for the case of 

v  errors. If we express the syndromes in a polynomial representation, we have 
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If we let 
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be the error evaluation polynomial, we can have the error magnitudes computed as  

( )
( )1

1

' −

−

Λ
Ω−

=
i

ii
l X

XX
e

i
 by Forney’s algorithm [7], where ( )x'Λ  is the formal derivative of 

( )xΛ  as shown in [4, p. 221]. 
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2.2.1  Berlekamp-Massey Algorithm 
 

As shown above, the most computationally complex step in the decoding of an RS 

code comes from the matrix inversion, which is proportional to 3v . Obviously, for a 

moderate v , the complexity is still reasonable. However, if we want to correct a large 

number of errors, an efficient decoding algorithm is needed. In [8], Berlekamp 

proposed an efficient way of decoding RS codes, and in [9], Massey used a shift-

register-based interpretation of Berlekamp’s algorithm. From (2.10) we know that, 

the syndromes vjjS j −=,  to j and the coefficients of the error locator polynomial 

( )xΛ  satisfy 

02211 =Λ++Λ+Λ+ −+−++ jvvjvjvj SSSS L  

that is 

                                  jvvjvjvj SSSS Λ−−Λ−Λ−= −+−++ L2211                             (2.16) 

so each syndrome jS  can be calculated by the coefficient of ( )xΛ  and previous 
syndromes vjj SS −− ,,1 L . Equation (2.16) can be represented as a linear feedback shift 
register (LFSR) as shown in Fig. 2.1.  

 
Fig. 2.1. Linear feedback shift register for generating syndromes. 
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Now the decoding problem becomes how to find an LFSR whose first t2  outputs are 

tSS 21 ,,L . If we can successfully find such LFSR, the coefficient iΛ  for this LFSR 

provides the desired error location polynomial ( )xΛ  which can be used to correct up 

to t  errors in a received vector. For details on the Berlekamp-Massey (BM) algorithm 

and its proof, please refer to [4], [8], [9] and references therein. 

 

 2.2.2  Welch-Berlekamp Algorithm 
 

Besides the algorithms described above, still there are many other hard-decision RS 

decoding algorithms such as the Euclid’s algorithm [4, p. 224]. In this section, we 

would like to revisit an algebraic algorithm proposed by Welch and Berlekamp in 

[10], which will lead to the breakthrough algorithm proposed by Gurusawmi and 

Sudan in [11].  

    Suppose we received a channel output hard-decision vector ecr +=  (the notation 

of the channel output vector r is slightly different to the decoder input y  here) given 

an RS codeword c is sent out, the Welch-Berlekamp (WB) algorithm is based on the 

fact that if one can find nonzero polynomials ( )xD  and ( )xN  such that 

                                                   ( ) ( )iii xNrxD =                                                   (2.17) 

for 1,,1,0 −= ni L  with minimal degree ( )( )xDdeg , and ( )( ) ( )( )xDdegxNdeg ≤ , 

then ( ) ( ) ( )xDxNxf /=  if ( )xN  can be divided by ( )xD , otherwise the codeword is 

not decodable. Furthermore, taking the last k points ( )11 ,,, −+−− nknkn rrr L , and using 
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the generator polynomial to systematically re-encode them to generate another 

vector r' , then by subtracting r'  from r , we get a vector 

( )0,,0,,,, 110 LL −−= knyyyy  which is corrupted by the same error pattern e .  By 

finding two nonzero polynomials ( )xD  and ( )xN  satisfying (2.17) with ir  replaced 

by iy , we can correctly decode it, as long as the number of errors in the codeword is 

less than ( )⎣ ⎦2/1+− kn .  Note that the problem can be solved by a minimal 

interpolation at the distinct points 2,,1,0, −=α= qix i
i L , and that we need to find a 

bivariate polynomial ( ) ( ) ( )xNyxDyxQ +=,  that passes through all the point 

pairs }{ , ii yx , given that subtraction is the same as addition in ( )qGF .  Since the 

bivariate polynomial needs to pass through k  zeroes, we can further simplify the 

interpolation as 

                               

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )yxQxV

xN
xV

yxDxV

xVxNyxD
xNyxDyxQ

,

'

'
,

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=
+=

                                 (2.18) 

where ( ) ( ) ( )1−− α−α−= nkn xxxV L ,  ( )xVyy /=  and ( ) ( ) ( )xNyxDyxQ ', += .  The 

interpolation of n  points has been reduced to kn−  points }{ , ii yx with 

( )iii xVyy /= , .1,,1,0 −−= kni L  

Example 2.1: Consider an example similar to the one in [12], using a (7, 3) RS code 

over ( )8GF . Suppose that the generator polynomial is given by 
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( ) ( )( )( )( )432 α−α−α−α−= xxxxxg  and the information sequence is ( )0,0,1 , then 

the codeword ( )0,0,1,,1,, 33 ααα=c  is sent, but ( )αααα= ,0,1,,1,, 3r  is received.  

Re-encoding the last three entries in r , and subtracting it from r , we get 

( )
( )0,0,0,,,,

,0,1,,,,
552

2364

αααα=

ααααα−=−= rr'ry
 

with ( ) ( )( )( )654 α−α−α−= xxxxV , and the modified interpolation points are given 

by ,,,1 2
210 α=α== xxx  3

3 α=x  and  

( ) ( ) ,/,1/ 65
1

52
0 α=αα=α=α= VyVy  

( ) ( ) .1/,/ 35
3

42
2 =αα=α=αα= VyVy  

By interpolation, we find a bivariate polynomial  

( ) 552, α+α++α+α= xyyxyxyxQ , and using (2.18) we can re-write it as  

( ) ( ) ( )( )( )( )
( )( ) ( )( )( )( )
( )( ) ( )( )( ).1

11
1,

5446

65456

6545532

α−α−α−+α−α=

α−α−α−+α++α−α=

α−α−α−α+α++α+α=

xxyxx

xxxxyxx
xxxxyxxyxQ

 

After factorization, we get ( )( )544 α−α−α− xxy , which has nonzero values 

at 162
1 =α−α=e , and α=α−= 06e . Subtracting the errors from the received 

vector gives the correct output ( )0,0,1,,1,, 33 ααα=− er .  

                                                                                                                                       ■ 
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2.3  Soft-Decision RS Decoding Algorithms 
 
An decoding algorithm is said to be a soft-decision algorithm if utilize channel 

reliability information to help the decoding. Among them, generalized minimum 

distance (GMD) algorithm [13] and the Chase algorithm [14] are two most important 

soft-decision RS decoding algorithms.  

     (1) GMD algorithm: The basic idea behind Forney’s GMD algorithm is that for 

hard-decision RS decoding algorithms, if we flag some unreliable symbols as 

erasures, we can further improve the decoding performance, given that the error-

erasure correction capability is 12 +−<+ knfe , where e  is the number of errors, and 

f  is the number of erasures in a received channel output sequence. 

      (2) Chase algorithm: There are three types of the Chase algorithm, but the basic 

idea of such algorithms is: Given a received channel output, search for the p  least 

reliable bits in a received sequence, since each bit has two possibilities, either “0” or 

“1”, so we can generate p2  test patterns in terms of 

( ) ( ) ( )111100000 ,,,,,,,,,,,, LLLL  and for each test pattern, we will replace the p  

least reliable bits in a received sequence with a test pattern, then a hard-decision RS 

decoding is executed to see if a correct answer can be found.  

         Both of these two algorithms need to find the least reliable bits/symbols, then 

execute a hard-decision RS decoding algorithm. Besides these two soft-decision RS 



32  

decoding algorithms and their variations [15], there are some other type of soft-

decision algorithms which will be described in the following subsections. 

 
2.3.1  Guruswami-Sudan Algorithm 
 

Strictly, the Guruswami-Sudan (GS) algorithm [11] is not a soft-decision decoding 

algorithm, however, this algorithm leads to a more powerful implementation 

proposed by Koetter and Vardy in [16], which uses the soft-decision channel output 

information. Therefore here in this paper, we would like to discuss the GS algorithm 

in soft-decision RS decoding section. GS algorithm is an interpolation-based 

algorithm which can be taken as an extension of WB algorithm described above. 

          Let the input of the decoder be ( )110 −=+= n,y,,yy Lecy , where the RS 

codeword c  is generated using (2.1). With the corresponding distinct elements over 

( )qGF  as ( )110 ,,, −nxxx L , we get a set of pairs 1
0},{ −

=
n
iii yx  (See Fig. 2.2). The WB 

algorithm described above implies that if we can find a bivariate polynomial 

( ) ( ) ( )xNyxDyxQ +=,  passing through all the points 1
0},{ −

=
n
iii yx  once, we can 

correctly decode a received vector given the error vector e  has no more than 

( )⎣ ⎦2/1+− kn  nonzero entries.  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )11221100

1210

1210

1210

1210

,,,,, −−

−

−

−

−

=

=+=
⇓

=
↓

=
=

nnii

niii

ni

ni

ni

yxyxyxyxyx

yyyyexy

ccccc

xfxfxfxfxf
xxxxx

L

c

L

L

L

L

L

 

Fig. 2.2. Conversion of channel output vector y  into point pairs 1
0},{ −

=
n
iii yx . 

        This raises a question: What if we let the bivariate polynomial ( )yxQ ,  pass 

through those points more than once, say m  times? The answer to this question is 

provided by Guruswami and Sudan [11], [17]. We can find such bivariate 

polynomial, which will make the performance of the interpolation-based algorithm 

far better than the traditional hard-decision RS decoding algorithms. 

        Before we go into the details, we would like to establish some notations, similar 

notation can be found in [11], [16], [17]. 

Notation 1. Let ( ) ∑ ∑
∞

=

∞

=
=

0 0
,

i j

ji
ij yxbyxB be a bivariate polynomial over ( )qGF , ijb  is 

the coefficient of  ( )yxB , . And let yx ww ,  be some integer numbers. The ( )yx ww , -

weighted degree of ( )yxB ,  is denoted as 

( )( ) ( ) }0,,|max{,deg , ≠+= ij
ji

ijyxww byxBinmonomialaisyxbjwiwyxB
yx

,      

                                                                                                                              (2.19) 
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where it is said ( ) ( )ji
ww

ji
ww yxyx

yxyx ,
''

, degdeg <  given yxyx jwiwwjwi +<+ ''  or 

jjandjwiwwjwi yxyx <+=+ '''  or iiandjjandjwiwwjwi yxyx <=+=+ '''' . It 

worth noting that the ( )1,1 -weighted degree of ( )yxB ,  is simply the degree of 

( )yxB , . Also, the number of monomials of ( )yx ww , -weighted degree no larger than  

δ  is given as 

                              ( ) δ≤+≥=δ
∆

yx
ji

ww jwiwandjiyxN
yx

0,:,                            (2.20) 

where •  represents the cardinality. In [11], [16], it was proved that ( )δ
yx wwN ,  

satisfies 

            ( ) ( )
( ) ( )121

1
1
1

1
1

2
1

12
1 222

1,1 −
δ

>
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+δ

−⎥⎥
⎤

⎢⎢
⎡

−
+δ

−⎥⎥
⎤

⎢⎢
⎡

−
+δ−

+
−

+δ
=δ− kkkk

k
k

N k            (2.21) 

for 1,1 −== kww yx , or more general lower bound ( ) yxww wwN
yx

2/2
, δ>δ . 

Notation 2:  A bivariate polynomial ( )yxB ,  is said to pass through a given point 

( )βα,  with multiplicity m  if the shift bivariate polynomial ( )β+α+ yxB ,  contains 

only monomials of degree larger than m , but no monomial has degree less than m , 

i.e., 

          mjithatsuchjib
j
j

i
i

ij
jjii

ii jj
<+≥∀=βα⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−∞

=

∞

=
∑ ∑ ''0','0

''
''

' '
                 (2.22) 

For a detailed proof, please see [11]. From (2.22), we can see that if we want to let a 

bivariate polynomial ( )yxB ,  pass through a given point with multiplicity m , the 
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coefficients ijb  must satisfy ( ) 2/1+mm  constraints. So if we have n  points, then the 

total number of constraints ( ) 2/1+mnm  needs to be satisfied. Let 

( )( )yxBk ,deg 1,1 −=δ , if the total number of monomials in ( )yxB ,  is larger than the 

number of constraints, i.e. 

                                             ( ) ( )
2

1
1,1

+
>δ−

mnmN k ,                                              (2.23) 

we will have more unknowns in a set of linear equations than constraints, which 

definitely leads to a solution. The detailed GS algorithm is given below (the reader 

can also refer to [11], [16], [17] for a detailed proof). 

Guruswami-Sudan Algorithm: 

Inputs: 1. Receive hard-decision channel output vector ecy +=   

            2. Multiplicity m  

Step 1: Generate a sequence ( ) 1
0},{ −

=
n
iii yx  as shown in Fig. 2.2. 

Step 2: (Interpolation Step) Find a nonzero bivariate polynomial ( )yxQm ,  which 

passes through point pairs ( ) 1
0},{ −

=
n
iii yx with multiplicity m . 

Step 3: (Factorization Step) Find all the polynomials ( )xf  such that: ( )xfy −  is a 

factor of ( )yxQm , , with ( ) kxfdeg <)( . 

Step 4: (List-Decoding Step) Regenerate codeword c  from all found ( )xf , and find 

the one with least Euclidian distance to y as the output. 
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End. 

            So in the GS algorithm, by finding a bivariate polynomial ( )yxQm ,  that 

passes through 1
0},{ −

=
n
iii yx  with a constant multiplicity m , and identifying all its 

factors of the form ( )xfy −  with ( ) k)xdeg(f < , the coefficients of the polynomial 

( )xf  will be output as the decoding answer. The GS algorithm includes two major 

steps, which are interpolation, factorization steps. Several algorithms for 

implementing the interpolation and factorization steps can be found in [17], [18]. It is 

clear that if we set 1=m , the GS algorithm becomes the WB algorithm. And as 

multiplicity ∞→m , the error-correction capability of the GS algorithm goes up to 

( )1−−≤ knnt errors, far better than the traditional hard-decision RS decoding 

capability ( )⎣ ⎦2/1+− kn  particularly for samll code rates nk / .  

 

2.3.2  Koetter-Vardy Algorithm 
 

Although the GS algorithm improves the error-correction capability, there are still 

some ussatisfied question: How to determine the multiplicities value m , since we 

know that the higher the value of m , the better the performance is, but the decoding 

complexity increases since more constraints need to be satisfied which means more 

linear equation need to be solved. Recently, Koetter and Vardy [16] suggested a smart 

way to determine the multiplicity m  of the GS algorithm by referring to the channel 

reliability information, and allowing m  not be a constant.  
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            Now instead of using the hard-decision vector y , we can use the “soft” 

channel information, i.e., the probability of each output bit to be a ‘1’ or a ‘0’.  This 

probability can be converted into a reliability matrix ],[ jiΠ , where each entry 

represents the probability of the channel output iy j = , 1,,0 −= nj L ; 1,,0 −= qi L . 

Using this reliability matrix and a given parameter, the total multiplicity s , we can 

use Algorithm A in [1] to generate a multiplicity matrix [ ]jiM , .  Each nonzero entry 

in M  can be taken as a point ( )jyix tt == , , whose multiplicity value is ijt mm = .  

Therefore, the channel output information has been translated into a sequence of 

points ( ) 1
0},,{ −

=
N
tttt myx , where N  is not necessary to be equal to n . The sum of 

multiplicities im  of each point pair 1
0},{ −

=
n
iii yx  will be referred to as the total 

multiplicity s , which is a parameter determining decoding performance. The GS 

algorithm [11] can be taken as a special case of the Koetter-Vardy (KV) algorithm.  

The multiplicity computation algorithm is given as follows: 

Multiplicity Computation Algorithm (Algorithm A in [16]): 

Inputs: 1. Channel reliability matrix [ ]ijji π=Π ],[  

             2. Total multiplicity s  

Output:  [ ]jiM ,  

Initialize: Let ],[],[* jiji Π=Π  and [ ] [ ]0=jiM ,  as all-zero matrix, i.e. each entry 

0=ijm  in [ ]jiM ,  
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Computation Step:  

While 0>s  { 

     Find the largest entry ij
*π  in ],[* jiΠ , 

     Set 

               
2

*

+

π
=π

ij

ij
ij m

 

                1+= ijij mm  

                 1−= ss  

} 

 So now the GS algorithm is updated to the KV algorithm with variable multiplicities 

as: 

Koetter-Vardy Algorithm: 

Inputs: 1. Receive channel reliability information and create nq ×  reliability matrix 

],[ jiΠ , where each entry ji,π  of this matrix represents the probability of the j th 

element to be i  in ( )qGF , i.e., ic j = .  

            2. Total multiplicity s  

Step 1(Multiplicity Computation Step): Compute multiplicity matrix [ ]jiM ,  

according to ],[ jiΠ  and total multiplicity s . 
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Step 2: Generate a one-dimension sequence ( ) 1
0},,{ −

=
N
tttt myx according to the nonzero 

entries in [ ]jiM , , where N is not necessary equal to the codelength n . 

Step 3 (Soft Interpolation Step): Find a nonzero bivariate polynomial ( )yxQM ,  which 

passes through N  points  ( ) 1
0, −

=
N
ttt yx with multiplicity tm  respectively. 

Step 4 (Factorization Step): Find all the polynomials ( )xf  such that: ( )xfy −  is a 

factor of ( )yxQM , , with ( ) kxfdeg <)( . 

Step 5: Regenerate codeword c  from all found ( )xf , and by referring to the 

reliability information matrix, find the most-likely codeword as the output. 

            Compared to the GS algorithm, the KV algorithm has one more step, the 

multiplicity computation step, which generates variable multiplicities instead of 

constant multiplicities using channel reliability information. Also the interpolation 

step is modified to accommodate the variable multiplicities. The GS algorithm can be 

viewed as a special case of the KV algorithm. In the following, we will discuss the 

correctness of such interpolation-based algorithm and the detailed algorithms for the 

(soft) interpolation and factorization steps are given. 

 

A. Correctness of Interpolation-based Algorithms 

Definition 1 [16]: Let ( ) ( ) 2/1
1

0

1

0
∑ ∑
−

=

−

=
+==

q

i

n

j
ijij mmMCC  be the cost of a given 

multiplicity matrix. Let δ denote as the degree of a given bivariate polynomial 
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( )yxQM ,  generated according to the multiplicity matrix M . Denote the score 

( ) [ ]cc ,MS M =  of a multiplicity matrix M  given an RS codeword c  is sent out, 

where • represents the inner product of two matrices, and [ ]c represents an 

nn× matrix with each column containing only a “1” at ic rows, and ic  is the entry of 

codeword c  for ,n.,i L0=  

Theorem 2.1 [16]: 

      Given a multiplicity matrix M , the polynomial ( )yxQM ,  generated by passing 

through those non-zero entries in M  has a factor ( )xfy −  where ( )xf  can be used 

to generate codeword c  using (2.1) if 

                                        ( ) ( )( )yxQS MkM ,deg 1,1 −=δ>c                                        (2.24) 

Proof: 

      Let ( )110 ,,, −= nccc Lc be an RS codeword generated by information polynomial 

( )xf  with the degree ( )( ) kxf <deg , then ( ) ii cxf = . Let us define a univariate 

polynomial ( )xF  as ( ) ( )( )xfxQxF M ,= , so the degree of this univariate polynomial 

is  

( )( ) ( )( )( ) ( )( ) δ=== − yxQxfxQxF MkM ,deg,degdeg 1,1 . 

Also, we know that 

( ) [ ] nM mmmMS +++== L21, cc , 
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the summation of all those entries in M  corresponding to correct symbols of 

codeword c . It is proved in [11] that, if a bivariate polynomial ( )yxQM ,  passes 

through a given point ( )βα,  with multiplicity m , then the univariate polynomial 

( ) ( )( )xfxQxF M ,=  is divisible by ( )mx α− . Since we have 

( ) [ ] nM mmmMS +++== L21, cc , which means at least we need to pass through 

all those points with the overall multiplicity nmmm +++ L21 , so the bivariate 

polynomial ( )yxQM ,  satisfying all the constraints in M  should satisfy 

( ) ( )( )xfxQxF M ,=  is divisible by ( ) ( ) ( ) 111
110

−
−−−− nm

n
mm xxxxxx L , so the degree 

of ( ) ( )( )xfxQxF M ,=  should be larger than ( )cMS  or ( ) ( )( ) 0, == xfxQxF M . 

Therefore, if we have a multiplicity matrix M , by which a bivariate polynomial 

( )yxQM ,  generated satisfies ( ) ( )( )yxQS MkM ,deg 1,1 −=δ>c , then we will have 

( ) ( )( ) 0, == xfxQxF M , which means the factorization of ( )yxQM ,  will lead to a 

correct factor ( )xfy −  , and ( )xf  can be used to recover the RS codeword c .   ■ 

            Also according to [16], we have ( )Ck 12 −<δ . Here we can determine that 

the parameters ba,  of the highest monomial ba yx  in ( )yxQM ,  should satisfy  

                               ( ) ( ) ( )∑ ∑
−

=

−

=
+−=−<δ<

1

0

1

0
1112

q

i

n

j
ijij mmkCka                           (2.25) 

and 

                              
( ) ( ) ( )1/1

1
12

1
1

0

1

0
−⎟

⎠
⎞

⎜
⎝
⎛ +=

−
−

<
−
δ

< ∑ ∑
−

=

−

=
kmm

k
Ck

k
b

q

i

n

j
ijij .              (2.26) 



42  

 Soft Interpolation Algorithm 

   Given a multiplicity matrix M  and its one-dimension representation 1
0}{ −

=
N
ttm , the 

interpolation algorithm originally proposed in [17] has been slightly modified as 

follows:  

Soft Interpolation Algorithm: 

Inputs: ( ) 1
0},,{,, −

=
N
tttt myxkn  

Output:    ( ) ( ) 1,1,, −−∈∆= NmN
M GyxyxQ  

Initialize: Compute parameter ba, such that: 

1. ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ +−= ∑

−

=

1

0
11

N

t
tt mmka  

2. ( ) ( )1/1
1

0
−⎟

⎠
⎞⎜

⎝
⎛ += ∑

−

=
kmmb

N

t
tt  

3. 
( )

},,,,,1{

},,,,{,
1

10
0,0

bl
bl

yyy

GGGGyxG

LL

LL

=

=
 

Soft Interpolation:  

    For all ( ) 1,,0,, −= Ntyx tt L  { 

       For tmj ,,1,0 L=  { 
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           Find the smallest ( )1,1 −k  weighted degree polynomial ( ) jtGyx ,, ∈∆  whose 

shift polynomial ( ) jt
tt Gyyxx ,, ∈++∆  has nonzero monomial component of power 

j  

        if  ( )yx,∆  exists  { 

         ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∆−

∆
∆

−←⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆
∆

yxxx

yx
yx

yxG
yxG

yx
yxyxG

t

tt

tt
jt

jtjt

,

,
,

,
,

,
,\,

,
,,

 

          } 

    } 

} 

B. Factorization Algorithm 

The factorization algorithm can be implemented as follows [18]: 

Factorization Algorithm: 

Inputs: 1. ( ) ikyxQ ,,,  

Global Array: [ ] 1,,0, −=γ kii L  

Output: [ ] 1,,0, −=γ kii L  

Initialize: [ ] 1,,0,0 −==γ kii L ,  

                  0=i . 
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Factorization: 

Find the largest integer v  which make ( ) vxyxQ /, is still a bivariate polynomial 

( ) ( ) vxyxQyxR /,, =  

Find all the roots of ( )yR ,0  in ( )qGF  

For each distinct root λ of ( )yR ,0  

{ 

[ ] λ=γ i ; 

if 1−= ki , then output [ ] 1,,0 −=γ kifori L ; 

else 

     { 

            ( ) ( )λ+= xyxRyxR ,,* ; 

             Recursively do Factorization Algorithm with parameters ( ) 1,,,* +ikyxR . 

     } 

} 

Example 2.2: Let us consider an example using the similar parameters as in [16], a 

RS (5, 2)  codeword is generated as ( ) ( ) ( ) ( ) ( )( ) ( )0,4,3,2,14,3,2,1,0 == fffffc  

over ( )5GF , with information polynomial ( ) xxf += 1 . Assume the codeword is sent, 

and the received channel reliability information gives a reliability matrix   
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Π

15.021.010.00038.090.0
40.044.061.00012.001.0
20.007.015.09900.002.0
05.014.009.00025.006.0
20.014.005.00025.001.0

. 

The hard-decision of the received vector will be ( )3,3,3,2,4=y which has three 

symbol errors, beyond the error-correction capability of both traditional hard-decision 

RS decoding algorithms and the GS algorithm. Here by using the KV algorithm with 

total multiplicity 4=s , we can generate a multiplicity matrix as 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

00001
00100
00020
00000
00000

4sM . 

Applying the soft interpolation algorithm, we get 

( )
( )( ) ,5mod3421

3224, 22

+−−−−=
−−−+=

xyxy
xyyxxyxQM  

and ( )( ) 2,deg 1,1 ==δ − yxQMk , ( ) δ>= 3cMS , which means that correct decoding can 

be achieved. The factorization will give us 

( ) ( ) ( ) 3
1 10521.1}0,4,3,2,1Pr{0,4,3,2,11 −×=⇒=⇒+= cxxf , 

( ) ( ) ( ) 4
2 10801.9}1,3,0,2,4Pr{1,3,0,2,434 −×=⇒=⇒+= cxxf . 

Obviously ( )0,4,3,2,1=c  will be selected as the output.                                            ■ 
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            The multiplicity computation and the choice of total multiplicity s  play a very 

important role in the KV algorithm. It is believed that, as s  goes to infinity, the 

performance of KV algorithm will achieve its best [16], however, the decoding 

complexity will be very high. Also, when we increase the total multiplicity, the 

decoding performance does not improve monotonically. Using the same numerical 

parameters as in Example 2.2, Fig. 2.3 shows the change in the error-correction 

capability while the total multiplicity increases. The point of correct decoding is 

4=s , and the second one is 9=s , which is the original parameter used in the 

example in [16]. This relationship of the total multiplicity and correct decoding 

capability leads to the discussion in the following section as well as to a novel 

algorithm which will be discussed in Chapter 5. 
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Fig. 2.3. Relationship between total multiplicity and correctability for soft-decision 

RS decoding given certain reliability matrix Π . 

 

2.3.3  Suboptimal Multiplicity Computation Algorithm 
 

There are still several other algorithms for computing the multiplicity matrix such as 

in [19], [20]. Here a novel suboptimal multiplicity computing algorithm is also given, 

which will be very useful for the following re-encoding algorithm proposed in [21]. 

The suboptimal algorithm leads to constant or partially constant entries in the 

multiplicity matrix.  Since the original Algorithm A in [16] is optimal, the issue of 
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quantifying the decoding losses when multiplicities are forced to be constant or 

partially constant arises.  

           Our original motivation for this suboptimal algorithm was that in the 

multiplicity matrix M  there are only n correct points, and the other nnq −  points are 

incorrect.  When we increase the total multiplicity s  beyond a certain value, most of 

the time we will introduce incorrect points. Fig. 2.3 illustrates the point that 

increasing the total multiplicity does not guarantee correct decoding. The idea behind 

our suboptimal algorithm is to increase the score ( )cMS  without increasing δ , or if 

that is not possible, to increase ( )cMS  more than δ , to guarantee successful decoding.  

This suboptimal algorithm consists of two parts: 1) First we use a fairly small value 

for s  (but large enough to insure that M contains at least k  correct points; this value 

can be determined by simulation at a given signal-to-noise ratio (SNR)) to compute 

the multiplicity matrix using algorithms in [16] or [19]; 2) Method 1: Set a threshold 

θ , and for those entries whose values are larger than this threshold, change them to a 

constant value τ ; or Method 2: Assign a constant value τ  to all nonzero entries in the 

multiplicity matrix.  This way, if successful, we increase the weight of correct points, 

rather than increasing the number of incorrect points, which in turn increases ( )cMS  

more than δ .  The detailed steps of this algorithm, which we call Algorithm A+  are 

given below. 

            In Fig. 2.4, a comparison of different multiplicity computation algorithms is 

given for a particular code. It can be seen that the performance of the soft-decision 
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decoding algorithm using Method 1 is the same as the original KV algorithm, while 

Method 2 is slightly better at higher SNR on an AWGN channel. Gross’s algorithm 

[19] is also used as a reference. The better performance of Method 2 reinforces our 

expectation that at higher SNR, by forcing the multiplicities to have a constant value, 

most of the time we increase the score more than δ , which leads to better 

performance.  Note, however, that the decoding complexity is slightly higher in terms 

of the average total multiplicity as shown in Table 2.1, and therefore these results do 

not violate the fact that Algorithm A is optimal for a given multiplicity.  Method 1 

achieves the same performance as Algorithm A, but with a slightly lower complexity, 

as measured by the average total multiplicity, which tells us that at higher SNR, even 

if we reduce the number of interpolation iterations for the correct points, by assigning 

them a constant multiplicity τ , it does not change the decoding performance 

appreciably. Furthermore, the additional advantage of using this suboptimal algorithm 

is that since the multiplicity is constant (Method 2) or partly constant (Method 1), an 

efficient divide-and-conquer algorithm [22] can be used for the interpolation.  Also, 

when using Algorithm A, the interpolation step can only be started after all the 

multiplicity values have been computed, while for the suboptimal algorithm proposed 

here, since the final multiplicity value τ  for part or all of the interpolation points is 

known in advance, we can carry out the interpolation step in parallel while computing 

the multiplicity matrix.  Finally, by supplying constant or partially constant 

multiplicities, the suboptimal algorithm can be used with the re-encoding algorithm 

described in the next Section. 
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Algorithm A+: Calculating +M  from the reliability matrix ∏ .  

Input: Total multiplicity s, reliability matrix ∏ , threshold θ , parameter τ  

Speed up step: 

for 1=i  to n  do 

 1) For each column of the reliability matrix received, find the highest probability 

entry j . 

 2) Let τ=jim ,  in  +M , output ( ) },,{ τii yx directly to interpolation step. 

 end for 

Compensation step: 

(Method 1) Using Algorithm A in [15], and total multiplicity s compute nonzero 

entries in +M other than those points which have already been computed, output to 

interpolation step. 

(Method 2) Using Algorithm A in [15], and total multiplicity s compute nonzero 

entries in +M other than those points which have already been computed, also set 

those nonzero values τ=jim , , output to interpolation step. 
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Fig. 2.4. Performance comparison of RS code (31,15) on the AWGN channel with 

different multiplicity computation algorithms. 

 

 

TABLE 2.1 
PARAMETERS FOR FIG. 2.4 AT SNR=6.5 dB ON AN  AWGN CHANNEL 

 KV GROSS METHOD 1 METHOD 2 
PARAMETERS 

FOR 
MULTIPLICITY 
COMPUTATON 

ns ×= 6  8=λ  ns ×= 6  

5=τ  

3=θ  

ns ×= 6  

5=τ  

AVERAGE 
TOTAL 

MULTIPLCITY 

186 215 165 202 
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2.3.4  Re-Encoding Algorithm 
 

Although the performance improvement of interpolation-based algorithms, such as 

the GS and KV algorithms, is very large compared to traditional hard-decision RS 

decoding algorithms, the decoding complexity has been increased simultaneously. 

Noticing that another interpolation-based RS decoding algorithm, the WB algorithm, 

has two steps, namely a re-encoding step, and a polynomial interpolation step, Gross 

et. al proposed a re-encoding algorithm in [21], [23] which significantly reduces the 

decoding complexity of the KV algorithm. The decoding complexity reduction comes 

from the fact that when a re-encoding step is complete, it will generate at least k  

point pairs }{ , ii yx  with 0=iy , then the polynomial interpolation of these k  points 

can be implemented with lower complexity.   

             By choosing the k  points with the largest multiplicity from the multiplicity 

matrix (or equivalently the k  most reliable entries in the received vector r ), then 

systematically re-encoding these k  points and subtracting the resulting codeword 

r' from the received vector r , we can generate a modified vector y , which has at 

least k  zero entries for polynomial interpolation. Suppose we initialize the set of 

polynomials with ( ) ( ) ( ) ( ) },,,,1{},,,,,,,{, 1
10

−
− == bj

bl yyyxGyxGyxGyxG LLLL , the 

set of polynomials passing through those k  points }0,{ ix becomes: 
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The k  points will not necessarily be contiguous, but here for notation convenience, 

we assume them contiguous. Let ( ) ( )( ) ( )11 −++ −−−= kiii xxxxxxxv L  and 

( ) ( ) ( ) ( ) 11
11

−++
−++ −−−= kiii m

ki
m

i
m

i xxxxxxxV L , the bivariate polynomial which 

passes through N  points with different multiplicities can be expressed as: 

         
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ,/

,

1

0

11

1

0

11

jb

j
j

jjm
ki

jm
i

jm
i

b

j
jM

xvyxwxV

yxxxxxxxwyxQ Kiii

∑

∑

−

=

−
−+

−
+

−−

=

=

−−−= −++ L

           (2.27) 

where ( )xwj  is a univariate polynomial generated in the interpolation step. The 

polynomial ( )xV  can be factored out, calculated in advance, and the interpolation 

step in the GS and KV algorithms is simplified to finding a bivariate polynomial 

                                                    ( ) ( ) jb

j
jM yxwyxQ ∑

−

=
=

1

0
,                                        (2.28) 

with ( )xvyy /= . Correspondingly, the modified vector y  needs to be transformed 

into ( )xvyy ii /= , and the number of interpolation points is reduced to kN −  points.  

Notice that ( ) ( ) ( ) ( ) ( ) ( )( ) .111,11,11,1 −=−−=−= −−− kkxvdegydegydeg kkk It needs to be 

mentioned here that the value of b in (2.27) must be less or equal to 'm , where 'm  is 

the k -th largest value among the multiplicities.  Otherwise, we will get a negative 
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power for the univariate polynomial ixx − .  In practice, b  can be chosen to be larger 

than 'm , but the complexity will be slightly higher, since some points among those k  

points }0,{ ix  whose multiplicity is less than b  cannot be the factors in ( )xV , and 

regular interpolation for them is required.  This will not be a problem if the k  points 

in ( )xV  have equal multiplicity, which can be achieved by carefully choosing the 

threshold θ  in Method 1.   

          Furthermore, in [23], a reduced-complexity factorization scheme is 

proposed. The goal of a factorization algorithm is to find the factors in terms of  

( )xfy − . Let us assume that given a ( )yxQM ,  as in (2.27), then this bivariate 

polynomial should have a factor such as ( )xfy −  as long as it can be correctly 

decoded, that is, 

                                      

( ) ( ) ( ) ( )
( )( ) ( )
( )( )

( ) ( ) ( )

( )
( )
( ) ( ) ( ).,

,

,

,
1

0

xvyxD
xv
xf

xv
y

xvyxD
xv

xfy
yxDxfy
xv
yxwxVyxQ

j
b

j
jM

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

−
=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

−

=

                         (2.29) 

So if we replace ( )xvyy /=  and (2.28) into (2.29), we have 

                                         
( ) ( )

( )
( )

( ) ( )
( )xV

xvyxD
xv
xfy

yxwyxQ
jb

j
jM

,

,
1

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

= ∑
−

=

.                                             (2.30) 
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According to (2.30), if we can find the factor ( ) ( )xv/xfy − for a bivariate 

polynomial which passes through only kN −  points from a given multiplicity matrix, 

then we can finally have ( )xf  to recover the re-encoded codeword r'-c . 

Furthermore, since ( )xf  will zero out all the positions that are not in error for 

codeword r'-c , therefore 

                                           ( ) ( ) ( )∏
∈

−Ω=
ERi

ixxxxf
\

                                              (2.31) 

where R  represents the set of indices that ix  corresponds to k  positions in r which 

have been selected to generate the re-encoding codeword r'  , and E  represents the 

set of indices of the errors in those k  positions in r . Also we can write ( )xv  as 

                                                    ( ) ( ) ( )∏∏
∈∈

−−=
ERi

i
Ei

i xxxxxv
\

                               (2.32) 

So now we can have 

                                         ( )
( )

( ) ( )
( ) ( )

( )
( )∏∏ ∏

∏

∈∈ ∈

∈

−
Ω

=
−−

−Ω
=
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i

Ei ERi
ii

ERi
i

xx
x

xxxx

xxx

xv
xf

\

\                    (2.33) 

where ( )xΩ  and ( ) ( )∏
∈

−=Λ
Ei

ixxx  can be taken as the error evaluation polynomial 

and error location polynomial in traditional hard-decision RS decoding algorithm 

such as BM algorithm, respectively. Therefore, if we can compute ( )xΩ , ( )xΛ  and 

know the error locations, then we can use ( ) 0=+ ii exf for those Ei∈  to recover 

codeword r'-c , and codeword c  finally. 
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2.4  Summary 
 

In Chapter 2, we discussed the hard-decision RS decoding algorithms and soft-

decision algorithms such as KV algorithm. The KV algorithm includes three major 

steps, that is, multiplicity computation step, soft interpolation step and factorization 

step. Also, a re-encoding algorithm aimed to reduce the complexity of soft 

interpolation step was discussed. Moreover, we proposed a suboptimal multiplicity 

computation algorithm which leads to an efficient implementation of re-encoding 

algorithm.  
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Chapter 3 
 
 
Applications of Soft-Decision Reed-
Solomon Decoding Algorithms to 
Magnetic Recording Systems 
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3.1  Introduction 
 

A good ECC for magnetic recording systems must have high code rate, the decoding 

algorithm must have a reasonable decoding computational complexity, and the 

decoder must be realizable. In current magnetic recording systems, a hard-decision 

Viterbi decoding algorithm is used for channel detection, and a hard-decision RS 

decoder is used as the ECC decoder to correct the errors after the Viterbi decoder. RS 

codes are maximum distance separable (MDS) codes, and have a low error 

probability at high signal-to-noise ratios (SNRs). However, the ECC decoder using a 

hard-decision RS decoding algorithm cannot utilize the “soft” information of the 

channel detector output, and cannot share information with the channel detector 

which limits performance. Recently, the invention of turbo codes [1] and the re-

discovery of low-density parity-check (LDPC) codes [2] has sparked a great deal of 

interest in the magnetic recording industry in replacing the RS code with a soft-

decision decodable code such as a Turbo code, or an LDPC code for improved 

performance. Theoretical research has shown that LDPC codes are capable of 

approaching the Shannon limit. However, the error floor observed for turbo codes and 

the uncertainty of LDPC code performance at high SNR, coupled with large 

performance degradation of LDPC codes in the presence of error bursts indicate that 

there is still a lot of research that needs to be done before turbo codes or LDPC codes 

can replace RS codes in magnetic recording systems. Also, the high decoding 

complexity of soft-decision decoding is another obstacle. In [3], Koetter and Vardy 
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proposed a soft-decision RS decoding algorithm, which provides another alternative 

for future magnetic recording systems.  

3.2  Soft Chase-Type Algorithms 
 
The KV algorithm shows a large coding gain for low-rate RS codes over AWGN 

channels [3]. However, the coding gain decreases as code rate goes up. In magnetic 

recording systems, high-rate RS codes must be used, therefore, how to improve the 

decoding gain becomes a major open problem for soft-decision RS decoding of high 

rate RS codes. Inspired by the Chase algorithm [4], we combine the KV algorithm 

with the traditional Chase algorithm and propose a soft version of the Chase 

algorithm (this algorithm has been presented in part in our work [5], [6]).   

           Given that for a received channel output c , normally only a few bits in a 

symbol are at risk, due to noise contamination, we search for the p  least reliable bits 

in a received sequence, generate a set of test patterns, and map the zeros to some large 

positive value for the log-likelihood ratio (LLR), and the ones to some negative value.  

Then several multiplicity matrices can be generated and soft interpolation and 

factorization will provide additional candidates for list decoding, which in turn leads 

to improved decoding performance.  Notice that, in those multiplicity matrices, only a 

few columns are different (especially when we use Method 2 (Section 2.3.3) to 

compute the multiplicity matrix), and some complexity reduction can be realized. 

            We divided the sequence of points ( ) 1
0},,{ −

=
N
tttt mrx  for polynomial 

interpolation into two groups: Group 1 includes 'kN −  points ( ) },,{ ttt mrx , whose 
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symbols do not contain any bit involved in bit-flipping; Group 2 includes 'k  

points ( ) },,{ ttt mrx , whose symbols contain bits involved in bit-flipping.  Then an 

intermediate bivariate polynomial ( )rxQ M ,'  is generated, which passes through those 

'kN −  points in Group 1, and is stored for future use.  For each matrix we let 

( )rxQ M ,'  pass through the appropriate points in Group 2 corresponding to the 

different test patterns to get ( )rxQM , .  Since the value of 'k  is usually very small, the 

complexity of the generation of the bivariate polynomial ( )rxQM ,  does not increase 

very much, while the performance improvement can be very significant. So it is 

interesting that the original idea of combining the KV algorithm with the Chase 

algorithm is to improve the decoding performance, but the decoding complexity does 

not increase substantially due to the nice interpolation property of the KV algorithm. 

 

3.2.1  Soft Chase Algorithm 
 

The detailed soft Chase algorithm is described as follows: Suppose an RS codeword 

c  is generated and sent through the channel, with 

 ( ) ( ) ( ) ( ) ( )( )1
1

0
1

1
0

1
0

0
0 ,,,,,,,c −

−−
−= u

nn
u ccccc LLL , qu 2log= . 

           Step 1: Obtain the channel output reliability for each bit: 

( ) ( ) ( ) ( ) ( )( )1
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− == u
n
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to a hard-decision vector r , where ( ) ( )( )
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ij
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cLLRp ; 
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Step 2: Find the p  least reliable bits by searching the output sequence p , and 

generate the test patterns corresponding to these p  bits; 

Step 3: For each test pattern, compute the reliability and multiplicity matrices, 

generate a sequence of points ( ) 1
0},,{ −

=
N
tttt mrx , and divide them into two 

groups according to whether the reliability matrix entries are involved in bit-

flipping or not; 

Step 4: Generate the intermediate polynomial ( )rxQ M ,' , which passes through 

points in the first group, and store ( )rxQ M ,' ;  

Step 5:  Finish the polynomial interpolation step by making ( )rxQ M ,'  pass 

through those points in the second group; complete the soft-decision 

decoding. If it fails, go to Step 5 else go to End; 

Step 6: For the next test pattern, re-compute those points and multiplicities in 

the second group, read ( )rxQ M ,'  from memory, then go to Step 5; 

End; 

 

           The stopping criterion can be implemented using (2.24) to check the decoding 

output codeword, since its score and the weighted degree of ( )yxQM , can be obtained 

after decoding.  Other stopping criteria, such as distance computation or CRC, can 

also be used as a supplement.  
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3.2.2  Re-Encoded Chase Algorithm 
 

Although the soft Chase algorithm described above provides a large decoding gain 

without substantially increasing the decoding complexity compared to the original 

KV algorithm, the decoding complexity of the original KV algorithm is still 

prohibitively high. In order to reduce the complexity while maintaining the decoding 

gain, we further combined our soft Chase algorithm with the re-encoding algorithm [7] 

to produce a new algorithm, the re-encoded Chase algorithm [8], which not only 

improves the decoding performance but also reduces the decoding complexity 

compared to the KV algorithm. This makes the practical implementation of soft-

decision RS decoding for future magnetic recording more attractive. 

The concept stems from the following observations:  

1) In the soft Chase algorithm, we divide the sequence of polynomial interpolation 

points ( ) 1
0},,{ −

=
N
tttt mrx  into two groups: one includes 'kN −  points ( ) },,{ ttt mrx , 

whose symbols do not contain any bit involved in bit-flipping; another includes 'k  

points ( ) },,{ ttt mrx , whose symbols contain bits involved in bit-flipping ( 'k  is 

related to p ).   

2) In the re-encoding algorithm, we also divide the sequence of points 

( ) 1
0},,{ −

=
N
tttt mrx  into two groups: one includes k  points ( ) },,{ ttt myx , with the 

largest multiplicity tm , which will be used to generate the modified 

set ( ) },0',{ ttt myx = ; another includes the remaining kN −  points ( ) },,{ ttt myx . 
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           It is interesting that the points in the first group of the re-encoding algorithm 

can be made to belong to the first group of interpolation points for the soft Chase 

algorithm, if the parameter 'k  is properly chosen.  So for the soft Chase algorithm, 

we first generate a set of multiplicity matrices in accordance to the parameters s  and 

'k , then the multiplicities are divided into two groups: one consisting of those 

multiplicities that are common to all matrices, another consisting of the multiplicities 

that are generated by each particular test pattern.  The first group can be further 

subdivided into two groups: the k  entries with the largest value will be labeled as 

Group 1, the rest as Group 2. The pattern dependent multiplicities will be labeled as 

Group 3, which consists of p2  subsets.  With this grouping of the interpolation 

points, it is easy to see that we can calculate the bivariate polynomial passing through 

all the points in Groups 1 and 2 only once, which significantly reduces the soft Chase 

algorithm complexity without loss of performance.  Since 'k  is usually very small, 

the complexity of finishing the interpolation step, by passing through each subset of 

points in Group 3, p2  times, is not much larger than implementing the soft 

interpolation step just once in the KV algorithm. When combined with the re-

encoding algorithm, the decoding complexity can be further reduced.  The additional 

cost incurred by the soft Chase algorithm is that we need to perform p2  factorizations.  

A factorization algorithm given in [9, p. 32] which utilizes the conventional hard-

decision RS decoder to help perform the factorizations can be used here to reduce the 

factorization complexity. The implementation of p2  partial interpolation and 

factorization steps can be realized in parallel, so the decoding can be achieved with a 
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small delay (Fig. 3. 1(a)).  We can also trade off complexity for decoding delay by 

using only a single hardware/software core which implements the partial interpolation 

and factorization steps sequentially (Fig. 3.1(b)). The significant performance 

improvement makes this combined algorithm attractive. A summary of the combined 

algorithm is as follows:  

      Initialize: Channel output probabilities for each bit of received codeword. 

Step 1: Find the p  least reliable bits by searching the output probability sequence, 

and generate a set of reliability and multiplicity matrices corresponding to the test 

patterns; 

Step 2: For each multiplicity matrix, generate a sequence of points ( ) 1
0},,{ −

=
N
tttt myx , 

and assign them to their respective groups; 

Step 3: Generate the intermediate polynomial ( ) ( )yxQ M ,1 , which passes through 

points in Group 2, and store ( ) ( )yxQ M ,1 ;  

Step 4:  Finish the polynomial interpolation step by making ( ) ( )yxQ M ,1  pass 

through points in Group 3 to get ( ) ( )yxQ M ,2 ; finish soft-decision decoding using 

the re-encoding algorithm. If it fails, go to Step 5; else go to End; 

Step 5: For the next test pattern, read ( ) ( )yxQ M ,1  from memory, then go to Step 4; 

End. 
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         It should be mention here, that soft-decision decoding failure can be 

determined by checking if the decoded codeword satisfies (2.24). 

 

 

Fig. 3.1 Block diagram of two different types of combined soft Chase decoders. (a) 

Parallel; (b) Recursive. 
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3.3  Retry Mode Scheme 
 

Current RS decoding systems use a Viterbi algorithm (VA) as the channel output 

decoder and a hard-decision RS decoding algorithm. The KV algorithm provides an 

error-correction capability larger than ( )1−− knn , and the decoding gain can 

significantly exceed this bound when the code rate is low.  Although the KV 

algorithm and its variations bring a performance improvement as well as complexity 

reduction, the complexity is still larger than hard-decision decoding, especially when 

the code length n  is large. Fig. 3.2 shows that most of the errors that happen in one 

frame are less than half the minimum distance, so it is not necessary to use the more 

complicated soft-decision algorithm every time. A hardware or software implemented 

retry mode system shown in Fig. 3.3 should be much more attractive than completely 

changing the current decoding system. In such a system, the soft RS decoder is 

invoked only if the hard RS decoder fails (flagged by a particular checking scheme, 

such as CRC check in a magnetic recording system), and the gain of the soft decoder 

can be adjusted by changing the total multiplicity s .  In a real implementation of this 

retry mode system, a hard-decision decoder and retry mode soft-decision decoder can 

be executed at the same time, if the output of a hard-decision decoder is correct, the 

operation of the soft-decision decoder can be halted, otherwise continue to finish the 

soft-decision decoding. Also the interpolation and factorization steps of the soft-

decision algorithm can be executed in parallel, for each iteration in the interpolation 

step, and an intermediate bivariate polynomial will be output for factorization. If the 
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correct codeword is found, the decoding process is stopped, which helps to reduce the 

decoding delay. This system has better performance and lower computational 

complexity than an on-the-fly soft-decision decoder, which makes it well suited for 

the high-throughput requirements of current magnetic recording systems. 

3.3.1  Retry Mode Implementation  
 

In order to apply the soft-decision decoding algorithm to partial response channels, 

commonly found in magnetic recording systems, without greatly increasing system 

complexity, the following retry scheme is proposed: 

Input: Maximal multiplicity 

Step 1: Receive channel reliability information and convert it to a non-binary 

sequence: 

( ) ( )qGFyyyy in ∈= ,,,, 21 Ly  

Store the reliability information in a nq ×  matrix [ ]ji,Π  

Step 2:Hard Decision Step. Input the non-binary sequence y  into the hard-

decision decoding algorithm. 

Step 3: If the hard decision is wrong (indicated by a CRC check), then switch 

to the soft decoding algorithm; else End. 

Step 4: Soft Decision Step. Using the reliability information matrix [ ]ji,Π , 

and the soft-decision algorithm described in the last section, do soft-decision 

decoding. 
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Step 5: Erasure Decision Step (optional). Erase unreasonable symbols in 

sequence y , go to Step 4. 

Step 6: If the soft decision is wrong, increase total multiplicity, then go to Step 

4, else End. 

Step 7: Continue until the total multiplicity reaches the maximal multiplicity, 

End. 

 

3.3.2  Discussion on Decoding Complexity 
 

The decoding complexity is not easy to calculate, however we can shed some light on 

how it compares to hard-decision RS decoding.  The complexity of RS hard-decision 

decoding is very nearly ( )nlognΟ  [10, p. 336] with the error-correction capability no 

more than ( ) 2/kn − . The complexity of the soft-decision decoding algorithm is 

much higher.  Given in [11], the complexity of interpolation-based RS decoding 

algorithm is ( )36 / kΟ δ , and since 

                    ( ) ( ) ( ) ( )∑∑
−

=

−

=

+−=−<
1

0

1

0

1112min
q

i

n

j
ijijM mmkCkδ   ,                           (3.1) 

the complexity of KV algorithm is approximately  
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where ijm  is a nonzero entry in the multiplicity matrix. According to (3.2) we can see 

that the complexity of the soft-decision RS decoding algorithm is proportional to 

( )3nΟ . Considering the re-encoding algorithm, (3.2) can be simplified to: 

            ( ) ( ) ( ) ⎟
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where L  presents the set of the k  largest entries in the multiplicity matrix M , so the 

complexity of the re-encoding algorithm is approximately ( )( )3knΟ − . Since as 

illustrated by Fig. 3.2, most of the errors occurring in one block will be less than half 

the minimum distance, which can be correctly decoded by the hard-decision decoding 

algorithm. So the complexity of the proposed retry mode scheme is only slightly 

larger than ( )nlognΟ . 



73  

 

Fig. 3. 2.  Error distribution of RS (143,129) on MEEPR4 at SNR=14.5dB. 

 

Fig. 3. 3. Proposed system with soft decoding retry scheme. 
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3.4  Soft-Decision RS Decoding over PR Channels 
 

Here we investigate the performance of the soft-decision RS decoding algorithm on 

magnetic recording channels equalized to EPR4 [12], and MEEPR4 channels [13]. 

The BCJR algorithm [14] is used for channel detection to supply soft information to 

the ECC decoders.          

Firstly, the soft-decision RS decoding algorithm has been tested for different code 

rates over PR channels, which shows a decrease in coding gain when the code rate 

increases. According to Fig. 3.4, the soft-decision decoding algorithm works better 

for low-rate RS codes. For RS (255, 144) code with rate R=0.56, a 0.4-dB decoding 

gain over hard-decision decoding can be obtained with total multiplicity s=635, 

however, when the code rate increases to 0.9, the decoding gain is only 0.1-dB left for 

an RS (160, 143) code over EPR4 channel with channel density Sc=2.887. 
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Fig. 3.4. Performance of two RS codes with different code rates using soft-decision 

RS decoding algorithm, EPR4 channel, no interleaving, channel density 2.887. 

        Secondly, the performance is evaluated for different values of the total 

multiplicity s. It is shown in Fig. 3.5 that by increasing the value of the total 

multiplicity s, we improve performance. Asymptotically, the soft-decision RS 

decoding algorithm is about 0.4-dB better than the conventional hard-decision 

decoding algorithm for the MEEPR4 channel with RS (143, 129) code at a sector 

error rate SER=10-4.  

        Furthermore, a comparison of different multiplicity computation algorithms 

(See Section 2.3.3 for the details on the multiplicity computation algorithms) on an 
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equalized magnetic recording channel is given in Fig. 3.6 for an RS (181, 169) code. 

The performance of Method 2 is 0.1dB worse than the KV algorithm but more than 

0.1dB better than the GS algorithm, while the algorithm of Gross et al. [15] and our 

Method 1 are almost as good as the KV algorithm with comparable total multiplicity. 

If we increase the total multiplicity, the difference in performance among the various 

algorithms will become more noticeable, but since it will also increase the decoding 

complexity, which increases decoding latency, we only investigate their performance 

with a small total multiplicity, which is the case of interest in magnetic recording.  

Note that these results cannot be directly compared with the AWGN channel results 

shown in Fig. 2.4, because of the widely different values of the multiplicity and code 

rate. 

       In addition, the performance of the soft Chase algorithm using an RS (143, 129) 

code on an MEEPR4 channel was tested and the results are shown in Fig. 3.7.  The 

total number of bits flipped is set at 6=p , which means 642 =p test patterns.  By 

flipping the least reliable bits in the received sequence, and generating different 

multiplicity patterns, we expanded the decoding span of a given received codeword.  

Then from the expanded list of decoding candidates we declared the most likely one 

as the output.  A 0.4-dB gain is observed compared to soft-decision RS decoding 

without bit-flipping.  Higher gains can be expected by increasing the value of p , at 

the expense of a small increase in decoding complexity compared to original KV 

algorithm. 
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Fig. 3.5. Multiplicity effect on soft-decision algorithm for RS (143, 129) code, four-

way interleaved, equalized MEEPR4 channel, channel density is 2.967. 
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Fig. 3.6.  Performance of soft-decision decoding of RS (181,169) with different 

multiplicity computation algorithms on an equalized MEEPR4 channel, Sc=2.967, s = 

543.    
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Fig. 3.7.  Performance of RS code (143, 129) using the soft Chase algorithm with p = 

6 on an equalized MEEPR4 channel, Sc=2.967. 

 

3.5  Concatenation with Inner Codes 
 

In the KV algorithm, a reliability matrix is generated according to the channel output 

information, which supplies the probability of each symbol of the RS code to be a 

certain value in ( )mqGF 2= . Intuitively, one would think that making each symbol 

of the hard-decision channel output information more reliable would lead to improved 

reliability matrices.  
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            One way of doing this is symbol-based concatenation. Let us assume a linear 

code C  over an m -ary code in ( )mqGF 2=  with codelength n , information length 

k . For Ccc ∈21 , , the Hamming distance between two codewords 1c  and 2c  is the 

number of positions where 1c  and 2c  differ. The minimum distance, or simply 

distance of a code C , is defined to be the minimum Hamming distance mind  between 

a pair of distinct codewords of C . Given an m-ary ( )kn,  linear code 1C  with 

minimum distance min1d  and a binary ( )mn ,'  linear code 2C with min2d , their 

concatenation 21 CCC •=  is a code which first encodes the message according to 1C  

and then encodes each of the symbols of the codeword of 1C  further using 2C  (since 

each symbol of 1C  has m  bits and 2C  is a m -ary code , this encoding is well-

defined). The concatenated code C  has a minimum distance at least the product of 

the outer and inner codes’ minimum distances, that is min2min1 dd × . Furthermore, 

when an RS code is used as the outer code, and soft-decision algorithms such as the 

KV algorithm are used, Guruswami and Sudan have shown in [16] that the error-

correction capability goes up to ( )m/11− . Using the channel output information, each 

symbol of an RS codeword will be assigned a probability in the reliability matrix. 

Concatenation with some binary code can provide more reliable information, 

particularly if a maximum a posterior (MAP) decoder is used for the inner code. In 

turn, a more reliable symbol probability for the RS codeword can be used for the 

computation of the reliability and multiplicity matrices, which improves the decoding 

performance.   
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3.5.1  Concatenation with a Single Parity-Check Code 
 
We have done a simple experiment to evaluate the improvement that concatenation 

can bring to soft-decision decoding. In an attempt to provide improved channel 

information to the soft decoder, we considered the concatenation of an RS (143, 126) 

code with an single parity-check (SPC) (9, 8) code, and compared it with a single RS 

(143, 112) code with the same overall code rate.  The results are shown in Fig. 3.8 for 

s = 356, from where we can see that the concatenation provides a 0.75-dB gain at a 

frame error rate FER = 10-4 over an AWGN channel and more coding gain can be 

expected if we increase the total multiplicity. Another example is shown in Fig. 3.9 

using the same parameters as the simulation in Fig. 3.8, but with equalized MEEPR4 

channel. It is shown that by concatenation, an RS (143, 126) code with an SPC (9, 8) 

code, a 0.5-dB gain over the RS (143, 126) code can be realized.  However the 

decoding performance of the concatenated code is worse than a single RS (143, 112) 

code with the same code rate on an equalized MEEPR4 channel.  For PR channels, 

there are certain error events [17] that a simple SPC code cannot correct. However, if 

we specially design the inner codes which can be used to correct the special error 

events we might have, on certain PR channels, a better performance since the 

concatenation will not only improve the reliability information for soft-decision 

decoding but also help to detect/remove the error events. Since in this dissertation we 

are mainly focus on the soft-decision decoding algorithms instead of the design of 

concatenation coding schemes to prevent the error events over PR channels, we will 

not go further into the various concatenation schemes. Some discussion about the 
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error events and parity check codes designed to remove those error events can be 

found in [17], [18]. 

 

Fig. 3. 8. Effect of concatenation on soft-decision RS decoding over AWGN 

channels. 
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Fig. 3. 9. Effect of concatenation on soft-decision RS decoding over equalized 

MEEPR4 channels, Sc=2.967. 

3.5.2  Concatenation with LDPC Code 
 

The concatenation described above shows that the codelength of the inner code 

should be small, otherwise there will be a tremendous decoding complexity increase 

if we use concatenation. Still there is another type concatenation, such as a given 

( )kn,  linear code 1C  and a inner ( )nn ,'  linear code 2C , their concatenation 

21

~
CCC o=  is a code which first encodes the message according to 1C  and then 

encodes the whole codeword of 1C  further using 2C . The inner code will be used to 
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handle the certain error events, then the outer code will take care of the residual 

errors. As the research on LDPC codes has shown better performance of LDPC codes 

in magnetic recording systems [19], [20] with random noise, the idea of using serial 

concatenation of LDPC codes with outer RS codes has been comtemplated. There are 

two reasons for using such concatenation, one is that LDPC codes have good 

performance over PR channels; another reason is that since the error probability 

performance of LDPC codes is not clearly established at high SNRs, a concatenation 

with an RS code, whose error probability performance is known, will guarantee a 

good performance in the high SNRs region. 

         Simulation results for soft-decision RS decoding on the AWGN channel are 

given in Fig. 3.10 and compared with an LDPC code [21].  Soft-decision RS 

decoding shows a 0.2-dB gain over hard-decision decoding, but is worse than the 

LDPC code with similar parameters by more than 2 dB at a sector-error rate  

SER=10-4.  The performance of soft-decision RS decoding improves by 0.5 dB by 

concatenating it with a single parity check (SPC) (9, 8) code, while the LDPC code 

improves by 1.2 dB.  In both cases the performance of the RS code is worse than an 

LDPC code with the same overall code rate on the AWGN channel.  
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Fig. 3. 10. Performance of LDPC code concatenated with an RS code on AWGN 

channels. 

            However, in magnetic recording channels, the dominant impairment may be 

burst noise caused by media defects (MDs) and thermal asperity (TA). We also tested 

the performance of the RS code and compared it with an LDPC code on PR channels 

with and without burst noise (assuming the location of the bursty errors is known).  

For PR channels, the decoding gap between RS and LDPC codes is not as large as in 

AWGN channels; there is only a 0.5-dB difference at SER=10-4, and this gap will be 

even smaller in the presence of erasures. The performance of the four-way interleaved 

RS (127, 115) code (RS II) concatenated with a (4376, 4094) LDPC code (LDPC II) 
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was evaluated and the results are shown in Fig. 3.11.  Compared to single codes with 

similar code rate, e.g., a four-way interleaved RS (137, 117) code (RS I) and a single 

(3584, 3140) LDPC code (LDPC I), the concatenation does not provide any coding 

gain on this PR channel, regardless of whether erasures are present or not.  The 

reason might be that the LDPC decoder generates an approximately uniformly 

distributed error pattern if it cannot correctly decode the received vector, and this 

error pattern cannot be decoded by the RS decoder either. This suggests that an RS 

and LDPC concatenation scheme for future magnetic recording system might not be 

useful. It is worth noting that code concatenation does bring extra coding gain in PR 

channels, but if we compensate for the code rate loss, there is no net gain. 
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Fig. 3.11. Performance comparison of RS codes concatenated with LDPC codes with 

random noise and bursty noise over equalized MEEPR4 channels. 

 3.6  Interaction between Channel Detector and ECC Decoder 
 
Turbo equalization [22] between channel detector and ECC decoder such as a low-

density parity-check (LDPC) code has been proposed as a way of obtaining additional 

coding gain. However, the same concept cannot be applied to RS decoders due to the 

“hard” output. However, magnetic recording systems normally use several 

interleaved RS codewords in one sector and the random distribution of errors makes 

some RS codewords decodable, and some not. Due to this fact, we send those 

correctly decoded interleaves (RS codewords, checked by CRC) back to the channel 
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detector such as a SOVA or BCJR algorithms for further decoding instead of marking 

the whole sector in error, and more reliable information from the channel detector can 

be expected. Fig. 3.12 sheds some light on such a system and Fig. 3.13 shows the 

performance improvement when we feedback the correctly decoded codeword with 

some soft version of the information back to the BCJR decoder to both hard-decision 

and soft-decision decoding algorithms.  Three-way interleaved RS (186, 172) codes 

have been used, and 0.1-dB gain can be observed with three iterations of turbo 

equalization. 

 

 

Fig.  3.12.  Illustration of the interaction between channel detector and RS decoder. 
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Fig. 3.13. Performance of 3-way interleaved RS (186, 172) code with feedback 

“hard” extrinsic information from RS decoder to channel detector over equalized 

MEEPR4 channel. 

 

3.7  Magnetic Recording Channel with Erasures 
 

Besides the random noise introduced by circuits, TA and MDs are the most common 

problems faced by magnetic recording systems which lead to error bursts. When TA 

happens, the system can detect it and send a detection flag, channel state information 

(CSI), to the channel decoder, and the flagged segment of data will be treated as 

erasure in the following decoding procedure. When MDs happen, their effect depends 
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on the fading depth. In any case, the information data has been contaminated by noise 

bursts which leads to a contiguous segment of data being partially or fully erased. 

Here by abuse of notation, we denote such phenomena as “erasure”, although it might 

not be a total information loss. In this work, we are mainly focused on the occurrence 

of MDs, including both partial and full erasures. The model of MD noise is presented 

in Fig. 3.14. Normally, the envelope of the signal is a constant value, but when the 

MD happens, the envelope of the signal decays gradually to zero, then goes up to 

constant value at the end of MD area. We use two parameters to measure the erasure: 

parameter η  is used to represent the depth of erasure fading, where 10 ~=η  

represents full information loss (full erasure) to no information loss (no erasure), and 

L  is used to represent the length of erasures in bits.  Simulation shows that when the 

fading depth η  increase, the decoding performance decreases, which means that the 

partial decayed channel output still can supply some useful information to the soft 

decoder. An MD in a real system is composed by different lengths of erasure with 

different fading depth as shown in Fig. 3. 14, here in order to simplify the process, we 

assume the MD has the same fading depth for the whole erasure. We use two easily 

computed bounds to evaluate the real system performance eP :  

( ) ( )0|1| =η<<=η ePPeP e  

where ( )1=η|eP  represents the error probability of full erasure case and ( )0=η|eP  

represents error probability of the non erasure case (see also in [23]). 



91  

    

 

Fig. 3.14.  Partial or full erasure caused by MDs in magnetic recording systems. 

          We investigated the performance of the soft-decision RS decoding algorithm in 

the presence of erasures with different fading depths without CSI. The results are 

shown in Fig. 3.15 for 128-bit erasures.  A four-way interleaved RS (112, 96) code 

was used.  The fading depth affects the decoding performance significantly.  For 

instance at 2.0=η , the coding loss caused by the erasure is small, which indicates that 

the partially erased channel output can still provide useful information to the soft-

decision decoder.  However, when the fading depth increases to 0.5, the decoding 

performance becomes almost the same as for a full erasure ( 1=η ).   
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Fig. 3.15. Performance of soft-decision decoding of RS (112, 96) in the presence of 

erasures, with fading depth as a parameter on an equalized MEEPR4 channel without 

CSI, Sc=2.967, L=128 bits.  The RS code is four-way interleaved, s=336.  

        The effect of erasure length was also investigated and the results are shown in 

Fig 3.16.  For a four-way interleaved RS (112, 96) code, the maximum erasure 

correction capability with hard-decision decoding is (112-96)x8x4=512 bits.  We 

tested erasure lengths from 128 to 576 bits.  As fading depth increases, the erasure 

correction capability becomes worse.  For a fading depth of 0.5, the SER curve begins 

to show a floor for 224=L  bits, but for a fading depth of 0.2, no error floor is 

observed for erasure lengths up to 576=L bits.  
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Fig. 3.16. Performance of soft-decision decoding of RS (112, 96) in the presence of 

erasures, with erasure length and fading depth as parameters, on an equalized 

MEEPR4 channel without CSI, Sc=2.967. The RS code is four-way interleaved. 

          

          Furthermore the effect of knowing CSI is discussed. If CSI can be detected 

by a certain technique [24], the LDPC decoder can set the loglikelihood ratios (LLRs) 

of the corresponding bits to zero, and the soft RS decoder can ignore those symbols 

involved during decoding, which in turn provides a substantial performance gain. A 

difference between the soft-decision RS and LDPC erasure decoding is that the soft-

decision RS decoder completely ignores the errors caused by the erasures, while the 
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LDPC decoder still needs those erased bits for parity check calculation.  Although we 

mark those erased bits to be unknown, and use parity check information to recover 

them, an error floor is to be expected for LDPC codes in the presence of erasures, 

since if more than two bits in a row of the parity check matrix of the LDPC code are 

involved in an erasure, the LDPC decoder will most likely fail to correctly decode, 

especially when the erasure length is beyond the LDPC erasure correction capability 

rwn /2max ≈λ [23], where n is the codeword length and rw  is the row weight. As 

shown in Fig. 3.17, in both the no erasure case and the full erasure and known CSI 

case, LDPC code performance is much better than RS codes. But somehow if we do 

not know CSI, which might be the case in a real system, LDPC codes perform very 

poorly. For erasure length 128=L bits, the LDPC code considered cannot correct any 

sector without known CSI. 

          The performance of a 10-bit/symbol RS (547, 487) code on an equalized 

MEEPR4 channel is given in Fig. 3.18, and compared with a three-way interleaved 

RS (182, 162) code with the same code rate. The RS (517, 487) code is 0.2-dB better 

than the RS (182, 162) code with AWGN, but if we consider long erasures, the RS 

(517, 487) code with 300-bit erasures performs 0.5-dB better than the RS (182, 162) 

code with 240-bit erasures when the CSI is known. 
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Fig. 3.17.  Comparison of LDPC(3584, 3140) code with four-way interleaved RS 

(112, 96) code on an equalized MEEPR4 channel, Sc=2.967 with different erasure 

depth, with or without known CSI, L=128 bits. 
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Fig. 3.18.  Comparison of 10-bit symbol RS (547, 487) code with three-way 

interleaved RS (182, 162) code with and without erasures on an equalized MEEPR4 

channel, Sc=2.967, with known CSI. 

        3.7.1  Noise Variance Overestimation 

 
A lot of research has been done on the erasure effect on ECC decoders [23]- [27]. In 

[25], Song first found out that by overestimating the noise variance for a magnetic 

recording channel in the presence of erasures, one can have a better decoding 

performance for the LDPC decoder, and he called this phenomenon “noise 

overestimation”. In [27], Tan et. al further investigated this phenomenon, and named 
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it “SNR mismatch”. The basic idea behind this “overestimation” phenomenon is: for 

soft-decision decoders such as BCJR or LDPC decoders, a noise variance estimation 

of the channel needs to be supplied to the decoder. Normally the noise variance 

estimation comes from the practical estimation of a given real system. However, in 

some extreme cases, the average noise variance estimated by the practical system is 

not exactly correct. For example, in the case of a segment of contiguous erasures, the 

average noise variance can be used to decode the part which has no erasures, but the 

segment of erasures, which means large noise contamination, tells us that a large 

noise variance is experienced. So if we still use the average noise variance for 

decoding the erasure segment, definitely we will have worse performance. A larger 

noise variance is needed for decoding the erasure segment, which is reflected to as 

noise overestimation. The parameter α  is defined as the ratio of the average noise 

variance used for decoding over the exact noise variance of the channel without 

erasures. The noise overestimation has only a small effect on the error rate 

performance of the BCJR decoder, which can be observed in Fig. 3.19.  

        However, the effect on the probability value on each bit leads to a large 

performance improvement of both the LDPC decoder and the soft-decision RS 

decoder. In Fig. 3.20, two RS codes, a three-way interleaved RS (181, 170) code (RS 

I) and a four-way interleaved RS (136, 128) code (RS II), are compared with a (4376, 

4094) LDPC code [21] in the presence of erasures of various lengths.  By selecting a 

noise overestimation factor 3=α , the performance of the LDPC code with erasures is 

much improved.  An error floor can still be observed, especially for 139max =λ>L  
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bits.  The performance advantage of the LDPC code over the RS I code without 

erasures is more than 1.5 dB at SER=10-4, but only 1 dB with 128-bit erasures, and 

becomes even smaller at higher SNRs.  The RS code outperforms the LDPC code 

with 160-bit erasures.  Furthermore, by using a smaller interleaving depth, the 

performance of the RS code improves about 0.5 dB with 128-bit erasures, and more 

than 1-dB gain is observed with 160=L  bits. 

        We also simulated the system with different precoders.  In Fig. 3.21, the 

LDPC code and the RS I code are used. By changing the precoder from ( )D⊕1/1  

to ( )21/1 D⊕ , the performance changes very little for the RS code.  However for the 

LDPC code without erasures, the decoding performance using precoder ( )D⊕1/1  is 

0.5dB better at SER=10-4; with 128=L bit erasures, the performance of the system 

using precoder ( )21/1 D⊕   is substantially better. 
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Fig. 3.19.  Bit error rate of BCJR output with different noise overestimation ratio at 

different SNRs. 
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Fig. 3.20 Performance comparison of soft-decision RS and LDPC decoding with 

erasures on an equalized MEEPR4 channel, Sc=2.967, precoder 1/ (1+D). 
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Fig. 3.21  Precoder effect on soft-decision RS and LDPC decoding with erasures on 

an equalized MEEPR4 channel, Sc=2.967. 

        For RS codes, shown in Fig. 3.22, when erasures happen with length L=120 

bits, and the noise variance overestimation used is 3=α , no big difference is 

observed for hard-decision RS decoding algorithms, however, the performance of 

soft-decision RS decoding algorithm shows an almost 0.5-dB difference. Moreover, 

when no erasure happens, using noise variance overestimation leads to a slight 

degradation of hard-decision RS decoding, and a worse performance of soft-decision 

algorithm at lower SNRs, however, when the SNR becomes larger, things change: the 

soft-decision RS decoding algorithm with noise variance overestimation shows a 
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trend of better performance than the one without noise variance overestimation. This 

can be explained as an optimization of the soft-decision algorithm at high SNRs leads 

to a better overall system performance, although each component in the system might 

only be suboptimal. 

      From simulations, we observed a performance improvement using noise 

overestimation on both RS and LDPC decoding. A system architecture for decoding 

using noise overestimation is presented in Fig. 3.23.  The channel detector generates 

an erasure flag when an erasure occurs, and a counter provides the erasure length, 

which is used in a pre-calculated lookup-table (LUT) that stores the noise 

overestimation factor for the soft-decision decoder. 
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Fig. 3.23 Performance comparison of 3-way interleaved RS (186, 172) code at 

different noise overestimation ratio with different length of erasures L, 0=η . 

 

 

Fig. 3.24  System architecture utilizing noise overestimation effect. 
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3.8  Summary 
 

In this charpter, we investigated the performance of soft-decision RS decoding 

algorithms on magnetic recording channels with different parameters. The 

performance gain of the soft-decision RS decoding algorithm is not as large as for 

AWGN channels. In order to improve the decoding gain as well as reduce the 

decoding complexity of soft-decision RS decoding, we proposed the soft Chase 

algorithm and the re-encoded Chase algorithm which are good for practical 

implementation in magnetic recording systems. Also the noise overestimation effect 

when the channel is dominated by burst noise was investiaged.  
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4.1  Introduction 
 

After the proposal of the KV algorithm [1], the efficient implementation of the 

decoding algorithm has been the focus of a lot of research attention. The soft-decision 

RS decoder using the KV algorithm can be divided into four major steps: 

reliability/multiplicity matrix computation, soft (polynomial) interpolation, 

factorization and list decoding. Among these four steps, soft (polynomial) 

interpolation is the most computationally complex. Here we address the issue of 

hardware implementation of soft interpolation.  

           The implementation of the soft interpolation step, the generation of the 

bivariate polynomial ( )yxQM ,  starts with a set of polynomials  

                            
},,,,,1{

},,,,{
11

10

−=

=
bl

bl

yyy

GGGG

LL

LLG
 .                                      (4.1) 

From this set of monomials, we let each polynomial satisfy certain constraints, that is, 

passing through point ( )ii yx , with multiplicity im  given by the multiplicity matrix 

M . When all the constraints in the multiplicity matrix have been satisfied, the 

smallest polynomial in the updated polynomial set 'G  is the output ( )yxQM ,  [2], [3].  

           It is shown in (2.22) that in order to let a polynomial ( )yxG ,  pass through a 

point ( )ii yx ,  with multiplicity im , we need to make the Hasse derivative (HD) [4] 
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of ( )yxG ,  to be zero for every γ and β  satisfying im<β+γ  and 0, ≥βγ . So the soft 

interpolation step can be further divided into three sub-steps:  

Initialize: 1. A set of polynomials ( ) },,,,,1{ 10 bl yyy LL=G  

                 2. A sequence of constraints ( ) 1
0},,{ −

=
N
iiii myx  

1) Compute the Hasse derivative for each polynomial ( )yxGl , in G  with 

given ,,, γ== ii yyxx and β . From those ( )yxGl ,  with nonzero HD value, 

compute their ( )1,1 −k -weighted degree and denote the smallest degree 

( )yxGl ,  to be ( )yx,∆ ; 

2) Update those polynomials whose weighted degree are not the smallest one 

as ( ) ( ) ( )
( ) ( )yx

yx
yxGyxGyxG
ii

iil
ll ,

,
,,,' ∆

∆
−= ; 

3) Update smallest degree polynomial ( ) ( ) ( )yxxxyx i ,,' ∆−=∆ . 

           For those polynomials ( )yxGl ,  whose HD value is zero, no operation will be 

done to them. After the set of polynomials satisfy all the constraints, the interpolation 

step is done. 

 

 



111  

4.2  Memory Requirement 
 

The hardware implementation of the soft-decision decoding algorithm requires setting 

up a block of memory to store the coefficients of polynomials ( )yxGl ,  generated 

during each iteration, as shown in Fig. 4.1.  Since the coefficients of polynomials can 

be represented as a power of the primitive element α , we would like to store this 

power in memory instead of the real value of the coefficients of the polynomials. 

Also, we need to build two look-up tables (LUTs) to deal with the operations 

in ( )qGF , that is to change iα to integer j  and vice versa. On-the-fly computation of 

these LUT entries can be implemented to save memory, at the expense of decoding 

delay. In practical implementation, LUTs might not be a good choice when q  is very 

large, a real time computation circuit can be easily used to replace the LUTs for the 

following architectures discussed.  

The memory can be categorized into three types:   

Type-I memory is used for storing ( )yxGl , , which is initialized as a group of 

monomials such as },,,,1{ 12 −byyy L .   

Type II is used to store the lowest weighted degree bivariate polynomials ( )yx,∆  

generated at every iteration. Since the memory is ordered as    

1110110010100 ,,;,,;,, −−−−− babaa yxyxyxyxyxyxyx LLL , 
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if we want to multiply ( )yx,∆  or ( )yxGl ,  by some monomial ix , we simply need 

to shift the value inside each segment of memory to the right by i .  The highest 

power of x  is bounded by a , so no overflow will occur.  

Type-III memory can be further divided into two categories: one is used to store 

the value of the monomials, such as γ−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ

j
ix

j
, another is used to store the value of 

β−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

l
iy

l
 in (4.2). 

The choice of parameters a ,b is given in (2.25) and (2.26), respectively.  

 

Fig. 4.1 Memory required for hardware implementation of the soft interpolation step. 

 

4.3  Implementation of Soft Interpolation Step 
 

The first step of soft interpolation is to compute the HD value of each ( )yxGl ,  with 

given γ== ,, ii yyxx and β . Fig. 4. 2 shows an implementation diagram of Step 1 

with ⊕  representing modulo- ( )1−q  addition and ⊗  modulo-2 bitwise addition. As 

we can see the memory for storing ( )yxGl , is segmented as  
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( ) ( ) ( ) 1111 ,,1;;,,,1;,,1 −−−− baaa yxyxxxx LLLL , 

and the computation of (4.2) can be further divided as:  
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      For every iteration, the values of γ−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ

j
ix

j
and β−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

l
iy

l
are updated and stored 

in Type-III memory.  The computation of the HD value at every iteration needs: 

( )baba ×++  modulo- ( )1−q  additions and ba ×  LUT searches, then ba×  modulo-2 

bitwise additions.  Notice that in mod-2 arithmetic, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
j

or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
l

 will be zero if the 

value is an even integer, otherwise it is one, so the actual number of computations 

using (4.3) will be smaller.  The computation of the ( )1,1 −k -weighted degree can be 

realized simply by a series of switch circuits, and the degree of the highest nonzero 

monomial lj yx  in ( )yxGl ,  can be obtained as shown in Fig. 4. 2. 
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Fig. 4.2 Hardware architecture for computing the Hasse derivative and ( )1,1 −k -

degree polynomial ( )yxGl , . 

         The implementation of Step 2 is shown in Fig. 4.3, which requires ba ×  

modulo- ( )1−q  additions, ba××3  LUT searches and ba ×  modulo-2 bitwise 

additions for every ( )yxGl ,  update.  The computation can be achieved at the rising 

edge of the system clock, and the result can be restored in memory at the falling edge 

of the clock.  The updating can be realized in parallel for all ( )yxGl , .  The ( )yx,∆  is 

initialized as the lowest degree ( )yxGl , whose Hasse derivative is not zero, and the 

updating in Step 3 with ( ) ( )yxxx i ,∆−  are just shift and add operations (See Fig. 4.4), 

which also requires ba ×  modulo- ( )1−q  additions, ba××3  LUT searches and ba ×  

modulo-2 bitwise additions. 
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Fig. 4.3  Hardware architecture for updating polynomial ( )yxGl , . 

 

Fig. 4.4 Hardware architecture for updating polynomial ( )yx,∆  with ( ) ( )yxxx i ,∆− . 

        The memory needed for the three types of memory described above is 

qbab log×××  bits, qba log×× bits and ( ) qba log×+  bits, respectively.  For the 

two LUTs, an additional qq log2 ××  bits are needed. The memory requirement for 

soft interpolation is approximately ( ) ( ) qqbaqbab log2log1 ×+++×××+  bits. The 

memory requirement and complexity are mainly determined by the values a  and b .  

All the computations described above are additions, and LUT searches, which are 
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amenable to very high speed hardware implementation.  This is also the case for the 

remaining steps in the soft-decision RS decoding algorithm. 

4.4  Implementation of Soft Interpolation Step with Re-Encoding 
 

The hardware architectures given above are based on the original GS and KV 

algorithms.  For the reduced complexity algorithm proposed in [4]-[6], the 

interpolation points can be divided into two groups: one has kn − points, and the 

interpolation of such group can be realized by the hardware described above; the 

other group has k  points, with 0=iy , and a reduced complexity hardware 

implementation based on (2.27) can be devised.  We now assume, without loss of 

generality, that the k  points are indexed as 1,,0 −= ki L , and kN −  points are 

indexed as 1,, −= Nki L , for notation convenience.  Multiplying ( ) l
b

l
l yxw∑

−

=

1

0
 by 

( ) ( ) lm
k

lm kxxxx −
−

− −−− 10
10 L  can be accomplished just by shift and add operations.  

Depending on the value lmm i −=' , the ( ) 'm
ixx −  term can be expanded into a 

polynomial with two terms, if m  is a power of two, or more than two terms if it is 

not.  An illustration of the hardware needed to implement the multiplication of 

( ) l
l yxw by ( ) 'm

ixx −  is given in Fig. 4.5.  The shift controller stores the information 

of the computed coefficient and the power of x  in ( ) 'm
ixx − .  The original ( ) l

l yxw  is 

multiplied by the coefficient, then shifted by an amount controlled by the power of x , 

and added to ( )yx,φ  which is initialized as zero.  After no more than m  iterations, 
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we will obtain ( ) ( ) ( ) l
l

m
i yxwxxyx ', −=φ . The computation required for one segment 

shown in Fig. 4.5 includes ( ) 2/1'' +× mm  shifts, '3' am ××  LUT searches, '' am×  

modulo- ( )1−q  additions, and '' am×  modulo-2 bitwise additions. Since the bivariate 

polynomial in re-encoding algorithm needs to pass through points ( )ii yx , for 

1,, −= Nki L , similar to the computation in (2.25), the parameter 'a can be 

computed as 

                               ( ) ( )⎟
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⎞
⎜
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11'
N

ki
ii mmka                                                  (4.4) 

     The whole circuit includes b  segments, and for the transformation of  
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the total computation includes  ( )( )∑
−

=

+×
1

0
2/1

k

i
ii mm  shifts, '3

1

0
amb

k

i
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=

 LUT 

searches, '
1

0
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i
i ×⎟
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 modulo- ( )1−q  additions and '
1

0
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i
i ×⎟
⎠

⎞
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⎝
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×∑

−

=

 modulo-2 

bitwise additions, approximately.  Since the value 'a  is smaller than a  for the GS and 

KV algorithms and at least for k  points there is no need to compute the HD values 

(Step 1), the re-encoding algorithm can reduce the memory requirement and 

computation complexity substantially, especially when the code rate is high, which is 

the case in magnetic recording systems. Notice that in the shift controller 
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implementation, we would like to set the multiplicity im  to a constant value since it is 

easier to implement  

                   ( ) ( ) ( ) ( )( )
lm

i

i
i

lm
k

lm
k

lm xcxxxxxxxx k

−
−

−
−

−
− ⎟

⎠

⎞
⎜
⎝

⎛
=−−=−− ∑−

0

010
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with ic being coefficients.  Otherwise, for each segment shown in Fig. 4.5, we need to 

determine how many lmi −  terms are less than zero, and the computation of 

( ) ( ) lm
k

lm kxxxx −
−

− −−− 10
10 L with different im  requires additional operations. The 

comparison of the total number of operations needed for implementing the soft 

interpolation step for the original GS or KV algorithms and for its re-encoding 

version are shown in Table 4.1. 

 

Fig. 4.5  Hardware architecture for updating one segment of memory: ( ) l
l yxw  with 

( ) ( ) ( ) l
l

m
i yxwxxyx ', −=φ . 
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4.5  Summary 

 

    In this charpter, we discussed the memory requirement and hardware architectures 

for implementation of the soft interpolation step, which is a major step in the GS and 

KV algorithms. Also, we investigated the complexity reduction of the interpolation 

step when the re-encoding algorithm is considered.  
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NUMBER OF OPERATIONS NEEDED FOR IMPLEMENTATION OF THE SOFT INTERPOLATION ALGORITHM 
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5.1  Introduction 
    

In soft-decision RS decoding algorithms such as the KV algorithm [1], a bivariate 

polynomial ( )yxQ ,  will be generated to pass through a number of point pairs 

}{ ii ,yx with different multiplicities im .  Several algorithms [1]-[5] have been 

proposed to determine the points pairs }{ ii ,yx  as well as the corresponding 

multiplicity im . The way the multiplicity is determined is by maximizing the 

probability },|Pr{ Π= ii xjy , given the received channel reliability information Π . 

From Chapter 4 we know that the interpolation step starts with a set of bivariate 

polynomials Q , and after this set satisfies the N constraints, the one with the smallest 

weight degree polynomial will be selected as output ( )yxQ , .  

      Let ( ) ( ) ( ) ( )( )TQ i
L

iii QQQ 110 ,, −= L  be a polynomial vector initialized as 

                 ( ) ( )
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where T represents transpose, and 1=i to N . The polynomial interpolation step can 

be implemented by generating a set of polynomials ( )iQ  passing through the point 

pairs }{ ii ,yx based on the linear operation of entries in ( )1−iQ .  Therefore, the 

interpolation step can be computed recursively as  
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                                                   ( ) ( ) ( )1−= iii QWQ ,                                               (5.2) 

or explicitly as 
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where ( ) ( )[ ]xw tl
i

,=W , which is initialized as the identity matrix I   and ( )xw tl ,  is a 

univariate polynomial with 0, =tl to 1−L .  

Therefore,  

                             ( ) ( ) ( ) ( ) ( ) ( ) ( )0

1

011 QWQWWWQ ∏
=

==
N

i

iN-NN L ,                        (5.4) 

where each ( )iW  is related to an interpolation point pair with a certain multiplicity 

(constraint) im . The final output is selected from the vector ( )NQ . Since each ( )iW  is 

an LL× matrix, the order in which the multiplication of the various ( )iW  is 

performed can be changed arbitrarily (that is the order of the point pairs can be 

changed arbitrarily), which make an efficient parallel implementation of the product 

( )∏
=

N

i

i

1

W  becomes possible.  Based on the observation above, Feng and Giraud shed 

some light with a divide-and-conquer approach [6] to the GS algorithm, which only 

fits for multiplicity 1=m .  However, when multiplicity larger than one, we need to 

compute the Hasse derivative to generate ( )iW  based on ( )1−iW , the divide-and-
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conquer approach can not be used. More work remains to be done to achieve an 

efficient parallel implementation for multiplicities larger than one.   

 

5.2 Reliability-Based Forward Recursive Algorithms 
 
The KV algorithm [1], provides a method of generating the point pairs and their 

corresponding multiplicities based on the channel reliability information.  As 

described above, the order of the interpolation points is arbitrary, but it is desired that 

the generated bivariate polynomial pass through more correct points }{ ii ,yx  with 

multiplicities im , than through erroneous points.  We do not know which points 

}{ ii ,yx are correct, however, we do know that more reliable symbols are more likely 

to be correct.  Suppose that we generate a sequence of N  point pairs }{ ii ,yx , and we 

order the sequence }{ ii ,yx  in terms of the decreasing reliability of iy .  Then while 

generating the bivariate polynomial passing through the sorted sequence N
iii yx 1}','{ = , 

we perform the factorization step every time we process an additional point in the 

sequence to determine if we have the correct decoding answer.  The advantage of this 

approach, compared to the original KV algorithm, is that the more reliable points are 

processed first leading to an early convergence to a correct decoding answer. 

           The detailed forward recursive algorithm is described as follows.  From the 

received channel output information, we can generate a sequence of point pairs 

N
iii yx 1},{ =  with corresponding multiplicities im .  
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Step 1: Sort the sequence of point pairs N
iii yx 1},{ =  in decreasing order of their 

reliability, to obtain a sorted sequence of point pairs N
iii yx 1}','{ = ; 

Step 2: Perform the recursive interpolation described above to generate a bivariate 

polynomial ( )yxQ , passing through the first p  point pairs of N
iii yx 1}','{ =  with their 

corresponding multiplicities tm' ; 

Step 3: Perform the factorization of this intermediate polynomial ( )yxQ ,  to get a 

codeword candidate ĉ .  If the stopping criterion has been satisfied, output ĉ , go to 

End;  

Step 4: Recursively let ( )yxQ , pass through one more point in N
iii yx 1}','{ = , and then 

go to Step 3 until all points have been used;  

End. 

       The value of p  is set to be larger than ( )( )xfk deg= since in order to fully 

determine a polynomial ( )xfy − , we need to let the bivariate polynomial pass 

through kp >  points. The stopping criterion can be implemented using (2.24) by 

replacing c  with the codeword candidate ĉ , a CRC check, or a distance computation.  

The bivariate polynomial ( )yxQ ,  is sometimes denoted as ( )yxQM , to indicate that 

the polynomial is generated from the multiplicity or constraint matrix M . The crux of 

the algorithm proposed above is that instead of using reliability information once, as 

in the KV algorithm, we use it twice: once for multiplicity computation, and again for 

interpolation order determination. 
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       The reliability-based forward recursive algorithm described, performs multiple 

factorization steps in contrast to the GS or KV algorithms, which perform only a 

single factorization step. However, as illustrated by the example shown in Fig. 5.1, 

the average number of trials is approximately ( ) 2/kn − , and for large signal-to-noise 

ratios (SNRs), the number of trials becomes even smaller, in some cases as few as 

two.  Given the substantial complexity reduction afforded by the recursive 

interpolation, since we do not need to let the bivariate polynomial pass through all the 

point pairs N
iii yx 1},{ =  before we can find the correct answer, the slight increase in 

complexity due to the multiple factorizations is negligible.  For low SNRs, since for 

each interpolation constraint, a factorization trial needs to be executed, it is required 

that the time complexity of the factorization step be less or equal than the time 

complexity of the interpolation for every constraint. The complexity of the 

polynomial interpolation proposed in [7], [8] is ( )3nO , which means that for each 

constraint the interpolation has time complexity of ( )2nO .  For the factorization, the 

algorithm used in [9] gives a time complexity of ( ) ( )( )qnkO loglog2 lll +  with l  

representing the highest degree of y  in ( )yxQ , .  From the naïve interpolation 

algorithm using Gaussian elimination in [8] we can see that the interpolation time 

complexity for one constraint is close to the time complexity of the factorization 

algorithm [9].  However, more research needs to be done to find lower complexity 

interpolation algorithms [9], which will drive the need for lower complexity 

factorization algorithms to be used by these forward recursive algorithms, otherwise, 
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extra hardware will be needed for their implementation. An alternate approach is to 

perform factorization only after several interpolations of the intermediate polynomial 

have been completed. 

 

Fig. 5.1.  Average number of retry iterations for the forward recursive algorithm and 

an RS (186, 172) code on an equalized MEEPR4 magnetic recording channel. 

5.2.1  Chase-Type Variation 
 

Other ways of utilizing channel reliability information for decoding, such as in the 

Chase algorithm [10], can be used to generate particular forward recursive 

algorithms. In the forward recursive algorithm described above, we can flip the least 
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reliable symbols, which will lead to a forward recursive Chase-type algorithm.  

However, if the order of ( )qGF  is very large, the flipping of symbols will be 

impractical, since a large number of test patterns would have to be generated.   

Instead of using conventional symbol flipping, we use bit flipping.  The forward 

recursive algorithm can be modified as follows.  First we find the 'p least reliable bits 

in the received sequence.  For notation simplicity and without loss of generality, we 

assume that each symbol contains only one of these least reliable bits.  For those least 

reliable bits, we will “softly” flip them by assigning a large probability of being a “0” 

or a “1”, which will generate 
'

2 p different test patterns (in symbols).  Then let the 

bivariate polynomial pass through 'pnp −=  points (symbols) to generate an 

intermediate polynomial.  This intermediate polynomial can then pass through the rest 

of the symbols according to the test patterns, which will give 
'

2 p decoding candidates, 

among which the most likely output will be selected as the decoding result.  In [11], 

we refer to such a “soft” flipping algorithm as a soft Chase algorithm. 

        In summary, the sequence of points ( ) N
iiii myx 1},,{ =  for polynomial 

interpolation can be divided into three groups: Group 1 includes k  

points ( ) },,{ iii myx , which have the highest symbol reliabilities; Group 2 includes 'p  

points ( ) },,{ iii myx , whose symbols contain bits involved in bit-flipping,  and Group 

3 contains the remaining symbols.  Then an intermediate bivariate polynomial 

( )yxQ M ,'  is generated, which passes through the points in Groups 1 and 3, and is 

stored for future use.  For each different test pattern we let ( )yxQ M ,'  pass through 
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the appropriate points in Group 2 to get ( )yxQM , .  Since the value of 'p  is usually 

very small, the complexity of the generation of the bivariate polynomial ( )yxQM ,  

does not increase very much, while the performance improvement can be very 

significant. 

5.2.2 Reduced-Complexity Implementation 
 
Similar to the re-encoded Chase algorithm in Chapter 3, here the forward recursive 

algorithm and its variations described above can also be combined with the re-

encoding algorithm [12] to further reduce the decoding complexity. The re-encoding 

algorithm divides the interpolation step into three sub-steps: re-encoding, reduced-

complexity interpolation, and transformation.  Afterwards, a factorization step is 

executed to find the decoding output.  In [13], Ahmed et al. further reduced the 

decoding complexity by applying the factorization step without the transformation 

sub-step with the help of a conventional Berlekamp-Massey hard-decision decoder 

[14].  The motivation for combining the forward recursive algorithm with the re-

encoding algorithm (in its original version in [5] as well as the reduced-complexity 

factorization version in [13]), is again based on the same requirement of first finding 

the k  most reliable symbols from the channel output information.  For these k  

symbols (Group 1), a reduced complexity interpolation algorithm can be used to 

generate an intermediate bivariate polynomial, and then a factorization step is 

executed to see if we can find the correct output.  If not (which can be checked using 

a certain criterion), the forward recursive algorithm processes the remaining points.  
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If we consider the Chase variation, the bivariate polynomial is generated to pass 

through all symbols in decreasing reliability order until it reaches the 'p -th least 

reliable symbol, from there on, the bivariate polynomial passes through different 

symbols (Group 2) according to the different test patterns, which generates an 

expanded list of decoding candidates, and the most reliable candidate is output as the 

decoding result.  This reduced-complexity implementation of the interpolation 

algorithm reduces the time complexity to approximately ( ) nkn /− of the conventional 

interpolation algorithm proposed in [1].   

 

5.3 Connections to Other Decoding Algorithms 
 
The forward recursive algorithm is an efficient general algorithm, which defaults to 

the GS and KV algorithms, with an appropriate selection of parameters.  In addition, 

it can be viewed as a “forward” generalized minimum distance (GMD) algorithm. 

 

5.3.1 Guruswami-Sudan Algorithm 
 
Given the received channel reliability information Π , a hard-decision vector y can be 

generated.  Guruswami and Sudan [7] proposed an algorithm which groups each entry 

iy  in the vector y with the corresponding ix , and an assigned constant multiplicity 

value m , to generate a bivariate polynomial ( )yxQ ,  passing through the sequence of 

these n  point pairs }{ ii ,yx  with multiplicity m , and performs a single factorization, 

to output a list of codeword candidates.  If we set np =  in our forward recursive 
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algorithm, we obtain the GS algorithm as a special case.  Of course, if we generate 

multiplicities according to the channel reliabilityΠ , the forward recursive algorithm 

becomes the KV algorithm, which can be considered as a special case of the GS 

algorithm.  

 
5.3.2  Generalized Minimum Distance Algorithm 
 
Besides converting the channel reliability information into some multiplicity values 

as it was done in [1], there are other ways of using the channel information to assist 

the decoding process, as in the GMD algorithm proposed by Forney [15].  The basic 

idea behind Forney’s GMD algorithm is that for hard-decision RS decoding 

algorithms, if we flag some unreliable symbols as erasures, we can further improve 

the decoding performance, given that the error-erasure correction capability is 

12 +−<+ knfe , where e  is the number of errors, and f  is the number of erasures 

in a received channel output sequence.  In the GMD algorithm, the number of 

erasures is increased at every step, i.e., each time we flag two more erasures in the 

received vector y  if the previous trial did not give a correct output.  In this context 

the GMD algorithm can be viewed as a “backward” algorithm. 

      The forward recursive algorithm we propose in this paper can be viewed as a 

“forward” GMD-type algorithm. By letting the bivariate polynomial pass through the 

p  most reliable points, and perform the factorization step to find the correct decoding 

answer, we can think of this algorithm as a GMD-type algorithm with pN −  

erasures. When we let the bivariate polynomial pass through one more point, we 



132  

execute a GMD-type algorithm with 1−− pN erasures.  The major difference 

between this forward recursive algorithm and the GMD algorithm is that the GMD 

algorithm increases the number of erasures at every step, while the forward recursive 

algorithm decreases the number of unreliable points. Also, besides using the channel 

reliability information to order the channel output symbol sequence, the forward 

recursive algorithm also uses the reliability information for generating variable 

multiplicity values for the interpolation, which further improves the decoding 

performance compared to the GMD or KV algorithms.   

 

5.4 Performance Analysis 
 
One of the key steps in algebraic soft-decision decoding of RS codes is the 

multiplicity computation, i.e., how to generate the best multiplicity matrix M  given 

the channel reliability information.  The nonzero entries in the multiplicity matrix are 

in fact the interpolation constraints which the generated bivariate polynomial 

( )y,xQM  should satisfy.  However, because of the nature of polynomial interpolation, 

those constraints in matrix M  are satisfied one at a time, and if we let the bivariate 

polynomial pass only through a subset of the non-zero points in M , then the rest of 

the symbols in the sequence will be taken as erasures. Therefore, interpolation based 

algorithms, such as the forward recursive algorithm described in this dissertation can 

be viewed as erasure-and-trial algorithms.  In fact, if we start with a multiplicity 

matrix 1M with a single nonzero entry and all other nonzero entries erased, each time 

the bivariate polynomial ( )yxQM ,  satisfies an interpolation constraint is equivalent to 
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adding one more nonzero entry to the multiplicity matrix 1M , which we denote as 

matrix 2M .  By carrying out this process we finally obtain matrix M with all the 

desired multiplicities for interpolation. We generate a set of matrices 

}1,|{ 1 NtoiMMM iii =⊂ +  with MM N = (here the include symbol ⊂  means the 

nonzero entries in iM  are a subset of the nonzero entries in 1+iM ). Given a matrix 

iM , ii MMS −=  is the erasure matrix whose nonzero entries  correspond to the 

number of intermediate polynomial constraints that have not yet been satisfied. 

Therefore, for each step in the forward recursive algorithm, (2.24) becomes:  

                                   ( ) ( )( )yxQS
ii MkM ,degc 1,1 −> ,                                                  (5.5) 

where ( )c
iMS is the score of an RS codeword c  with given multiplicity matrix iM  

and ( )( )yxQ
iMk ,deg 1,1 −  is the weighted degree of bivariate polynomial ( )yxQM , . 

Since ii SMM −= , from the definition of score we have 
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where ∑
=

N

i
im

1
is equal to the total multiplicity totalm , which is the summation of the 

nonzero entries N
iim 1}{ =  in M ; ∑

=

f

l ls
1

is the summation of all nonzero entries in 
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iS , which can be denoted as MSs i
f
ll ⊂∈=1}{ . Among those nonzero entries in 

ii SMM −= , some of them correspond to erroneous points, and ∑
=

e

j je
1

is the 

summation of the nonzero erroneous entries e
jje 1}{ =  in iM . In addition, let us define 

another matrix iR  which contains all the “correct” entries in iM , which is denoted as 

g
ttr 1}{ = . The right-hand side of (5.5) is given by: 
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According to Corollary 5 in [1], (5.7) is bounded by ( ) ( )( )FCkFC −−<−∆ 12 , 

where C  represents the cost of the whole multiplicity matrix, and F  represents the 

cost of the erasure matrix iS , that is ( )∑
=

+=
f

l
ll ssF

1

1
2
1 . For correct decoding, the 

score given in (5.6), must be larger than the weighted degree given in (5.7), or 
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which can be further simplified to 
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Given a multiplicity matrix iM , as long as the “correct” entries tr  and “erroneous” 

entries je  satisfy (5.9), correct decoding will occur. 

         Consider the error-correction capability of the GS algorithm with constant 

multiplicity m and error-only decoding, using (5.8), we have  
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that is 

( ) ( ) ( )11 +−>− mnmkmen , 

                                            ( ) ( ) mmnkne /11 +−−< ,                                        (5.11) 

so as ∞→m , we obtain the error-correction bound in [2] as ( )nkne 1−−< , i.e., 

the maximum number of errors that can be corrected by the GS algorithm.  When an 

error-and-erasure decoding algorithm is considered, the bound becomes 

( ) ( )( )fnkfne −−−−< 1 . 

          As originally discussed in [7], finding a good multiplicity for interpolation is 

always a problem. The performance improvement obtained by soft-decision RS 

decoding algorithms is a direct consequence of utilizing the channel output 
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information to find the best multiplicity matrix, i.e., finding the best multiplicity 

computation method.  In reality, we only have the received reliability matrix 

[ ]ijπ=Π , and an intuitive way to compute the multiplicity matrix is to use a large 

enough scalar λ  to multiply reliability matrix, which leads to ⎣ ⎦ M=Πλ . Assume 

that 
jeπ corresponds to the reliability of an “erroneous point” in the reliability matrix, 

and 
tr

π corresponds to the reliability of a “correct point”.  Then (5.9) becomes  
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 and for ∞→λ ,  we have 
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with nnqe −= , and ng = . Equation (5.13) corresponds to (28) in [2], and describes 

the asymptotic performance when the total multiplicity totalm  goes to infinity, which 

requires an infinite decoding complexity.  A lot of research [2]-[5] has been done on 

finding the best multiplicity computation method given a fixed moderate value for 

totalm , to maximize the correct decoding probability ( ) },|Pr{ totalM mMS Π∆> or to 
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minimize the decoding failure probability ( ) },|Pr{ totalM mMS Π∆< . Notice that as 

totalm  becomes larger, we will include more and more “erroneous points” than 

“correct points” from the reliability matrix, no matter how good the multiplicity 

computation method is, since we have nnq −  “erroneous points” and only n  “correct 

points” in Π . Therefore an increase in the total multiplicity does not always lead to a 

successful decoding, and error-and-erasure decoding algorithms such as the forward 

recursive algorithm are better suited to the nature of interpolation-based soft-decision 

RS decoding. The technique of increasing the multiplicity and trial, leads to the 

decoding bound 

                            ( ) ( )∏ Π∆<=∆<
i

totaliMM mMSMS
i

},|Pr{}Pr{ ,                     (5.14) 

regardless of which multiplicity computation method is used.  

5.5 Performance Evaluation 
 
The performance of the forward recursive algorithm is compared to hard-decision RS 

decoding and the KV algorithm on an equalized MEEPR4 channel for a shortened 

RS(186, 172) code, with rate R=0.925, and the GS algorithm decoding bound 

( )1−− knn , which is the same as the half minimum distance of the RS code.  Fig. 

5.2 shows that the forward recursive algorithm with constant multiplicity 

1=m performs 0.4-dB better than traditional hard-decision RS decoding algorithms at 

a frame-error rate (FER) of 10-4, even better than the KV algorithm with total 

multiplicity 462=totalm , corresponding to an average multiplicity of two.  
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Furthermore, the performance of the forward recursive algorithm with the same 

multiplicity matrix generated by the KV algorithm with 462=totalm is better than the 

asymptotic KV decoding bound [1], which corresponds to a total multiplicity of 

∞=totalm .  The performance improvement is obtained by erasing the least reliable 

entries in the multiplicity matrix, which in turn prevents the bivariate polynomial 

from passing through the corresponding unreliable points. The complexity increase 

for the forward recursive algorithm due to multiple factorization steps can be ignored 

since as Fig. 5.1 shows a decrease in the number of decoding trials at high SNR, is far 

outweighed by the complexity reduction because of fewer point pairs used in the 

interpolation of the bivariate polynomial  ( )yxQM , .  We also show the decoding 

performance of the same RS code on an AWGN channel and the total number of 

decoding trials in Figs. 5.3 and 5.4, respectively, which is 0.1-dB better than the KV 

algorithm at FER=10-5.     
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Fig. 5.2.  Comparison of different decoding algorithms for the RS (186, 172) code on 

an equalized MEEPR4 magnetic recording channel. 
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Fig.  5.3.  Average number of retry iterations for the forward recursive algorithm on 

the RS (186, 172) code on an AWGN channel.  
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Fig. 5.4.  Comparison of different decoding algorithms for the  RS (186, 172) code on 

an AWGN channel. 

 

5.6  Summary 
 

In Chapter 5, by using the channel reliability information not only for generating the 

multiplicity matrix but also to determine the interpolation order, we developed an 

efficient reliability-based forward recursive algorithm and its variations for algebraic 

list-decoding of RS codes based on polynomial interpolation, which exhibit improved 

performance over the original GS and KV algorithms.  Also, we reduced the decoding 

time latency by first processing the most reliable interpolation points leading to a fast 
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convergence to the correct decoding answer.  The proposed algorithm is particularly 

attractive for magnetic recording systems which operate at high SNR.  
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6.1  Introduction 
 

The basic idea of nested codes, which are also called integrated interleaving codes, 

was first proposed by Hassner et al. in [1]. The initial motivation for its introduction 

to storage applications is the fact that one additional random error in an interleave can 

cause the failure of the whole sector. The integrated interleaving scheme introduces 

some shared redundancy to Reed-Solomon (RS) codewords, so every codeword or 

interleave can use this redundancy if its original redundancy failed to decode the 

correct codeword. Because the error statistics in magnetic recording channels are 

bursty, nested codes are very attractive.  

          Let { }l
iiC 0= be [ ]iii dkn ,, linear codes, which satisfy the conditions 

lCCC ⊃⊃⊃ L21  and 12 dddl >>>> LL  with in as the code length, ik  as the 

information length and id as the minimum distance of code iC . For the codes which 

are most interesting for practical implementation, normally l  is set to equal to two. 

The nested code in consideration, C , is defined as the set of nm×  matrices whose 

i th row, denoted by ic , satisfies the following conditions: 

                        
( )

},1,,1,0,

1,,0,:{
1

0
2

1

∑
−

=

−=∈α

−=∈∈=
m

i
i

bi

i
mn

BbC

andmiCqGFC

L

L

c

cc
                          (6.1) 

where α  is the primitive element of ( )qGF .  
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So let a codeword C∈c  with { }1110 ,,,,,, −−= mBB cccccc LL and another 

vector { }1110 ,,,',,','' −−= mBB cccccc LL , where 2' Cb∈c for 0=b to 1−B , 1Cj ∈c for 

Bj = to 1−m . Now let  

                             ∑
−

=

α=
1

0
'

m

j
j

bj
b cc        for 1,,1,0 −= Bb L ,                                  (6.2) 

and we have a matrix [ ]bjα=A  that  
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Since the matrix A  is nonsingular [1], we can obtain the nested codeword Tc by the 

encoding scheme TT cAc '1−= .  

          Considering that magnetic recording systems require high-rate codes, we let 

1=B  and 3=m , so that a codeword c  consists of three sub-codewords: 1c , 2c and 

4213 cccc ⊕⊕= , where ⊕  represents modulo-2 addition, and 1c , 12 C∈c , and 

24 C∈c . The parity-check matrix of 2C  is generated such that ][
21

1
2 H

H
H = , with 1H  

being the parity-check matrix of 1C , thereby insuring that 21 CC ⊃ and 13 C∈c .  For 
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the case when 21H  equals to all zero matrix, i.e., φH =21 , 1C  and 2C are the same 

code.   

The sub-codewords are sent through the channel in a serial or interleaved way and 

decoded separately.  And the received vectors are given as 

3321333222111 ,, ecccecrecrecr +⊕⊕=+=+=+= , 

where 1e , 2e , 3e  are error vectors. If one of the sub-codewords fails to decode 

correctly, say codeword 2c , for example, because the number of errors is beyond the 

error-correction capability of 1C , but we can correctly retrieve 1c and 

4213 cccc ⊕⊕= , then by adding these 1c  and 3c  to 2r , that is,  

( ) ( ) 242421123122312 ececccccccecccr +=+⊕⊕⊕⊕=⊕++=⊕+ , 

given the operation +  is same as operation ⊕  for operation between binary bits. 

Since codeword 24 C∈c  is a more powerful code, it is more likely to be correctly 

decoded.  

 6.2 Message Passing between Decoders 
 

Furthermore, if we can obtain soft information from channel output, the nested code 

described above can be modified to execute the message passing algorithm which will 

improve the decoding performance.  

      Given a  received vector r , the a posteriori probability that the j th bit of 

codeword ic is given as ( )( )r|Pr j
ic . Let assume that 1c , 2c  and 3c  are independent 
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codewords, and ( )j
iL be the likelihood ratio as 

( ) ( )( ) ( )( ) 4,3,2,1,|0Pr/|1Pr ==== iccL j
i

j
i

j
i rr for each bit, so the soft information for 

codeword 4c  can be computed as following: 

( )( ) ( ) ( ) ( )( )
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and similarly we can obtain  
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Since 1c , 2c  and 3c  are independent codewords, and denote ( )
( )( )
( )( )r

r
|0Pr
|1Pr

=
=

= j
i

j
ij

i c
c

L , we 

can compute the likelihood ratio of 4c  as  
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                                                                                                                                  (6.4) 
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The computed likelihood ratio ( )jL4 for each bits of 4c can be used for soft decoding 

codeword 4c , which, in turns, will generated an updated soft information ( )j
updateL

4
. 

Iteratively, the updated soft information of 1c , 2c  and 3c  can be computed as 

                            ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )j
update

jj
update

jjj

j
update

jjj
update

jj
j

update LLLLLL
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                             ( )
( ) ( ) ( ) ( ) ( ) ( )
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jjj

j
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jjj
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jj
j

update LLLLLL

LLLLLL
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         These updated likelihood ratios can in turn be used to generate inputs or 

extrinsic information to the respective decoders for the next iteration. Such iterative 

exchange of information between pairs of decoders (See in Fig. 6.1) is expected to 

improve the performance. 

 

Fig. 6.1.  Illustration of the iterative information exchange for two-level nested codes. 

Decoders 1, 2 and 3 operate on component code 1C , and Decoder 4 on code 2C . 
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6.3  Nested LDPC codes and its application 
 

The purpose of nested RS codes proposed in [1] is to protect the data from bursty 

errors. The dominant noise in magnetic recording channels is bursty noise. In [2], the 

performance of LDPC codes on magnetic recording channels has been investigated 

for both random noise and bursty noise, which shows a large decoding gain of LDPC 

codes in random noise compared to RS codes. However, the decoding performance 

for LDPC codes for bursty noise is not as good as RS codes. Here, since the nested 

codes were invented for bursty noise channels, we address the nested code problem 

using LDPC codes as component codes to see if a better decoding performance can be 

obtained.  

6.3.1  LDPC codes 
 

LDPC codes are linear block codes, which were first proposed by Gallager [3], and 

rediscovered by MacKay et al. [4], [5].  Unlike “structured” codes such as the RS 

code, the parity-check matrix for an LDPC code is sparse, i.e., only a small portion of 

the entries are ones, the rest of them being zero, and the positions for the ones are 

selected at random. Originally, Gallager [3] required the parity-check matrix to have 

uniform column weight cw  as well as a uniform row weight rw  (the number of “1”s 

in a column or row), which we now call “regular” LDPC codes, while codes with 

non-uniform column weights and row weights are referred to as “irregular” LDPC 

codes.  Recent work has shown the improved decoding performance of irregular 
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codes over regular codes [6].  A parity-check matrix can be generated by trial and 

error. Ones are randomly placed in the parity-check matrix, following the 

requirements of the column and row weight distributions. Once the parity-check 

matrix H  is constructed, Gaussian elimination and permutation of columns can 

convert the matrix H  into a systematic form such as: [ ]PIH = , and the generator 

matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

×kkI
P

G can be obtained, where k  represents the information length of a 

codeword.  Also, LDPC codes can be represented by factor graphs, which contain two 

types of nodes: check nodes and bit nodes.  Each bit node represents a bit in a given 

LDPC codeword, and each check node connects to several bit nodes (a row in the 

parity-check matrix H ), which represents a parity-check equation.  Therefore, an n  

bit nodes, m  check nodes factor graph for an LDPC code represents an nm×  parity-

check matrix H .  If a bit involves in the parity-check equation represents by a certain 

check node, an edge between the check node and the bit node will exist. An example 

of a parity-check matrix and its bipartite graph is given in Fig. 6.2. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01011
11110
10101

H . 
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Fig. 6.2.  Bipartite graph of LDPC code. 

          From Fig. 6.2 we can see, bit 1x  involves into two check nodes 1c  and 3c , that 

is two check equations. In order to update the belief information of bit 1x , we need 

collect the belief information from check nodes 1c  and 3c , then send them to 1x  for 

updating. By iteratively exchanging soft probability information between check nodes 

and bit nodes, the LDPC decoder under certain conditions converges to a decoding 

answer [7]. The good performance of the LDPC codes stems from the randomness in 

the parity-check matrix, and as long as the parity check matrix does not contain any 

short cycles, such as cycle-4, etc., a good decoding performance can be expected. Fig. 

6.3 shows a cycle with length 4, since the short cycle will make the probabilities 

(beliefs) in message passing algorithm highly correlated, which largely degrade the 

decoding performance. 

 

Fig. 6.3.  Parity check matrix and its Tanner graph with short cycles. 
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6.3.2  RS-Based LDPC Codes  
 

For an LDPC code, we hope there are no four-cycles in its parity check matrix to 

achieve good decoding performance. Also, in order to generate a nested code using 

LDPC codes, we want a parity check matrix [ ]1HH =  for 1C  that can be expanded 

easily to ]['
21

1

H
H

H =  for 2C . In consideration of these two issues, we use the RS-based 

LDPC codes proposed in [8], [9] for the component codes used for the nested LDPC 

encoding scheme.  

       Given a (shortened) RS ( )1,2, −ρ==ρ= tkn code with two information 

symbols, according to the generator polynomial   

( ) ( )( ) ( )
t
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xxgxgg
xxxxg

22
210

22

++++=

α−α−α−=

L

L
 

where ( )qGFgi ∈ and the generator matrix is  

                                ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

210

210

L

L

ggg
ggg

G .                                          (6.8) 

The nonzero RS code generated by this generator matrix has two possible weights, ρ  

and 1−ρ , which indicates that there is at most one position in two different RS 

codewords which have the same symbol value.  
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          Let us consider the q distinct elements in ( )qGF , which are 22 ,,,,0 −ααα qL  

with α  as the primitive element. If we denote iv  to be a vector that contains only a 

“1” at position i , and 1−q  “0”s at the rest of positions, then we can map the distinct 

elements in ( )qGF  to vectors iv  such as 

( )
( )
( )

( ).1000

,0100
,00101
,00010

1
2

2

1

0

L

MM

L

L

L

=→α

=→α
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=→

−
−

q
q v

v
v
v

 

So for an RS codeword ( )110 ,,, −= nccc Lc , each symbol ic  in the codeword can be 

expanded into a vector jv  given j
ic α= . Therefore, the codeword 

( )110 ,,, −= nccc Lc  has been expanded into  

( ) ( ) ( )110110110 ,,,,,, −−− =→== nnn cccccc v'v'v'Vcc LLL . 

Now, since two different codewords 1c  and 2c  have no more than one symbol in 

common, the expanded version of 1c  and 2c , 1V  and 2V  respectively, will not have 

two “1”s at the same location, so if we have a matrix ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

V
V

H , it is free of cycles of 

length four. And since we can generate more codewords 3V , 4V , etc. using the 

generator matrix in (6. 8), we can easily expand matrix H  into 
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These RS-based LDPC codes described above have no cycles of length four, and their 

performance has been shown to be almost as good as MacKay’s randomly 

constructed LDPC codes.  In addition, the rows of their parity-check matrix can be 

freely expanded by changing a certain parameter, which is very useful for designing 

nested LDPC codes.  

6.4  Application of Nested Codes to Magnetic Recording Channels 
 

6.4.1  Erasure Detection Techniques 
 

For full erasures, the channel output consists only of noise, and even though the 

location of the erasure is not known, a channel detector such as the BCJR algorithm 

[10] outputs certain error patterns, which are fully determined by the combined trellis 

of the  precoder and PR channel.  For example, for the generalized PR (1.0, 1.72, 1.15, 

0.33) target we get the alternating pattern “…101010…” with no precoder, the all-

zeroes pattern with precoder ( )D⊕1/1 , and the all-ones pattern for precoder 

( )21/1 D⊕ .  The location of full erasures can be determined by detecting these error 

patterns if the length of such error patterns is beyond a certain value.  Then for RS 

decoding, the corresponding symbols are marked as erasures and an error-and-erasure 

decoding algorithm can be used.  For LDPC decoding, the LLRs of the corresponding 
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bits are set to zero, and input to the LDPC decoder [11].  The detection of the error 

patterns can also be combined with additional code constraints that maybe used in the 

system such as run-length-limits [12], [13].   

         The full erasure detection (FED) technique described above cannot be used for 

partial erasures.  Instead, we use the structure of the nested codes to assist us in the 

location of a noise burst, which should be roughly the same for every interleave. So if 

we can correctly decode one codeword in a given sector, then we can flag the 

corresponding symbol errors at the output of the BCJR detector in the other 

interleaves as erasures and use an erasure decoding algorithm. Similar discussions can 

be found in [14], [15]. Furthermore, if we can correctly decode two codewords in a 

sector, the common error pattern in these two blocks can be used as burst error 

location information for the third incorrect block. Since we have a powerful code 

embedded in the interleaved codes, it is more likely to correctly decode at least one 

component code in a nested scheme, which in turn will supply burst location 

information to be used by the other interleaved blocks (See Fig. 6.4). This erasure 

location information sharing (ELIS) technique can be used for both RS and LDPC 

codes. 
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Fig. 6.4.  Illustration of error location sharing in interleaved code scheme. 

 
6.5  Performance Evaluation 
 

In our simulations, the BCJR detector is used as the soft-decision channel detector on 

an equalized perpendicular magnetic recording channel. A generalized PR (1.0, 1.72, 

1.15, 0.33) target [16] is used with channel density 4.1=K  and KV algorithm is used 

for soft-decision RS decoding [17].  

       In Fig. 6.5 a nested RS code with component codes RS(186, 170) and RS(186, 

162), is compared with an interleaved RS(186, 168) code, with similar code rate, in 

the presence of both random and burst noise with L  is the burst length in bits.  The 

nested RS code performs better than the interleaved RS code by about 0.25-dB at a 

sector error rate (SER) of 10-4, if the erasure location is known.  From Fig. 6.6 we can 

observe that in general the introduction of the FED technique, where applicable, 

provides a coding gain of 1 dB, and that the performance is almost the same as the 

ideal case when the error location is known exactly. Results for an interleaved RS 

code with a single 10-bit/symbol sector-size RS(446, 403) code are also given in Fig. 
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6.5.  It can be seen that the maximum performance that the two-level nested RS code 

scheme can achieve is the same as the sector-size RS code.  However, the decoding 

complexity of a sector-size single RS code is substantially larger, which makes the 

nested RS coding scheme more attractive. Furthermore, in the presence of partial 

erasures, the single sector-sized RS code becomes much less attractive than the nested 

RS codes, since the erasure location information can be shared between component 

codes in the nested scheme.  Fig. 6.6 shows that the performance improvement of 

nested RS codes afforded by the ELIS technique is 0.2 dB. 

           A nested LDPC code with component codes RS-based LDPC(2048, 1864) and 

RS-based LDPC(2048, 1765) (LDPC I) is compared with a non-nested case, which 

uses only code RS-based LDPC(2048, 1807) (LDPC II). First, we consider the three 

component codewords concatenated without interleaving, and observe that the nested 

code performs better than the non-nested LDPC code.  In order to evenly distribute 

the bursts over the component codes we use three-way bit interleaving, and observe 

that the nested LDPC code shows a performance loss over the non-nested one. The 

performance of a single iteration of an iterative decoder is also shown in Fig. 6.7. 

However, since we only chose 1=B , 3=m , the nested code in fact is a very weak 

code, and the iterative improvement is very small. Finally, by nesting a single RS-

based LDPC(2048, 1807) code, i.e., letting φ=21H , we obtain a slight performance 

improvement without incurring any code rate loss. The erasure detection techniques 

used for RS codes can also be used for LDPC codes. 
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Fig. 6.5.  Performance comparison of a nested RS code with the same overall code 

rate of a single RS code on a perpendicular recording channel, K=1.4, erasure length 

L =120 bits, with full erasures (η =1) and known location.   
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Fig. 6.6.  Performance comparison of a nested RS code with the same overall code 

rate of a single RS code on a perpendicular recording channel, K=1.4, erasure length 

L =120 bits, with different erasure depths and unknown location.   
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Fig. 6.7.  Performance comparison of a nested LDPC code with the same overall code 

rate of a single LDPC code on a perpendicular recording channel, K=1.4 with full 

erasures (η =1) and known location.   

6.6  Summary 
 

In Chapter 6, a nested RS coding scheme was investigated in the presence of a 

mixture of random and burst noise on a perpendicular recording channel, and a 

performance improvement over a single RS code was observed.  In addition, we 

described the nested LDPC codes design using RS-based LDPC codes and their 

performance was evaluated. Although the nesting of LDPC codes with interleaving 
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led to a performance loss, the concept of iterative exchange of hard or soft 

information between each component decoder deserves further investigation.  
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7.1  Introduction 

Although the interpolation-based soft-decision Reed-Solomon (RS) decoding 

algorithms [1]-[3] discussed in previous chapters can achieve large decoding gain, the 

decoding performance of random noise dominanted systems is not as good as LDPC 

codes [4]. The question that arises is whether we can use the decoding algorithm for 

LDPC codes to decode RS codes since both of them are block codes. The problem is 

that although LDPC and RS codes are both block codes, but they have very different 

parity-check matrices.  RS codes have very dense parity-check matrices making them 

unsuitable for BP decoding due to error-propagation.  In order to make the parity-

check matrix of an RS code suitable for BP decoding, one would need to convert its 

parity-check matrix or at least parts of it into a low-density matrix.  A lot of work [5]-

[8] has been done on modifying the parity-check matrix of RS codes to permit 

effective BP decoding.  Recently, Jiang and Narayanan [9] proposed an adaptive BP 

algorithm for decoding RS codes based on channel reliability information. By 

adaptively modifying the parity-check matrix of the RS code into a partially low-

density matrix based on bit reliability, they have observed large decoding gains using 

the BP algorithm on AWGN channels. 

            In this chapter, the effectiveness and performance of the adaptive BP (ABP) 

algorithm on inter-symbol interference (ISI) channels as found in magnetic recording 

systems is investigated, and a modified version of the ABP algorithm is proposed to 

reduce its decoding complexity.  
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7.2  Iterative Soft-Decision RS Decoding 

Let )2( mqGF =  be a finite field with 1+= nq  elements and a primitive elementα .  

An RS ( )kn,  code over )(qGF  has a parity-check matrix H , and every 

codewordc satisfies the following parity-check equation  
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where 1+−=δ kn , and ( )⎣ ⎦2/1−δ=t  is the error-correction capability of the code.  

The polynomial representation of every codeword c , ( ) 1
1

1
10

−
−+++= n

n xcxccxc L , 

has t2=δ zeros, i.e., ( ) ( ) ( )( ) 012 =α==α=α −δccc L .  Every codeword symbol can be 

represented by an m -tuple binary expansion using a given basis and each entry in H  

can be represented by an mm×  matrix, TM j  [10, p. 106]. 

             The BP algorithm has been widely used for decoding low-density parity-

check codes, and is responsible for decoding performances approaching the Shannon 

limit [11].  The binary expansion of the parity-check matrix of the RS code, hereby 

denoted by bH , is a high-density matrix containing many short cycles, which lead to 

correlation between the belief information generated from different check equations 

and poor performance of the BP algorithm.  In [9], Jiang and Narayanan proposed an 



169  

algorithm which can adaptively modify the parity-check matrix of the RS code into a 

partly low-density matrix based on bit reliability and effectively reduce error 

propagation in the BP algorithm still operating on a largely high-density matrix.  A 

brief description of the ABP algorithm is given as follows: 

Definitions:  Let the log-likelihood ratio (LLR) of the channel output be 

( ) ( )
( )1Pr

0Pr
log

=
=

=
i

i
i p

p
pL  for each binary bit i  in codeword c , with nmi ,,2,1 L= . 

Initialization:  Input the maximum number of iterations maxj , and the channel LLR 

vector  ( ) 0, =jjL . 

Step 1.  Sort the LLRs in ascending order of their absolute value and let 

nmj iiii ,,,,, 21 LL  denote the position of the sorted codeword bits, i.e., 1i  is the least 

reliable bit, and nmi is the most reliable bit. 

Step 2.  Reduce the 1i -th column of bH to [ ]T001 L , then the 2i -th column to 

[ ]T010 L  , etc. Since the parity-check matrix has ( )mkn −  independent columns, we 

can reduce ( )mkn −  columns among the nm columns of bH to the identity matrix, but 

not necessarily the ones corresponding to the least reliable bits.  If we are not able to 

reduce the ji -th column to 

T

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
00100 L

321
L

j

, skip the ji -th bit and go on to the next 
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unreliable bit. We obtain ( ) ( )
⎟
⎠
⎞⎜

⎝
⎛φ=

jj LbHbH ,  where φ  is the function which realizes 

the matrix reduction. 

Step 3.  Perform BP decoding based on ( )j
bH  and ( )jL  to generate the updated and 

extrinsic LLR vectors, ( )j
u

L and ( ) ( ) ( )jj
u

j
ext LLL −= . 

Step 4.  Hard decision: 
( ) ( )
( )⎩

⎨
⎧

<
>

= .
01
00ˆ

i
j
u

i
j

u
i pL

pL
p  

Step 5. Termination Criterion: If all the check equations are satisfied, End; else if 

maxjj = , declare a decoding failure.  

Step 6.  Update the LLR vector as 

                                           ( ) ( ) ( ) ,1 j
ext

jj LLL λ+=+                                                        (7.2) 

where λ  is a damping coefficient.  Set 1+= jj and go to Step 1. 

Example 7.1: Let α  be the primitive element over )32( =qGF  with primitive 

polynomial as ( ) 31 xxxp ++= . With information polynomial as 

( ) 3423624 xxxxxf α+α+α=++= , an RS (7, 4) codeword is generated as 

( )4206640=c  and its binary representation as 

{ } ( )100,010,000,110,110,100,0001 == =
nm
iib lc . According to (7.1) and [10, p. 

106], the binary expansion of RS parity check matrix is given as 
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111010011101001110100
011101001110100111010
110100111010011101001
011110010001111101100
001111101100011110010
111101100011110010001
001011111110101010100
100001011111110101010
011111110101010100001

bH  

and 0cH T =bb . Suppose the binary bit sequence bc  is sent out, and the received 

channel reliability information can be converted into an LLR vector as: 

( )75.0,4.5,4,1.1,4.7-6,,18.0-,6.3,7.60.3,-,9-,3-,5.0-,1.3-5.8,8.3,-0.2,4.3,1.6,4.9,5.0,=L
 

and the sorted LLR vector L~ is 

( )9,3.8,4.7-,6.7,6,8.5,4.5,0.5,9.4,3.4,4,6.3,1.3-3,-,6.1,1.1,75.0,5.0,3.00.2,0.18,-~ −−−=L .  

The three erroneous bits are marked with red boxes, and the number of errors is 

beyond the hard-decision RS decoding correction capability. According to the sorted 

LLR vector, the binary expansion parity check matrix can be modified to 
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110000101111000000001

~
bH . 

            116171316720124191481031821912515 lllllllllllllllllllll  

Using the modified parity check matrix above, it is shown by simulation that with one 

iteration message passing, the number of erroneous bits is reduced to only one bit, 

which is within the hard-decision RS decoding correction capability. If the number of 

errors is still beyond the correction capability of the code, more iterations of message 

passing are needed. 

7.3  Performance Discussion 

The ABP algorithm described above divides the received sequence into two groups 

based on the absolute value of their LLRs, namely groups rG  and uG containing 

reliable and unreliable bits, respectively.  Fig. 7.1 shows an example which illustrates 

the relationship between bit error rate and reliability, making it clear that the ( )mkn −  

least reliable bits have a high probability of being in error.  The columns in the parity-

check matrix corresponding to these unreliable bits will be reduced to having a single 

non-zero entry, forcing that unreliable bit to be involved in a single check equation. 
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However, the remaining columns of the parity-check matrix corresponding to reliable 

bits are still dense, and each reliable bit is involved in more than one check equation. 

Fig. 7.2 shows examples of a modified parity check matrix bH  with message passing 

to unreliable bit 15l  and reliable bit 13l  using a Tanner graph.  

 

Fig. 7.1.  Bit error rate as a function of reliability rank order for an RS(186, 172) code 

on an equalized MEEPR4 channel at SNR=14.5 dB. 
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Fig. 7.2.  Examples of message passing between variable and check nodes. 

Using the same notation as in [12, p. 60], where  l  denotes variable nodes and m 

denotes check nodes, the checks-to-variables and the variables-to-checks updates for 

the modified parity-check matrix are given as 
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and the updated LLR for each bit is 

                                      ( )
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Equations (7.3)-(7.4) are initialized as ( ) ( )lml pLqL =→ , ( ) 0=→lmrL . 
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              From (7.3)-(7.5) above we can see that bits in uG are involved in only one 

check equation, and since the absolute value of their LLRs is small (compared to 

those in rG ), the LLR computed by (7.3) (using bits from rG with LLRs with larger 

absolute values) will likely change the sign of bits in uG  if the check equation is not 

satisfied.  Even if it cannot change the sign of a particular bit, the summation of LLRs 

in (7.5) will change the original absolute value of the LLR for this bit to a small 

value, which will definitely help its decoding in the next iteration of the BP 

algorithm.  For bits in rG , because of the large absolute value of their LLRs, (7.5) will 

not change their sign.  Therefore, as long as the bits in rG  are correct, it is likely that 

the sign of the LLRs of most of the unreliable bits in uG  will be correctly changed, 

and the sign of the LLRs of the reliable bits in rG will definitely not be changed. 

Furthermore, even if not all the signs of the LLRs for bits in rG  are correct, (7.4) will 

reduce the absolute value of their LLRs, which will help their decoding in the next 

iteration. Therefore, partially reducing the column weight according to the channel 

reliability information, limits the error propagation of unreliable bits, which improves 

the decoding performance, even though the parity-check matrix may still have a large 

number of short cycles.  

             For a parity-check matrix which is cycle-free, density evolution can be used 

for asymptotic performance analysis of message-passing decoding [13], [14].  But for 

parity-check matrices with many short cycles, no method is available for determining 

BP decoding performance. Here we exploit a special property of the adaptive BP 
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algorithm, to provide an approximate decoding performance analysis. Since the BP 

algorithm might lead to error propagation when the parity-check matrix has short 

cycles, in a practical system, an outer algebraic RS decoder is required for good 

decoding performance.  The performance of a decoding system utilizing both an 

algebraic decoder and a BP decoder can be expressed in terms of the probability of 

decoding error bpdPadPdP ×= , where adP is the error rate of the algebraic decoder 

given a received block and bpdP  is the error rate of the BP decoder given that the 

received block cannot be successfully decoded by the algebraic decoder.  The error 

rate adP  can be found either analytically [15, p. 250] or by simulation.  The error rate 

bpdP can be approximated on the basis of the following observation. The BP decoder 

operates on a set of reliable bits whose hard decision prior to BP decoding may or 

may not be correct.  We have observed that if all reliable bits are correct, the BP 

decoder is always able to converge to the correct codeword or reduce the errors to 

within the RS algebraic decoder correction capability.  The probability that the 

reliable bits are all correct can be estimated using simulations as 

( )correctarerGinbitsall
rGP Pr= , and even if not all bits in rG  are correct, by 

adaptively changing matrix bH and do BP decoding, we might be able to find the 

correct answer with probability cP . So an approximation to the probability of 

decoding error can be computed as 
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In Table 7.1, we show simulation results for the values of the probabilities 

adP ,
rGP , cP  and the overall error rate dP  for a shortened RS (190, 172) code on a 

perpendicular recording channel with DC-full target (1.0, 1.72, 1.15, 0.33) and 

channel density K=1.4. It can be seen that the majority of decoding failures of the 

algebraic decoder can be correctly decoded by the BP decoder since most of those 

errors in an RS codeword will be included in uG , and bits in rG  are more likely to be 

correct. 

               Based on the analysis above, it is paramount that all erroneous bits be 

grouped into uG  to prevent error propagation during BP decoding.  A swap of bits 

between uG  and rG  (as shown in [9]) will further improve the decoding performance 

if all the erroneous bits can be swapped out of rG  . The best possible performance of 

the ABP algorithm would occur when we know all the erroneous bits in the received 

sequence, sort them in descending order of their probabilities, and assign the first 

( )mkn −  erroneous bits to uG , (if there are more than ( )mkn −  bits in error), then  

modify the parity check matrix according to uG  and rG , and execute the BP 
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decoding algorithm. The corresponding RS codeword error rate of such operation can 

be taken as the ML bound for this ABP decoding algorithm, which is also the best 

result of the swapping proposed in [9].  Also, since error propagation will occur if 

erroneous bits are assigned to rG , after each BP iteration, the Hamming distance 

between the hard-decision BP decoder output and the hard-decision received vector 

can be computed to see if the difference is larger than a threshold θ ; if it is larger, an 

indication of error propagation, the BP decoder output will be either discarded or its 

extrinsic information will be weighted less in the next iteration.  This will mitigate the 

error propagation of the ABP algorithm.  Also, error propagation is an indication that 

some erroneous bits might have been included in rG , and a swap of bits between uG  

and rG  may be helpful. 

Table 7.1   

Probabilities for an RS(190, 172) code  on a  DC-Full GPR4 channel with channel 
density K=1.4 
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12.5 0.211 70% 8.2% 0.046 

13 0.0311 86.2% 4.82% 
 

0.0028 
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0.0025 95.09% 2.08% 7x10-5 
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7.4 Modified Adaptive Belief Propagation Algorithm  

The adaptive algorithm proposed in [9] is very effective when doing BP decoding of 

RS codes. However, the decoding complexity of the modified partially dense parity 

check matrix is still high. Based on the analysis and observation in Section 7.3, we 

slightly modify the adaptive BP algorithm [9], leading to a small degradation of the 

decoding performance, but the complexity reduction is very substantial.  

The modified adaptive BP (MABP) algorithm is based on the observation that bits in 

uG  are more likely to be erroneous bits. The detailed algorithm is: Given a received 

bits sequence and corresponding LLR sequence, the bit sequence will be divided into 

two groups ( uG  and rG ) according to the channel output reliability, and the RS parity 

check matrix will be modified correspondingly. The LLRs for bits in uG  is updated 

using  

                            ( ) ( ) ( )( )
( )

⎟
⎠
⎞

⎜
⎝
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∈
→

−

lml
mlll qLpLqL

\'
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1 2/tanhtanh2
L

                     (7.7) 

and those bits in rG  will keep unchanged as 

                                                      ( ) ( )ll pLqL =  .                                                   (7.8) 

The updated LLRs will be sent to soft/hard RS decoder for further decoding to see if 

the correct answer can be found. If not, a decoding failure will be claimed or the 

updated LLRs can be sent back to channel detector such as SOVA [16] or BCJR [17] 

algorithms for another iteration decoding trial. Since the message passing algorithm is 
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used by only those bits involved in only one check equation, tremendous decoding 

complexity reduction can be expected. 

               Also, in order to further reduce the decoding complexity, the MABP 

algorithm can be further modified into a hard version message passing with 

negligiable performance loss. Let  ( ) }10{ ,pH l ∈  be the hard decision of bit l  with 

probability lp  and the addition is a modulo-2 operation. A hard version message 

passing of (7.7) becomes 

                                            ( ) ( )
( )
∑

∈
=

lml
ll pHqH

\'
'

L
                                                  (7.9) 

So the update of hard decision of bit l belongs to uG  is give by ( )lqH , and bits 

belong to rG  is unchanged. Using the example shown in Section 7.2, the unreliable 

bits such as 15l , 5l , etc. can be computed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1162024191415 pHpHpHpHpHpHpHpH ++++++= , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1117131419145 pHpHpHpHpHpHpHpH ++++++= , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1161713

1672014191412

pHpHpHpH
pHpHpHpHpHpHpHpH

++++
++++++=

, 

              LL  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )171672014148 pHpHpHpHpHpHpHpH ++++++= . 

                The updated hard-decision of unreliable bits ( uG ) will combine with other 

bits in rG  for hard-decision RS decoding. By doing this, the received bits need only 
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to be sorted and the unreliable bits need to be found out, no LLRs need to be saved 

for each bit (which consumes a lot of memory), and the computation of (7.9) is very 

easy to implement. Also, instead of storing the non-zero entries of a binary parity 

check matrix in BP decoding, here we can store the zero entries of the binary parity 

check matrix of RS codes. Once the reliability-based modified parity check matrix is 

generated, a hard version message passing using (7.9) will flip the unreliable bits if a 

check equation is not satisfied. The hard version of the MABP (HMABP) algorithm is 

very attractive for hardware implementation. Also, by exhaustive swapping bits 

between two groups, the modified ABP algorithm can achieve its asymptotic 

performance. 

             Furthermore, it is interesting to note that the HMABP algorithm can be taken 

as a variation of the Chase algorithm [18] with ( )mknp −= bits.  In the Chase 

algorithm, the p  least reliable bits are selected, and p2  test patterns are generated by 

exhaustively flipping those unreliable bits. The HMABP algorithm determines which 

particular test pattern should be chosen instead of going through p2  trials. From (7.7) 

and (7.9), the performance difference between the MABP and the HMABP 

algorithms should be negligible.  

7.5  Implementation on Magnetic Recording Systems  

Although the algorithm in [9] has the potential to deliver improved performance, 

simulations show that error propagation takes place when erroneous bits are included 

in rG .  In order to mitigate error propagation, a damping coefficient has been 
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introduced in the updating of the LLRs. Also, an algebraic RS decoder is needed 

before and after the ABP decoder to increase the convergence rate as well as prevent 

error propagation.  Since a hard-decision algebraic RS decoder is already used in 

current magnetic recording systems, a retry-mode ABP decoding scheme can be used 

whenever the algebraic RS decoder fails. 

                 The retry mode decoding scheme for an RS coded system is given as 

follows:  

Step 1: Execute an algebraic RS decoding algorithm (Decoder 1).  If it fails go 

to Retry Mode. 

Retry Mode: Step 2: Sort the received bit sequence based on the magnitude of 

the reliability information, ( ) ( )i
j pL , divide it into two groups, uG and rG , 

and reduce the columns of H corresponding to bits in uG  to identity matrix 

form [9]. 

Step 3:  Execute a BP algorithm (Decoder 2) followed by an algebraic 

decoding algorithm.  If it fails, update the original LLRs with the extrinsic 

information generated by the BP decoder with a damping coefficient λ . If the 

maximum number of iterations has been is reached End, else go to Step 3. 

7.5.1 Effect of Error Bursts 

In magnetic recording channels, TA and MDs are the main source of burst errors but 

they can be declared as erasures. Erasure detection techniques [19], can be used to 
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provide erasure location information to the ECC decoder.  The modified adaptive BP 

algorithms described above as well as the original one in [9] can immediately assign 

these erasures to uG without having to sort the sequence. 

7.5.2   Hardware Architecture 

   The modified parity-check matrix changes every execution of the adaptive BP 

decoding algorithm according to the reliability order of each bit. It would be more 

efficient if the BP decoder circuit could adapt to the change of the parity-check 

matrix.  Modern circuit design techniques allow a reconfigurable implementation as 

shown in Fig. 7.3.  For each parity-check matrix generated, the data defining the 

edges between variable nodes and check nodes is input to the BP decoder to 

reconfigure the circuit, while the output pads are still unchanged. If decoding failure 

occurs after algebraic decoding, a retry signal and the updated LLRs are sent back for 

another execution of sorting, parity-check matrix updating and BP decoding until a 

correct answer is found or the maximum number of iterations is reached.  
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Fig.  7.3.  Diagram of an efficient implementation of RS decoding with an adaptive 

BP algorithm. 

7.5.3  Decoding System of Concatenation with LDPC Code(s) 

 The adaptive BP decoding algorithm and its variations proposed in this paper can be 

applied to LDPC decoding, as well as to systems where an outer LDPC code is 

concatenated with one or several inner RS codes or a long outer RS code is 

concatenated with several short length inner LDPC codes [20]. In Fig. 7.4 we show a 

possible configuration for an LDPC coded magnetic recording system and its system 

architecture. Since the soft information generated by the RS decoder with the ABP 

algorithm and by the LDPC decoder are independent, an iterative exchange of the 

extrinsic information can provide an additional coding gain.  Also, a reconfigurable 
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circuit can be used for both LDPC decoding and ABP decoding of the RS code 

without the need of extra circuitry. 

 

 

Fig.  7.4.  Diagram of implementation of future magnetic recording systems. 

7.5.4  Complexity 

The adaptive BP algorithm can be divided into four steps: 1) Sorting of channel 

reliability information; 2) RS parity check matrix modification; 3) BP decoding; 4) 

Algebraic RS decoding.  

Compared to algebraic hard-decision RS decoding algorithms used in current 

communication systems, ABP decoding is significantly more complex. However, by 

using the MABP algorithm proposed in this dissertation, the BP decoding (message 
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passing) can be greatly simplified using (7.7). Furthermore, the hard version of 

message passing using (7.9) does not need to store the LLR of each received bit for 

BP decoding, making possible a fast and low complexity implementation of the 

algorithm. 

7.6  Performance Evaluation 

In our simulations, the BCJR algorithm is used as the soft-decision channel detector 

on equalized longitudinal magnetic recording channels with an MEEPR4 target [21] 

and on an equalized perpendicular recording channel with generalized targets [22].  

All simulation results for RS codes are obtained using an actual implementation of 

the algebraic soft-decision decoding algorithm given in [2] or the forward recursive 

algorithm (FRA) [23], [24]. The maximum number of iterations of the ABP algorithm 

is set to 5max =j , and the number of iterations of the MABP algorithm is set to one. 

Fig. 7.5 shows a performance comparison of different RS decoding algorithms.  For a 

shortened RS (186, 172) code on a longitudinal equalized Lorentzian channel with 

MEEPR4 target (5, 4, -3, -4, -2) and channel density Sc=2.967, the soft-decision 

Koetter-Vardy (KV) algorithm shows only 0.3 dB gain compared to a traditional 

hard-decision RS decoding algorithm. The FRA algorithm, which uses channel 

reliability information during interpolation, provides a 0.3-dB extra gain over the KV 

algorithm.  The adaptive BP algorithm in cooperation with hard-decision RS 

decoding gives a total 0.8-dB gain over hard-decision RS decoding at frame error rate 

FER=10-4.  The modified ABP algorithm proposed in this paper performs within 0.2-
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dB of the original ABP algorithm. The ideal performance of the modified ABP is 

about 1.5-dB away from hard-decision decoding.  In Fig. 7.6, the performance of a 

10-bit/symbol RS (440, 410) code is given.  The performance gain of the ABP 

algorithm compared to hard-decision RS decoding is about 0.25-dB at FER=10-3, and 

the performance of the MABP algorithm is almost as good as the ABP algorithm. The 

performance of a similar rate Mackay LDPC (4376, 4096) code is also given as a 

reference [25]. The LDPC code performs better than the RS code by about 0.75-dB 

on AWGN, but for continuous burst errors, the RS code outperforms the LDPC code.  

In Fig. 7.6, an error floor can be observed for the LDPC code with full erasures of 

length L=128 bits, while the RS code with 130-bit erasures can still achieve good 

performance.  No noise overestimation [25] is used in Fig. 7.6, and but even if noise 

overestimation is used, the performance of the LDPC (4376, 4096) code [26, Fig. 2] 

is still not as good as the RS (440, 410) code at high SNR. Also, in the presence of 

erasures the coding gain of the ABP algorithms increases. 
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Fig. 7.5 Performance comparison of the RS (186, 172) code with different decoding 

algorithms on an equalized MEEPR4 channel, Sc=2.967, 1.0=λ , 5max =j . 
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Fig. 7.6 Performance comparison of 10 bits/symbol RS (440, 410) code with different 

decoding algorithms on an equalized MEEPR4 channel for different erasure lengths 

L, Sc=2.967, 1.0=λ , 5max =j , without noise overestimation. 

                Figs. 7.7 and 7.8 show the performance of RS codes over perpendicular 

recording channels with a DC-full target (1.0, 1.72, 1.15, 0.33) and a DC-free target 

(1.0, 1.06, -0.37, -1.12, -0.57), and channel density Sc=1.4.  In Fig. 7.7, a 0.75-dB 

gain is observed for a shortened RS (190, 172) code using the ABP algorithm 

compared to a hard-decision decoding algorithm, and a 0.5-dB gain over the KV 

algorithm with total multiplicity s=570.  For a DC-full target in Fig. 7.8, the ABP 
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algorithm is 0.6-dB better than hard-decision RS decoding, and the MABP is almost 

as good as the ABP algorithm. 

 

Fig. 7.7 Performance comparison of RS (190, 172) code with different decoding 

algorithms on a perpendicular recording channel with DC-free target (1, 1.06, -0.37, -

1.12, -0.57), K=1.4, 1.0=λ , 5max =j . 
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Fig. 7.8 Performance comparison of RS (190, 172) code with different decoding 

algorithms on an equalized perpendicular recording channel with DC-full target (1, 

1.72, 1.15, 0.33), K=1.4, 1.0=λ , 5max =j . 

               In high density magnetic recording channels, jitter-like noise becomes the 

dominant noise. Let the noise at the channel input with total noise power 2
Nσ  be the 

combination of AWGN and jitter noise [26], with noise powers 2
AWGNσ  and 2

Jσ  

respectively.  In Fig. 7.9, we set the jitter-to-overall noise ratio to %90/ 22 =σσ NJ  for 

an equalized Lorentzian-Gaussian channel [27, p. 5] with an MEEPR4 target, and 
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show that the ABP and MABP algorithms provide almost 0.5-dB performance 

improvement over hard-decision RS decoding. 

 

Fig. 7.9 Performance comparison of RS (186, 172) code with different decoding 

algorithms on an equalized Lorentzian-Gaussian channel, Sc=3.0127, 1.0=λ , 

5max =j  with 90% jitter noise. 

7.7  Summary 

In Chapter 7, we have investigated the performance and implementation of iterative 

soft-decision RS decoding algorithms over magnetic recording channels, and have 

shown that large decoding gains can be achieved with acceptable latency and 
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complexity.  Since a given codeword is decoded by both the BP algorithm and a 

traditional hard-decision RS decoding algorithm, the concern with error floors 

associated with BP decoding of LDPC codes is not an issue. This makes ABP 

decoding a very attractive option for the next generation of magnetic recording 

systems in terms of both performance and hardware implementation.  
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Current magnetic recording systems use RS codes and hard-decision decoders. The 

demand for high capacity drives future magnetic recording systems to use high areal 

density magnetic recording techniques such as perpendicular recording methods. 

This, in turn, requires better coding schemes, equalization, and channel detection to 

maintain the same levels of reliability.  

           Large coding gains have been reported by replacing RS codes with LDPC 

codes for magnetic recording systems, and LDPC codes have been considered as an 

option for the next generation magnetic recording systems. However, the uncertainty 

of the performance of LDPC codes at high SNR is still an issue where burst noise is 

the dominant noise. Compared to LDPC codes, RS codes are well suited for 

correcting error bursts and the performance at high SNR is fully determined. Also, the 

replacement of current RS-coded magnetic recording system with an LDPC-coded 

system entails a complete change of the system architecture.  

            Therefore, in this dissertation we try to shed some light on using alternative 

ECC decoding techniques, namely soft-decision RS decoding, for future magnetic 

recording systems without requiring a complete change in the system architecture. 

            Soft-decision RS decoding algorithms and their performance on magnetic 

recording channels have been researched, and the algorithm implementation and 

hardware architecture issues have been discussed. Several variations of the KV 

algorithm such as the soft Chase algorithm, the re-encoded Chase algorithm and the 

forward recursive algorithm have been proposed. The performance of nested codes 
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with RS and LDPC codes as component codes have also been investigated for bursty 

noise magnetic recording channels.  

Chapter 1 gave an overview of magnetic recording systems. 

Chapter 2 gave an overview of the decoding algorithms for RS codes which includes 

traditional hard-decision algorithms as well as new proposed interpolation-based soft-

decision RS decoding algorithms such as the GS, KV, and re-encoding algorithms. A 

suboptimal method to compute the multiplicity for the KV algorithm was proposed 

and its performance was evaluated. 

Chapter 3 evaluated the application of soft-decision RS decoding algorithms on 

magnetic recording systems, in terms of performance, reduced-complexity 

implementation and burst noise protection capability. Also a soft Chase algorithm and 

a re-encoded Chase algorithm were proposed for both performance improvement and 

decoding complexity reduction. 

Chapter 4 investigated the hardware implementation and architecture of the major 

step in interpolation-based soft-decision RS decoding algorithms, and variations of 

the interpolation step incorporating the reduced-complexity re-encoding algorithm 

have also been discussed. 

Chapter 5 proposed a new soft-decision RS decoding algorithm called the forward 

recursive algorithm, which by utilizing the channel reliability information to 

determine the interpolation orders in the KV algorithm, and improved the 

performance compared to the original KV algorithm. Another reliability-based 
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algorithm proposed by Jiang and Narayanan has also been investigated here for 

magnetic recording channels, and a modified algorithm has been proposed to reduce 

the decoding complexity without large performance loss.  

Chapter 6 investigated the performance of nested RS codes in the presence of a 

mixture of random and burst noise on a perpendicular recording channel, and the 

performance improvement over a single RS code was observed.  In addition, we 

described the nested LDPC codes design using RS-based LDPC codes and their 

performance was evaluated.  

Chapter 7 discussed the iterative RS decoding algorithm using the message passing 

scheme, and its performance has been evaluated on magnetic recording channels. 

Also a reduced-complexity modification has been proposed with a small degradation 

in performance. 
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