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ABSTRACT

Non-iterative Joint Decoding and Signal Processing:

Universal Coding Approach for Channels with Memory. (May 2006)

Nitin Ashok Nangare, B.E., Pune University, India;

M.Sc., Technical University of Munich, Germany

Chair of Advisory Committee: Dr. Krishna Narayanan

A non-iterative receiver is proposed to achieve near capacity performance on inter-

symbol interference (ISI) channels. There are two main ingredients in the proposed

design. i) The use of a novel BCJR-DFE equalizer which produces optimal soft

estimates of the inputs to the ISI channel given all the observations from the channel

and L past symbols exactly, where L is the memory of the ISI channel. ii) The

use of an encoder structure that ensures that L past symbols can be used in the

DFE in an error free manner through the use of a capacity achieving code for a

memoryless channel. Computational complexity of the proposed receiver structure

is less than that of one iteration of the turbo receiver. We also provide the proof

showing that the proposed receiver achieves the i.i.d. capacity of any constrained

input ISI channel. This DFE-based receiver has several advantages over an iterative

(turbo) receiver, such as low complexity, the fact that codes that are optimized for

memoryless channels can be used with channels with memory, and finally that the

channel does not need to be known at the transmitter. The proposed coding scheme

is universal in the sense that a single code of rate r, optimized for a memoryless

channel, provides small error probability uniformly across all AWGN-ISI channels of

i.i.d. capacity less than r.

This general principle of a proposed non-iterative receiver also applies to other

signal processing functions, such as timing recovery, pattern-dependent noise whiten-
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ing, joint demodulation and decoding etc. This makes the proposed encoder and

receiver structure a viable alternative to iterative signal processing. The results show

significant complexity reduction and performance gain for the case of timing recovery

and patter-dependent noise whitening for magnetic recording channels.
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CHAPTER I

INTRODUCTION AND ORGANIZATION OF THE DISSERTATION

A. Introduction

After the introduction of turbo codes [1], iterative signal processing has become a

popular paradigm in communications. Several papers have demonstrated the benefit

of iterating between a soft output decoder and a front end signal processing block such

as an equalizer, demodulator, channel estimator or timing recovery block [2–5]. In this

dissertation, we show that turbo or iterative signal processing is not necessary (and

demonstrate an alternate approach) in order to achieve near capacity performance.

We show a simple receiver structure whose complexity is less than that of one iteration

of the turbo receiver and yet achieves i.i.d. capacity 1. The proposed receiver performs

joint decoding and signal processing through a decision feedback mechanism.

Often in wireless communication the channel realization is not known at the

transmitter and also it is not constant. In such scenario it is desired to have a coding

scheme whose performance is independent of the channel realization. Existence of

such codes known as universal codes for the case of linear, time invariant Gaussian

channels was shown by Root and Varaiya [6] in 1968. Root and Varaiya showed the

existence of universal codes but did not provide any construction for them. In this

dissertation we show that the proposed encoder and receiver forms a universal coding

scheme for the case of constrained input channels with Markov memory.

The general principle of decision feedback mechanism can also be applied to other

The journal model is IEEE Transactions on Automatic Control.

1We mean achieves the information rate corresponding to the input constellation
and the independent and identically distributed input.
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signal processing functions such as such as timing recovery, pattern dependent noise

whitening, joint demodulation and decoding etc., making the proposed encoder and

receiver structure a viable alternative to iterative signal processing.

B. Organization of the Dissertation

Organization of the dissertation into different chapters is explained in this section.

Magnetic recording

A model for the magnetic recording channel is explained in chapter II. The mag-

netic recording channel is a unique channel which consist of inter-symbol interference

(ISI) from neighboring magnetized bit-cells, pattern dependent media noise (which is

correlated with itself and also with the data pattern) due to unevenness of magnetic

media and timing errors due to misalignment of magnetized media and read head.

Thus it offers a perfect example of a channel with memory for evaluating the per-

formance of the proposed non-iterative receiver which performs joint decoding and

signal processing.

Communication channels and channel coding

Memoryless communication channels and channels with memory are explained in

chapter III. Performance of class of codes known as low density parity-check (LDPC)

codes over memoryless channels is discussed. Previously published research which

shows that LDPC codes are universal codes for the case of many memoryless chan-

nels is explained in brief. Three examples of channels with memory which are of

interest to this dissertation, namely i) ISI channel, ii) channel with unknown tim-

ing offsets and iii) channel with additive correlated Gaussian noise are explained. A
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general problem of code design known as Root-Varaiya problem, which shows the

existence of universal codes is outlined. In this chapter, we also briefly discuss the

result from [7] which shows that for iterative receivers it is impossible to design a

universal code.

BCJR-DFE receiver

Chapter IV introduces a novel non-iterative receiver based on a decision feedback

scheme with the BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm [8] (hence the

name BCJR-DFE receiver). Similarities and main differences of the proposed receiver

structure to other known schemes are discussed. Main ingredients of the proposed

design, i) an encoding structure and ii) the BCJR-DFE algorithm are developed in

this chapter. Main properties of BCJR-DFE receiver are discussed in this chapter,

which shows that i) it achieves the i.i.d. capacity of any constrained input ISI channel

and ii) it is a universal coding scheme for the class of constrained input Gaussian ISI

channels. Finite length performance of BCJR-DFE receiver is evaluated for three

ISI channels which shows that this non-iterative receiver outperforms the iterative

(turbo) receiver and at the same time it has complexity less than that of one itera-

tion of the iterative receiver. Part of the material in chapter IV has been published

in [9]

Low latency techniques for BCJR-DFE receiver

A disadvantage of BCJR-DFE receiver is that it has long latency. Two methods to

reduce the latency of BCJR-DFE receiver are proposed and evaluated in chapter V.

Simulation results show that latency of the BCJR-DFE receiver can be reduced sig-

nificantly without much loss in the performance. We also discuss loss in information

rate (or loss in signal-to-noise ratio) when the optimum nonlinear BCJR estimator
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in BCJR-DFE receiver is replaced with a linear MMSE estimator. Results show that

there is little loss in the information rate with linear MMSE filtering for a wide range

of SNRs with the proposed MMSE-DFE scheme. Part of the material in chapter V

is submitted in [10].

Joint synchronization, ISI equalization and decoding

In chapter VI, we consider a channel with unknown timing errors along with ISI in

a communication channel. Performance of BCJR-DFE receiver in such environment

is evaluated using per-survivor based processing for timing recovery. Longitudinal

and perpendicular magnetic recording channels are used along with high rate codes

(suitable for magnetic recording systems) for performance evaluation. Part of the

material in chapter VI has been published in [11].

BCJR-DFE receiver for media noise dominated magnetic recording chan-

nels

Due to strong pattern dependent correlated media noise in magnetic recording chan-

nels, pattern dependent noise prediction is often used for magnetic systems for addi-

tional performance improvement. We combine a pattern dependent noise predictive

detector along with BCJR-DFE receiver to combat media noise and ISI jointly. Per-

formance of this pattern dependent noise predictive BCJR-DFE receiver is tested

on longitudinal and perpendicular magnetic recording channels dominated by media

noise. In all chapters, performance of proposed non-iterative scheme is compared with

corresponding iterative receiver setup, which shows significant gains for the proposed

BCJR-DFE receiver. The material in chapter VI has been published in [12] and [13].
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Extension of dissertation work

The BCJR-DFE principle is a general principle which can be applied to many other

signal processing problems. In chapter VIII we discuss other scenarios where it can

applied. The use of BCJR-DFE receiver to obtain lower bounds on the capacity of

channels involving various signal processing functions is discussed.
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CHAPTER II

MAGNETIC RECORDING

Magnetic recording is the process of storing digital data in the form of a magnetization

of a physical medium. In our day to day life we carry lot of data stored on magnetic

medium. Our credit cards, transportation tickets, security badges, computer hard-

disks, camera video tapes etc. contain magnetically recorded digital data. Data

storage capacity of hard disk has increased enormously since the invention of a first

hard disk by IBM in 1957. As the capacity of hard disk increases, so does the

complexity of signal processing required to read and convert the magnetic signal back

to digital signal.

In this chapter we explain the process of magnetic recording. Channel coding

and signal processing for magnetic recording is a challenging problem due to variety

of noise sources in the magnetic channel. The magnetic recording channel is unique

channel with inter-symbol interference, timing offset and additive correlated noise

(which is correlated not only with itself but also with data pattern). At the same

time a low complexity solution is often required for magnetic recording due to size

limitations of the hard-disk. Thus our proposed non-iterative decoding and signal

processing scheme offers a perfect match for the magnetic recording channel. In the

following sections we will explain the process of magnetic recording and the magnetic

read-back signal. We will also characterize many forms of distortions present in the

magnetic read-back signal.

A. Write and Read-back Signal

Data is stored on the magnetic disk drives in binary form, “1” (one) is stored as pos-

itive magnetization or magnetization in the left direction and “0” (zero) is stored as
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negative magnetization or magnetization in the right direction. Three essential ele-

ments of magnetic recording are write head, magnetic medium and read head. Electric

current can magnetize ferromagnetic material, and the trajectory of medium magne-

tization can be shown by a nonlinear hysteresis loop. Magnetic recording channel is

linearized artificially by constraining the input write current to two extreme levels

such that the magnetic medium is always saturated, known as saturation-recording.

Thus magnetic recording channel is always a binary input channel as opposed to other

33

Fig. 1. Magnetic recording process

communication channels. The magnetic recording process is shown in Fig. 1. Ideal

write process of magnetic recording consist of magnetization of medium either to the

left or to the right direction by two extreme current levels. In ideal read process, read

head reads off the data from a magnetic disk by detecting the changes in magnetic

flux. Thus read head acts as a differentiator for the recorded magnetic data. The

read-back signal can be characterized by the transition response h(t, w), which corre-
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sponds to a positive transition from bit 0 to bit 1, (-h(t, w) for a negative transition

from bit 1 to bit 0). For longitudinal recording, the read-back transition response is

well approximated as Lorentzian pulse determined by a parameter, w = PW50, the

pulse width at 50% amplitude of peak value Vp. It is given by

h(t, w) =
Vp

1 + ( 2t
PW50

)2

The ratio PW50/T, where T is the data rate (or bit spacing parameter) is termed as

normalized linear density of a magnetic disk. It is the single most important param-

eter to characterize the channel in a magnetic recording system. For perpendicular

recording, the transition response is approximated by,

h(t, w) = Vp · erf
(

2
√

ln 2

w
t

)

where erf(x) is the error function defined as

erf(t) =
2√
π

∫ t

0

e−x2

dx

Typical read-back signal for recorded bits ak ∈ {+1,−1} can be written as,

r(t) =
∑

k

bkh(t − kT, w) + n(t)

where bk = ak − ak−1 denotes the differentiation operation of the read head, n(t)

denotes the electronics noise assumed to be additive white Gaussian (AWGN). Due

to differentiation, effective impulse response (known as dibit response) of a magnetic

channel is given by p(t, w) = h(t, w)− h(t− T,w). Thus read-back signal can also be

written as

r(t) =
∑

k

akp(t − kT, w) + n(t).
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Fig. 2. Change in dispersion of dibit response of a longitudinal magnetic recording

with different normalized densities Ds

B. ISI in Magnetic Recording System

Normalized density Ds = PW50/T indicates the number of bits recorded in the in-

terval w = PW50. Overlapping of adjacent read-back pulses causes ISI in a magnetic

recording system. A larger value of normalized density (Ds) causes more dispersion

of the read-back pulse and therefore more ISI in the system. Figures 2 and 3 shows

increase in dispersion of dibit response for longitudinal and perpendicular magnetic

recording as normalized density increases. We also observe that magnitude of the
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Fig. 3. Change in dispersion of dibit response of a perpendicular magnetic recording
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read-back signal decreases as normalized density increases due to more ISI.

C. Noise in Magnetic Recording System

Noise in a magnetic recording system comes from three sources. First, there is noise

due to unevenness of the magnetic medium and random magnetization patterns in

the magnetic media. This type of noise is referred as media noise. Second, there is

noise produced by the read head and finally, there is the system electronics noise. As

normalized density increases, the size of a magnetized grain decreases and media noise
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becomes the dominant source of noise in a magnetic recording system, accounting for

almost 90% of total noise in future generation high density hard disks. Ideal magnetic

transitions are shown in Fig. 1, which are perpendicular to the recording direction. In

practice these lines are zig-zag patterns [14] as shown in Fig. 4. Due to zig-zag nature

1 0 1

Fig. 4. Realistic zig-zag nature of magnetic transitions: caused due to unevenness of

magnetic media

of magnetic transitions, the transition center, defined as the average transition center

across data track, becomes uncertain. This uncertainty is called as position jitter (∆tk

for kth transition). It also causes shortening/broadening of the read-back pulse called

as pulse-width variation (∆wk for kth transition). These random variations form a

random transition noise in the read-back pulse. Taking into account pulse position

jitter (∆tk) and pulse width variation (∆wk), we can write transition response hk(t)

at kth bit-interval as, hk(t) = h(t − kT − ∆tk, w + ∆wk). A block diagram of a

typical magnetic recording channel is shown in Fig. 5, which consist of differentiation

operation of read head and transition jitter and pulse width variation as explained

previously. At the receiver end, electronic noise gets added into the read-back signal.

Received signal can be expressed as,

r(t) =
∑

k

bkh(t − kT − ∆tk, w + ∆wk) + n(t).
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This read-back signal r(t) is then filtered with the low pass filter which restricts

the signal energy to be further down-sampled at the baud-rate. Unknown timing

offset τk is introduced in a sampling process due to imperfect knowledge of exact

arrival of read-back signal. This further changes the transition response to hk(t) =

h(t − kT − ∆tk − τk, w + ∆wk).

Low Pass
Filter

kr

)(tn

)(tr)(tx

kt∆ kw∆

Target
Equalizer)(th

Channelkbka

to detector

kkT τ+

D−1

Fig. 5. A typical model of magnetic recording channel

D. Signal to Noise Ratio

After low-pass filtering and sampling, read-back signal is equalized to the target

response with an equalizer filter. These filtering operations convert the system elec-

tronics noise (AWGN) into a correlated noise. Assuming ideal low-pass filtering and

ideal target equalization, we can define the signal-to-noise ratio (SNR) for recording

channel with transition noise as

SNR =
Ei

N0 + M0

where Ei =
∫∞
−∞

[
∂h(t,w)

∂t

]2
dt, is the energy of the impulse response of the recording

channel, N0 is the power spectral density of AWGN and M0 is the average transition

noise energy associated with an isolated transition. Assuming that the transition

jitter ∆tk and pulse width variation ∆wk are independent between transitions, the
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average transition noise energy M0 is defined as

M0 ,

∫ ∞

−∞
E{[h(t, w) − h(t + ∆tk, w + ∆wk)]

2}dt

Also, if we assume that the distribution of ∆tk and ∆wk do not change with nor-

malized density then M0 is completely determined by the transition response and

is independent of the normalized density. So M0 can be considered as analogous to

N0 for AWGN, and it represents the equivalent power spectral density for transi-

tion noise. Often ∆tk and ∆wk are assumed to be zero-mean Gaussian distributed.

Different methods to determine the value of pulse position jitter variance σj and

pulse width variation variance σw for given percentage of jitter noise (media noise)

are shown in [15, 16]. Unlike other communication channels where there is a power

constraint, magnetic recording channels are constrained by the transition response

h(t, w), which is fixed once the head/media and the associated electronic circuits are

defined. Thus once SNR is given, N0 and M0 are fixed, which fixes the head/media

and electronic circuits. From the above definition of an SNR we see that higher

SNR corresponds to lower electronic noise power N0 and lower transition noise power

M0 which are obtained through better electronic circuits and better magnetic media.

Any channel coding gain (in terms of SNR) achieved is used for combating increased

ISI and media noise for higher density of magnetic recording. For a more detailed

explanation of SNR in magnetic recording system we refer reader to [15,16].

E. Equalization and Detection

As shown in Fig. 5, sampled read-back signal is equalized with a target equalizer which

shapes the read-back signal to a known target response. The magnetic recording

channel is inherently a bad channel. Longitudinal channel has a spectral null at DC
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and strong attenuation at high frequencies due to Lorentzian pulse response, whereas

perpendicular channel has strong attenuation only at high frequencies. Complete

removal of ISI is not possible without strong enhancement of noise at DC and/or at

the Nyquist frequency. So controlled amount of ISI is introduced in the magnetic

recording system by shaping the channel to a target response which has close spectral

characteristics of the read-back pulse. For the longitudinal channel, a natural choice

is placing zeros at DC and at Nyquist frequency, giving the partial response (PR)

target of type (1−D)(1+D)n whereas for perpendicular channel the partial response

(PR) target is given by (1+D)n. For both cases, value of n controls the high frequency

attenuation. Above mentioned targets give rise to integer coefficients for the target

response, making it suitable for hardware implementation. Non-integer targets known

as generalized partial response (GPR) targets [17], which match the high density

magnetic read-back signal more closely can be used. For magnetic recording, often

equalization refers to equalizing the read-back signal to a suitable partial response

target. After equalization, a partial response maximum likelihood (PRML) detector

(which operates on known target response) is needed for data detection. The Viterbi

detector [18] matched to an equalized PR target can be used for data detection.

It is the optimum detector for detection of a signal corrupted with additive white

noise. Without any noise whitening, it provides sub-optimum detection for magnetic

read-back signal since it is corrupted with correlated media noise. If we assume that

the noise correlation is independent of the data pattern then noise whitening filter

followed by the Viterbi detector provides optimum detection for magnetic read-back

signal. An advanced detector known as noise predictive maximal likelihood (NPML)

detector which whitens the noise before detection was proposed in [19]. In practice

media noise depends on magnetic transitions which in turn depend on data pattern

being written. So noise correlation is data dependent and NPML detector does not
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provide optimum detection. More advanced detector known as pattern dependent

noise predictive (PDNP) detector which provides optimum detection in the presence

of pattern dependent correlated noise has been developed in [20,21]. For an overview

of different detection schemes for magnetic recording system we refer reader to [22,23].
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CHAPTER III

COMMUNICATION CHANNELS AND CHANNEL CODING

Information is communicated from one point to the other through a physical medium

known as a communication channel. The maximum rate at which this information

can be communicated with arbitrarily small probability of error through a given

channel is known as channel capacity of that channel [24]. Error correction codes 1

(ECC) are used in order to achieve errorfree communication. In following sections, we

broadly classify communication channels as channels without memory and channels

with memory. Channel coding schemes approaching channel capacities are discussed

along with an interesting problem of universal codes for memoryless channels and

channels with memory.

A. Memoryless Channels

Consider a discrete time communication channel shown in Fig. 6, where Xk denote

transmitted symbol over the channel at time k and Yk denote received symbol at

time k. The channel is said to be a memoryless channel if the conditional probability

ChannelkX kY

Fig. 6. Communication channel

1often referred as channel codes
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P (Y|X) can be written as

P (Y|X) =
∏

k

P (Yk|Xk) (3.1)

So for a memoryless channel, the received symbol Yk at time k depends only on

transmitted symbol Xk at time k. Examples of memoryless channels include additive

white Gaussian noise (AWGN) channel, binary symmetric channel (BSC) and binary

erasure channel (BEC).

1. Channel Coding for Memoryless Channels

The goal of any channel coding scheme is to achieve errorfree performance very close

to the channel capacity. Berrou et al. [1] proposed turbo codes in 1993 which perform

close to the capacity on additive white Gaussian noise channel. After turbo codes,

many “turbo-like” codes which have a low complexity iterative message passing de-

coding algorithm were introduced. Among these turbo-like codes are low density

parity-check codes (LDPC or Gallager [25, 26] codes), irregular LDPC codes [27, 28],

repeat-accumulate codes [29, 30], irregular turbo-like codes [31] etc. All of these

tubo-like codes were shown to perform close to capacity on symmetric memoryless

channels. There effectiveness even for nonstandard channels is conjectured in [32].

Here we consider binary regular and irregular LDPC codes for memoryless channels

and channels with memory.

a. LDPC Codes

LDPC codes were discovered by Gallager [25, 26] and then rediscovered by Spielman

et al. [33] and MacKay et al. [34]. A binary LDPC code of length N is a (N,K) binary

linear block code and is defined by a sparse parity-check matrix H of size N×(N−K).

LPDC code can be represented by a bipartite graph (Tanner graph) [35] in which a set
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of nodes called variable nodes correspond to codeword bits (columns of H) and other

set of nodes called check nodes correspond to set of parity checks defined by rows of

parity-check matrix H. An (j, k)-regular LDPC code has j ones in all columns of H

(variable nodes of degree-j) and k ones in all rows of H (check nodes of degree-k).

Irregular LDPC code is represented with degree distribution pair (λ(x), ρ(x)) where,

λ(x) =

jmax∑

i=1

λix
i−1,

ρ(x) =
kmax∑

i=1

ρix
i−1.

In above equations, λi and ρi denote the fractions of edges corresponding to degree-

i variable node and check node respectively [36]. Here jmax and kmax denote the

maximum variable degree (maximum number of ones in any given column of H) and

maximum check degree (maximum number of ones in any given row of H) respectively.

LDPC code design for memoryless channel is well understood and there are

tools (e.g. density evolution) to analyze and design good ensembles of codes for

memoryless channels [37, 38]. Example of rate 1/2 irregular LDPC code for which

the iterative decoding threshold on AWGN channel is within 0.0045 dB from the

capacity was given in [39]. A procedure for designing LDPC code ensembles which

achieves capacity on BEC channel as code length goes to infinity was given by Oswald

and Shokrollahi in [40]. Universality of LDPC codes in terms of its performance for

memoryless channels was shown in [37, 41], where authors suggested that no matter

what is the initial density function of received symbol log-likelihood-ratios (LLRs) is

(i.e. no matter which type of memoryless channel is), LDPC codes perform equally

good on all memoryless channels. So for memoryless channels, channel capacity is

the most important parameter seen by an LDPC code. Table I (taken from [37])

shows channel capacities at the threshold values of various (j, k) regular LDPC codes.
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Table I. Channel capacities of different memoryless channels at the threshold values

of various (j, k) regular LDPC codes

j k Rate C(BEC) C(BSC) C(Laplace) C(AWGN)

3 6 0.5 0.571 0.584 0.577 0.571

4 8 0.5 0.617 0.609 0.606 0.605

3 4 0.25 0.353 0.349 0.348 0.346

4 10 0.6 0.692 0.689 0.684 0.683

3 12 0.75 0.790 0.814 0.801 0.793

That is, in order to provide a bit-error-rate approaching zero as code length goes to

infinity with chosen (j, k) regular LDPC code, different memoryless channels need to

have capacities as shown in Table I. The author of [37] quotes that the fact that

these capacity values for different channels are very close to each other indicates that

LDPC codes optimized for one memoryless channel provides good performance for

other memoryless channels, as observed in [41]. The same thing was shown to be

true for various irregular LDPC codes in [37]. Thus LDPC codes can be considered

as universal codes for the class of memoryless channels. Universality of LDPC codes

for partial-band jamming and fading channels was shown in [42].

B. Channels with Memory

In practice many times we encounter channels with memory. For a channel with

memory, we can write

P (Y|X) 6=
∏

k

P (Yk|Xk) (3.2)
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In this thesis, we will consider a Markov model with memory L = L1 + L2 such that

P (Y|X) =
∏

k

P (Yk|Xk−L1
· · ·Xk · · ·Xk+L2

) (3.3)

Thus for channels with memory, received symbol Yk at time k depends not only on

transmitted symbol Xk at time k, but also depends on few or all transmitted symbols.

Examples of channels with memory include ISI channel, channel with timing offsets

and channel with additive correlated Gaussian noise.

1. Inter-Symbol Interference Channel

Due to multi-path nature of a communication channel, signal pulses transmitted in

adjacent time interval overlap with each other causing inter-symbol interference. For

an ISI channel, received signal Yk can be written as weighted combination of more

than one transmitted symbol. Specifically, for an ISI channel of memory L, the

received signal Yk at the output is given by

Yk =
L∑

i=0

hi Xk−i + Nk, (3.4)

where hi’s are the channel tap coefficients (assumed to be complex) and Nk is complex,

additive white Gaussian noise. The memory of an ISI channel is decided by the total

number of resolvable paths between the transmitter and the receiver. Maximum

likelihood (ML) sequence estimation can be performed on the received sequence {Yk}

using a nonlinear Viterbi algorithm [18, 43] or using the BCJR algorithm [8] if soft

output is desired.

2. Channel with Unknown Timing Offsets

Another example of channel with memory is a channel with unknown timing offsets.

Consider a transmitter, transmitting an analog signal pulse at every kth time instant
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kT. The receiver sampler is uncertain about the correct arrival time of an analog pulse

due to timing offsets between the transmitter and the receiver clock. The received

pulse is sampled at time kT + τk, where τk denote the timing offset at time kT. These

unknown timing offsets introduce memory in the channel. For example, consider a

transmitter, transmitting user information Xk using sinc pulse shape g(t) = sin(πt)
πt

. In

the absence of any timing offsets, receiver samples the received signal at every integer

multiple of time T . In this case, the received signal Y (kT ) with receiver noise Nk can

be written as,

Y (kT ) =
+∞∑

k=−∞
Xk · g(kT ) + Nk (3.5)

= Xk + Nk (3.6)

which results in zero ISI. Whereas with any non-zero sampling timing offset τk, we

can write

Y (kT ) =
+∞∑

k=−∞
Xk · g(kT + τk) + Nk (3.7)

which results in infinite ISI in the system.

3. Channel with Additive Correlated Gaussian Noise

Consider a communication channel corrupted with additive Gaussian noise which is

correlated with itself. The received signal Yk corresponding to the transmitted symbol

Xk can be written as

Yk = Xk + Nk

where Nk denote correlated Gaussian noise samples. A correlated Gaussian noise pro-

cess with given correlation can be represented as a filtered version of white Gaussian

noise process. Hence, noise whitening can be performed on the received signal Yk
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using a noise whitening filter W such that

Ỹk = W ∗ Yk

= W ∗ Xk + Ñk (3.8)

where ∗ denotes convolution operation and Ñk denotes additive white Gaussian noise

(AWGN). Thus from (3.8) we can see that, a channel with additive correlated Gaus-

sian noise is channel with memory. The memory is introduced in the channel by

the memory in a correlated noise process. The magnetic recording channel is an ex-

ample of a channel with additive correlated Gaussian noise. In magnetic recording,

noise is not only correlated with itself but it is also correlated with the recorded data

bits [44], which makes the noise correlation process signal dependent. So for magnetic

recording every signal experiences a different channel with memory.

C. Capacity and Achievable Information Rates for an ISI Channel

Let us first consider the case when X = {X1, X2, · · · , Xk} is a sequence of BPSK

(binary phase shift keying) modulated symbols and Y = {Y1, Y2, · · · , Yk} is a corre-

sponding output sequence of an ISI channel. The channel capacity is defined as

C = lim
k→∞

1

k
sup
P (X)

I(X;Y). (3.9)

When the distribution on Xk’s is uniform and i.i.d., then the achievable information

rate is called Ci.i.d. and is given by

Ci.i.d = lim
k→∞

1

k
I(X;Y) where P (X) =

∏
P (Xk) (3.10)

We can see that, Ci.i.d. ≤ C. A method to calculate this achievable information

rate was devised independently by Arnold and Loeliger [45], Pfister, Soriaga and
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Siegel [46], Sharma and Singh [47]. The extension to the case of non i.i.d. inputs

is possible if the inputs have a Markov structure. Note that we only consider the

case of finite alphabet input as we require a Markov structure with finite number of

states. When the constellation size is large and appropriate shaping is used, the true

capacity of the channel can be approached fairly closely.

D. Root-Varaiya Problem of Universal Codes

More general problem of code design was proposed by Root and Varaiya [6] in 1968.

Definition 1: Root-Varaiya problem : Root-Varaiya problem states that, a single

code of rate r should be able to provide small error probability uniformly across any

linear, time invariant Gaussian channel (including ISI) as long as the capacity of the

channel is greater than r.

Let us assume that we have a class of Gaussian ISI channels {H1, H2, H3, · · · }

with corresponding output sequence,

Yi = Hi ∗ Xi + Ni

where ∗ denotes convolution operation. Let C(Hi) > r, where C(Hi) denote the

capacity of channel Hi. Then Root and Varaiya showed that there exists a universal

code which can transmit reliably with rate r on all of these channels. For the case

of constrained input constellation, we assume that similar universal code exists. Fur-

thermore we consider only i.i.d. capacities of the channels such that Ci.i.d.(Hi) > r.

Certainly these universal codes are of practical importance in wireless communication

as often the channel realization is not known at the transmitter. Root and Varaiya

showed the existence of universal codes but did not provide any construction for

them. In this thesis, we provide an encoding an decoding scheme based on LDPC
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codes which is universal for the class of constrained input Gaussian ISI channels. Here

we assume the existence of universally good LDPC codes for the memoryless channel.

Thus we show that LDPC codes are universal codes for the class of constrained input

Gaussian ISI channels under special encoding and decoding scheme.

E. Channel Coding for Channels with Memory

Channel codes need to be designed keeping in mind the memory of a channel. Often

when error correction codes are used for channels with memory, we can represent the

whole system as a serial concatenation of error correction code used and a channel with

memory. Designing capacity achieving coding schemes and corresponding decoding

algorithm for channels with memory was a hard problem until the invention of turbo

codes in 1993 by Berrou, et al. [1]. Soon turbo decoding principle was extended to

other communications problems in which two or more data processing units interact

with each other for data transmission [48]. Figure 7 shows a typical turbo processing

scheme for a serially concatenated system. As shown in Fig. 7, user bits are encoded

Encoder
I

Encoder
II

π

)(tn

Decoder
II

1−π Decoder
Ika kâ

π extrinsic information

a-priori information

Fig. 7. A typical serially concatenated turbo (iterative) signal processing scheme
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with ‘Encoder-I’ (outer encoder), then interleaved and encoded with ‘Encoder-II’

(inner encoder). On the receiver side, ‘Decoder-II’ (inner decoder) provides extrinsic

information which is de-interleaved and then given to ‘Decoder-I’ (outer decoder).

Interleaved extrinsic information from outer decoder is given to the inner decoder

as a-priori information. Many communications and signal processing schemes for

channels with memory can be configured in such serially concatenated scheme as

shown in Table II.

Table II. Turbo (iterative) configuration for different serially concatenated systems

Configuration En-/Decoder I En-/Decoder II

Turbo decoding ECC en-/decoder ECC en-/decoder

Turbo equalization ECC en-/decoder ISI channel/detector (equalizer)

Turbo synchronization ECC en-/decoder asynchronous channel/detector

with timing recovery

Turbo noise prediction ECC en-/decoder correlated channel/detector

with noise predicttion

1. Turbo Equalization

Consider a coded data transmission over an ISI channel. For this case, ‘Encoder-I’

represents an outer code while ‘Encoder-II’ represents an ISI channel. On the receiver

side, ‘Decoder-II’ represents a channel equalizer and ‘Decoder-I’ represents an outer

decoder. Iterative signal processing can be performed between a channel equalizer and

an outer decoder which is often called as turbo equalization [2]. Soft-input-soft-output

(SISO) equalizer is required for turbo equalization. A trellis based SISO equalization
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using the BCJR algorithm is often used which produces optimum soft-outputs for

the bits transmitted over an ISI channel. The BCJR algorithm for ISI channel equal-

ization is explained in detail in Appendix-A. Sub-optimal SISO equalizers based on

soft interference cancellation [49] and linear MMSE filtering technique proposed by

Tüchler et. al. [50, 51] can also be used for complexity reduction. Turbo processing

involves iterating extrinsic information between inner decoder and outer decoder till

convergence is achieved or the maximum number of iterations are reached. In or-

der to obtain a better estimate of the transmitted codeword with turbo iterations,

we need to design the codes carefully. A precoding technique [52] can be used with

turbo equalization which results in significant interleaving gains due to the recursive

nature of the precoded ISI channels. The code design and precoder design aspects

for optimizing the performance of turbo equalization are shown in [53]. LDPC code

design for turbo equalization with optimal and sub-optimal soft output equalizers is

presented in [54,55]. Recently a code design technique for ISI channels was presented

in [56–58], where the authors provide a method to design LDPC code ensembles for

a given ISI channel which achieves performance close to the i.i.d. capacity of an ISI

channel. All of these code design techniques are channel specific and assumes the

knowledge of communication channel at the transmitter.

F. Non-universality of Turbo Signal Processing

Consider a serially concatenated encoding scheme and corresponding iterative decod-

ing scheme shown in Fig. 7. For the case of coded transmission over an ISI channel,

‘Encoder-I’ represents an outer code while ‘Encoder-II’ represents an ISI channel. On

the receiver side, ‘Decoder-II’ represents a channel detector and ‘Decoder-I’ represents

an outer decoder. To show the universality of this iterative decoding scheme, we need
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Fig. 8. Exit functions of different ISI channels along with ideal EXIT function for an

outer code which maximizes the rate of a concatenated system.

to find a single outer code which performs universally well on all of the ISI channels

under consideration. Here we outline the proof from [7], which shows with the help of

EXIT (extrinsic information transfer) chart that for iterative receivers it is impossible

to design one code that is good for several ISI channels with the same i.i.d. capacity.

The EXIT chart, which plot the extrinsic output mutual information versus extrinsic

input mutual information for given decoding blocks in a concatenated system was in-

troduced in [59] and is extensively used to track the performance of iterative receivers.

Figure 8 shows the EXIT functions for four different channels evaluated at signal to
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noise ratio corresponding to the i.i.d. capacity of each channel for an outer code of

rate r = 0.5. An AWGN channel was used as the a priori channel to obtain these

curves. The area property of EXIT chart for erasure channel, which relates the area

under the EXIT function to the conditional entropy was proved in [60]. In general this

property is believed to be true for the case of Gaussian channels [61]. Consequence

of this property is that for a serial concatenation system shown in Fig. 7, the area

under the EXIT function an ISI channel (inner code) is equal to the maximum code

rate of an outer code that the channel can support. This maximum code rate is equal

to 0.5 for all four channels shown in Fig. 8. Due to the area property of an EXIT

chart, code design for iterative receivers reduces to a curve fitting problem. Curve

fitting approach for code design has been used by many researchers [62, 63]. EXIT

chart is completed by drawing an inverted EXIT function (EXIT function with X

and Y axis interchanged) of an outer decoder along with an EXIT function of inner

decoder (owing to the fact that output of one decoder is input to other decoder).

Progress of iterative decoding can be tracked by drawing staircase lines between the

gap of two EXIT functions [59]. In order to guarantee the convergence to a correct

codeword on a given channel, the inverted EXIT function of an outer code should not

cross that channel EXIT function. In order to be a universal code, inverted EXIT

function of an outer code should not cross EXIT function of any of the ISI channel

under consideration. Also in order to maximize the rate of an outer code, its inverted

EXIT function should lie just below the EXIT functions of all the channels. Thus

EXIT function of a universal code under iterative processing is a convex hull of the

EXIT functions of the channels, which is indicated by a dotted line in Fig. 8. We

see that this universal code suffers from a code rate loss equal to the area of shaded

region shown in Fig. 8. Thus even if all ISI channels can support the code rate equal

to r, universal code under such an iterative scheme can not transmit reliably with
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rate equal to r.
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CHAPTER IV

BCJR-DFE RECEIVER†

The use of turbo principle for iterative decoding and signal processing is explained in

chapter III. Such an iterative scheme is non-universal [7] and its performance depends

on the channel realization which may not be known at the transmitter. In this chapter

we develop a non-iterative receiver that performs joint decoding and signal processing

through a decision feedback mechanism. With analysis and simulation results we show

that the proposed receiver provides a universal solution for the case of constrained

input Gaussian ISI channels. In this chapter, we consider coding and equalization for

ISI channels.

A. Encoder Structure and Notation

The encoder structure is shown in Fig. 9. The user data is encoded with an LDPC code

of rate r and length n. Encoded codewords are arranged in the form of a data-matrix

of size n×m bits. The first L columns are a sequence of zero bits or known bits. Each

of the last m − L columns are codewords of an LDPC code. We will assume BPSK

as the modulation; extension to other memoryless modulation is straight-forward.

During the transmission, bits are transmitted sequentially along the rows, i.e. from

1st row to nth row. Before we proceed further, we explain some notation. We use

upper case letters to denote random variables and lower case letters to denote their

realizations. Operator E[ · ] denotes the expectation operator and EA[ · ] denotes

expectation w.r.t. random variable A. Let us denote X = [X1, X2, . . . , Xnm] as a

† c©2004 Allerton Conference. Reprinted, with permission, from “A BCJR-DFE
based receiver for achieving near capacity performance on ISI channels”, N. Nangare
and K.R. Narayanan, Allerton Conference., Sept. 2004.
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Fig. 9. Encoder structure for the proposed coding scheme
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sequence of transmitted bits and Y = [Y1, Y2, . . . , Ynm] as a received sequence. We

will use x and y to denote the particular realization of entire sequence of input and

received vectors respectively, i.e. x = [x1, . . . , xnm] and y = [y1, . . . , ynm]. We also

use Xi,j (with corresponding realization xi,j) to refer to the transmitted bit in the ith

row and the jth column in the data-matrix in Fig. 9. Therefore, Xi,j and X(i−1)m+j

refer to the same bit. Received sequence Y is also arranged in the same data-matrix

structure. We use Yi,j (with corresponding realization yi,j) to refer to the received

signal in the ith row and the jth column in the received data-matrix. Similarly,

Yi,j and Y(i−1)m+j refer to the same received signal. It may seem strange that a two

dimensional index and a one dimensional index is used to denote the same signal, but

it will simplify our notation later on. The sequence of L bits [Xi,1, Xi,2, . . . , Xi,L] are

known bits ∀i. The overall rate is R = rn(m−L)/(nm) = r(1−L/m). For m → ∞,

the rate becomes r. The sequence of bits {Xk} are transmitted through a L + 1 tap

ISI channel (memory L). The received sequence {Yk} at the output is given by

Yk =
L∑

i=0

hi Xk−i + Nk, (4.1)

where hi’s are the tap coefficients (assumed to be complex) and Nk is complex additive

white Gaussian noise. We will use superscript to refer to vector of signals in a col-

umn, i.e., Xj is the vector of bits in the jth column, e.g X j = [X1,j , X2,j , . . . , Xn,j ].

We will use subscript to denote a vector of signals in a row, e.g Y i denotes the

vector of received bits corresponding to the transmitted bits in the ith row, Y i =

[Yi,1, Yi,2, . . . , Yi,m]. We will use Y
p,q
i,j to denote the vector of bits between the time

instants (i, j) and (p, q), including both. The ISI channel can be represented using a

trellis with 2L states, where the state before the transmission of Xi,j is denoted by Si,j .

The state Si,j corresponds to the past L bits, [X(i−1)m+j−L, X(i−1)m+j−L+1, . . . , X(i−1)m+j−1].
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It is assumed that the channel state is reset to zero state at the end of the transmission

of last row of a data-matrix.

B. Proposed Receiver Structure

The receiver begins by computing optimal soft outputs for each of the bits in the

(L + 1)th column of the data-matrix shown in Fig. 9. We assume that a trellis based

equalizer is used for equalization. Note that for each Xi,L+1, the previous L bits

(Xi,1, Xi,2, . . . , Xi,L) are known bits. Hence, the optimal soft output is the likelihood

ratio

Λ(xi,L+1) =
P (Xi,L+1 = 1|Y , Xi,1, Xi,2, . . . , Xi,L)

P (Xi,L+1 = −1|Y , Xi,1, Xi,2, . . . , Xi,L)
(4.2)

We will use Λi,j to denote Λ(xi,j), the soft output for the bit in the (i, j)th position.

The corresponding realization is denoted by λi,j. When one dimensional indexing is

used then Λ(i−1)m+j (with corresponding realization λ(i−1)m+j) is same as Λi,j . Since

knowing the past L bits perfectly is equivalent to fixing the state in the trellis of the

equalizer, the optimal soft output is given by

Λi,L+1 =
P (Xi,L+1 = 1|Y , Si,L+1)

P (Xi,L+1 = −1|Y , Si,L+1)
(4.3)

Using (4.3), we can calculate the soft outputs Λi,L+1 of an equalizer for 1 ≤ i ≤ n,

which corresponds to the soft inputs for the LDPC codeword at (L+1)th column. The

next step is to run a decoder for the code XL+1 and decode it. If we assume that n →

∞ and the code XL+1 achieves capacity on the equivalent channel characterized by

the input Xi,L+1 and output Λi,L+1, then we can perfectly decode the (L+1)th column.

Now the decoder uses these decisions as perfect decision feedback and proceeds to

generate optimal soft output for the bits in the (L+2)th column assuming the previous

L bits are perfectly known. This process continues and for the jth column, the
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equalizer produces optimal soft outputs Λi,j for all the bits in the jth column assuming

the previous L bits are perfectly known i.e

Λi,j =
P (Xi,j = 1|Y , Si,j)

P (Xi,j = −1|Y , Si,j)
(4.4)

We will prove several interesting properties of this receiver but before that, we will

show how to generate the optimal soft outputs Λi,j in (4.4) using just one pass of the

BCJR algorithm.

C. The BCJR-DFE Algorithm

First let us begin by noting that due to the Markov nature of the trellis,

P (Xi,j|Y , Si,j) = P (Xi,j|Y n,m
i,j , Si,j)

That is, given the state Si,j , the past received values do not affect the probabilities

at time i, j. Given that Si+1,L+1 is also fixed, the received values in the (i + 1)th row

do not affect the soft outputs for the bits in the ith row. Hence,

P (Xi,j|Y n,m
i,j , Si,j) = P (Xi,j|Y i,m

i,j , Si,j) (4.5)

Therefore, we can replace Y in (4.4) by Y
i,m
i,j for the jth bit in the ith row. Therefore,

Λi,j =
P (Xi,j = 1|Y , Si,j)

P (Xi,j = −1|Y , Si,j)
=

P (Xi,j = 1|Y i,m
i,j , Si,j)

P (Xi,j = −1|Y i,m
i,j , Si,j)

(4.6)

That is, we can run n BCJR equalizers in parallel, one for each row. So without loss

of generality let us consider the ith row.

P (Xi,j = 1|Y i,m
i,j , Si,j)

P (Xi,j = −1|Y i,m
i,j , Si,j)

=
P (Y i,m

i,j , Si,j|Xi,j = 1)

P (Y i,m
i,j , Si,j|Xi,j = −1)

P (Xi,j = 1)

P (Xi,j = −1)
(4.7)
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Equation (4.7) can be further simplified as below where P (Xi,j = 1) = P (Xi,j = −1)

is assumed.

P (Xi,j = 1|Y i,m
i,j , Si,j)

P (Xi,j = −1|Y i,m
i,j , Si,j)

=
P (Y i,m

i,j |Si,j , Xi,j = 1) P (Si,j, Xi,j = 1)

P (Y i,m
i,j |Si,j , Xi,j = −1) P (Si,j, Xi,j = −1)

(4.8)

For a sequence of uniform i.i.d. bits, the second term in the numerator and the

denominator in the RHS are the same and, hence, can be dropped. The first term

can be split into two as follows

P (Xi,j = 1|Y i,m
i,j , Si,j)

P (Xi,j = −1|Y i,m
i,j , Si,j)

=
P (Yi,j|Si,j, Xi,j = 1) P (Y i,m

i,j+1|Si,j, Xi,j = 1)

P (Yi,j|Si,j, Xi,j = −1) P (Y i,m
i,j+1|Si,j, Xi,j = −1)

(4.9)

Let S ′ be the future state when Xi,j = 1 and current state is equal to Si,j. Similarly

let S ′′ be the future state when Xi,j = −1 and current state is equal to Si,j. Then,

the above equations reduce to

Λi,j =
P (Xi,j = 1|Y i,m

i,j , Si,j)

P (Xi,j = −1|Y i,m
i,j , Si,j)

=
γi,j(+1, Si,j , S

′) βi,j+1(S
′)

γi,j(−1, Si,j , S ′′) βi,j+1(S ′′)
(4.10)

where βi,j+1(S
′) = P (Y i,m

i,j+1|Si,j+1 = S ′) and γi,j(a, Si,j , S
′) = P (Yi,j|Si,j , Si,j+1 =

S ′, Xi,j = a) are the standard definitions of backward state probability and state

transition probability respectively in a BCJR algorithm [8]. This can be realized as

follows. We first perform the backward recursion in the BCJR algorithm to generate

the β’s for each stage. Then, in the forward pass, for each j, we only need to know

the state Si,j = si,j in order to compute (4.10). This is provided by the DFE, that

is when the past L bits are known, si,j is fixed. Hence, we effectively use only the

backward recursion of a BCJR algorithm and simply set the known states during the

forward recursion as we decode each column in our codeword data-matrix. For every

coded bit, we have only one pass of the BCJR algorithm to produce Λi,j. Hence the

equalization complexity is nearly half that of a BCJR algorithm. Both MMSE-DFE

and BCJR-DFE use past decisions to cancel ISI. The feed forward section in the
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MMSE-DFE is a linear MMSE filter, whereas in the BCJR-DFE, the feed forward

filter is a non-linear estimator that produces optimal soft decisions. This is the main

difference between the MMSE-DFE and the BCJR-DFE.

D. Properties of BCJR-DFE Receiver

We will prove some interesting properties of the proposed receiver in this section.

First consider the output of the BCJR-DFE, Λi,j for a fixed column j and ∀i. The

Λi,j’s are random variables and, hence, we can think of them as the output of some

equivalent channel Cj that has input Xi,j and output Λi,j.

Proposition 1: The equivalent channel along each column Cj : L < j ≤ m is a

memoryless channel.

Proof: To show that the channel is memoryless, we need to show that for a fixed

column j,

P ((Λi,j, Λk,j)|(Xi,j , Si,j , Xk,j , Sk,j)) = P (Λi,j|Xi,j , Si,j) P (Λk,j|Xk,j, Sk,j).

Note that Λi,j is a function only of Y
i,m
i,j and Si,j , and Λk,j is a function only

of Y
k,m
k,j and Sk,j. Note that Y

i,m
i,j and Y

k,m
k,j are conditionally independent given

Si,j , Xi,j , Sk,j , Xk,j This is because of the known bits at the end of each row, the trellis

is brought back to the known state. Hence, Λi,j and Λk,j are conditionally indepen-

dent given Si,j, Sk,j , Xi,j and Xk,j.

Proposition 2: The equivalent channel Cj is statistically identical to that of Cl, L <

j ≤ m, L < l ≤ m.

Proof: This is true since all processes considered are stationary. The presence of

known bits ensures that for all the channels, the past L decisions are perfectly known.

Since the channels are all the same, we will drop the subscript and call it as C. Propo-
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sition 1 and 2 in effect mean that, one code of rate r = I(Xi,j , Λi,j) suffices to be used

along each column in the codeword matrix. As n → ∞, by choosing this code to

achieve capacity on the memoryless channel C we can generate perfect decisions in

the proposed receiver structure.

Theorem 1: The BCJR-DFE receiver is an optimal receiver that achieves the i.i.d

information rate of the ISI channel in (3.10) as n,m → ∞. That is, r = Ci.i.d of the

ISI channel.

Proof: We will use one dimensional indices for X, Y and Λ in this section.

Ci.i.d =
1

nm
I(X; Y ) =

1

nm
I(X1, X2, . . . , Xmn; Y ) (4.11)

Using the chain rule of mutual information

Ci.i.d =
1

nm

nm∑

i=1

I(Xi; Y |Xi−1, Xi−2, . . . , X1) (4.12)

Since knowing the previous L bits fixes the state of the encoder trellis, we have

P (Xi|Y , Xi−1, . . . , X1) = P (Xi|Y , Xi−1, . . . , Xi−L) (4.13)

and, hence,

I(Xi; Y |Xi−1, . . . , X1) = I(Xi; Y |Xi−1, . . . , Xi−L). (4.14)

The above information rate is identical for all i (using proposition 2). Hence,

Ci.i.d = I(Xi; Y |Xi−1, . . . , Xi−L)

= H(Xi|Xi−1, . . . , Xi−L) − H(Xi|Y , Xi−1, . . . , Xi−L)

= 1 + EY ,Xi,Xi−1,...,Xi−L

[
log(P (xi|y, xi−1, . . . , xi−L))

]

= 1 + EY ,Xi−1,...,Xi−L

[
P (xi = +1|y, xi−1, . . . , xi−L) log(P (xi = +1|y, xi−1, . . . , xi−L))

+ P (xi = −1|y, xi−1, . . . , xi−L) log(P (xi = −1|y, xi−1, . . . , xi−L))
]

(4.15)
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Using the definition of likelihood ratio given in (4.2) we can write the conditional

probabilities in (4.15) as,

P (xi = +1|y, xi−1, . . . , xi−L) =
λi

1 + λi

(4.16)

P (xi = −1|y, xi−1, . . . , xi−L) =
1

1 + λi

(4.17)

Substituting (4.16) and (4.17) in (4.15) we get,

Ci.i.d = 1 + EΛi

[
λi

1 + λi

log

(
λi

1 + λi

)
+

1

1 + λi

log

(
1

1 + λi

)]
(4.18)

The proposed receiver produces Λi = P (Xi=1|Y ,Xi−1,...,Xi−L)

P (Xi=−1|Y ,Xi−1,...,Xi−L)
and hence we can write

the information rate for the equivalent channel C between Xi and Λi as,

r = I(Xi; Λi)

= H(Xi) − H(Xi|Λi)

= 1 + EXi,Λi
[log(P (xi|λi)]

= 1 + EΛi

[
P (xi = +1|λi) log(P (xi = +1|λi)) + P (xi = −1|λi) log(P (xi = −1|λi))

]

= 1 + EΛi

[
λi

1 + λi

log

(
λi

1 + λi

)
+

1

1 + λi

log

(
1

1 + λi

)]
(4.19)

From (4.18) and (4.19) we can say that the achievable information rate r = Ci.i.d..

There is a small capacity loss due to the known bits. Therefore the achievable infor-

mation rate with the proposed scheme is r = Ci.i.d(1 − L
m

) and, hence,

lim
m→∞

r = Ci.i.d (4.20)

This proves that Ci.i.d is achievable with an ideal BCJR-DFE receiver, if each column

code achieves capacity on a memoryless channel.

Proposition 4: For any Markov input (non i.i.d inputs), the information rate is

achievable with the BCJR-DFE receiver.
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Proof: Consider a Markov input which is generated by passing the sequence {Xi}’s

through a rate b/d trellis encoder. Then we can express the combination of the trellis

encoder and the channel as one channel which is driven by an i.i.d sequence. In this

case, the equivalent channel taken for a group of b bits together will be the same for

all columns and, hence, codes that achieve capacity on that channel will also achieve

the information rate with the Markov input. The channel for each of the b bits may be

different hence, b different codes for single input memoryless channels will be required.

E. Universality of BCJR-DFE Receiver

Strictly speaking, the equivalent channel C is a function of the channel taps and,

hence, in order to achieve capacity on this channel, the ISI channel must be known

at the transmitter. For the MMSE-DFE, the assumption that the equivalent channel

is an AWGN channel has been used widely. So, we believe that this would hold for

the BCJR-DFE also. Even if this does not hold true, it is possible to find good codes

that provide good performance on a variety of memoryless single input channels.

For example, it was observed in [37, 41] that LDPC code ensemble optimized for the

AWGN channel provides good performance for several other memoryless channels

also (see chapter III, section A-1). Thus, it is reasonable to expect that we can find

one code of rate r, capable of providing good performance on any ISI channel as

long as Ci.i.d > r. Threshold computations in section H will corroborate this. This

essentially solves the Root-Varaiya problem [6] for ISI channels with constrained

input (see chapter III, section D). Let us assume that we have a class of Gaussian

ISI channels {H1, H2, · · · }, such that Ci.i.d.(Hi) > r. Then BCJR-DFE receiver along

with the proposed data-matrix encoding scheme with rate equal to r provides small

error probability uniformly across any of the channel {H1, H2, · · · }. This result is
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quite useful in wireless communications, where the most likely scenario is that the

transmitter does not know the channel but the receiver does.

F. Comparison to Iterative Receivers

Compared to using turbo equalization, the proposed receiver has the following ad-

vantages - the complexity is significantly smaller since only one iteration of BCJR

equalizer is required. Also it is not required to calculate and store the forward state

probabilities (α’s) [8] in order to calculate the likelihood ratios (see (4.10)). With the

proposed receiver, we do not need to specially design codes for ISI channels such as

in [56]. Through simulation results we show that this code can even be chosen to be a

code optimized for an AWGN channel. The BCJR-DFE receiver with an AWGN op-

timized code of rate r performs universally well across the class of several ISI channels

as long as the i.i.d. capacity of the channel is greater than r. Whereas in chapter III,

we outlined the proof from [7] which shows that for iterative receivers it is impossible

to design one code that is good for several ISI channels with the same Ci.i.d. The

disadvantage of the proposed approach is that for a given delay of nm, the codewords

can be only of length n, whereas in the case of turbo equalization, the codewords

can be length nm. With codes like LDPC codes whose performance improves with

length, it may be a disadvantage of the proposed structure. When n ≥ 1000, usually

the sphere packing bound is only less than a dB away from the capacity limit, mean-

ing that we may at most loose 1 dB or so compared to infinite length codewords.

As we can see from the following sections that even if n can be large, BCJR-DFE

receiver outperforms iterative receiver. Secondly, even if nm is very large, in prac-

tice it is quite hard to implement LDPC decoders for such long block lengths due

to the hardware constraints. For BCJR-DFE implementation, n parallel equalizers
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are not necessary. Each row can be processed serially with a single equalizer and

backward state probabilities of whole data-matrix can be stored in memory. Since

the BCJR-DFE algorithm is symmetric, instead of performing backward pass first

and doing column decoding in forward direction (column-L + 1 through column-m),

we can perform forward pass first and do the column decoding in backward direction

(column-m through column-L + 1). This allows us to start calculating the forward

state probabilities as soon as samples are received.

G. Discussion

The proposed receiver structure is not entirely new. There are at least four papers

that are closely related to this work. However, there are differences between these

structures, which are briefly summarized below. The proposed receiver is motivated

from the classic two part paper by Cioffi et al. [64, 65] where they showed that min-

imum mean squared error (MMSE) decision feedback equalization (DFE) with error

free decision feedback is a canonical structure and predicts the performance of coding

schemes accurately for any ISI channel. Here, we show by replacing the MMSE filter

by a BCJR algorithm [8], with ideal feedback we can exactly achieve capacity for any

SNR and any constrained input constellation. We propose a computationally effi-

cient BCJR-DFE algorithm, whose complexity is almost half that of the conventional

BCJR algorithm. In order to achieve perfect decision feedback equalization, Cioffi et

al. proposed to cancel the ISI at the transmitter through precoding which requires

channel to be known at the transmitter. In the BCJR-DFE receiver, the DFE is at

the receiver and, hence, the channel knowledge is not required at the transmitter. It

must be noted that Varanasi and Guess [66] have also shown the optimality of ideal

decision feedback multi-user detection. Although this encoder structure was derived
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to facilitate a DFE in the receiver, in effect this is nearly equivalent to the concept

of interleaved multiplexed codewords that Pfister, Soriaga and Siegel used to derive

information rates for ISI channels in their landmark paper [46]. In [46], authors used

the idea of m interleaved codes each of a different rate (the rates are usually dependent

on the channel) and a multi-stage decoder which involves m uses of an a posteriori

probability (APP) decoder. The encoder structure here can be thought of as m inter-

leaved codewords but with some known symbols added between the codewords. The

presence of these known symbols makes the channel completely memoryless. Hence,

the receiver structure proposed here does not require m uses of an APP decoder as

in [46], but it requires only one APP decoder. Further, m different codes are not

required. Only one code of a fixed rate (almost independent on the channel taps but

dependent only on the achievable information rate) is required. The receiver structure

is also nearly the same that proposed in Fechtel and Meyr [67] and in Eyuboglu [68],

where trellis codes are used along with DFE. The difference is in the use of the novel

BCJR-DFE and capacity achieving LDPC code for a memoryless channel, both of

which are required to achieve the capacity of an ISI channel. Further, we proved the

optimality and utility of this scheme, which seems to have been forgotten in favor of

turbo equalization.

H. Simulation Results

The performance was simulated on three ISI channels - the dicode channel with tap co-

efficients [ 1√
2
, − 1√

2
], the three-tap ISI channel with tap coefficients [0.407, 0.815, 0.407]

and the EPR4 channel with tap coefficients [0.5, 0.5, −0.5, −0.5]. The three tap

channel is the channel with severe ISI taken from [69]. An LDPC code with rate 0.5

which was optimized for the AWGN channel, taken from [41] with maximum variable
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Table III. Degree distribution of AWGN optimized LDPC code of rate r = 0.5

λ2 0.21991

λ3 0.23328

λ4 0.02058

λ6 0.08543

λ7 0.06540

λ8 0.04767

λ9 0.01912

λ19 0.08064

λ20 0.22798

ρ8 0.64854

ρ9 0.34747

ρ10 0.00399

node degree of 20 was used. Degree distribution of the chosen LDPC code is given

in Table III. We used bit-filling algorithm [70] for the construction of LDPC graph

for all LDPC codes simulated in this dissertation, unless otherwise stated. Sum-

product algorithm was used for LDPC decoding with maximum number of iterations

in LDPC decoder set to 100. In Figs. 10, 11 and 12, we plot the following curves

for each of these channels, respectively - the i.i.d capacity, threshold for the LDPC

code used with the BCJR-DFE receiver computed using density evolution, threshold

for the same code used with turbo equalization, simulation results for n = 10000

for the BCJR-DFE receiver and simulation results for n = 10000 and for n = 106

for turbo equalization. In computing the threshold with the BCJR-DFE receiver,
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BCJR-DFE
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Table IV. Gap of BCJR-DFE threshold and turbo equalization threshold from Ci.i.d

for different ISI channels

Channel BCJR-DFE Threshold Turbo Equalization Threshold

(dB) (dB)

AWGN 0.1234 0.1234

[ 1√
2

− 1√
2
] 0.184 0.594

[0.407 0.815 0.407] 0.21 0.97

[0.5 0.5 − 0.5 − 0.5] 0.19 0.85

200 Complex random

channels with 3 0.21 ≥ 0.97

rayleigh fading taps

we have ignored the Eb/N0 loss due to pilots (as we assume m,n → ∞). For the

finite length simulations, the loss is accounted for. To compute the threshold with

turbo equalization we used Gaussian approximation for input and output messages

for both equalizer and LDPC decoder. Table IV compares the threshold of BCJR-

DFE receiver with the threshold of turbo equalization for different channels. For the

dicode channel, for the three tap channel and the EPR4 channel, the threshold with

BCJR-DFE is only about 0.184 dB, 0.21 dB, and 0.19 dB away from that of the

i.i.d capacity respectively. It can be seen that the thresholds with BCJR-DFE are

significantly better than the thresholds with turbo equalization for the same code. In

order to show the universality of the proposed receiver, we selected 200 complex ISI

channels of length 3, with real and imaginary part drawn from Gaussian distribution

with zero mean and unit variance i.e. N (0, 1). For each of these 200 complex random

channels, we calculated the i.i.d capacity and the threshold for the LDPC code used



48

with the BCJR-DFE receiver using density evolution. The maximum gap between

the i.i.d. capacity and the corresponding threshold with BCJR-DFE was found to be

only 0.21 dB. This shows that the proposed receiver can achieve near capacity perfor-

mance with a code that is optimized for the AWGN channel. The universality of the

proposed receiver can be seen from the fact that the gap between i.i.d capacity and

threshold is same for all the channels considered and is only slightly higher (0.0866

dB) than that for the AWGN channel. That is, one code is able to provide good

performance on the AWGN channel and all of these ISI channels suggesting that this

can be a good solution to the Root-Varaiya problem for ISI channels with constrained

inputs. However in the case of turbo equalization, the gap between i.i.d capacity and

threshold is nearly 0.844 dB, 0.97 dB and 0.85 dB for the dicode channel, the three

tap channel and the EPR4 channel respectively, clearly showing that the performance

of turbo equalization is strongly dependent on the channel realization. It is possible

to obtain better performance from turbo equalization by optimizing the LDPC code

for the specific channel. However, this will require that the channel be known at the

transmitter. Since we consider the case when the channel is not known, we have used

LDPC codes optimized for the AWGN channel. Simulation results with BCJR-DFE

receiver for finite length LDPC codes with n = 10000 and m = 100 are also shown in

Figs. 10, 11 and 12. It can be seen that the proposed scheme outperforms the turbo

equalization case with n = 10000 and 15 turbo iterations for both the channels, the

difference being nearly 1 dB for the three tap case. Since the overall latency is 106

bits, whereas the LDPC code is only of length 104 bits, in the turbo equalization case,

an LDPC code of length 106 can be used. We have shown the performance for turbo

equalization case with n = 106 for 1st iteration and 15th iteration, where the com-

plexity and latency is same for the 1st iteration of turbo equalization and BCJR-DFE

receiver and the complexity of turbo equalization at 15th iteration is more than 15
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times higher than the complexity of BCJR-DFE receiver. It can be seen that for the

three tap channel case, the proposed receiver with n = 10000 and latency equal to 106

bits outperforms the same latency turbo equalization result with 15 turbo iterations.

For the EPR4 channel case the performance of proposed receiver with n = 10000 and

latency equal to 106 bits is almost same as the same latency turbo equalization result.

This clearly shows that even for comparison based on the same latency, the proposed

BCJR-DFE receiver achieves better or same performance as turbo equalization over

some channels with significant reduction in the complexity.

I. Conclusion

Cioffi et al. showed that an ideal MMSE-DFE equalizer is a canonical receiver. We

have extended this to show that a BCJR-DFE equalizer is optimal (achieves the

information rate) for any SNR and any finite sized input constellation. The DFE can

be used at the receiver (instead of being used as a precoder at the transmitter) and

LDPC codes that achieve capacity on an equivalent memoryless channel are optimal

for the channel with memory. The complexity of this receiver is only that of one

iteration of a turbo receiver. The solution is an universal solution in the sense that a

single code of rate-r can provide small error probability uniformly across any linear,

time invariant constrained input Gaussian channel with ISI, as long as the capacity

of the channel is greater than r. We have shown through simulations that this code

can even be chosen to be an LDPC code optimized for the AWGN channel.
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CHAPTER V

LOW LATENCY TECHNIQUES FOR BCJR-DFE RECEIVER

Encoder structure proposed in chapter IV uses a data-matrix of size n × m, which

gives total latency of nm bits for the BCJR-DFE receiver. Large latency of BCJR-

DFE receiver poses practical limitations on its applications. In this section we present

two methods to reduce the latency of BCJR-DFE receiver. In the the first method we

reduce the number of columns m, while in the second method we reduce the column

length n. We also discuss the low complexity MMSE-DFE equalization in which

optimal BCJR equalizer is replaced with sub-optimal linear MMSE equalizer.

A. Multi-rate BCJR-DFE

In the this section we show that by selecting proper rates for each column, we can

reduce the latency of BCJR-DFE receiver significantly. The proposed data-matrix

encoder structure (Fig. 9) for BCJR-DFE receiver uses a sequence of zero bits or

known bits at the start of each row to reset the channel state memory. These L known

columns formed by the known bits can be considered as a code with rate r = 0. These

known columns account for the loss of 10 log10(1 − L
m

) dB in SNR, which becomes

significant for small values of m and thus prevents us from reducing the number of

columns m, to lower the latency of BCJR-DFE. For the design of multi-rate BCJR-

DFE, we assume that channel is known at the transmitter. We can completely avoid

the loss in SNR due to known bits if we use low rate codes (instead of rate zero code)

for first L columns of the data-matrix. Rates for each columns of the data-matrix

should be set by noting that previous state is not known completely but channel is

known at the transmitter. In the absence of known bits, none of the previous bits are

known for the bits in the first column of the data-matrix. So we can set the code rate



51

r1 for the first column equal to the information rate for the given channel assuming

none of the previous bits are known i.e. r1 = I(Xi; Y ). For the second column we

assume that we have decoded the first column successfully and hence the code rate

r2 can be set to the information rate for the given channel assuming previous 1 bit

is known i.e r2 = I(Xi; Y |Xi−1). Thus we can set the rate for jth column assuming

that previous j − 1 bits are known i.e. rj = I(Xi; Y |Xi−1, Xi−2, · · · , Xi−j+1) for

1 ≤ j ≤ L. We also note that BCJR-DFE produces high values of LLRs for few last

columns in the data-matrix due to end effect of a BCJR trellis. For example for all

the bits in the last column of the data-matrix, assuming we have decoded previous

columns perfectly, we know the previous L bits and also we know the future L bits. So

we can set rm = I(Xi; Y |Xi+L, · · · , Xi+1, Xi−1, · · · , Xi−L). This allows us to increase

the code rate for last few columns in the data-matrix, which can compensate for the

low code rate in first L columns of the data-matrix. Thus we have a new encoder

structure without any known bits, where code rate gradually increases from the first

column to the last column in the data-matrix. Transmission of the data over an ISI

channel is done as before, that is, the data is transmitted row wise from first row

to the last row of the data-matrix. For decoding, we first perform a single LARGE

backward pass from the last received bit of last row to the first received bit of the

first row of the data-matrix. Backward state probabilities (β ′s) corresponding to all

the bits are stored during this iteration. In the forward direction we use n parallel

equalizers corresponding to each row of the data-matrix. For the first column we

assign equal forward probabilities α′s to all the starting states of n trellises, as none

of the previous bits are known. We can then calculate the LLRs for the first column
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(j = 1) using standard BCJR equation [8] as

Λi,j =

∑

Si,j→Si,j+1:

Xi,j=+1

αi,j(Si,j)γi,j(+1, Si,j , Si,j+1)βi,j+1(Si,j+1)

∑

Si,j→Si,j+1:

Xi,j=−1

αi,j(Si,j)γi,j(−1, Si,j , Si,j+1)βi,j+1(Si,j+1)
(5.1)

These LLRs are given as input to the LDPC decoder for the first column. Hard

decision outputs from the LDPC decoder are given as decision feedback to n parallel

equalizers. Assuming that we successfully decode the first column with LDPC de-

coder, we can calculate the LLRs of the second column using the fact that previous

one bit is known for all the bits in second column. So for second column only those

forward states of n equalizers are active for which previous bit is equal to the de-

coded result of first column. We proceed in the same way until the first L columns

are decoded. Once the first L columns are decoded successfully, we can treat these

L columns as known columns and switch back to our original BCJR-DFE receiver.

Before proceeding with the original BCJR-DFE, we need to run the backward pass

again with n equalizers corresponding to each row of the data-matrix with known

starting states due to L decoded columns. Thus the complexity of this new decoding

algorithm is slightly more than the complexity of two backward passes or equivalently

one iteration of a turbo equalization. Note that we can use a single equalizer (instead

of using n parallel equalizers) and process n rows serially. The equivalent channel

seen by an LDPC decoder for columns 1 to L is a channel with memory. In practice

if we use AWGN optimized codes for these columns then we need to set the code rate

sufficiently low (rj < I(Xi; Y |Xi−1, Xi−2, · · · , Xi−j+1)) so that the LDPC decoder

converges for the first L columns. Also in the case when channel is not known at the

transmitter, we need to make sure that the code rates for the first L columns are such

that rj < min I(Xi; Y |Xi−1, Xi−2, · · · , Xi−j+1, H = Hk) over the class of channels
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Hk ∈ {H1, H2, · · · }.

B. Step BCJR-DFE

Data-matrix encoder (Fig. 9) uses a code of length n over one column. To reduce

the latency of BCJR-DFE receiver we can reduce the size n of a column code, but

this will lead to error propagation due to a shorter length code. In order to keep

the length of a codeword same and reduce the size of a column, we can define a

single codeword over multiple columns of the data-matrix. Let us define a single

codeword over D consecutive columns of the data-matrix. Assuming that we use a

code of length n, we now need to define a column of size n/D only. Thus for step

BCJR-DFE, we define the encoder data-matrix of size n
D
× m, where again first L

columns are zero bits or known bits and remaining (m − L) columns contain (m−L
D

)

LDPC codewords. We will need to calculate the LLRs of D columns before decoding

jiS ,

LL

jiji YX ,, /
1, +jiS 1, −+DjiS DjiS +,

1,1, / −+−+ DjiDji YX

jiS ,
1,

,
1,

, / −+−+ Dji
ji

Dji
ji YX

DjiS +,

Fig. 13. Combining D consecutive transitions as one transition in step BCJR-DFE

the column code of length n. If we use n/D parallel equalizers corresponding to

each row of data-matrix, then D consecutive columns corresponds to D time steps

of these binary equalizer trellises. In order to calculate the LLRs on D consecutive

columns, we can combine D time steps of a binary trellis as shown in Fig. 13, such
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that sequence of D state transitions are now defined by a single state transition.

Each new state transition is defined by D input bits (X i,j+D−1
i,j ) and each new state

has 2D incoming and 2D outgoing transitions. To keep the Markov structure of a

trellis we need to have 1 ≤ D ≤ L, where L is the channel memory. Length of this

newly formed trellis is D times smaller than the original trellis length. Now we can

have a BCJR-DFE receiver with this newly formed D-step BCJR trellis. Thus overall

latency of step BCJR-DFE is n
D
×m bits, which is D times lower than original BCJR-

DFE receiver. Note that the proposition-1 does not hold true for step BCJR-DFE

receiver. The equivalent channel along each column is not a memoryless channel, but

it is a composite ISI channel where first n/D bits appear to come from a memoryless

channel, the next n/D bits appear to come from an equivalent channel of memory

1, next n/D bits appear to come from an equivalent channel of memory 2, and so

on. Optimum performance with step BCJR-DFE is obtained when column code is

optimized for the composite ISI channel. Unequal error protection LDPC codes can

be used in this case. Note that we achieve maximum reduction in latency when

D = L, while for L = 1 (e.g. dicode channel, H = [ 1√
2

−1√
2
]) no latency reduction can

be achieved with step BCJR-DFE receiver. In the following section we will compare

the performance of multi-rate BCJR-DFE and step BCJR-DFE receivers with the

performance of BCJR-DFE receiver and turbo equalization.

C. Simulation Results

1. Multi-rate BCJR-DFE Results

In this section we present simulation results for multi-rate BCJR-DFE where we used

low rate codes instead of known bits at the beginning of the data-matrix. As explained

in section A, we gradually increased the rates of column codes (r1 < r2 < · · · < rm)
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Table V. Code rates for different columns of the data-matrix in multi-rate BCJR-DFE

Channel m r1 r2 r3 r4 r5 r6

[ 1√
2

− 1√
2
] 4 0.40 0.50 0.52 0.58 - -

[0.407 0.815 0.407] 5 0.37 0.42 0.54 0.55 0.62 -

[0.5 0.5 − 0.5 − 0.5] 6 0.38 0.40 0.42 0.55 0.61 0.64

in the data-matrix such that overall rate is equal to the desired rate r. Table V

shows the number of columns used (m) along with their rates (rm) for the dicode

channel, the 3-tap channel and EPR4 channel. For all these channels, overall rate is

r = 1
m

∑m
i=1 ri = 0.5. We used LDPC codes of length n = 10000 and rates shown in

Table V, where codes were optimized for AWGN channel. Degree distributions of the

AWGN optimized codes used are given in Tables VI, VII and VIII.

Hundred iterations were used in the LDPC decoder. Figs. 14, 15 and 16 show

the performance results for the dicode channel, the 3-tap channel and EPR4 channel

respectively. Latency of the multi-rate BCJR-DFE receiver is 4 × 104 bits for the

dicode channel, 5 × 104 bits for the 3-tap channel, and 6 × 104 bits for the EPR4

channel. We also plot the performance of equal latency turbo equalization with 15

turbo iterations, where LDPC codes optimized for AWGN channel, of length 4× 104,

5 × 104, and 6 × 104 were used for the dicode channel, the 3-tap channel, and EPR4

channel respectively. For dicode channel we get almost the same performance for

BCJR-DFE, low latency BCJR-DFE, and turbo equalization with LDPC code of

length 4 × 104. For the 3-tap channel, and EPR4 channel we get a gain of about

0.5 dB and 0.2 dB respectively over the same latency turbo equalization result. At

the same time the complexity of multi-rate BCJR-DFE receiver is approximately 15

times smaller than the complexity of turbo equalization. It can be seen from the BER
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Table VI. Degree distribution of AWGN optimized LDPC codes of different rates used

with multi-rate BCJR-DFE for dicode ([ 1√
2

− 1√
2
]) channel

r = 0.40 r = 0.50 r = 0.52 r = 0.58

λ2 0.29433 λ2 0.21991 λ2 0.21986 λ2 0.21866

λ3 0.25733 λ3 0.23328 λ3 0.21041 λ3 0.22335

λ10 0.44833 λ4 0.02058 λ6 0.03569 λ6 0.06414

λ6 0.08543 λ7 0.21664 λ7 0.20383

λ7 0.06540 λ13 0.06710 λ20 0.29000

λ8 0.04767 λ23 0.00053

λ9 0.01912 λ25 0.07060

λ19 0.08064 λ27 0.11625

λ20 0.22798 λ28 0.02592

λ29 0.03557

λ30 0.00138

ρ6 1.0 ρ8 0.64854 ρ9 1.0 ρ10 1.0

ρ9 0.34747

ρ10 0.00399
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Table VII. Degree distribution of AWGN optimized LDPC codes of different rates used

with multi-rate BCJR-DFE for 3-tap ([0.407 0.815 0.407]) channel

r = 0.37 r = 0.42 r = 0.54 r = 0.55 r = 0.62

λ2 0.23537 λ2 0.23205 λ2 0.20178 λ2 0.21847 λ2 0.16958

λ3 0.18115 λ3 0.18993 λ3 0.19793 λ3 0.21244 λ3 0.17925

λ5 0.04342 λ5 0.06984 λ5 0.00217 λ5 0.05359 λ4 0.01631

λ6 0.08761 λ6 0.01177 λ6 0.05556 λ6 0.01688 λ5 0.03113

λ9 0.11938 λ7 0.04945 λ7 0.17697 λ7 0.05418 λ6 0.01018

λ13 0.02741 λ8 0.11193 λ15 0.10989 λ8 0.16438 λ8 0.18442

λ14 0.05460 λ13 0.08794 λ17 0.02734 λ12 0.01519 λ9 0.02090

λ41 0.25102 λ15 0.00103 λ19 0.02189 λ18 0.03673 λ13 0.02968

λ20 0.02539 λ35 0.02282 λ19 0.01604 λ14 0.03060

λ24 0.00720 λ38 0.16934 λ21 0.01477 λ15 0.01259

λ25 0.01616 λ41 0.01426 λ22 0.00825 λ18 0.00878

λ26 0.02701 λ23 0.12138 λ41 0.30651

λ38 0.17021 λ31 0.06762

ρ7 1.0 ρ7 0.5 ρ10 1.0 ρ9 0.5 ρ13 0.5

ρ8 0.5 ρ10 0.5 ρ14 0.5
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Table VIII. Degree distribution of AWGN optimized LDPC codes of different rates

used with multi-rate BCJR-DFE for EPR4 ([0.5 0.5 −0.5 −0.5]) channel

r = 0.38 r = 0.40 r = 0.42 r = 0.55 r = 0.61 r = 0.64

λ2 0.23838 λ2 0.29433 λ2 0.23205 λ2 0.21847 λ2 0.18063 λ2 0.17055

λ3 0.18034 λ3 0.25733 λ3 0.18993 λ3 0.21244 λ3 0.18829 λ3 0.19023

λ5 0.10161 λ10 0.44833 λ5 0.06984 λ5 0.05359 λ5 0.07365 λ6 0.07154

λ7 0.02951 λ6 0.01177 λ6 0.01688 λ6 0.01861 λ7 0.13861

λ9 0.04665 λ7 0.04945 λ7 0.05418 λ9 0.21726 λ14 0.15833

λ10 0.12603 λ8 0.11193 λ8 0.16438 λ20 0.07889 λ16 0.00158

λ13 0.01168 λ13 0.08794 λ12 0.01519 λ23 0.00094 λ17 0.00067

λ16 0.00221 λ15 0.00103 λ18 0.03673 λ27 0.03217 λ41 0.26845

λ19 0.00831 λ20 0.02539 λ19 0.01604 λ29 0.01072

λ21 0.04645 λ24 0.00720 λ21 0.01477 λ41 0.19879

λ41 0.20877 λ25 0.01616 λ22 0.00825

λ26 0.02701 λ23 0.12138

λ38 0.17021 λ31 0.06762

ρ7 1.0 ρ6 1.0 ρ7 0.5 ρ9 0.5 ρ12 0.5 ρ14 1.0

ρ8 0.5 ρ10 0.5 ρ13 0.5
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] with multi-rate
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Fig. 15. Simulation results for the three tap channel H = [0.407 0.815 0.407] with

multi-rate BCJR-DFE
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Fig. 16. Simulation results for the EPR4 channel H = (0.5 0.5 − 0.5 − 0.5) with

multi-rate BCJR-DFE
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curves that there is very little loss in performance if we use low rate codes instead of

known bits.

2. Step BCJR-DFE Results

In this section we present simulation results for step BCJR-DFE with three tap chan-

nel and EPR4 channel. For 2-step BCJR-DFE (D = 2), we used an LDPC code of

length n = 10000 while for 3-step BCJR-DFE (D = 3) we used an LDPC code of

length n = 9999. Both the codes were optimized for AWGN channel and have same

degree distribution as given in chapter IV, Table III. Hundred iterations were used in

the LDPC decoder. Data-matrix size was set to 5000×100 for 2-step BCJR-DFE and

3333×99 for 3-step BCJR-DFE receiver. As shown in Fig. 17 for the 3-tap channel, the

performance with 2-step BCJR-DFE receiver is nearly the same as turbo equalization

performance and there is about 0.5 dB loss as compared to BCJR-DFE receiver. For

EPR4 channel (Fig. 18), the performance with 2-step BCJR-DFE receiver is nearly

the same as the performance of BCJR-DFE receiver, while performance with 3-step

BCJR-DFE receiver is nearly the same as turbo equalization performance. Better

performance can be obtained with step BCJR-DFE by optimizing the LDPC code for

respective composite ISI channel.

D. Turbo Equalization with Data-matrix Encoding

As we decrease the length of a column code, decoder for the column code fails to

converge to the correct codeword at low SNR. This causes severe error propagation

in the BCJR-DFE receiver. We can overcome this error propagation by performing

a few turbo iterations between column codes. Figure 19 shows the frame error rate
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Fig. 17. Simulation results for the 3-tap channel H = [0.407 0.815 0.407] with step

BCJR-DFE
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Fig. 18. Simulation results for the EPR4 channel H = (0.5 0.5 − 0.5 − 0.5) with step

BCJR-DFE
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(assuming one frame equal to one LDPC column codeword) with different receiver

structures for 3-tap ISI channel. Data is encoded with LDPC code of length 500 bits

and arranged in the data-matrix structure as shown in Fig. 9. Number of columns

m is set to 20. Data is transmitted along the rows from first row to the last row. As

2 2.5 3 3.5 4 4.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

F
E

R

BCJR−DFE, data−matrix: 500 × 20
Turbo Equalization, data−matrix: 500 × 20
Turbo Equalization with 2 Column XOR
Turbo Equalization with 3 Column XOR

Fig. 19. Simulation results for the 3-tap channel H = [0.407 0.815 0.407] for turbo

equalization with data-matrix encoding

shown in Fig. 19, BCJR-DFE suffers from error propagation. We can also perform

turbo equalization considering the whole data-matrix as one data-block. Performance

with 20 turbo iterations is shown in Fig. 19, which shows significant frame error rate
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improvement over BCJR-DFE albeit with higher complexity. It was observed that

this turbo equalization has a bootstrap effect in which many column codewords at

the start and at the end of the data-matrix quickly converge due to columns of

known bits. Codeword columns in the data-matrix are correlated with each other

through channel memory. The correlation between columns can be increased if we

do bitwise XOR operation on adjacent columns. For example for ‘2 column XOR’,

we obtain a new data-matrix from original encoded data-matrix, where ith column of

new data-matrix is bitwise XOR of (i − 1)th and ith column of original data-matrix

(first column is copied as it is). Similarly ‘3 column XOR’ denotes the operation

where ith column of new data-matrix is bitwise XOR of (i − 2)th, (i − 1)th, and

ith column of original data-matrix (first column is copied as it is and 2nd column is

obtained by ‘2 column XOR’ operation). The frame error rate of turbo equalization

in with ‘2 column XOR’ and ‘3 column XOR’ operation with 20 turbo iterations is

also shown in Fig. 19. We can see that a little gain can be obtained with ‘column

XOR’ operation. Figure 20 compares the frame error rate of different receivers for the

3-tap channel, where one frame consists of 104 bits. The frame error rate of standard

turbo equalization with LDPC code of length n = 104 is shown in Fig. 20. We also

plot the frame error rate for turbo equalization with data-matrix (of size 500 × 20)

encoding, with ‘2 column XOR’ operation and ‘3 column XOR’ operation where one

frame is assumed to be equal to the whole data-matrix of size 500 × 20 = 104 bits.

We can see that ‘2 column XOR’ and ‘3 column XOR’ operation gives comparable

results with conventional turbo equalization. Here we need LDPC decoder of size

n = 104 for conventional turbo equalization, while for other receivers we need LDPC

decoder of size n = 500 only. Thus significant hardware complexity reduction can be

obtained for turbo equalization with data-matrix encoding.
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Fig. 20. Simulation results for the 3-tap channel H = [0.407 0.815 0.407] for turbo

equalization with n = 104 and turbo equalization with data-matrix encoding

E. Replacing BCJR with MMSE

In this section we consider the new receiver structure called as MMSE-DFE, which is

similar to BCJR-DFE, except that non-linear BCJR equalizer is replaced with linear

MMSE equalizer. Certainly for constrained input constellation, MMSE-DFE receiver

is suboptimum and we want to find the loss in achievable information rates with

MMSE-DFE as compared to a BCJR-DFE receiver for constrained input constella-

tion. Consider a causal ISI channel of memory L with input Xk and output Yk such
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that

Yk =
L∑

i=0

hiXk−i + Nk (5.2)

where hi’s are the channel coefficients and Nk is additive white Gaussian noise. We

can rewrite (5.2) in the matrix form as




Yk

...

Yk+L




︸ ︷︷ ︸
Yk

=




hL hL−1 · · · h0 0 · · · 0 0

0 hL hL−1 · · · h0 0 · · · 0

...
. . . . . . . . . . . . . . . . . .

...

0 · · · 0 hL hL−1 · · · h1 h0




︸ ︷︷ ︸
Hk




Xk−L

...

Xk

...

Xk+L




︸ ︷︷ ︸
Xk

+




Nk

...

Nk+L




︸ ︷︷ ︸
Nk

(5.3)

Yk = HkXk + Nk with Nk ∼ N (0,Σ) (5.4)

Any a-priori information Λ(a)(xk) = Λ
(a)
k on Xk can be converted into the soft estimate

X̃k using

X̃k , tanh

(
Λ

(a)
k

2

)
.

We define vector X̃k as

X̃k , [X̃k−L, X̃k−L+1 · · · , 0, · · · , X̃k+L−1, X̃k+L]T (5.5)

Using (5.5) we can perform soft interference cancellation on Yk to obtain

Ỹk , Yk − HkX̃k = Hk(Xk − X̃k) + Nk

Instantaneous linear MMSE filtering can be applied to Ỹk to obtain

Zk = WH
k Ỹk, (5.6)
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where filter Wk minimizes the mean square error between Xk and Zk. It can be shown

that

Wk = (Hk∆kH
H
k + Σ)−1Hke (5.7)

where ∆k , diag{1 − X̃2
k−L, · · · , 1, · · · , 1 − X̃2

k+L} (5.8)

and e is a [2L + 1] vector with all zero entries, except for the (L + 1)th entry which

is 1. In order to form the LLR of Xk, (Λ(xk) = Λk) we can assume that p(Zk|Xk) is

Gaussian distributed with mean µkXk and variance σ2
k. It can be shown that for real

valued channels [55],

Λk =
2Zk

1 − µk

(5.9)

where µk , E{ZkXk} = eT (Hk∆kH
H
k + Σ)−1Hke. (5.10)

For MMSE-DFE receiver, we use the same data-matrix encoder structure with known

bits and same column code decoding sequence as used for BCJR-DFE receiver (see

Fig. 9). In order to calculate the achievable information rates, we can assume that

column LDPC code always converges to the correct codeword and thus for every bit

Xk we know past L bits perfectly. With this vector X̃k becomes

X̃k = [Xk−L, Xk−L+1 · · · , Xk−1, 0, · · · , 0]T .

So we can write ∆k in (5.8) as

∆k = diag{0, · · · , 0, 1, · · · , 1} (5.11)

i.e. first L diagonal entries are equal to zero (perfect knowledge of past L bits) and

remaining L + 1 entries are equal to one (no knowledge of future bits). Using (5.11)

to calculate the LLR of Xk (5.9), we can find out the achievable information rate with
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Fig. 21. Comparison of achievable information rates with MMSE-DFE and

BCJR-DFE scheme for 3-tap channel

MMSE-DFE as

IMMSE−DFE = lim
k→∞

1

k
I(X1, · · · , Xk; Λ1, · · · , Λk)

For BCJR-DFE receiver, achievable information rate is calculated by using BCJR-

DFE algorithm to calculate the LLR of bit Xk, where perfect knowledge of previous

state in BCJR trellis is assumed. Due to optimality of BCJR-DFE receiver, this

information rate is equal to the Ci.i.d. of the channel. Figures 21, 22 and 23 show

the plot of achievable information rate with BCJR-DFE and MMSE-DFE receiver

as a function of signal-to-noise ratio (Es/No) for 3-tap channel, EPR4 channel and
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BCJR-DFE scheme for EPR4 channel
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BCJR-DFE scheme for PR2 channel
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Table IX. Loss in SNR with MMSE-DFE over BCJR-DFE at different rates

Channel Loss in SNR (Es/No) in dB

r = 0.5 r = 0.9 r = 0.95

[0.407 0.815 0.407] 0.285 1.00 1.254

[0.5 0.5 − 0.5 − 0.5] 0.35 1.53 1.932

[ 1√
6

2√
6

1√
6
] 0.295 1.015 1.24

PR2 channel. These plots clearly show that at lower rate, the loss in SNR with

MMSE-DFE over BCJR-DFE is negligible. As the rate increases this loss increases.

Table IX summarizes this loss in SNR for rate r = 0.5, r = 0.9 and r = 0.95. Thus

lower complexity can be achieved with MMSE-DFE for little loss in performance.

F. Conclusion

Large latency of BCJR-DFE limits its practical implementation. We proposed two

solutions for reducing latency of BCJR-DFE receiver. With multi-rate BCJR-DFE

receiver, we have shown that by properly selecting the rates for each column in the

data-matrix, latency of BCJR-DFE can be reduced significantly without loosing much

of the performance. To reduce the complexity of the receiver further, we showed that

nonlinear BCJR equalizer can be replaced with linear MMSE equalizer. We quan-

tified the loss in information rate with MMSE-DFE receiver for different channels.

It is usually believed that linear MMSE or even DFE (decision feedback equalizer)

performs poorly on channels with spectral nulls. Here we show that for wide range

of SNRs this loss is negligible even for channels with spectral nulls.
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CHAPTER VI

JOINT SYNCHRONIZATION, EQUALIZATION AND DECODING USING

PER-SURVIVOR BCJR-DFE RECEIVER†

Along with ISI, many communication channels also suffer from timing errors. Tra-

ditionally, timing errors are dealt with dedicated timing recovery circuitry. In this

chapter, we extend the BCJR-DFE receiver introduced in chapter IV to accomplish

timing recovery, ISI equalization and decoding concurrently using per-survivor pro-

cessing technique. Similar to the case of equalization using BCJR-DFE receiver, we

show that the proposed per-survivor BCJR-DFE receiver outperforms other receiver

structures, such as iterative timing recovery and detection.

A. Introduction

In a typical communication system, the receiver-sampler is uncertain about the correct

arrival time of an analog pulse due to the presence of timing offset between the

transmitter and the receiver clock. Sampling of the received signal at an incorrect

timing instant results in degradation of the sampled signal quality and, hence, bit

error rate performance. These timing offsets are estimated through a process known

as timing recovery and used for synchronizing a sampler with the received analog

signal.

Conventional timing recovery does not exploit the error correction code (ECC)

employed in the channel. It has been shown that by utilizing the ECC code during

timing recovery, potential performance gain can be achieved, in particular at very

† c©2005 IEEE. Reprinted, with permission, from “Joint timing recovery, ISI equal-
ization and decoding using per-survivor BCJR-DFE”, N. Nangare, K.R. Narayanan,
X. Yang, and E. Kurtas, Proc. IEEE Globecom., Nov./Dec. 2005, pp. 1620-1624.
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low SNR regions. For example, iterative timing recovery with turbo equalization was

used by Nayak, Barry and McLaughlin [71], where the timing offset estimates were

refined during each iteration between equalizer and decoder. Iterative timing recovery

based on per-survivor processing [72] with BCJR [8] algorithm was proposed by Kov-

intavewat, Barry, Erden and Kurtas [73], where timing recovery was embedded inside

the equalization trellis. In order to obtain good bit error rate performance, iterative

timing recovery techniques often require many iterations which prohibits its use in

practical applications. In this chapter, we explore a low complexity and non-iterative

joint timing recovery, ISI equalization and decoding using per-survivor processing

BCJR-DFE (PSP BCJR-DFE) algorithm. We show that using per-survivor process-

ing for timing recovery along with the BCJR-DFE algorithm can be a low complexity

solution for timing recovery over a coded system with ISI. As shown in chapter IV,
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transmission over a channel with unknown timing offsets
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code optimization specific to ISI channel is not required and an AWGN optimized

code performs equally well on various ISI channels.

B. System Model

Figures 24 and 25 show the transmitter and receiver structure for the system under

consideration. Let L denote the memory of the ISI channel and n be the length of the

Ttg /)(
)(ty

Equalization
kâ)(tr

PLL

kr

kkT τ̂+

Per-survivor
BCJR-DFE

kâ

Conventional timing recovery

Decoding

Timing recovery using BCJR-DFE

Fig. 25. Receiver structure showing timing recovery using conventional PLL based

receiver and using per-survivor BCJR-DFE receiver

LDPC code used. As shown in Fig. 24, information bits ak ∈ {0, 1} are encoded using

an LDPC encoder and arranged in the data-matrix structure similar to Fig. 9. The

first L columns in the data-matrix are sequences of known bits. LDPC codewords

from ‘codeword 1’ to ‘codeword (m − L)’ are arranged along the columns in the rest

of the data-matrix. Encoded data is transmitted row-wise over an ISI channel with

random timing errors. ISI channel is denoted by h(t) where, h(t) =
∑

k hkg(t − kT )
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and g(t) = sin(πt/T )/(πt/T ) is an ideal zero-excess-bandwidth Nyquist pulse. We

denote channel impulse response sampled at T-clock as H(D) =
∑L

l=0 hlD
l. Timing

offset of transmitter clock at time kT is modelled by delay τk. With this timing offset,

the received signal y(t) can be represented as

y(t) =
∑

k

ckh(t − kT − τk) + n(t), (6.1)

where ck’s are BPSK modulated symbols and n(t) is AWGN process with zero mean

and E[n(t)n(t)∗] = σ2
nδ(t). We assume a random walk model [74] for timing offset τk

such that

τk+1 = τk + N (0, σ2
w). (6.2)

Here σw determines the severity of the timing jitter. A variety of timing jitter channels

can be represented with this timing offset model by simply changing σw. Receiver

structure with conventional timing recovery is shown in Fig. 25. A phase locked loop

(PLL) is used to keep track of timing offsets. The received signal y(t) is filtered with

the receiver filter g(t)/T and then sampled with a PLL to get a sampled sequence

{rk}. PLL uses a timing error detector (TED) to estimate the residual timing error

εk = τk − τ̂k, where τ̂k denote the timing offset estimate at time kT. Commonly used

Mueller and Müller TED [75] generates timing error estimates ε̂k according to

ε̂k = rkd̂k−1 − rk−1d̂k, (6.3)

where d̂k is an estimate of the ISI channel output dk =
∑L

l=0 clhk−l, which can be

obtained by three-level quantization of signal rk. Performance improvement can be

obtained by using the soft estimate d̃k in place of d̂k in (6.3) according to [71]

d̃k = E[dk|rk] =
2 sinh(2rk/σ

2
n)

cosh(2rk/σ2
n) + e2/σ2

n

(6.4)
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PLL then updates the timing offset estimates by using a first order model given by

τ̂k+1 = τ̂k + µε̂k, (6.5)

where µ denotes the PLL gain. In a conventional timing recovery, equalization and

decoding is performed in succession on the PLL output to obtain the estimate {âk} of

the information sequence {ak}. Using per-survivor timing recovery [73] with BCJR al-

gorithm, equalization and timing offset estimation can be performed together. Turbo

decoding [1] can be performed between decoder and per-survivor-processing BCJR

(PSP BCJR) to obtain the better estimate of the information sequence {ak}. Compu-

tational complexity of such iterative processing is very high, especially when a large

number of iterations are required to achieve better performance. Alternatively we

can use a non-iterative PSP BCJR-DFE receiver which has significantly less compu-

tational complexity than iterative processing. In the next section we describe the PSP

BCJR-DFE receiver (Fig. 25) which performs joint timing recovery, ISI equalization

and decoding.

C. Per-survivor Processing BCJR-DFE Receiver

Operation of the per-survivor processing BCJR-DFE is similar to the operation of

BCJR-DFE with the addition of per-survivor processing for timing offset estimation

and performing the forward pass first and then the backward pass. Input to the PSP

BCJR-DFE is the low pass filtered signal r(t). Signal r(t) is sampled at baud-rate

and arranged in the data-matrix similar to the transmitted data-matrix. Sampled

signal has sufficient statistics to represent the continuous and bandlimited signal r(t).

Hence, given a sampled sequence {rk} associated with timing offset sequence {τk},

we can obtain a new set of sample sequence {rno−offset
k } with zero timing offsets by
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using interpolation of {rk} according to

rno−offset
k =

lmax∑

l=lmin

rlg(kT − lT − τl). (6.6)

1. Forward Pass

In order to describe the algorithm, we will assume an ISI channel with memory L = 2.

Let sk = [ck−1, ck−2] denote the channel state in a state trellis diagram at time k. We

label the four different states of the trellis as sk ∈ {0, 1, 2, 3}, ∀ k. At first, the

PSP BCJR-DFE performs a single LARGE forward pass over the trellis with all the

received data bits and calculates the forward log probability αf
k(sk) [8] for each state.

This is similar to the forward pass of PSP BCJR algorithm explained in [73]. We

assume perfect acquisition at the start of the data-matrix block by setting τ̂ f
0 (s0) = 0.

Figure 26 shows a section of the forward trellis. Each state in the forward trellis
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Fig. 26. Forward pass of BCJR-DFE receiver employing per-survivor timing recovery

maintains its own survivor path. Survivor paths are shown by solid lines in Fig. 26.

Four different PLLs operate on these survivor paths to produce the forward timing
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offset estimate τ̂ f
k (sk) at time k. The forward timing offset estimate τ̂ f

k (sk) at state sk

is used to calculate the forward sample corresponding to the branches originating from

state sk in the forward direction as, rf
k(sk) = r(kT + τ̂ f

k (sk)). At each time instant,

k, each state sk in the forward trellis maintains three quantities: 1) a survivor state

πf
k (sk) which corresponds to the starting state of the survivor transition that ends

in state sk at time k, 2) the estimated timing offset τ̂ f
k (sk) and 3) the corresponding

sample rf
k (sk) = r(kT + τ̂ f

k (sk)). In order to derive the forward timing offset update

procedure, consider the two forward transitions approaching state sk+1 = 2 at time

k + 1 as shown in Fig. 26. The two forward state transition probabilities in the log

domain are calculated as [8]

γf
k (1, 2) = − 1

2σ2
n

‖rf
k (1) − d(1, 2)‖2, (6.7)

γf
k (3, 2) = − 1

2σ2
n

‖rf
k (3) − d(3, 2)‖2, (6.8)

where d(sk, sk+1) represents the ideal channel output for a state transition from the

state sk to the state sk+1. Let αk(1) and αk(3) be the forward log-probabilities at

time k for state sk = 1 and sk = 3 respectively. Assuming that αk(3) + γf
k (3, 2) >

αk(1) + γf
k (1, 2), we update the quantities at state sk+1 = 2 at time k + 1 as,

πf
k+1(2) = 3 (6.9)

τ̂ f
k+1(2) = τ̂ f

k (3) + µf (rf
k (3)d(3, 3) − rf

k−1(3)d(3, 2)) (6.10)

rf
k+1(2) = r((k + 1)T + τ̂ f

k+1(2)) (6.11)
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In (6.10), µf denotes the PLL gain for the forward pass. In general we can write the

update rules as,

πf
k+1(sk+1) = arg max

sk

{αk(sk) + γf
k (sk, sk+1)} (6.12)

τ̂ f
k+1(sk+1) = τ̂ f

k (πf
k+1(sk+1))

+µf [rf
k (πf

k+1(sk+1))d(πf
k (πf

k+1(sk+1)), π
f
k+1(sk+1))

−rf
k−1(π

f
k (πf

k+1(sk+1)))d(πf
k+1(sk+1), sk+1)] (6.13)

rf
k+1(sk+1) = r((k + 1)T + τ̂ f

k+1(sk+1)) (6.14)

Forward log-probabilities αk+1(sk+1) of all the states at time k + 1 are updated using

the standard forward recursion of BCJR algorithm [8] as

αk+1(sk+1) = ln
∑

∀sk→sk+1

exp{αk(sk) + γf
k (sk, sk+1)} (6.15)

With the update rules mentioned above, all the rows of the received data-matrix are

processed sequentially from 1 to n in the forward direction. So at the end of a LARGE

forward pass, we have forward log-probabilities αk(sk), corresponding to all the bits

in the data-matrix.

2. Backward Pass

In the backward direction each row is processed separately by running n parallel

equalizers in the backward direction. Consider the example of a backward trellis

shown in Fig. 27 for the pth row. The starting states of n backward trellises are

perfectly known due to L columns of known bits in the data-matrix. The initial

backward timing offsets for the bits in the mth column in the data-matrix are set

equal to the corresponding forward timing offsets obtained during the forward pass.

As we move ONE step in the backward direction with n equalizers, we calculate
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Fig. 27. Backward pass of BCJR-DFE receiver employing per-survivor timing recovery

the LLRs of all the bits of column−m and feed them to the LDPC decoder. The

hard decision output of LDPC decoder decides the next backward states of the n

backward trellises. So at any given time instant, there are only two possible transitions

in the backward direction, originating from the known previous state as shown in

Fig. 27. The transitions ruled out by the LDPC decoder are shown by dotted lines

in Fig. 27. Similar to the forward state, each backward state sk at time k maintains

three quantities : 1) perfectly known backward state at time k + 1 as πb
k(sk), 2) the

estimated backward timing offset τ̂ b
k(sk) and 3) the corresponding received sample

rb
k(sk) = r((k − 1)T + τ̂ b

k(sk)). Let βk(sk) denote the backward log-probability of

state sk and γb
k(sk, sk+1) denote the backward state transition log-probability for a

backward transition from sk+1 to sk. Since the definition of the state sk = [ck−1, ck−2]

includes the bit ck−2, we can calculate the LLR of bit ck−2 by marginalizing the

forward and backward log-probabilities at all states sk w.r.t. remaining bits in the
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state definition. Thus we can write

LLR(ck−2) = ln
∑

∀sk :

ck−2=+1

exp{αk(sk) + βk(sk)}

− ln
∑

∀sk :

ck−2=−1

exp{αk(sk) + βk(sk)} (6.16)

= ln
∑

∀sk→sk+1:

ck−2=+1

exp{αk(sk) + γb
k(sk, sk+1) + βk+1(sk+1)}

− ln
∑

∀sk→sk+1:

ck−2=−1

exp{αk(sk) + γb
k(sk, sk+1) + βk+1(sk+1)}

(6.17)

Let sk+1 = s′ be the known backward state at time k + 1. Let the two backward

transitions be s′ → s′′ such that ck−2 = +1 and s′ → s′′′ such that ck−2 = −1. As

there is only ONE known state at time k + 1, and only TWO possible backward

transitions we can write (6.17) as

LLR(ck−2) = [αk(s
′′) + γb

k(s
′′, s′)] − [αk(s

′′′) + γb
k(s

′′′, s′)] (6.18)

In general, at time k we can calculate the LLR(ck−L) of all the bits of ‘codeword

k−L’. It is evident from (6.18) that we do not need to calculate and store backward

log-probabilities in order to obtain log-likelihood ratios. Thus the total computational

complexity of PSP BCJR-DFE forward-backward pass is less than the computational

complexity of PSP BCJR forward-backward pass.

In order to explain the backward timing offset update, let us consider Fig. 27.

Let state sk+1 = 1 be the perfectly known state after LDPC decoding at time k + 1,

as shown in Fig. 27. There are two possible backward transitions from state sk+1 = 1
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at time k + 1 to state sk = 0 and state sk = 2 at time k. Using the backward timing

offset τ̂ b
k+1(1), we sample the signal r(t) to get the sample rb

k+1(1) = r(kT + τ̂ b
k+1(1)).

This sample is used to calculate the state transition probabilities of all the backward

transitions originating from state sk+1 = 1 at time k + 1. We calculate the two state

transition probabilities in the log domain shown in Fig. 27 as

γb
k(0, 1) = − 1

2σ2
n

‖rb
k+1(1) − d(0, 1)‖2, (6.19)

γb
k(2, 1) = − 1

2σ2
n

‖rb
k+1(1) − d(2, 1)‖2. (6.20)

So by knowing only two possible branch transition metrics γb
k(0, 1) and γb

k(2, 1), we

can calculate LLR(ck−L) = LLR(ck−2) of bit ck−2 of the pth row as

LLR(ck−2) = [αk(2) + γb
k(2, 1)] − [αk(0) + γb

k(0, 1)], (6.21)

where αk(2) and αk(0) are the forward log-probabilities at time k of the pth row.

We obtain n LLRs from n parallel equalizers and feed them to the LDPC decoder.

Assuming that the LDPC decoder sets the next forward state at time k to sk = 2,

we update the quantities at that state as

πb
k(2) = 1 (6.22)

τ̂ b
k(2) = τ̂ b

k+1(1) −

µb[rb
k+1(1)d(1, 2) − rb

k+2(2)d(2, 1)] (6.23)

rb
k(2) = r((k − 1)T + τ̂ b

k(2)) (6.24)

In (6.23), µb denotes the PLL gain for the backward pass. The general rules for the
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backward update can be written as,

πb
k(sk) = previous known state (6.25)

τ̂ b
k(sk) = τ̂ b

k+1(π
b
k(sk)) −

µb[rb
k+1(π

b
k(sk))d(πb

k(sk), π
b
k+1(π

b
k(sk)))

−rb
k+2(π

b
k+1(π

b
k(sk)))d(sk, π

b
k(sk))] (6.26)

rb
k(sk) = r((k − 1)T + τ̂ b

k(sk)) (6.27)

Thus as we go in backward direction, we perform joint timing recovery, ISI equaliza-

tion and decoding, without any global iterations between these three tasks.

D. Simulation Results

We simulated the performance of PSP BCJR-DFE with perpendicular and lon-

gitudinal partial response channels with PR2 (H(D) = 1 + 2D + D2) and PR4

(H(D) = 1−D2) channel impulse response. Timing offsets were generated according

to random walk model (6.2). An LDPC code of length n = 5000 and rate R = 0.89,

optimized for the AWGN channel was used. Number of iterations within the LDPC

decoder was set to 100. Encoded data was arranged in the data-matrix structure

as shown in Fig. 24. Rows of the data-matrix were grouped together as one sector

such that number of coded bits in a sector are equal to 5000. Data was transmit-

ted sector by sector and perfect acquisition was assumed at the start of each sector

by setting τk = 0. At the receiver, to obtain samples at different timing offsets,

we used a 21 tap sinc interpolation filter given by g(t) = sin(πt/T )/(πt/T ) with

lmin = −10 and lmax = 10 (6.6). In performing LARGE forward pass of the PSP

BCJR-DFE algorithm we also set τ̂k = 0 after each sector. Figure 28 compares the

timing recovery performance of PSP BCJR-DFE over PR2 channel with timing jit-
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Fig. 28. PSP BCJR-DFE performance over PR2 channel with σw/T = 0.3%

ter σw/T = 0.3% and different number of codewords in the data-matrix. Loss in

SNR (equal to 10 log10(
#ofcodewords

#ofcodewords+L
) dB) due to known bits was accounted for in

all simulations. For comparison we also plot the results with turbo synchronization

(iterative timing recovery) using PSP BCJR and the same LDPC code of length 5000.

Single PLL gain parameter µ was used for forward and backward pass of turbo syn-

chronization, whereas two different PLL gain parameters, µf for forward pass and µb

for backward pass were used for PSP BCJR-DFE. The PLL gain parameters were

optimized based on minimizing the RMS error between actual and estimated timing

offsets at several SNRs. For backward pass of PSP BCJR-DFE, backward transitions
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occur only from known states. So different PLL gain µb was used for backward pass

of PSP BCJR-DFE where µb was optimized with the assumption that all previous de-

cisions are correct. As shown in Fig. 28, PSP BCJR-DFE with number of codewords

equal to 100 outperforms turbo synchronization with 20 iterations. At the same time

its computational complexity is less than computational complexity of one iteration

of turbo synchronization. But the overall latency in PSP BCJR-DFE is higher as

decoding is delayed until the whole data-matrix is received. Latency can be reduced

by decreasing number of codewords in the data-matrix. As we decrease the number
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per−survivor BCJR−DFE,  #of codewords = 10 :( µf = 0.006, µb = 0.0072)

Fig. 29. PSP BCJR-DFE performance over PR2 channel with σw/T = 0.5%
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of codewords in the data-matrix, loss in SNR due to known bits increases and we get

different performance with PSP BCJR-DFE as shown in Fig. 28. Thus according to

the requirement, one can compromise between latency and performance by selecting

appropriate number of codewords in the data-matrix. Similar results are obtained for

timing jitter σw/T = 0.5% with PR2 channel (Fig. 29). Latency of PSP BCJR-DFE

receiver can be reduced by using the latency reduction techniques shown in chapter V.

As we increase the timing jitter further to σw/T = 0.8%, error propagation appears
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Turbo Synchronization 20th Iteration
per−survivor BCJR−DFE, #of columns = 100 :( µf = 0.0152, µb = 0.0176)

Fig. 30. PSP BCJR-DFE performance over PR2 channel with σw/T = 0.8%

in PSP BCJR-DFE due to finite length of column code (see Fig. 30). Performance

of PSP BCJR-DFE for PR4 channel with σw/T = 0.3%, and σw/T = 0.5% is shown
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in Fig. 31 and Fig. 32 respectively. We see that the gain of PSP BCJR-DFE over

turbo synchronization is less for the PR4 channel as compared to the PR2 channel,

nevertheless favorable performance is obtained with PSP BCJR-DFE receiver with

significant reduction in computational complexity.

E. Conclusion

We have shown that joint timing recovery, ISI equalization and decoding can be

performed using per-survivor processing BCJR-DFE receiver. In many cases, in par-

ticular at very low SNR regions, the proposed receiver provides performance advan-

tages over other iterative timing recovery techniques with significant computational

savings. Moreover, no code optimization tailored to a specific ISI channel is required

for the proposed receiver structure.
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CHAPTER VII

PERFORMANCE OF BCJR-DFE RECEIVER OVER RECORDING CHANNELS

USING PATTERN DEPENDENT NOISE PREDICTION†

In this chapter, we investigate the performance of BCJR-DFE receivers for recording

channels with pattern-dependent media noise. To account for the media noise, we

integrated pattern dependent noise prediction (PDNP) into the BCJR-DFE receiver

and evaluated its performance by comparing to conventional iterative (turbo) coded

recording channels. Numerical simulations suggest that PDNP BCJR-DFE receivers

provide superior or comparable performance as the turbo receiver, albeit, with lower

computation complexity and longer processing delay.

A. Introduction

Magnetic recording channels are corrupted by pattern-dependent media noise, in par-

ticular transition jitter noise. As linear density of recording increases, media noise

becomes the primary system impairment in place of electronics noise. From the detec-

tors’ perspective, media noise is correlated as well as pattern-dependent. To account

for the correlation and data-dependence of media noise, pattern-dependent noise pre-

dictive (PDNP) detection was proposed to improve the performance of traditional

partial response maximum likelihood (PRML) detectors [20, 21]. Detectors based on

PDNP technique employ pattern-dependent noise whitening filters and are able to

provide significant signal-to-noise-ratio (SNR) gains for media noise dominated chan-

† c©2005 IEEE. Reprinted, with permission, from “Performance of BCJR-DFE
based detectors over recording channels using pattern-dependent noise prediction, ”
N. Nangare, X. Yang, E. Kurtas, and K.R. Narayanan, Proc. IEEE Intermag., Apr.
2005, pp. 983-984, and “Performance of BCJR-DFE based detectors over recording
channels using pattern-dependent noise prediction,” N. Nangare, X. Yang, E. Kurtas,
and K.R. Narayanan, IEEE Trans. Magn., Oct. 2005, pp. 2971-2973.
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kâkr)(tr

)(tn

)(ty)(txPR 
Channel

kt∆ kw∆

Target
Equalizer

Fig. 33. System model for PDNP BCJR-DFE receiver

.

nel. PDNP detection can also be incorporated into turbo coded channels [1] with

iterative signal processing, which furnish additional performance gain.

In this chapter, we investigate the performance of BCJR-DFE receiver in the

presence of pattern-dependent media noise over recording channels. To account for

the pattern-dependence of noise, we incorporate pattern-dependent noise prediction

into the BCJR-DFE receiver, giving rise to the so-called PDNP BCJR-DFE receiver.

The performance of the receiver is then tested and benchmarked with conventional

turbo decoding under various operating conditions.

B. System Model

Figure 33 shows coded magnetic recording system incorporating PDNP BCJR-DFE

receiver. Encoder structure of the PDNP BCJR-DFE receiver is same as that of

BCJR-DFE except that more known bits per row are used to accommodate the

embedded noise prediction. Let ck
k−M = {ck−M , · · · , ck} with nonnegative integer

M denote the window of recorded data pattern used to identify one of the 2M+1 noise



94

prediction filters. If L denotes the memory of the channel and I denotes the prediction

filter length, then we need to set a trellis of memory equal to Q = max(I + L,M) for

noise prediction [21]. Consequently, to reset the trellis memory, the number of known

bits required becomes Q bits for each row. As shown in Fig. 33, Q columns of known

bits are arranged at the beginning of the data-matrix. User data bits are encoded with

an LDPC encoder into codewords of length n. Codewords 1 to m − Q are arranged

along the columns of the data-matrix as shown. Encoded data is recorded onto a

magnetic medium (using saturation recording) row-wise, from row-1 to row-n. Read-

head senses the magnetic flux from the media and converts it to an electrical signal.

This read-back signal is corrupted by white electronic noise and pattern dependent

media noise due to random transition jitter variation ∆tk and random pulse width

variation ∆wk present in the channel transition response (see chapter II). This read-

back signal y(t) is then filtered with the low pass filter, which restricts the signal

energy to be further down sampled at the baud-rate. Baud-rate-sampled-signal is

then passed to a target-equalizer, which equalizes the effective signal to known partial

response (PR) target. Output of the target-equalizer is given to the detector.

C. PDNP BCJR-DFE Receiver

PDNP BCJR-DFE receiver uses BCJR-DFE algorithm along with path dependent

noise prediction which is embedded inside BCJR trellis. Let sk denote the trellis state

at time k, and ζ , sk → sk+1 denote the state transition at time k. Let {rk} denote

the received noisy read-back signal. For each state transition ζ, we can calculate the

state transition probability γk(sk, sk+1) as
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γk(sk, sk+1) = Pr(rk|sk, sk+1)

=
1√

2πσ2(ζ)
exp

[
−(rk − ok(ζ) − n̂k(ζ))2

2σ2(ζ)

]
(7.1)

where ok(ζ) is the noiseless signal, n̂k(ζ) is the predicted noise sample and σ2(ζ) is

residual noise variance, all corresponding to the transition ζ. The predicted noise

sample n̂k(ζ) is obtained using the prediction filter, specific to the pattern which is

completely determined by the transition ζ. With a slight abuse of the notation, the

prediction filter is denoted by p(ζ) = [p1(ζ), · · · , pI(ζ)] and

n̂k(ζ) =
I∑

i=1

pi(ζ)[rk−i − ok−i(ζ)]. (7.2)

As described in [21], the noise prediction filters, p, and corresponding residual vari-

ances σ’s are obtained via training. The first step in PDNP BCJR-DFE decoding

is to execute the backward recursion of BCJR employing pattern-dependent noise

prediction for each row of data during which backward state-probabilities β’s [8] are

calculated for all the bits in the data-matrix as

βk(sk) =
∑

sk+1

βk+1(sk+1)γk(sk, sk+1). (7.3)

This is similar to the backward recursion in a regular BCJR with embedded PDNP.

The second step involves forward recursion for n rows of the data-matrix which can be

performed in parallel using n equalizers. In this step a-posteriori probabilities (APPs)

are calculated for all the bits in a single column at a time, given that previous states

are known for n equalizers. Let sk = s be the known state for a particular equalizer

at time k, with sk+1 = s′ (when ck = 1) and sk+1 = s′′ (when ck = 0) being the only

two possible states at time (k +1). We can calculate the APP of bit ck of a particular
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row as (see chapter IV, section C)

APP (ck) =
γk(s, s

′)βk+1(s
′)

γk(s, s′′)βk+1(s′′)
. (7.4)

Note that calculation of forward state-probabilities α’s [8] is not required to obtain

APP’s. These soft outputs form as the input to the column-code decoder. In turn,

the output from the column-code decoder are used for deciding the states in the trellis

at time (k+1). Thus for the first column, the states are pinned by using the pilot bits,

while for the other columns, the states are determined through the decoded results

from the previous column. This process continues until the complete data-matrix is

decoded.

D. Simulation Results

In order to examine the performance of PDNP BCJR-DFE receiver over media

noise dominated recording channel, we simulated both longitudinal and perpendicu-

lar recording channels with normalized linear density equal to 2.5. For longitudinal

recording, Lorenzian pulse is used as transition response and the channel is equalized

to PR4 ([1 0 -1]) target. For perpendicular recording, error function is used as the

transition response and the channel is equalized to PR2 ([1 2 1]) target [16]. For both

channels, 8 different noise prediction filters of length 3 were used. Specifically, the

data patterns for the filters are defined by {ck−2, ..., ck} (with M = 2), where ck’s

are the channel input bits (see Fig. 9). We set m − Q = 100 (i.e. used 100 code-

words in the data-matrix) and LDPC code of length n = 5000, optimized for AWGN

channel with rate R = 0.89 was used. Rate loss due to known bits was accounted

for in the simulation. Figures 34 and 35 show the performance for PR4 equalized

longitudinal channel with different jitter noise and electronics noise mixtures. For
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Fig. 34. PDNP BCJR-DFE performance over PR4 channel with 60% jitter noise.
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comparison, we also plot the results of turbo decoding using PDNP-BCJR and the

same LDPC code with 10 turbo iterations as well as the results of an uncoded chan-

nel with PDNP-BCJR receiver. We observe that PDNP BCJR-DFE has comparable

performance to that of turbo decoding, although no global iterations are used for

the PDNP BCJR-DFE receiver. Figures 36 and 37 show the performance for PR2

equalized perpendicular channel. For a perpendicular channel, PDNP BCJR-DFE
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Fig. 36. PDNP BCJR-DFE performance over PR2 channel with 60% jitter noise.

outperforms turbo decoding with 10 iterations. The loss in performance of turbo de-

coding over PDNP BCJR-DFE is different for PR4 and PR2 channel due to the fact

that performance of turbo decoding is strongly dependent on the channel realization.
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Fig. 37. PDNP BCJR-DFE performance over PR2 channel with 90% jitter noise.

It should be emphasized that, in the simulations above, the PDNP BCJR-DFE

receiver, which is free of global iterations, has much less computational complexity

(more than 10 times less) as compared to the conventional turbo-decoding algorithm.

Furthermore, the recording channel is indeed perceived as a memoryless channel at the

receiver and consequently, no specific code optimization is required for the column-

code encoder for achieving optimal performance. The latency of PDNP BCJR-DFE

receiver is higher than the latency of turbo-decoding algorithm. The latency reduction

techniques shown in chapter V can be used along with PDNP BCJR-DFE receiver to

obtain a low latency solution.
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E. Conclusion

We have shown the applicability of BCJR-DFE receiver with embedded pattern de-

pendent noise prediction for magnetic recording channels. This non-iterative receiver

was demonstrated to perform superior or comparable to conventional turbo decoding,

albeit with significantly less computational complexity and requires no ad-hoc code

optimization.
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CHAPTER VIII

SUMMARY AND FUTURE RESEARCH

After the invention of turbo codes in 1993 [1], turbo principle was applied to many

other signal processing problems. BCJR-DFE receiver is a general receiver which

operates on the Markov trellis structure. Similar to the turbo principle, the BCJR-

DFE principle can also be applied to many other signal processing algorithms which

can be implemented using a Markov trellis structure.

A. Timing Synchronization with Markov Model

Recently timing errors were characterized using a Markov model by Zeng and Kav-

cic [76]. The authors used a joint trellis to represent ISI and timing errors. The

Markov model parameters for the timing error process can be obtained using the

read-back waveform for the case of the magnetic recording channel [77]. Under the

assumption of Markov nature of timing errors, it can be shown that the BCJR-DFE

receiver (when implemented on this joint trellis) achieves the i.i.d. capacity of any

ISI channel with timing errors (see chapter IV, section D).

B. Joint Demodulation and Decoding

Iterative demodulation and decoding of convolutionally encoded data with different

modulation schemes was studied in [3, 78]. An iterative demodulation and decoding

scheme using LDPC codes and bit-interleaved coded modulation (BICM) was stud-

ied in [79]. Non-coherent iterative demodulation and decoding was considered in [80].

Many modulation schemes with memory can be represented using a Markov trellis

structure. Thus, as opposed to iterative demodulation and decoding, one can use
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BCJR-DFE principle to perform coherent/non-coherent non-iterative joint demodu-

lation and decoding.

C. Computing Lower Bounds on the Capacity

In chapter IV, we proved that the BCJR-DFE receiver achieves the i.i.d. capacity of

an ISI channel when the column code used achieves the i.i.d. capacity of an equivalent

memoryless channel as seen by the column code. We can simulate a hypothetical

column code which always gives the correct decisions, i.e. we assume perfect decision

feedback for BCJR-DFE receiver and calculate the likelihood ratio Λi of input bit

Xi. Thus for any given ISI channel we can obtain the i.i.d. capacity as Ci.i.d. =

I(Xi; Λi), which is a lower bound on the true capacity, (C ≤ Ci.i.d.). In chapter VI

and VII we effectively used the per-survivor signal processing along with BCJR-DFE

receiver. When perfect past decisions are assumed, we can obtain a lower bound

on the true capacity for the case of an ISI channel with timing errors or pattern

dependent correlated noise. Here perfect past decisions help in accurate estimation

of the unknown parameters like timing errors or pattern dependent correlated noise.

This can be easily extended to other signal processing functions.
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[4] M. Tüchler, R. Otnes, and A. Schmidbauer, “Performance of soft iterative chan-

nel estimation in turbo equalization,” in IEEE Proc. Int. Conf. Commun. ICC,

Apr./May 2002, pp. 1858–1862.
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APPENDIX A

THE BCJR ALGORITHM FOR ISI CHANNEL EQUALIZATION

An ISI channel can be represented as a finite state machine which has a trellis struc-

ture. The BCJR algorithm can be used on this trellis structure to find the a posteriori

probabilities (APPs) of the symbols transmitted over an ISI channel. Consider the

example of an ISI channel of memory L. Let XN
1 = {X1, · · · , XN} be the input se-

quence of N BPSK symbols and Y N
1 = {Y1, · · · , YN} be the corresponding output

sequence such that

Yk =
L∑

i=0

hi Xk−i + Nk, (A.1)

Here hi’s are the channel tap coefficients (assumed to be complex) and Nk is complex,

additive white Gaussian noise with variance N0. The APP of symbol Xk transmitted

at time k can be written as

APP(xk) = P (Xk = xk|Y N
1 ) (A.2)

The optimum soft output is the likelihood ratio which is defined as

Λ(xk) =
P (Xk = +1|Y N

1 )

P (Xk = −1|Y N
1 )

(A.3)

For any given channel trellis state Sk at time k, the forward state probability αk(Sk)

and the backward state probability βk(Sk) of the BCJR algorithm are defined as,

αk(Sk) = P (Sk = sk, Y
k
1 ) (A.4)

βk(Sk) = P (Y N
k+1|Sk = sk) (A.5)
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These state probabilities can be obtained using forward recursion and backward re-

cursion as follows

αk(Sk) =
∑

Sk

αk−1(Sk−1)γk−1(Xk−1, Sk−1, Sk) (A.6)

βk(Sk) =
∑

Sk

βk+1(Sk+1)γk(Xk, Sk, Sk+1) (A.7)

Here γk(Xk, Sk−1, Sk) is the state transition probability which can be expressed as

γk(Xk, Sk, Sk+1) = P (Yk|Sk, Sk+1, Xk = xk)

= P (Xk = xk)
1√
πN0

exp

(
−||Yk −

∑L
i=0 hi Xk−i||2
N0

)
(A.8)

Finally, the BCJR algorithm computes the optimum likelihood ratio (A.3) using

Λ(xk) =

∑

Sk→Sk+1:Xk=+1

αk(Sk)γk(Xk, Sk, Sk+1)βk+1(Sk+1)

∑

Sk→Sk+1:Xk=−1

αk(Sk)γk(Xk, Sk, Sk+1)βk+1(Sk+1)
(A.9)
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