1,105 research outputs found

    Research on Information Flow Topology for Connected Autonomous Vehicles

    Get PDF
    Information flow topology plays a crucial role in connected autonomous vehicles (CAVs). It describes how CAVs communicate and exchange information with each other. It predominantly affects the platoon\u27s performance, including the convergence time, robustness, stability, and scalability. It also dramatically affects the controller design of CAVs. Therefore, studying information flow topology is necessary to ensure the platoon\u27s stability and improve its performance. Advanced sliding mode controllers and optimisation strategies for information flow topology are investigated in this project. Firstly, the impact of information flow topology on the platoon is studied regarding tracking ability, fuel economy and driving comfort. A Pareto optimal information flow topology offline searching approach is proposed using a non-dominated sorting genetic algorithm (NSGA-II) to improve the platoon\u27s overall performance while ensuring stability. Secondly, the concept of asymmetric control is introduced in the topological matrix. For a linear CAVs model with time delay, a sliding mode controller is designed to target the platoon\u27s tracking performance. Moreover, the Lyapunov analysis is used via Riccati inequality to guarantee the platoon\u27s internal stability and input-to-output string stability. Then NSGA-II is used to find the homogeneous Pareto optimal asymmetric degree to improve the platoon\u27s performance. A similar approach is designed for a nonlinear CAVs model to find the Pareto heterogeneous asymmetric degree and improve the platoon\u27s performance. Thirdly, switching topology is studied to better deal with the platoon\u27s communication problems. A two-step switching topology framework is introduced. In the first step, an offline Pareto optimal topology search with imperfect communication scenarios is applied. The platoon\u27s performance is optimised using a multi-objective evolutionary algorithm based on decomposition (MOEA/D). In the second step, the optimal topology is switched and selected from among the previously obtained Pareto optimal topology candidates in real-time to minimise the control cost. For a continuous nonlinear heterogeneous platoon with actuator faults, a sliding mode controller with an adaptive mechanism is developed. Then, the Lyapunov approach is applied to the platoon\u27s tracking error dynamics, ensuring the systems uniformly ultimately bounded stability and string stability. For a discrete nonlinear heterogeneous platoon with packet loss, a discrete sliding mode controller with a double power reaching law is designed, and a modified MOEA/D with two opposing adaptive mechanisms is applied in the two-step framework. Simulations verify all the proposed controllers and frameworks, and experiments also test some. The results show the proposed strategy\u27s effectiveness and superiority in optimising the platoon\u27s performance with multiple objectives

    Autonomous Highway Systems Safety and Security

    Get PDF
    Automated vehicles are getting closer each day to large-scale deployment. It is expected that self-driving cars will be able to alleviate traffic congestion by safely operating at distances closer than human drivers are capable of and will overall improve traffic throughput. In these conditions, passenger safety and security is of utmost importance. When multiple autonomous cars follow each other on a highway, they will form what is known as a cyber-physical system. In a general setting, there are tools to assess the level of influence a possible attacker can have on such a system, which then describes the level of safety and security. An attacker might attempt to counter the benefits of automation by causing collisions and/or decreasing highway throughput. These strings (platoons) of automated vehicles will rely on control algorithms to maintain required distances from other cars and objects around them. The vehicle dynamics themselves and the controllers used will form the cyber-physical system and its response to an attacker can be assessed in the context of multiple interacting vehicles. While the vehicle dynamics play a pivotal role in the security of this system, the choice of controller can also be leveraged to enhance the safety of such a system. After knowledge of some attacker capabilities, adversarial-aware controllers can be designed to react to the presence of an attacker, adding an extra level of security. This work will attempt to address these issues in vehicular platooning. Firstly, a general analysis concerning the capabilities of possible attacks in terms of control system theory will be presented. Secondly, mitigation strategies to some of these attacks will be discussed. Finally, the results of an experimental validation of these mitigation strategies and their implications will be shown

    A Study of Potential Security and Safety Vulnerabilities in Cyber-Physical Systems

    Get PDF
    The work in this dissertation focuses on two examples of Cyber-Physical Systems (CPS), integrations of communication and monitoring capabilities to control a physical system, that operate in adversarial environments. That is to say, it is possible for individuals with malicious intent to gain access to various components of the CPS, disrupt normal operation, and induce harmful impacts. Such a deliberate action will be referred to as an attack. Therefore, some possible attacks against two CPSs will be studied in this dissertation and, when possible, solutions to handle such attacks will also be suggested. The first CPS of interest is vehicular platoons wherein it is possible for a number of partially-automated vehicles to drive autonomously towards a certain destination with as little human driver involvement as possible. Such technology will ultimately allow passengers to focus on other tasks, such as reading or watching a movie, rather than on driving. In this dissertation three possible attacks against such platoons are studied. The first is called ”the disbanding attack” wherein the attacker is capable of disrupting one platoon and also inducing collisions in another intact (non-attacked) platoon vehicles. To handle such an attack, two solutions are suggested: The first solution is formulated using Model Predictive Control (MPC) optimal technique, while the other uses a heuristic approach. The second attack is False-Data Injection (FDI) against the platooning vehicular sensors is analyzed using the reachability analysis. This analysis allows us to validate whether or not it is possible for FDI attacks to drive a platoon towards accidents. Finally, mitigation strategies are suggested to prevent an attacker-controlled vehicle, one which operates inside a platoon and drives unpredictably, from causing collisions. These strategies are based on sliding mode control technique and once engaged in the intact vehicles, collisions are reduced and eventual control of those vehicles will be switched from auto to human to further reduce the impacts of the attacker-controlled vehicle. The second CPS of interest in this dissertation is Heating, Ventilating, and Air Conditioning (HVAC) systems used in smart automated buildings to provide an acceptable indoor environment in terms of thermal comfort and air quality for the occupants For these systems, an MPC technique based controller is formulated in order to track a desired temperature in each zone of the building. Some previous studies indicate the possibility of an attacker to manipulate the measurements of temperature sensors, which are installed at different sections of the building, and thereby cause them to read below or above the real measured temperature. Given enough time, an attacker could monitor the system, understand how it works, and decide which sensor(s) to target. Eventually, the attacker may be able to deceive the controller, which uses the targeted sensor(s) readings and raises the temperature of one or multiple zones to undesirable levels, thereby causing discomfort for occupants in the building. In order to counter such attacks, Moving Target Defense (MTD) technique is utilized in order to constantly change the sensors sets used by the MPC controllers and, as a consequence, reduce the impacts of sensor attacks

    Security of Vehicular Platooning

    Get PDF
    Platooning concept involves a group of vehicles acting as a single unit through coordination of movements. While Platooning as an evolving trend in mobility and transportation diminishes the individual and manual driving concerns, it creates new risks. New technologies and passenger’s safety and security further complicate matters and make platooning attractive target for the malicious minds. To improve the security of the vehicular platooning, threats and their potential impacts on vehicular platooning should be identified to protect the system against security risks. Furthermore, algorithms should be proposed to detect intrusions and mitigate the effects in case of attack. This dissertation introduces a new vulnerability in vehicular platooning from the control systems perspective and presents the detection and mitigation algorithms to protect vehicles and passengers in the event of the attack

    A Resilient Control Approach to Secure Cyber Physical Systems (CPS) with an Application on Connected Vehicles

    Get PDF
    The objective of this dissertation is to develop a resilient control approach to secure Cyber Physical Systems (CPS) against cyber-attacks, network failures and potential physical faults. Despite being potentially beneficial in several aspects, the connectivity in CPSs poses a set of specific challenges from safety and reliability standpoint. The first challenge arises from unreliable communication network which affects the control/management of overall system. Second, faulty sensors and actuators can degrade the performance of CPS and send wrong information to the controller or other subsystems of the CPS. Finally, CPSs are vulnerable to cyber-attacks which can potentially lead to dangerous scenarios by affecting the information transmitted among various components of CPSs. Hence, a resilient control approach is proposed to address these challenges. The control approach consists of three main parts:(1) Physical fault diagnostics: This part makes sure the CPS works normally while there is no cyber-attacks/ network failure in the communication network; (2) Cyber-attack/failure resilient strategy: This part consists of a resilient strategy for specific cyber-attacks to compensate for their malicious effects ; (3) Decision making algorithm: The decision making block identifies the specific existing cyber-attacks/ network failure in the system and deploys corresponding control strategy to minimize the effect of abnormality in the system performance. In this dissertation, we consider a platoon of connected vehicle system under Co-operative Adaptive Cruise Control (CACC) strategy as a CPS and develop a resilient control approach to address the aforementioned challenges. The first part of this dissertation investigates fault diagnostics of connected vehicles assuming ideal communication network. Very few works address the real-time diagnostics problem in connected vehicles. This study models the effect of different faults in sensors and actuators, and also develops fault diagnosis scheme for detectable and identifiable faults. The proposed diagnostics scheme is based on sliding model observers to detect, isolate and estimate faults in the sensors and actuators. One of the main advantages of sliding model approach lies in applicability to nonlinear systems. Therefore, the proposed method can be extended for other nonlinear cyber physical systems as well. The second part of the proposed research deals with developing strategies to maintain performance of cyber-physical systems close to the normal, in the presence of common cyber-attacks and network failures. Specifically, the behavior of Dedicated Short-Range Communication (DSRC) network is analyzed under cyber-attacks and failures including packet dropping, Denial of Service (DOS) attack and false data injection attack. To start with, packet dropping in network communication is modeled by Bernoulli random variable. Then an observer based modifying algorithm is proposed to modify the existing CACC strategy against the effect of packet dropping phenomena. In contrast to the existing works on state estimation over imperfect communication network in CPS which mainly use either holding previous received data or Kalman filter with intermittent observation, a combination of these two approaches is used to construct the missing data over packet dropping phenomena. Furthermore, an observer based fault diagnostics based on sliding mode approach is proposed to detect, isolate and estimate sensor faults in connected vehicles platoon. Next, Denial of Service (DoS) attack is considered on the communication network. The effect of DoS attack is modeled as an unknown stochastic delay in data delivery in the communication network. Then an observer based approach is proposed to estimate the real data from the delayed measured data over the network. A novel approach based on LMI theory is presented to design observer and estimate the states of the system via delayed measurements. Next, we explore and alternative approach by modeling DoS with unknown constant time delay and propose an adaptive observer to estimate the delay. Furthermore, we study the effects of system uncertainties on the DoS algorithm. In the third algorithm, we considered a general CPS with a saturated DoS attack modeled with constant unknown delay. In this part, we modeled the DoS via a PDE and developed a PDE based observer to estimate the delay as well as states of the system while the only available measurements are delayed. Furthermore, as the last cyber-attack of the second part of the dissertation, we consider false data injection attack as the fake vehicle identity in the platoon of vehicles. In this part, we develop a novel PDE-based modeling strategy for the platoon of vehicles equipped with CACC. Moreover, we propose a PDE based observer to detect and isolate the location of the false data injection attack injected into the platoon as fake identity. Finally, the third part of the dissertation deals with the ongoing works on an optimum decision making strategy formulated via Model Predictive Control (MPC). The decision making block is developed to choose the optimum strategy among available strategies designed in the second part of the dissertation
    • …
    corecore