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ABSTRACT

A Study of Potential Security and Safety Vulnerabilities in Cyber-Physical Systems

by

Ali Al-Hashimi, Doctor of Philosophy

Utah State University, 2020

Major Professor: Ryan Gerdes, Ph.D.
Department: Electrical and Computer Engineering

The objective of this dissertation is to study the performance of two examples of Cyber-

Physical Systems (CPS) which operate in adversarial environments, wherein it is possible

to modify the operation of one or multiple functionalities of the CPS and induce harmful

impacts. In literature, such damaging actions are referred to as attacks. From a security

perspective, the study and research of potential attacks on CPSs means defining possible

vulnerabilities in the latter, that could be exploited by attackers, and suggesting counter-

measures to deter or lessen the impacts of such attacks.

First, we study the behavior of vehicular platoons (CPS example 1) and whether it is

possible to attack the sensors, with which each platooned vehicle is equipped, with False-

Data Injection (FDI), or for an attacker to control one of the vehicles in the platoon and

thereby generate sudden accelerating/decelerating movements. For the study concerned

with vehicular sensor attacks, we consider a string of vehicular platoons driving in one

direction. Several previous studies show that the automation system of the platooned

vehicles cannot handle attacks against its sensors and, as a consequence, will revert control

back to a human driver and effectively disband the platoon. Although such an action is

meant to reduce the attack impacts, one or more of the following non-attacked platoons

may induce unexpected behavior that, according to our results, lead to collisions. For that
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reason, we suggest two mitigation solutions to be engaged by the non-attacked platoons, the

goal being to eliminate, if possible, or at least reduce the number of collisions. One solution

is centralized and formulated using the Model Predictive Control (MPC) technique. The

other solution is decentralized, heuristic in nature and requires fewer computations when

compared to the first solution.

Next, we focus on FDI attacks against vehicular sensors. For this part, we will employ

the optimal control-based reachability analysis in order to determine which conditions allow

such attacks to induce collisions and at which relative speeds. We conducted the analysis

for FDI attacks against a single range or range-rate sensor, both of them (on one car),

and against two range or range-rate sensors, either on the same car or two different cars.

In all cases, the results showed the possibility of inducing collisions as a result of FDI

attacks and at high relative speeds. Finally, we study the behavior of a single vehicular

platoon, wherein the attacker is able to control one of the vehicles. A previous study

indicate that such an attack may cause accidents, suggesting a mitigation scheme based

on the sliding mode control technique. Although the suggested mitigation succeeded in

reducing the collisions significantly, the movement of the intact vehicles is still influenced

by the attacker-controlled vehicle. For this reason, we modify the suggested mitigation.

Our modification will eventually lead to disbanding the platoon and, hence, releasing the

non attacked vehicles from the control of the attacker.

The second direction of this dissertation is to study the behavior of Heating, Venti-

lating, and Air Conditioning (HVAC) systems (CPS example 2), used in smart buildings

to regulate the indoor temperature, while suffering attacks on their temperature sensors.

First, we formulate an MPC-based controller to track a desired temperature in each zone of

the building. The formulated controller uses readings from temperature sensors, installed

at various sections of the building, in the decision-making process and generates the appro-

priate control commands, or the required amount of air flow rate to each zone. Then, to

deter potential attacks against the temperature sensors, such as manipulating their mea-

surements, we suggest two Moving Target Defense (MTD) technique based algorithms. An
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important factor that facilitates such attacks is the fact that the MPC controller is static

in nature and, thus, attackers can easily induce predictable impacts, such as misleading the

controller and, as a result, causing occupants’ discomfort. Therefore, our suggested algo-

rithms continuously select a subset of the installed sensors and feed their measurements to

the MPC controllers. Furthermore, an optimal observer is employed in order to estimate the

other temperatures of which sensors are not selected. As a result, the impacts of attacking

the HVAC system’s sensors are reduced.

(181 pages)
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PUBLIC ABSTRACT

A Study of Potential Security and Safety Vulnerabilities in Cyber-Physical Systems

Ali Al-Hashimi

The work in this dissertation focuses on two examples of Cyber-Physical Systems

(CPS), integrations of communication and monitoring capabilities to control a physical

system, that operate in adversarial environments. That is to say, it is possible for indi-

viduals with malicious intent to gain access to various components of the CPS, disrupt

normal operation, and induce harmful impacts. Such a deliberate action will be referred

to as an attack. Therefore, some possible attacks against two CPSs will be studied in this

dissertation and, when possible, solutions to handle such attacks will also be suggested.

The first CPS of interest is vehicular platoons wherein it is possible for a number of

partially-automated vehicles to drive autonomously towards a certain destination with as

little human driver involvement as possible. Such technology will ultimately allow passen-

gers to focus on other tasks, such as reading or watching a movie, rather than on driving.

In this dissertation three possible attacks against such platoons are studied. The first is

called ”the disbanding attack” wherein the attacker is capable of disrupting one platoon

and also inducing collisions in another intact (non-attacked) platoon vehicles. To handle

such an attack, two solutions are suggested: The first solution is formulated using Model

Predictive Control (MPC) optimal technique, while the other uses a heuristic approach.

The second attack is False-Data Injection (FDI) against the platooning vehicular sensors

is analyzed using the reachability analysis. This analysis allows us to validate whether or

not it is possible for FDI attacks to drive a platoon towards accidents. Finally, mitigation

strategies are suggested to prevent an attacker-controlled vehicle, one which operates inside

a platoon and drives unpredictably, from causing collisions. These strategies are based on
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sliding mode control technique and once engaged in the intact vehicles , collisions are re-

duced and eventual control of those vehicles will be switched from auto to human to further

reduce the impacts of the attacker-controlled vehicle.

The second CPS of interest in this dissertation is Heating, Ventilating, and Air Condi-

tioning (HVAC) systems used in smart automated buildings to provide an acceptable indoor

environment in terms of thermal comfort and air quality for the occupants For these systems,

an MPC technique based controller is formulated in order to track a desired temperature

in each zone of the building. Some previous studies indicate the possibility of an attacker

to manipulate the measurements of temperature sensors, which are installed at different

sections of the building, and thereby cause them to read below or above the real measured

temperature. Given enough time, an attacker could monitor the system, understand how

it works, and decide which sensor(s) to target. Eventually, the attacker may be able to de-

ceive the controller, which uses the targeted sensor(s) readings and raises the temperature

of one or multiple zones to undesirable levels, thereby causing discomfort for occupants in

the building. In order to counter such attacks, Moving Target Defense (MTD) technique is

utilized in order to constantly change the sensors sets used by the MPC controllers and, as

a consequence, reduce the impacts of sensor attacks.
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CHAPTER 1

INTRODUCTION

The focus of this dissertation is the analysis of the behavior of a Cyber-Physical System

(CPS) operating in an adversarial environment wherein it could be possible for a malicious

individual, which we will refer to henceforth as an attacker, to gain access to various com-

ponents of the CPS, disrupt their normal operation, and induce harmful impacts. Two

examples of CPSs will be studied in this dissertation. The first CPS studied is vehicular

platoons travelling on a highway. These are vulnerable to attacks against one of the automa-

tion system functionalities, such as local sensors, which can cause platoons to slow down

and stop, resulting in an inefficient use of the road and greater fuel consumption. In more

serious cases, such disruption may cause a number of the platooned vehicles to collide with

each other, potentially leading to the loss of lives. Second, Heating, Ventilating, and Air

Conditioning (HVAC) systems are studied, wherein the measurements of installed sensors

can be manipulated to feed incorrect data to the corresponding controllers, and as a result,

temperature of the controlled thermal zone will increase or decrease, thereby leading to loss

of thermal energy and discomfort among the building’s occupants.

In general, a CPS may be defined as an integration of sensing, communication, and

computation capabilities in order to monitor and control a physical process. Dependence

upon CPS applications is growing steadily in applications such as transportation, smart

buildings, energy and power grids, and manufacturing. Clearly, many, if not all, CPS

applications are safety-critical, and any failure in their operation could lead to permanent

damage to the physical process under control and/or the people depending on them. As a

result, security of CPS applications has been the topic of a number of studies and references

therein [1, 2, 3], including defining possible vulnerabilities in a specific CPS, that could be

exploited by an attacker, analyzing the consequences of potential attacks, and suggesting

countermeasures against attacks if possible.
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Fig. 1.1. Possible threats on cyber physical systems.

Fig. 1.1 shows possible vulnerabilities of a typical CPS that could be exploited in order

to disturb the normal operation of CPS and generate harmful impacts. We can see that

a physical process (plant) utilizes a controller to regulate, or track, a predefined reference

(operation) point. The controller receives the reference point and current measurements

from the sensors, processes this data according to the employed control technique, and

then generates control commands to the actuators. Each one of those components can be

compromised (attacked), resulting in different consequences for the CPS [3]. The impacts

of attacking the sensing functionality of vehicular platoons and HVAC systems will be

considered in this dissertation.

1.1 CPS1: Vehicular platoons

Vehicular platooning is an automation technology wherein a number of vehicles are

grouped together to follow each other closely and safely without human intervention. This

technology has been shown to provide a safe and comfortable experience that ultimately

allows passengers to focus on tasks other than driving [4, 5]. Platooning also enables
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vehicles to safely navigate at a closer distance than is possible with human-driven vehicles,

thereby improving traffic throughput and reducing congestion [6, 7]. Additionally, studies

have shown that platooning can help improve fuel consumption [8]. In general, a vehicular

platoon includes a leading vehicle (leader) responsible for following a specified trajectory

to the destination and setting the speed by which the whole platoon travels, and following

vehicles (followers) which share the same control strategy that describes how they react to

changes in the leader’s behavior (e.g. the leader accelerates or decelerates).

1.1.1 Control of vehicular platoons: a survey

The idea of organizing a number of vehicles in platoons was studied by a number of

research groups [9]. The platooning objective is to combine multiple vehicles and design

the proper controllers to regulate and maintain a desired separation and speed. A large

body of literature already exists addressing how to achieve that objective for homogeneous

platoons, in which every vehicle uses the same control law [10]. Moreover, various spacing

policies which define the desired separation are proposed in order to implement control laws

that regulate the relative spacing of either the front of vehicle (unidirectional control) or

both the front and rear of the vehicle (bidirectional control) [10]. This is achieved with

solely locally-sensed information [11] or the addition of (V2V) communication [12]. The

work of [13] proposes appropriate communication schemes to transmit messages between

adjacent vehicles and also suggests a protocol that helps with the process of combining two

platoons. Additionally, [14] shows that it is feasible to establish vehicle-to-infrastructure

(V2I) communication in order to exchange vehicles’ information with road units designed

for that purpose.

Vehicular platooning is an example of CPS as implementing such a system requires

communication, computation, and sensing capabilities in order to maintain predefined inter-

vehicle separation and relative speed among the platooned vehicles. Adaptive Cruise Con-

trol (ACC) and Cooperative Adaptive Cruise Control (CACC) are the most well-known

longitudinal control strategies used to form and maintain platoons, by implementing the

selected spacing policy. ACC operation requires locally available information, specifically
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the range (relative spacing) and range-rate (relative speed) gathered from sensors available

to the vehicle (e.g., RADAR, LIDAR, or cameras), to generate the appropriate acceleration

commands needed to maintain a preset inter-vehicle separation and speed. CACC, on the

other hand, is an extension of ACC which incorporates vehicle-to-vehicle (V2V) communi-

cation, so that vehicles may exchange state information and intentions (e.g., alerting other

vehicles to changes in acceleration), and is thereby able to achieve smaller inter-vehicle

separations [10].

1.1.2 Security of vehicular platoons: a survey

Vehicular platoon security has been the focus of extensive research in literature. Many

of the presented attacks are either insider attacks, in which one or multiple vehicle in

the platoon are compromised to facilitate implementing the attack, or outsider attacks,

wherein certain automation system components/functionalities are targeted from outside

the platoon. In [15], the authors use CACC technique to form the platoon and then they

present a number of insider attacks that target the vehicles’ controllers and could disturb

the formation. One of these attacks, for example, induces collisions at high speeds by

exploiting the CACC structure through sending false information to the following vehicles.

The authors also suggest a detection scheme for such attacks, based on requiring each

platooned vehicle to model expected behavior of the preceding vehicles and compare that

behavior with observed behavior. Such a scheme could lead to detecting abnormalities.

Further insider attack work is presented in [16], wherein platooned vehicles use ACC with a

bidirectional control algorithm to form a platoon. The attacker is then able to control one

of the vehicles and modify its controller’s gains such that generated acceleration commands

modify the behavior of the attacked vehicle and induce instability in the entire platoon.

Automated vehicle operating with the presence of an insider attacker is also discussed in

[17]. In this work, the efficiency of the platoon is degraded when a malicious vehicle causes

the surrounding vehicles to increase energy consumption unnecessarily. This is achieved by

implementing an optimally calculated sequence of accelerating and decelerating commands

by the attacker controlled vehicle.
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In [18], the authors employ ACC and CACC control schemes to show that multiple

attacker vehicles can operate within the platoon, modify their controllers, and coordinate

their behavior in order to produce instability in a large traffic of automated vehicles. These

attacks were able to induce traffic jams, passengers’ discomfort, and an increased risk of

collisions.

The studies conducted in [19] and [20] present how it is possible to detect and miti-

gate insider attacks mounted against vehicular platoons. In the former study, the authors

consider an ACC with a bidirectional control-based platoon, wherein an attacker has the

same capabilities as is given in [16]. The authors propose a low-pass filter detection scheme

combined with a sliding-mode control based mitigation strategy in order to handle the at-

tacker controlled vehicle misbehavior and reduce the risk of accidents. In the latter study

[20], the authors consider a CACC with a unidirectional control-based platoon, wherein the

insider attacker can cause Denial-of-Service (DoS) by broadcasting legitimate messages at a

higher rate when compared to other platooned vehicles, in order to saturate the inter-vehicle

communication channels. Furthermore, the authors suggest a detection strategy based on

using a system node, or a low powered computer that does not need high computational

capabilities.

On the other hand, there are other works which investigate external attacks on ve-

hicular platoons wherein the target is local range and range-rate sensors or inter-vehicle-

communication channels. The authors of [13] attempt to gain an understanding of the

possible impacts of an outsider attack on a CACC-based platoon. In their study, a number

of attacks against inter-vehicle communication channels are defined, including a falsifica-

tion attack, wherein the attacker alters the contents of the broadcast messages used to

implement the CACC control law, a spoofing attack, wherein the attacker pretends to be

a vehicle in the platoon and sends inaccurate messages to other vehicles in the platoon,

and a replay attack, wherein the attacker receives a transmitted message at a certain time

and sends it back to its original destination at another time, thus creating a chance for

hazardous effects, as the message contains old information. Furthermore, this study also
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considers attacks against the vehicle hardware at the manufacturing level such as tamper-

ing with or installing a faulted sensor, which would lead to feeding incorrect information to

the controller. The simulation results presented in [13] show that platoon stability can be

affected, and as a result, the passenger safety may be compromised.

Another work which considers an external attack on a CACC-based vehicular platoon

is presented in [21]. In this study, a wireless inter-vehicle channel suffers a jamming attack,

wherein data transmission is severed between various vehicles in the platoon, launched from

a drone flying above. The considered jamming attacks aim to disturb the string stability

of the platoon, a characteristic which ensures that relative spacing errors attenuate along

the platoon. In their study, the authors defined the best location for launching a jamming

attack that would result in the highest spacing error propagation. Simulation results for

that study show that attacker success produces string instability for the platoon by jamming

communications between the lead and follower vehicles in the platoon.

The authors of [22] investigated the effects of attacking CACC based vehicular platoons

with jamming and false data injection attacks. For this study, they used three of the

CACC existing controllers to implement platoons. In order to generate the right commands,

the first controller used constant distance for its spacing policy, the second used states

estimation to predict the acceleration of the preceding vehicle if it were not received, and

the third controller used state, position and speed, and information of the preceding and

lead vehicles of the platoon. The reason for using three different controllers is to quantify

their performance in the presence of the aforementioned attacks. According to the results

presented in this study, all tested CACC controllers are unreliable when subjected to the

above attacks; however, there are differences in terms of how each controller is affected by

said attacks.

In [23], another study was conducted on a CACC-based vehicular platoon, wherein it

was possible to manipulate the measurements provided by local RADAR, a sensor which

measures the range-rate, and LIDAR, a sensor which measures the range, equipped on each

of the platooned vehicles. In addition, this work also considers a case wherein an attacker-
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controlled vehicle within the platoon reports false acceleration data to the following vehicle,

information which is needed for CACC operation of the following vehicle, through the inter-

vehicle communication. Although detection was not considered, the authors of this work

have proposed two mitigation schemes: the first relies on the physical properties of the

platoon, whereby newly-obtained data are compared with previously-obtained data and in

the case that a certain threshold is violated, an attack may be in progress. The second

scheme is based on building a behavioral model over time by using gathered data and then

comparing that model with observed behavior. According to the given simulation results,

the second scheme has shown better performance in terms of the detection rate of all the

mounted attacks.

1.2 CPS2: HVAC systems

A smart building is a general term used to describe any building or a structure that uti-

lizes an automation system to supervise and control important functionalities/subsystems,

such as security, fire and flood safety, lighting, heating, cooling, and ventilating of the build-

ing. Designing a smart building, or even upgrading an old building to a smart one, requires

installing sensors and actuators on the building’s subsystems, such as fire alarms, water

pumps, doors, and/or heating/cooling units. In addition, dedicated controllers are imple-

mented to collect and analyze data from sensors and generate the appropriate commands

to the actuators of each subsystem.

Smart buildings provide two major benefits: First, such buildings are characterized

by an efficient use of energy, since the subsystems’ controllers can provide optimal control,

rather simple (classical) on/off control. Second, such buildings increase the comfort level

of their occupants, which, in turn, may lead to more productivity within corporate offices.

Heating, Ventilating, and Air Conditioning (HVAC) systems are one of the control systems

implemented in smart buildings. Such systems can provide thermal comfort in residential or

commercial smart buildings, while at the same time consuming less energy. For the purpose

of designing an appropriate controller that achieves certain goals, detailed information about

the heat dynamics of the building under consideration is needed. Acquiring an accurate
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building model is helpful in the decision-making process of the controller, especially when

the control strategy is highly dependent on the model of the process under control.

1.2.1 Control of HVAC: a survey

Optimal control of an HVAC system usually involves formulating multi-variable com-

plex optimization problems. For that reason, most control algorithms employed for HVAC

systems are simply on/off controllers. However, optimal control algorithms were also sug-

gested for the HVAC system as such algorithms have shown the ability to reduce energy

consumption. The authors of [24, 25] have developed a thermal model with the purpose of

designing an optimal controller for an HVAC system within a building. In their model, the

building is divided into a number of thermal zones, each of which could consist of single or

multiple rooms, and within which, each zone is assumed to have sensors installed to mea-

sure the current temperatures. Then, the authors propose a hierarchical control algorithm

which consists of two levels. The high level receives the current measurements and desired

temperature, as set by occupants of each zone in the building. The high level uses LQR

control technique to solve an optimization problem aiming to minimize energy consump-

tion and improve the comfort level of the occupants. The outputs of the high level are the

optimally-required amounts of air mass flow for each zone. The low level is simply a number

of PID controllers for each zone, each of which implement air mass flow as calculated by

the LQR.

Model Predictive Control (MPC) is a promising control strategy capable of operating

a building’s HVAC system in an optimal way while also satisfying state and input con-

straints, such as room air temperature and air mass flow rate. In [26], the authors used a

grey-box approach to develop a nonlinear thermal model of a building. Then, the authors

estimated the model parameters and validated the resulting model using recorded historic

data (based on buildings on campus where the authors work). Next, the model was lin-

earized around an operating point and then descritized, for the purpose of MPC controller

design. The suggested MPC controller ensured the minimization of total energy (air mass

flow) consumption and utilized the linearized model for future prediction. Performance of
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the suggested MPC controller was compared with that of a simple on/off controller and the

results showed a reduction in the air mass flow rate (input) throughout the day. Due to

the weather conditions of the building considered, the designed MPC was intended only for

heating. Another work considered also used MPC to reduce energy consumption but in this

case, it was utilized for the purpose of chilling (cooling) a building with a linear thermal

model [27, 28].

1.2.2 Security of HVAC: a survey

The authors of [29] defined possible vulnerabilities in the automation systems that

employ HVAC technology. Such vulnerabilities include the attacker’s capability to gain

physical access either to the controllers, by guessing the correct password and shutting down

the whole system, or to the interconnection between the HVAC’s critical components, such

as actuators, and, as a result, generating negative impacts. To counter such vulnerabilities,

the authors suggested a neural network-based intrusion detection mechanism. Another

vulnerability in HVAC systems defined by the authors of [30] is inaccurate measurement

in the temperature or air flow rate sensors. By exploiting such vulnerability, the targeted

sensors could produce measurements that are either below (negative bias) or above (positive

bias) the real value of the measured quantities. Similarly, a wavelet neural work was also

suggested and trained in order to diagnose faulty sensor(s).

In [31], several threats against HVAC systems were defined, including manipulating the

set points, feeding a sensor either a constant false measurement or varying measurements

that still fit within the bounds of the sensor measurements, or sending harmful commands

to the actuators. In the same work, a system model-based detection method was also sug-

gested. Similar to the above mentioned works, in this chapter we will focus on potential

attacks against the temperature sensors of HVAC systems that result in incorrect measure-

ments. Furthermore, we also suggest countermeasures to reduce the impacts generated by

such attacks.
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1.3 Analysis of threats against CPSs

As mentioned earlier, a number of attacks have been defined as possible threats against

CPSs. One such attack is false-data injection. We will define this attack and discuss

related previous works that make mention of this particular strategy. Furthermore, we will

describe the reachability analysis utilized in this dissertation to quantify the impacts of the

aforementioned attack.

1.3.1 False-data injection attacks

False Data Injection (FDI) attacks are carried out by an adversary with the capabil-

ity to access and manipulate measurements provided by one or a set of a CPS sensors and

consequently cause misbehavior in the decision-making process of the CPS, ultimately com-

promising the operation of the controller. Compared with DoS, FDI attacks are designed

carefully such that their detection becomes more difficult as data is still available from the

sensors, just the correct data. Furthermore, this false data is not determined randomly, as

this data is predetermined to achieve certain attack goals. FDI attacks have been analyzed

in literature with the goal of defining them for various examples of CPSs and also providing

the conditions and guarantees necessary for successful FDI attacks.

The authors of [32] studied the effects of FDI attacks on a subset of sensors equipped for

a linear system, a system assumed to have a state estimator. Their work assumes that the

attacker has a full knowledge of the system and controller dynamics. This study explains the

necessary and sufficient conditions by which the FDI attack cannot be easily detected. The

analysis conducted in [33] focuses on the FDI attacks against the state estimation process

in electrical power grids. In this work, the attacker was assumed aware of the configuration

of the attacked power grid, which made it possible to design two attack scenarios that easily

passed bad measurements detectors, as these are usually installed in power systems, and

thereby produce false state estimation that could destabilize the grid.

As mentioned earlier, a platooning CPS controller requires measurements from on-

board sensors for its operation. Existing work has demonstrated that most on-board sensors

in automated vehicles, such as LIDAR or cameras, are vulnerable to FDI attacks executed
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at a distance. For example, [34] presents external jamming and spoofing attacks that can be

carried out against ultrasonic sensors and cameras, and experimental results even showed

a possibility of malfunctioning a Tesla vehicle. Also, it was proven possible to falsify the

readings of a vehicle’s RADAR [35], LIDAR, and/or cameras [36], and, as a result, disrupt

the behavior of the automated vehicle. Therefore, we will formulate an FDI attack that

could be mounted against one of the vehicular sensors in order to show the possible harmful

impacts that could result.

1.3.2 Reachability analysis

Reachability analysis defines the reachable set of a dynamic system, or the set of all

system states that can be attained within a finite time. Considering the physical bounds

and performance constraints of system states and inputs, reachability analysis helps us

verify whether from a given initial point, a system can eventually reach a given final point.

For this purpose, reachability can be applied in real world applications where safety must

be determined, such as collision avoidance problems in airplanes [37] and vehicles [38], or

controller design for the platooning of unmanned aerial vehicles (UAV) [39, 40].

Various methods have been proposed for obtaining reachable sets for different classes of

systems. Some of these methods are based on ellipsoidal techniques [41, 42] which calculates

outer elliptical bounds around the reachable set of a linear system with physical bounds on

its input vector. This method has been applied in problems such as determining algorithms

for collision avoidance in UAVs [43], or determining new artificial physical bounds for a

system’s actuators (inputs), in order to restrict the states that can be reached and hence

limit the impacts of potential attacks on that system [44]. Other methods, generally known

as Hamilton-Jacobi (HJ) reachability, are based on finding the solution of a Hamilton-

Jacobi-Bellman partial differential equation [37, 45]. HJ reachability has been used to solve

various problems, such as auto landing of an aircraft [46], the interaction of two air-crafts for

automated aerial refueling [47], and path planning for UAVs [48]. Finally, another method

suggested for determining the reachable set is based on optimal control theory, wherein

the final states’ points are included in the formulation of an optimization problem. This
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problem, in turn, calculates the appropriate control required to drive the system states

toward those final states, while also considering states and input constraints [49]. This

method has been applied in problems such as determining a safe landing area for a moon

lander [50] and suggesting an alternate trajectory for vehicles, in order to make tracking

possible and avoid collision with other vehicles [51].

1.4 Mitigation of attacks against CPSs: Moving Target Defense

Moving Target Defense (MTD) has been suggested as a countermeasure that aims to

decrease the attacker’s ability to influence the attacked CPS. The MTD mechanism utilizes

a switching structure in order to alter the behavior of the CPS in terms of its actuators or

sensors. As a result, the MTD mechanism is proactive in nature and could preemptively

guarantee that most attacks would fail to induce harmful impacts. Previous work has shown

that MTD has been employed in computer security [52]. For example, the authors of [53]

proposed an MTD algorithm to protect the privacy of Internet Protocol version 6 users.

Their algorithm repeatedly changed the addresses of both the sender and receiver, such that

the attacker was prevented from identifying the two communication hosts. Similarly, the

authors of [54] developed an MTD algorithm for mutating the IP address, thus creating a

high chance of unpredictability while maintaining the original configuration of the address.

MTD has also been used in the context of control theory. In [55], the authors imple-

mented an MTD mechanism by introducing additional states related to the original states

of the control system, each with time-varying dynamics. While the new states are known

to the control system operator, they remain hidden from the attacker, and because their

dynamics change constantly, the attacker cannot identify them, and hence, the attack influ-

ence is deterred. Also, the authors of [56] formulated a zeros-sum game theoretic framework

to aid with designing an MTD strategy for a vulnerable system. They also developed a feed-

back mechanism that would allow the system to monitor its states and decide whether to

add stochastic dynamics as a part of the suggested MTD, such that the attack surface of

the system would be decreased.
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1.5 Organization

In Chapter 2, similar to the security-related works discussed in Section 1.1.2, we present

a possible vulnerability in vehicular platoons and analyze its impacts on platoon safety.

However, ours is the first work that considers the effect that the presence of human control

in the platoon can produce. Specifically, we try to answer the following: ”What happens

if control of multiple vehicles transitions to humans, due to disruption of the automated

systems?” or ”What happens if a passenger assumes command of a vehicle after observing

irregular motion behavior, owing to an already mounted attack?”. Naturally, once a human

driver controls the vehicle, they will first apply brakes in an attempt to slow down the

vehicle [57]. While such an action is helpful in avoiding accidents, it may also generate

instability in the following non-attacked platoons and lead to collisions.

In Chapter 3, we are concerned with the safety of a vehicular platoon operating in

an adversarial setting where it is possible to target one, or more, of the platoon’s vehicle’s

sensors with an FDI attack. Particularly, we are interested in defining the set of final states

that the platoon can reach as a result of experiencing a manipulation in the measurements

obtained from one or more of the locally-equipped sensors. For that purpose, we will use

the optimal control-based reachability approach to determine the reachable (final) set of

states, since it allows us to include attacker’s capabilities, physical limits on the vehicle’s

acceleration and speed, and resolution and physical limits of the attacked sensor(s) in the

problem formulation as constraints. Furthermore, this approach requires a prior definition

of the final states of interest. For that reason, and because we are primarily concerned with

the safety of the platoon, we will focus on unsafe states, which can be translated collisions

between two or more vehicles in the platoon and at different speeds of impact. Regardless

of the type of equipped sensors, from this point on we will refer to the sensors measuring

relative distance and speed as range and range-rate sensors, respectively.

In Chapter 4, we utilize MPC technique to formulate an optimal controller that aims

to achieve an acceptable temperature tracking, of a desired set-point, in each zone of the

building. To develop such a controller, a model of the process under consideration (the
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smart building) is needed. For that purpose, we employ a thermal model which captures

heat storage and transfer between connected spaces of the building, as well as the influence

of outside temperature. On the other hand, we consider a possible threat against the HVAC

system by manipulating the measurements of the temperature sensors installed at various

sections of HVAC-equipped buildings. An important factor that facilitates such attacks

against temperature sensors is the fact that the MPC controller, which uses those sensors, is

static in nature and thus, attackers can easily induce predictable impacts. Therefore, in this

chapter we suggest MTD technique-based algorithms which aim to add unpredictability to

the system by constantly changing the sensor sets used by the MPC controllers and thereby

reduce the impacts of potential attacks.

In Chapter 5, we study the behavior of a single vehicular platoon where one of the

platooned vehicles is controlled by an attacker. The latter is able to modify the platoon-

ing controller of the seized vehicle and, hence, produce sudden accelerating/decelerating

movements that can lead to collisions within the platoon. A previous study suggested a

sliding mode controller which uses only local vehicular sensor information without the need

for inter-vehicle communications, to mitigate the impacts of the aforementioned attack.

The suggested controller is also assisted with decentralized attack detection. Simulation

results from that study demonstrate that collisions are eliminated, or significantly reduced

in certain cases. However, the same results also indicate that the intact vehicles concede

platooning and start following the attacker. For instance, the lead vehicle, even if not at-

tacked, will no longer follow the reference trajectory of its platooning goals, once it detects

an attack in the following vehicles. Therefore, we will modify the suggested mitigation con-

troller such that collisions are also reduced and the control of intact vehicles will eventually

switch from auto to human, thereby disbanding the platoon so the attacker can have no

more influence.
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[50] Y. E. Arslantaş, T. Oehlschlägel, and M. Sagliano, “Safe landing area determination

for a moon lander by reachability analysis,” Acta Astronautica, vol. 128, pp. 607

– 615, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0094576516307846

[51] M. Gerdts and I. Xausa, “Avoidance trajectories using reachable sets and paramet-

ric sensitivity analysis,” in System Modeling and Optimization, D. Hömberg and
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CHAPTER 2

THE DISBANDING ATTACK: EXPLOITING HUMAN-IN-THE-LOOP CONTROL IN

VEHICULAR PLATOONING

Due to advances in automated vehicle technology and inter-vehicle communication,

vehicular platoons have attracted a growing interest by academia and industry alike, as

they can produce safe driving, regularize traffic flow, and increase throughput. Research

has demonstrated, however, that when platoons are placed in an adversarial environment

they are vulnerable to a variety of attacks that could negatively impact traffic flow and pro-

duce collisions and/or injuries. In this chapter, we consider an attack that seeks to exploit

human-in-the-loop control of compromised vehicles that are part of a platoon. Specifically,

we demonstrate that should a human operator need to suddenly take control of a platooned

vehicle significant upstream effects, which threaten the safety of passengers in other vehi-

cles, may be induced. To counter this so-called disbanding attack, we present an optimal

centralized mitigation approach. Due to scalability, security, and privacy concerns such an

approach may not be practical in reality so we propose a decentralized mitigation algorithm

that reduces excessive speed changes and coordinates inter-platoon behaviors to minimize

the impact of the attack. Our algorithm is compared to the aforementioned optimal cen-

tralized approach and is shown to produce nearly equivalent results while requiring far

fewer resources. Experimental results on a hardware testbed show that our countermeasure

permits graceful speed reductions and can avoid collisions.

2.1 Introduction

Vehicular platooning is an automation technology wherein a number of vehicles are

grouped together to follow each other closely and safely. This technology has been shown

to provide a safe and comfortable experience that will ultimately allow passengers to focus

on tasks other than driving [1]. It also enables vehicles to safely navigate at a closer dis-
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tance than it is possible with human-driven vehicles, thereby improving traffic throughput

and reducing congestion [2], as well as helping to improve fuel consumption [3]. Vehicle

platooning is an example of a cyber-physical system (CPS), as it requires an integration

of computation, communication, and monitoring capabilities to control a physical process.

Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC) are the

most well-known control strategies used to form and maintain platoons. ACC operation

relies on locally-available information to generate appropriate acceleration commands in or-

der to maintain a preset inter-vehicle separation and speed (longitudinal control). CACC,

on the other hand, is an extension of ACC that employs vehicle-to-vehicle (V2V) communi-

cation, so that vehicles may exchange state information and intentions (e.g., alerting other

vehicles to changes in acceleration), and is able to achieve smaller inter-vehicle separations

[4].

The Society of Automotive Engineers (SAE) and the National Highway Traffic Safety

Administration (NHTSA) have defined levels of vehicular automation. Based on their crite-

ria, vehicle manufacturers have been able to produce vehicles at level 2 capabilities, including

BMW, Ford, and General Motors, or level 3, such as Tesla [5]. In level 2, an automated

vehicle is able to generate both longitudinal (accelerating/decelerating) and lateral (steer-

ing) control commands. This level also requires the human to monitor the road and retain

readiness to assume control if needed. Level 3 provides more automated functionalities in

terms of generating control commands and monitoring the driving environment; however,

it also requires a human driver to be available to assume control [6]. Platooning without

human oversight, a level 4 technology, is not yet a reality due to a lack of robustness in V2V

communications, the cost and number of sensors required to monitor the environment, and

unresolved questions regarding unexpected maneuvers on the part of other vehicles on the

road [7]. As a result, the current platooning automation technology falls in the category

of level 2 or level 3, and human attention is still required in the platooned vehicles in case

humans need to take control.

Transition of control is defined as the process of switching control from the vehicle’s
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automation to a human driver for cases when the automated system cannot handle certain

situations; e.g., a vehicle emerging from a side road abruptly and merging onto a highway

without notice, oncoming traffic turning left to enter a side road and crossing an automated

vehicle’s path, a car parking on the road and partially blocking the roadway [5, 8], or a

technical failure in one or more components of the vehicle’s automation system [9]. Such

failures could stem from deliberate manipulation of the automated system components

such as sensors, actuators, or inter-vehicle communication [10]. A number of previous

studies analyzed human driver behaviors post transition of control and results have shown

that some drivers apply maximum deceleration to handle certain situations, e.g., avoiding

collision with preceding vehicles [11, 12]. These studies also determined the time required

to ensure a safe transition [8, 13].

A platooning CPS (typically) employs a distributed controller that uses information

from both local sensors and other vehicles, information obtained through inter-vehicle com-

munications or connections to external networks [14]. As a result, a platooning CPS has

a large attack surface upon which an attacker could induce disruptive and/or fatal be-

haviors [15, 16, 17, 18, 19]. Attacks mounted against a platooning CPS can lead to the

disruption of the steady-state operation (i.e., desired inter-vehicle separation and relative

speed) and thereby produce harmful effects, such as collisions or uncomfortable accelera-

tion/deceleration, which could, in turn, lead to further disruption, such as chronic traffic

jams. Also, attacks on platooned vehicles could induce a transition of control which might

disband (dissolve) the platoon, as the latter would no longer be automated nor in compliance

with platooning control laws. While the security of platooning CPS has been studied from

many perspectives, so far the exploitation of the human element has been left unexplored.

In this chapter, we examine, from an adversarial perspective, the after-effects of au-

tomated vehicles transitioning their control to humans. Particularly, we are interested in

analyzing the upstream effects of all vehicles in a platoon transitioning control to human

operators (a process we refer to as platoon disbanding) due to a system failure resulting

from an attack. Although disbanding may seem a sensible fail-safe solution to prevent
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attackers from achieving their objectives, we will show that transition of control can still

be leveraged to undermine the operation of surrounding vehicles, cause collisions, and/or

induce massive congestion. The main contributions of this chapter are:

• We study the effect of a ”disbanding attack” that involves transition of control of

multiple vehicles in a platoon. We illustrate the harmful impacts such an attack

can induce, especially in the case of causing upstream (non-attacked) platoons to

experience slowdowns and collisions.

• We define a disbanding attack by formulating it as an optimization problem wherein

the objective is to maximize the deviation in vehicle speeds as a proxy for slowdowns

and increased chances of colliding, by selecting both platoon(s) to be disbanded and

time(s) of disbanding.

• To mitigate the aftermath of such an attack, we formulate an optimal solution using

a Model Predictive Control (MPC) technique. However, as the optimal approach

is not scalable in practice, as it is centralized and information and communication

intensive, we also propose a heuristic algorithm to be used locally by vehicles of intact

(non-disbanded) platoons. Our findings indicate that our algorithm produces nearly

equivalent results in terms of reducing speed changes and avoiding accidents.

• We also demonstrate the validity of the above attack and the suggested heuristic

countermeasures using experiments on a hardware testbed consisting of a motion

capture system and small mobile robots acting as vehicles.

2.1.1 A motivating example

Let us consider a scenario wherein multiple vehicular platoons are traveling in the

same direction on a highway. Although they may not be heading to the same destination,

platoons still follow one another in order to reap platooning benefits of optimizing traffic

flow and reducing congestion. Consider that while the platoons operate at a steady-state, a

malicious party utilizes an existing external attack techniques [18, 20] in order to destabilize
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Fig. 2.1. a) Position profiles of the platoons shown in the legend. The lead platoon started
disbanding at t = 2 s. b) Inter-vehicle separation profiles of the platoons shown in the
legend. The lead platoon started disbanding at t = 2 s. c) Speed profiles of the platoons
shown in the legend. The lead platoon started disbanding at t = 2 s. d) Position profile
of the rear vehicle in the platoons formation, whose size is shown in the legend. e) Speed
profiles of the rear vehicles belonging to a twenty-platoon formation when multiple platoons
start disbanding at different time instances.

the formation. For example, the attacker might install units on the roadside that can jam

the sensors of multiple vehicles or modify sensor measurements so that the targeted vehicles
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start behaving irregularly [21]. At this point, either the automation system would suffer a

failure and inform the driver, perhaps via sounding an auditory alarm [11], or the attack

would be detected by either a mechanism designed for such a purpose or by a passenger

who observes erratic behavior in the vehicle’s motion. In any case, the driver must assume

control of the vehicle and apply the brakes [9]. As a result, the attacked platoon would be

effectively disbanded as the vehicles would no longer comply with platooning laws, and the

mounted attack would fail to achieve its goals. However, intact upstream platoons, which

were not the goal of the mounted external attack, would also exhibit unexpected behavior

as a result of disbanding, which would create, at minimum, discomfort for passengers, or,

at maximum, collision.

Fig. 2.1a shows the position profiles of selected platoons, out of 20, whose indices

are shown in the legend. Each platoon includes 10 vehicles. The lead platoon (red), which

constitutes 5% of the total number of vehicles, transitions its control after being attacked at t

= 2 s. We can see that the lead platoon begins disbanding when the inter-vehicle separations,

shown in Fig. 2.1b, are no longer 5 m (the desired separation) and the platoon manages

to avoid accidents. Also, Fig. 2.1c indicates that the vehicles of the disbanded platoon

initially slow down before speeding up. In response to the disbanding of the lead platoon,

we can see in Fig. 2.1c that the following (still automated) 19th intact platoon (blue) also

begins to slow down. In addition, Fig. 2.1b shows that the inter-vehicle separation of the

19th platoon is also affected as it decreases when slowing down happens, but not below 0,

and then starts increasing to above 10 m when speeding up occurs, eventually reaching 5

m after almost 1 minute.

The same effect induced in the 19th platoon will propagate throughout the remainder

of the following platoons. For example, the 15th platoon (yellow) began decelerating until

all vehicles completely stopped, as shown in Fig. 2.1c, for almost 30 seconds. Then the

platoon’s lead vehicle began accelerating, reaching a maximum speed of 36 m/s in order to

decrease the gap with respect to the preceding 16th platoon (not shown in plots), before

it eventually slowed down upon approach of the preceding platoon, after almost 2 minutes
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(these actions of accelerating/decelerating result from the response of adopted automation

control laws to the behavior of the preceding platoon). We can see the same behavior in Fig.

2.1b where the inter-vehicle separation of the 15th platoon decreased, increased, and then

settled at 5 m. The same pattern also shows on the 10th (green) and last (cyan) platoons, but

in these cases, longer times were needed to regain the inter-vehicle separations and speeds.

For this specific disbanding attack, 10 minutes were needed in order for all of the affected

platoons to re-establish (recover) the desired separations and speeds. Furthermore, Fig.

2.1d shows the absolute position of the last vehicle in the traffic stream for various platoons

with the lead platoon disbanded. We can see that as the number of platoons increases, the

vehicle stops for a longer time before resuming movement. Furthermore, the string of 20,

50, and 80 platoons needed 10, 25, and 43 minutes, respectively, to recover. In summary,

we can see in these plots that disbanding one platoon could cause the following platoons

to respond irregularly, such that they stop-and-go, which, in turn, creates discomfort for

passengers, not to mention traffic jams, inefficient use of the road, and greater fuel-wasting.

Alternatively, when aware of such effects, an attacker could then target more than

one platoon systematically and produce even worse impacts, such as multiple stop-and-go

behaviors, which inevitably lead to passenger discomfort, greater fuel wasting, and increased

collisions. For example, an attacker can induce disbanding by targeting every other platoon,

out of twenty, at regular intervals, with 30 s increments (Fig. 2.1e). For the speed profiles

shown in Fig. 2.1e, 65%, 45%, and 37.5% of the intact platoons were forced to stop-and-go

once, twice, and three times, respectively. As a result, 55% of the vehicles, in the intact

platoons, suffered collisions.

2.1.2 Related work

The objective of vehicular platooning is to combine multiple vehicles and design the

proper controllers to maintain a desired separation and speed [22]. A large amount of

literature addresses how to achieve that objective. Also, various spacing policies have been

proposed for implementing control laws that regulate the relative spacing, either in front of

the vehicle (unidirectional control), or on both the front and rear of the vehicle (bidirectional
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control) [4]. This is achieved by using either locally-sensed information or with the addition

of (V2V) communication [23]. Communication schemes have been proposed [24] to transmit

messages between adjacent vehicles. In addition, it has been found that establishing vehicle-

to-infrastructure (V2I) communication is feasible in order to exchange vehicle information

with road units designed for that purpose [25]. In this work, we adopt a proportional-

derivative controller from [23] to form our platoons with the presence of a forward-looking

V2V communication in order to implement our suggested attack mitigation (Section 2.4).

Vehicular platoon security has been the focus of extensive research in literature. For

example, [17] presents a number of insider attacks that target vehicles’ CACC controllers.

It suggests detection schemes for those attacks. Another insider attack work is [16], wherein

the attacker’s controlled vehicle is able to modify its controller’s gains such that generated

commands induce instability in the entire platoon. [15] shows that it is possible for a

malicious vehicle in the platoon to increase energy consumption unnecessarily in neighboring

vehicles by misbehaving. In [19], it is shown that multiple attacker vehicles can operate

within the platoon and coordinate their behavior in order to produce instability that could

lead to accidents. Alternately, other works investigate external attacks wherein local range

and range-rate sensors are targeted to misinform the vehicle of the surrounding vehicles’

information in order to negatively impact road efficiency and passenger comfort and safety

[18, 20]. Similar to the security-related works above, we also present a possible vulnerability

in vehicular platoons and analyze its impacts on platoon safety. However, ours is the first

work that considers the effect the presence of human control in the platoon can produce.

Specifically, we try to answer ”what happens if control of multiple vehicles transition to

humans because of disruption of their automated systems?” or ”what happens if a passenger

decides to assume command of a vehicle after observing irregular behavior in its motion,

owing to an already mounted attack?”. Naturally, once a human driver starts controlling

the vehicle, brakes will be applied in an attempt to slow the vehicle [9]. While such an action

is helpful in avoiding accidents, it will also generate instability in the following non-attacked

platoons that could lead to collisions.
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V1,1 V1,2 · · · V1,n V2,1 V2,2 · · · V2,n · · · VN,1 VN,2 · · · VN,n

1st Platoon 2nd Platoon Nth Platoon

intra-platoon separation inter-platoon separation

direction of travel

Fig. 2.2. A stream of n-vehicle N platoons. Green arrows represent the flow of transmitted
information.

2.1.3 Organization

Section 5.5 explains the vehicular platooning control laws and describes the threat

model. Section 2.3 discusses different optimal attack scenarios and analyze their impacts.

Section 2.4 presents effective attack countermeasures. Experimental results are presented

in Section 2.5. Conclusions are given in Section 2.6.

2.2 System Model

The modeling of platoon dynamics and control as well as the attack mechanism are

discussed in this section.

2.2.1 Vehicle and platoon model

We consider N homogeneous platoons, where every vehicle uses the same control law,

with n vehicles in each (lead vehicle is indexed as n while the last vehicle is indexed as 1)

as shown in Fig. 2.2. Each vehicle is equipped with front and back range and range-rate

sensors, to measure the corresponding relative distances and speeds, and implements an

upper-level controller (responsible for determining the commanded (desired) acceleration)

and a lower-level controller (uses the desired acceleration to determine throttle and brakes

commands). The latter is expected to achieve the desired acceleration with some delay

due to its finite bandwidth [4, 14]. We will focus on the upper-level controller since the

attacker can easily affect it (e.g., through attacks on sensors). The following model is used
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to simulate the dynamics of each jth vehicle in the ith platoon


ẋi,j(t)

v̇i,j(t)

ȧi,j(t)

 =


0 1 0

0 0 1

0 0 −1
τ



xi,j(t)

vi,j(t)

ai,j(t)

+


0

0

1
τ

ui,j(t) (2.1)

where x, v a, and u refer to the vehicle’s absolute position, velocity, acceleration, and

commanded acceleration, respectively, and τ is a time constant used to model the actuator’s

delay. In this work, vehicles in a platoon use a bidirectional control technique [23] which has

two major benefits: First, it is able to guarantee platoon string stability, which maintains

proper traffic flow [4, 23]. Second, it does not need any (V2V) transmitted information to

generate control commands. However, such a wireless communication is established and will

be used to inform vehicles of attack detection and to transmit data in the mitigation process

(Section 2.4) though at a data rate far lower than that required to maintain V2V-enabled

platoons. For the last vehicle in the ith platoon, we have

ui,1(t) = kp
(
xi,2(t)− xi,1(t)− xd

)
+ kd

(
vi,2(t)− vi,1(t)

)
(2.2)

where kp and kd are the controller’s proportional and derivative gains, respectively, and

xd is a constant denoting inter-vehicle desired separation. For the other vehicles in the ith

platoon, except the leader, we have

ui,j(t) = kp
{(
xi,j+1(t)− xi,j(t)− xd

)
−
(
xi,j(t)− xi,j−1(t)− xd

)}
+ kd

{(
vi,j+1(t)− vi,j(t)

)
−
(
vi,j(t)− vi,j−1(t)

)} (2.3)

A different control structure is adopted for the platoons’ lead vehicles since we expect that

the platoon may encounter other platoons as they travel on the road. Lead vehicles attempt

to maintain a desired separation and speed, with respect to a preceding vehicle, by using a
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control law given by [4]

ui,n(t) = kp
(
xi+1,1(t)− xi,n(t)− h.vi,n(t)

)
+ kd

(
vi+1,1(t)− vi,n(t)

)
(2.4)

where h is a time headway constant. Also, each lead vehicle is equipped with a transitional

controller which is engaged in cases it encounters a slowly moving vehicle or a slowly driving

platoon on the road. Interested readers are referred to [4] for more details on transitional

controllers. W are interested in studying the effect of control transition. Therefore, we will

adopt the Intelligent Driver Model (IDM) [26], which can predict human driving behavior,

to simulate the dynamics of control transitioned vehicle(s). The commanded acceleration

of the disbanded platoon vehicles is calculated using

ui,j(t) = umax

{
1−

(
vi,j(t)/vd

)4 − (s∗(t)/(xi,j+1(t)− xi,j(t))
)2}

s∗(t) = r0 + vi,j(t)
{
h+ (vi,j(t)− vi,j+1(t)/(2

√
uminumax)

} (2.5)

where vd is the desired velocity, umin, umax are minimum and maximum acceleration, re-

spectively, and r0 is the minimum inter-vehicle separation (a vehicle cannot move if the

separation is smaller than r0). Finally, we assume that all vehicles are equipped with a

collision-avoidance technique where umin will be applied when the following condition is

true [4, 24]

xi,j+1(t)− xi,j(t) ≤ r0 +
(
v2
i,j(t)− v2

i,j+1(t)
)
/2umin (2.6)

2.2.2 Threat model

The aim of a disbanding attack in a multi-platoon scenario is to cause harm to the

vehicles in some of the platoons by targeting one or more vehicle(s) in a different platoon and

disrupting their automation. More specifically, this type of attacks relies on compromising

some aspect of a vehicle’s automation system so as to force the vehicle to abandon automated

operation, i.e., transition of control, and hence cause the platoon to which it belongs to

disband. The action of disbanding will then impact upstream platoons. As stated earlier,
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the level of automation provided by the currently available automation technology is still

not highly autonomous. Therefore, it is still expected that human drivers will need to take

control of the automated vehicles during certain situations.

One possible attack vector that could be leveraged to compromise a vehicle’s automa-

tion, and force a transition of control, is to target the vehicle’s front and/or rear facing

sensors, those that are relied upon to perceive the relative distance and speed of neighboring

vehicles. Existing work has demonstrated that LIDAR, RADAR, camera, and ultra-sonic

sensors, the most commonly-used sensors in automated vehicles for these purposes, can be

jammed or spoofed and that such attacks can be targeted, easy to carryout, accomplished

at a distance, and mounted against multiple vehicles at once [21, 27, 28, 29].

To demonstrate the impacts of the disbanding attack in our study, we assume the

attacker has the capability to target the sensors of either one or multiple automated vehicles

belonging to one or more platoons. Also, we assume that the mounted attack succeeds

in degrading the sensing functionality of the automation system(s) employing the targeted

sensor(s). We consider two possible scenarios resulting from this attack. In the case wherein

a sensor of a single vehicle in a platoon is targeted and its automation compromised, the

vehicle will utilize V2V communications and alert the other vehicles in that platoon so

that they begin to transition their control1. In the case of targeting the sensor(s) of all

vehicles in a platoon, the automation systems of those vehicles will suffer the disruption of

the sensors operation, become unable to handle the current situation, and begin the process

of transition of control. In either case, the automated vehicles are forced to transition their

control in an attempt to mitigate the attack and avoid accidents, effectively disbanding the

platoon.

Although the process of disbanding a platoon can help with avoiding accidents, the

resulting action of braking will cause upstream effects on intact (non-attacked) platoons.

Those effects pose a threat to the safety of these platoons, resulting in sudden and excessive

velocity changes that could lead to collisions. Disbanding attacks are extremely effective,

1Disbanding (dissolving) a platoon when one vehicle reverts to manual control has been recommended
in actual platooning systems [30].
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as attack-resilient platooning controllers tend to ignore human intervention in the design

process.

2.3 Human-in-the-loop Attacks

In this section, the disbanding attack is formulated as an optimization problem in order

to find an optimal attack scenario. Then, the simulation setup to carry out such an attack

is explained.

2.3.1 Finding an optimal disbanding attack

Given the attacker’s capabilities and platoon dynamics as described in Section 2, the

goal of the attacker is to find which platoon(s) and at which time(s) vehicles’ sensors must

be attacked, to induce disbanding, such that the velocity deviation of all intact vehicles is

maximized. To assess the impacts of disbanding attacks on the simulated platoons, we use

the following metrics

• Average velocity error (deviation): which describes the non-attacked platoons’ slowing

down as a result of disbanding another platoon(s). For the jth vehicle in the ith

platoon, the average velocity error is defined as

Ev =
1

|Ts|

|Ts|∑
k=1

|vi,j(tk)− vd|
vd

∗ 100 (2.7)

where Ts is the attack window (in seconds), and vd is desired speed. Since we are

considering platoons, equation (2.7) is modified into the following

Ev =
1

N ∗ n ∗ |Ts|
N∑
i=1

n∑
j=1

|Ts|∑
k=1

|vi,j(tk)− vd|
vd

∗ 100 (2.8)

which calculates Ev for all vehicles (N ∗ n) throughout Ts.

• Collisions: although each vehicle is assumed to be equipped with a collision-avoidance

algorithm, crashes between some of the intact vehicles can still occur according to
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our simulations as a result of disbanding. Therefore, we will indicate whether the

considered attack scenario involves collisions or not.

Let pd be a vector of indices of platoons to be disbanded, and td a vector of times of

disbanding. The attacker will solve

maximize
pd,td

Ev = f(pd, td)

subject to 1 ≤ pd ≤ N

1 ≤ td ≤ Ts

pd(i1) 6= pd(i2) for i1, i2 = 1, . . . , no. of targeted platoons

(2.9)

Equation (2.9) is interpreted as follows: given a number of targeted platoon(s), the

attacker seeks the best values for pd and td such that the highest value for the cost func-

tion Ev will result. The constraints of the problem ensure that values of pd and td are

within bounds and the same platoon cannot be disbanded twice (in case of multi platoon

disbanding). We used the Genetic Algorithm (GA) Toolbox in MATLAB to solve equation

(2.9).

2.3.2 Simulation setup

For the theoretical results presented in this work, we used MATLAB to simulate a

string of platoons, using the control structures and dynamics from Section 2.2.1. Table

2.1 displays the data used in all subsequent simulations. In previous work, the value of

τ was selected to be either 0.1 s [31] or 0.5 s [4]. To generalize the problem, we also

simulated values in-between for (τ). To produce realistic simulations, all vehicles’ velocities

are ensured to be below or equal to a maximum value and all vehicles move only forward

(no negative velocities). Also, the acceleration is bounded within minimum and maximum

values. Since the vehicles’ responses to initial separations and velocities may result in some

overshoot before reaching the steady-state, all simulations were started at the steady-state

so that that transient response will not interfere with the attack impacts.
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2.3.3 Results

Two different cases of disbanding attacks are shown. In Fig. 2.3a, the attacker seeks

disband the lead platoon, and in Fig. 2.3b, the attacker seeks to disband the lead two

platoons, out of 10 total platoons. Results are shown in terms of the absolute speed of the

last/rear vehicles of intact platoons (legends are removed to reduce visual clutter). We can

see clearly that disbanding results in slowing down, hence deviating from the desired speed

of 31 m/s, and even stopping completely. That behavior is captured by calculating Ev using

(2.8) which is equal to 29.57% and 43.69% for Fig. 2.3a and 2.3b, respectively. For Fig.

2.3c and 2.3d, the total number of platoons (N) is varied between 2 and 10, as shown on

the x-axis, and the actuator’s delay (τ) is varied between 0.1 s to 0.5 s with an increment

of 0.1 s, and the time headway (h) is selected equal to 1.5 s.

For each value of N , the solution of (2.9) indicated that the optimal disbanding attack

always occurs by disbanding the lead platoon and at at time equal to 1 s (the beginning

of the attack window). Fig. 2.3c shows the optimal (maximum) average velocity error

(Ev) for disbanding the lead platoon and for different values of τ . We can see clearly

that more severe attack impacts are induced as the total number of platoon increases. We

have already assumed in Section 2.2.1 that all vehicles are equipped with an appropriate

Table 2.1. Parameters used in the simulations.

Parameter Value Description

N [2:10] number of platoons
n 10 number of vehicles per platoon
kp 1 controller’s proportional gain
kd 5 controller’s derivative gain
xd {5,4} m desired inter-vehicle separation
vd 31 m/s nominal velocity
h 1.5 s time headway
τ {0.1,0.3,0.5} s time-lag constant

vmax 36 m/s maximum velocity
vmin 0 m/s minimum velocity
umax 1 m/s2 maximum acceleration
umin -5 m/s2 minimum acceleration
r0 1 m minimum inter-vehicle separation
Ts 180 s simulation time
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Fig. 2.3. a) Speed profiles of platoons’ rear vehicles (N = 10) when the lead platoon started
disbanding at t = 2 s. b) Speed profiles of platoons’ rear vehicles (N = 10) when the 9th

and 10th platoons started disbanding at t = 2 s and 100 s, respectively. c) Average velocity
error for optimal single-platoon disbanding cases. d) Number of collided vehicles for optimal
single-platoon disbanding cases.

collision-avoidance algorithm. However, simulation results indicate that disbanding attacks

can also cause accidents between some of the vehicles in the intact platoons, those which

were not the original target of the attack. Fig. 2.3d shows the number of colliding vehicles

for each of the optimal disbanding attack cases, as displayed in Fig. 2.3c. We can see that

regardless of N , collisions occur when the actuator’s delay is greater than 0.1 s, and the

total number of accidents increases as the total number of platoons increases.

2.4 Attack mitigation

We propose two approaches each of which proactively adjusts the commanded accel-

eration profiles of intact platoons’ vehicles in an attempt to mitigate attack impacts, by
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lessening the velocity deviations and reducing the number of collisions if possible. By ex-

ecuting each of the proposed approaches, the automation of intact platoons is maintained

and no transition of control will be initiated.

2.4.1 Optimal mitigation

The mitigation of disbanding attacks impacts is formulated as an optimization control

problem. The Model-Predictive Control (MPC) technique is used to find an on-line solution

using receding horizon [32]. The MPC based formulation is an optimal control technique

that has been used successfully in different applications [33]. It is based on minimizing a cost

function (velocity deviation) in order to achieve a certain goal (mitigating disbanding attack

impacts), while considering performance and physical constraints (collision-avoidance and

speed and acceleration bounds). As such, this optimal approach will be used to compare

and evaluate the performance of the other approach, as suggested in Section 2.4.2. However,

this approach requires more computation power and more sophisticated infrastructure to

perform the required calculations.

Using this approach, the objective is to compute a control sequence which will command

each vehicle behind the disbanded platoon, in order to reduce the deviation in velocity and

avoid accidents. More specifically, the controller of an intact vehicle will use the current

measurements of velocity and acceleration in order to solve

min
U

2M1U + UTM2U (2.10)

s.t. M3U ≤M4 (2.11)

where U is the resulting control sequence and M1, M2, M3, and M4 are matrices formu-

lated to consider acceleration and physical speed limits, as well as collision avoidance. The

complete formulation for this controller is given in Appendix A. While this approach would

yield an optimal solution for every time instance, it requires global knowledge of the platoon

dynamics. Namely, to perform the calculations needed to produce U , to command intact

vehicles, speed and acceleration measurements of all related vehicles should be available to
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a centralized infrastructure responsible for those calculations, basically a central computer

with (V2I) and (I2V), wherein the needed capabilities exist to receive current measurements,

perform the required calculations, and transmit the resulting acceleration commands back

to the corresponding vehicles. It has been shown that such a communication structure is

feasible [25], but not likely to be deployed in the near term, as it presents a single-point

of failure. For that reason, in the next section we suggest an efficient heuristic mitigation

approach which requires a less sophisticated communication model and produces nearly

equivalent results to the optimal approach.

2.4.2 Efficient heuristic mitigation

The goal of this approach is to modify the commanded acceleration of a vehicle by

comparing the distance it will cover with the distance that will be covered by the preceding

vehicle during a predefined time horizon (ts). Initially, the acceleration commands of both

vehicles are calculated according to the platooning control structures given in Section 2.2.1.

Let us consider a vehicle in an intact platoon (Vcurrent) and a preceding vehicle (Vpreceding),

where subscripts (current) and (preceding) refer to two adjacent vehicles belonging either

to the same platoon or to two different adjacent platoons. Each vehicle’s dynamics are

described by

ẋm(t) = vm(t),

v̇m(t) = um(t),

(2.12)

where m ∈ {current, preceding}, t ∈ [ts(1) : ∆ts : ts(end)], ts(1) and ts(end) are the first

and last time samples of the time horizon ts, and ∆ts is the time increment. Under the

assumption that um is constant for the duration of ts and using the forward difference

approximation [34], the absolute position and velocity can be calculated as follows

xm
(
ts(k + 1)

)
= xm

(
ts(k)

)
+ ∆tsvm

(
ts(k)

)
,

vm
(
ts(k + 1)

)
= vm

(
ts(k)

)
+ ∆tsum,

(2.13)
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Algorithm 1: Heuristic mitigation

Input: vm(ts(1)), um(ts(1)), for m ∈ {current, preceding} // velocity and
commanded acceleration values of current and preceding vehicles.

Output: unewcurrent, // new commanded acceleration value for current vehicle.
1 unewcurrent ← ucurrent(ts(1)) ;
2 compute dm for the interval of ts using input data;
3 if dpreceding < dcurrent then

4 unewcurrent ←
dpreceding−vpreceding

(
ts(end)−ts(1)

)
0.5
(
t2s(end)−t1s(1)

) ;

5 if current vehicle and preceding one will collide during ts then
6 search for unewcurrent within

[
amin, upreceding

)
;

where k = 1, . . . , |ts|. Once the vector xm(.) is obtained, the distance traveled by vehicle

(Vm) during ts can be calculated as dm = xm
(
ts(end)

)
−xm

(
ts(1)

)
. Based on the calculated

distance travelled by the current vehicle dcurrent and that of the preceding vehicle dpreceding,

we proceed as follows

• If (dpreceding < dcurrent), then (Vcurrent) is covering more distance and may collide

with a preceding vehicle. Therefore it has to slow down by modifying its commanded

acceleration (ucurrent). To produce the same traveled distance for Vcurrent, ucurrent is

selected equal to unew which is calculated as

unew =
dpreceding − vcurrent

(
ts(end)− ts(1)

)
0.5
(
t2s(end)− t2s(1)

) , (2.14)

Using the new acceleration command, another important consideration is to ensure

that the predicted position vectors of (Vcurrent) and (Vpreceding), calculated using

(2.13), will not overlap (collide) during the interval of ts. If that is the case, then accel-

eration need to be further modified and selected from the interval
[
amin : ∆a : unew

)
where ∆a is a suitable acceleration increment. Namely, ucurrent is set equal to the first

value smaller than unew within that interval. If the new value produces no collisions,

then it is applied. Otherwise, the next value is selected and so on.

• If (dpreceding ≥ dcurrent), then the commanded acceleration ucurrent, calculated accord-

ing to the platooning control laws from Section 2.2.1, is maintained.
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The steps of this approach are shown in Algorithm 1. Once the disbanding attack against

one of the platoons is detected, as explained in Section 2.2.2, the last vehicle of the disbanded

platoon will inform the following lead intact vehicle, using the established inter-vehicle

communication. The latter vehicle will calculate its platooning acceleration command and

modify it, if needed, using this mitigation approach. Furthermore, it will also inform the

following vehicle to implement similar steps. Practically, in order to implement the sug-

gested approach locally on a certain vehicle, the following information should be available:

the commanded acceleration of both the current vehicle (measured locally) and the pre-

ceding vehicle (transmitted via the already established communication), and the velocity

of both the current vehicle (measured locally) and the preceding vehicle (estimated form

the measurements of velocity and relative velocity). The process described above will be

repeated at the next time instant, using the newly-obtained measurements. Vcurrent will

reuse the adopted platooning control law once the inter-vehicle distance, with respect to

Vpreceding, begins to increase. Finally, it should be noted that our platooning model (Section

2.2.1) requires a far less sophisticated communication model to connect any two neighbor-

ing vehicles, performs a decentralized mitigation, and produces equivalent results to the

MPC-based mitigation. Hence, it is not only cheaper to implement the heuristic approach

rather than the MPC-based one, but the former is also more resilient.

Table 2.2. Results for optimal one-platoon disbanding attack

xd
[m]

τ
[s]

Ev [%] Crash
baseline mit.1 mit.2 baseline mit.1 mit.2

5
0.1 29.570 24.283 23.025 No No No
0.3 41.268 25.556 25.182 Yes No No
0.5 52.235 28.482 28.709 Yes Yes Yes

4
0.1 27.995 25.063 22.798 Yes No No
0.3 40.115 26.864 24.823 Yes No No
0.5 52.706 29.079 29.742 Yes Yes Yes
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2.4.3 Results and discussion

Table 2.2 displays the average velocity error Ev collected from different scenarios, in-

volving the optimal single-platoon disbanding attack. Baseline, mit.1, and mit.2 refer to

platoons using the control structure from Section 2.2.1, the heuristic mitigation, and the

MPC-based mitigation, respectively. For all cases given, the total number of platoons is

equal to 10, while the inter-vehicle separation xd and actuator’s delay τ parameters are

varied, in order to generate different scenarios.

We can see in Table 2.2 that the baseline control does not perform well against the

disbanding attack, since all cases involve accidents (except for xd = 5 m and τ = 0.1 s)

and an increase in Ev. On the other hand, it is clear that our approach improves the

values of Ev for all attack cases. In addition, collisions are avoided in most attack cases

except when τ equals to 0.5 s. Also, the heuristic approach reduces the number of colliding

vehicles. For example, the attack case with xd = 4 m resulted in accidents involving 58%

and 29% of the total number of vehicles (100) for the baseline and mit.1, respectively.

Furthermore, the attack case with (xd = 5 m, τ = 0.1 s), which had no accidents, 80%

of the intact vehicles experienced stop-and-go once, due to the use of a collision-avoidance

algorithm that functioned by applying maximum deceleration. However, in our approach,

and for all attack cases, all intact vehicles slowed down gradually and did not have to come

to a complete stop. Using mit.2 also helps with improving the values of Ev and avoiding

collisions. By comparison, we can see that the values of Ev for both mit.1 and mit.2 are

very equal. In fact, it is clear that our approach improves the results, in terms of lowering

Table 2.3. Results for optimal two-platoon disbanding attack

xd
[m]

τ
[s]

Ev [%] Crash
baseline mit.1 mit.2 baseline mit.1 mit.2

5
0.1 38.347 27.056 26.221 Yes No No
0.3 39.839 28.548 29.129 Yes No Yes
0.5 45.004 35.724 38.690 Yes Yes Yes

4
0.1 37.069 30.731 29.811 Yes No No
0.3 40.233 33.183 34.868 Yes Yes No
0.5 45.823 38.349 38.914 Yes Yes Yes
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Ev and avoiding collisions, in some attack cases. Overall, these numbers demonstrate that

our heuristic approach produces nearly equivalent results to the optimal MPC approach.

Table 2.3 shows data for Ev collisions for various cases involving two platoons disband-

ing, wherein the total number of platoons is equal to 10. The optimal attack is found to

occur by targeting the 10th (lead) and 9th platoons in the formation at times equal to 2 s and

100 s, respectively within Ts. We can see that the baseline control produces collisions for

all attack cases. However, with either mit.1 or mit.2, the reduction in velocity is minimized

and crashes are avoided completely in some cases. Also, the results for both mitigation

approaches are nearly equivalent. Furthermore, in comparison with Table 2.2, even with

mitigation, the two-platoon disbanding attack results in more crashes, which indicates that

it is a more severe attack, as compared to disbanding a single platoon.

2.5 Experimental Validation

We validate our proposed mitigation algorithm on a platooning testbed and compare

it with the baseline algorithm i.e., regular platoon control law with integrated collision

avoidance.

2.5.1 Hardware Setup

Our experimental setup consists of small robots that represent vehicles in a stream of

platoons and a motion capture system for tracking as shown in Fig. 2.4. We implemented

the disbanding attack and the traveled distance mitigation algorithm on three 3-vehicle

platoons, denoted as per the convention shown in Fig. 2.2. The 3rd (leading) platoon

disbands and the response of other two platoons is captured with the different algorithms

in place.

Each robot is affixed with multiple IR markers which are tracked by the Optitrack

motion capture system consisting of 24 IR cameras and the Motive software that enables us

to capture the robot positions. This position data is then streamed to a command computer

where an interface application utilizing the Robot Operating System (ROS) [35] framework

makes the gathered position data for each robot available to our controller application. This
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Fig. 2.4. Experimental environment with small robots and motion capture system

application processes the position data and sends control commands accordingly to each

robot. The controller application implemented on ROS works in the following manner:

• The raw position data is processed using an Extended Kalman Filter to reduce camera

sensor noise and estimate the measured position and velocity.

• Pure Pursuit Controller utilizes the extimated positions and circular path coordinates

from the experiment environment to calculate the angular velocity command for each

vehicle.

• The estimated data of all vehicles is used to calculate the relative distance and ve-

locity between consecutive vehicles. This is then fed to a High level Controller which

implements the platoon model following the bidirectional control law as explained in

Section 2.2.1 and provides desired acceleration values for the robots.

• The mitigation and baseline algorithm then modify the acceleration values from the

High level Controller in case a disbanding attack is detected.
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• As the vehicles only act upon instantaneous velocity commands, these acceleration

values along with current measured velocities are used to calculate the desired veloc-

ities for each vehicle. The desired linear velocities for the vehicles are achieved using

a PI controller which acts as our Low Level Controller. This controller calculates the

linear velocity commands for each vehicle such that the measured and the desired

velocities match.

Each robot consists of a 32-bit ARM-based mbedNXP LPC1768 microcontroller on the

Pololu m3pi platform to which the Digi Xbee receivers are interfaced. The corresponding

Xbee transmitter is connected to the command computer. These Xbee modules allow us to

establish a wireless communication channel using the Zigbee protocol over which the angular

and linear velocity commands calculated for each robot using our controller application are

then broadcast. The firmware on these robots receive the broadcast messages and calculate

the left and right wheel speeds from the received angular and linear velocities as per the

differential drive model.

2.5.2 Experimental Results

Fig. 2.5 shows individual velocity profiles for the vehicles under consideration (three

platoons with three robots in each). Fig. 2.5a indicates the effect on velocity due to

disbanding for the baseline control structure, given in Section 2.2.1, wherein we can see

vehicles in the last platoon not only slow down suddenly, but one of them stops, in response

to the disbanding of the lead platoon. Fig. 2.5b and 2.5c give the velocity profiles when

intact robots use the traveled distance mitigation approach, wherein it can be seen that

the speed of vehicles in second and third platoon slow down gradually and then begin to

accelerate. This mitigation approach was tested with ts = 0.5s and 1s, respectively. The

point labeled as A in Fig. 2.5a, 2.5b, and 2.5c indicate that the platoons are in a steady

state. Point B marks the time at which the attack on the lead platoon is emulated, causing

all of its vehicles to disband and suddenly decelerate. Deceleration patterns of the vehicles

after point B for the baseline structure clearly indicate a sudden drop in velocities for the
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Fig. 2.5. Vehicles’ velocities upon disbanding of platoon 3 for baseline control structure
and proposed heuristic mitigation algorithm with ts = 0.5s and 1s.

following platoons, causing some vehicles to come to a complete stop as indicated by point

C.

While there are no collisions with the baseline control, sudden deceleration/ accelera-

tion was observed. However, such abrupt changes in velocities are not observed when our

proposed heuristic mitigation is in place (see Fig. 2.5b and 2.5c, where point C shows that

none of the vehicles need to come to a halt). With the mitigation approach, vehicles com-

fortably decelerate and gradually accelerate to recover and maintain desired spacing and

velocities, all without collisions. Furthermore, Ev was calculated for the three experiments

and it was equal to 30.02%, 21.82% and 19.73% for Fig. 2.5a, 2.5b and 2.5c, respectively.

These numbers indicate that with increasing ts, the change in velocity is even smoother

and more gradual, yet collisions do not occur. However, with ts = 1 s, vehicles come to

closer proximity, when compared with the results of ts = 0.5 s. For reference, we have also
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uploaded short videos of our experiments [36].

2.6 Conclusion

In this chapter, we presented and studied a disbanding attack which targets vehicular

platoons and causes severe deviations in speed, including stop-and-go traffic and collisions

between upstream vehicles. The attack exploits human-in-the-loop control, whereby a ve-

hicle switches from automated control to human driving at the onset of an attack against

a vehicle sensing system. Calculations of key attack factors, such as identifying both the

platoon(s) to disband and time to disband, were carried out. Additionally, we proposed two

mitigation algorithms that reduce sudden velocity changes and also decrease the number of

accidents, hence ensuring resilient performance for platoons. Simulations and experimental

results corroborate theory, displaying improved velocity deviations. Finally, the proposed

heuristic mitigation approach was implemented and verified on a hardware testbed with a

motion capture system and mobile robots representing platoons, and even at this stage, it

showed better performance than baseline control structure.
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[3] K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “Fuel-saving potentials of platooning

evaluated through sparse heavy-duty vehicle position data,” 2014 IEEE Intelligent

Vehicles Symposium Proceedings, pp. 1061–1068, 2014.

[4] R. Rajamani, Vehicle Dynamics and Control, ser. Mechanical Engineering

Series. Springer, 2011. [Online]. Available: https://books.google.com/books?id=

eoy19aWAjBgC

[5] W. Vlakveld, S. W. O. Verkeersveiligheid, and V. e. L. Rijkswaterstaat. Water,

Transition of Control in Highly Automated Vehicles: A Literature Review.

SWOV Institute for Road Safety Research, 2015. [Online]. Available: https:

//books.google.com/books?id=D2mVjwEACAAJ

[6] M. Blanco, J. Atwood, H. M. Vasquez, T. Trimble, V. L. Fitchett, J. Radlbeck,

G. Fitch, S. M. Russell, C. A. Green, B. Cullinane, and J. Morgan, “Human factors

evaluation of level 2 and level 3 automated driving concepts,” 08 2015.

[7] “Truck platooning vision 2025,” 2016. [Online]. Available: www.eutruckplatooning.com

[8] N. Merat, A. H. Jamson, F. C. Lai, M. Daly, and O. M. Carsten, “Transition to

manual: Driver behaviour when resuming control from a highly automated vehicle,”

Transportation Research Part F: Traffic Psychology and Behaviour, vol. 27, pp.

https://books.google.com/books?id=eoy19aWAjBgC
https://books.google.com/books?id=eoy19aWAjBgC
https://books.google.com/books?id=D2mVjwEACAAJ
https://books.google.com/books?id=D2mVjwEACAAJ
www.eutruckplatooning.com


50

274 – 282, 2014, vehicle Automation and Driver Behaviour. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1369847814001284

[9] R. Zheng, K. Nakano, S. Yamabe, M. Aki, H. Nakamura, and Y. Suda, “Study on

emergency-avoidance braking for the automatic platooning of trucks,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 15, no. 4, pp. 1748–1757, Aug 2014.

[10] J. Axelsson, “Safety in vehicle platooning: A systematic literature review,” IEEE

Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1033–1045, May

2017.

[11] N. Merat and A. Jamson, “How do drivers behave in a highly automated car?” 10

2017, pp. 514–521.

[12] C. Gold, D. Damböck, L. Lorenz, and K. Bengler, ““take over!” how long does it

take to get the driver back into the loop?” Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, vol. 57, no. 1, pp. 1938–1942, 2013. [Online].

Available: https://doi.org/10.1177/1541931213571433

[13] A. Eriksson and N. A. Stanton, “Takeover time in highly automated vehicles:

Noncritical transitions to and from manual control,” Human Factors, vol. 59,

no. 4, pp. 689–705, 2017, pMID: 28124573. [Online]. Available: https:

//doi.org/10.1177/0018720816685832

[14] S. Oncu, J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Cooperative adaptive cruise

control: Network-aware analysis of string stability,” IEEE Transactions on Intelligent

Transportation Systems, vol. 15, no. 4, pp. 1527–1537, Aug 2014.

[15] R. M. Gerdes, C. Winstead, and K. Heaslip, “Cps: an efficiency-motivated attack

against autonomous vehicular transportation,” in Proceedings of the 29th Annual Com-

puter Security Applications Conference. ACM, 2013, pp. 99–108.

[16] S. Dadras, R. M. Gerdes, and R. Sharma, “Vehicular platooning in an adversarial

environment,” in Proceedings of the 10th ACM Symposium on Information, Computer

http://www.sciencedirect.com/science/article/pii/S1369847814001284
https://doi.org/10.1177/1541931213571433
https://doi.org/10.1177/0018720816685832
https://doi.org/10.1177/0018720816685832


51

and Communications Security, ser. ASIA CCS ’15. New York, NY, USA: ACM,

2015, pp. 167–178. [Online]. Available: http://doi.acm.org/10.1145/2714576.2714619

[17] B. DeBruhl, S. Weerakkody, B. Sinopoli, and P. Tague, “Is your commute driving you

crazy?: a study of misbehavior in vehicular platoons,” in Proceedings of the 8th ACM

Conference on Security & Privacy in Wireless and Mobile Networks. ACM, 2015,

p. 22.

[18] R. W. van der Heijden, T. Lukaseder, and F. Kargl, “Analyzing attacks on cooperative

adaptive cruise control (cacc),” arXiv preprint arXiv:1710.05789, 2017.

[19] D. D. Dunn, S. A. Mitchell, I. Sajjad, R. M. Gerdes, R. Sharma, and M. Li, “Regular:

Attacker-induced traffic flow instability in a stream of semi-automated vehicles,” in

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), June 2017, pp. 499–510.

[20] M. Jagielski, N. Jones, C.-W. Lin, C. Nita-Rotaru, and S. Shiraishi, “Threat detection

for collaborative adaptive cruise control in connected cars,” in Proceedings of the

11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, ser.

WiSec ’18. New York, NY, USA: ACM, 2018, pp. 184–189. [Online]. Available:

http://doi.acm.org/10.1145/3212480.3212492

[21] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles

sensors: Experiments on camera and lidar,” Black Hat Europe, vol. 11, p. 2015, 2015.

[22] C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa, “Overview

of platooning systems,” in Proceedings of the 19th ITS World Congress, Oct 22-26,

Vienna, Austria (2012), 2012.

[23] D. Yanakiev and I. Kanellakopoulos, “A simplified framework for string stability anal-

ysis in ahs,” in Proceedings of the 13th IFAC World Congress, 1996, 1996, pp. 177–182.

[24] M. Amoozadeh, A. Raghuramu, C. Chuah, D. Ghosal, H. M. Zhang, J. Rowe, and

K. Levitt, “Security vulnerabilities of connected vehicle streams and their impact on

http://doi.acm.org/10.1145/2714576.2714619
http://doi.acm.org/10.1145/3212480.3212492


52

cooperative driving,” IEEE Communications Magazine, vol. 53, no. 6, pp. 126–132,

June 2015.

[25] C. Chou, C. Li, W. Chien, and K. Lan, “A feasibility study on vehicle-to-infrastructure

communication: Wifi vs. wimax,” in 2009 Tenth International Conference on Mobile

Data Management: Systems, Services and Middleware, May 2009, pp. 397–398.

[26] A. Kesting, M. Treiber, and D. Helbing, “Enhanced intelligent driver model to access

the impact of driving strategies on traffic capacity,” Philosophical Trans. of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, vol. 368, no.

1928, pp. 4585–4605, 2010.

[27] R. Chauhan, R. M. Gerdes, and K. Heaslip, “Attack against an fmcw radar,” in Pro-

ceedings of Embedded Security in Cars Conference, 2014.

[28] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles: Contactless attacks

against sensors of self-driving vehicle,” DEF CON, vol. 24, 2016.

[29] E. Yeh, J. Choi, N. Prelcic, C. Bhat, and R. Heath Jr, “Security in automotive radar

and vehicular networks,” submitted to Microwave Journal, 2016.

[30] T. Robinson, E. Chan, and E. Coelingh, “Operating platoons on public motorways: An

introduction to the sartre platooning programme,” in 17th world congress on intelligent

transport systems, vol. 1, 2010, p. 12.

[31] E. N. N. v. d. W. J. Ploeg, B. Scheepers and H. Nijmeijer, “Design and experimental

evaluation of cooperative adaptive cruise control,” in International IEEE Conference

on Intelligent Transportation Systems, 2011, pp. 260–265.

[32] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE Control Systems

Magazine, vol. 20, no. 3, pp. 38–52, June 2000.

[33] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in Ro-

bustness in identification and control, A. Garulli and A. Tesi, Eds. London: Springer

London, 1999, pp. 207–226.



53

[34] F. Borrelli, Constrained optimal control of linear and hybrid systems. Springer, 2003,

vol. 290.

[35] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source

software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[36] Anonymous, “Mitigation and baseline algorithm experiments,” June 2018. [Online].

Available: https://www.youtube.com/channel/UCI-UGJKT7C5E 8bs391LCpA

https://www.youtube.com/channel/UCI-UGJKT7C5E_8bs391LCpA


CHAPTER 3

REACHABILITY ANALYSIS FOR CONSTRAINED FALSE DATA INJECTION

ATTACKS ON VEHICULAR PLATOONS

Vehicular platooning promises to bring faster, safer, and more efficient transporta-

tion. Automated platooned vehicles will rely on information obtained from inter-vehicle

communication channels and on-board sensors to make driving decisions and achieve pla-

tooning. However, such reliance creates an opportunity for safety violating attacks intended

to disrupt platoon formation and cause accidents. In this chapter, we investigate attacks

mounted against the sensing functionality of platooned vehicles with the goal of manipu-

lating the relative distance and speed measurements. More specifically, we are interested in

approximating the set of final unsafe states, that can be reached by mounting realistically-

constrained attacks capable of injecting false-data against an attacked sensor(s). For that

purpose, we will use reachability analysis which enables us to realize whether it is possible

to drive a platoon from initial to final states, given performance and physical bounds. Our

results suggest that this type of attack is able to steer a platoon towards dangerous states

and thereby generate impacts on passengers’ safety by causing high-speed crashes.

3.1 Introduction

Vehicular platooning is a cyber-physical system (CPS) that employs automation, com-

munication, sensing, and decision making capabilities with the objectives of combining a

number of automated vehicles to follow each other while regulating their movements and

maintaining predefined inter-vehicle distances and relative speeds. Vehicular platoons are

gaining rapid interest and development, both academically and commercially, as they have

shown numerous benefits, such as providing a safe and comfortable environment for the

passengers while allowing them to focus on tasks other than driving [1]. They also have

shown the ability to reduce traffic congestion on highways [2, 3], which leads to a better
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and more efficient usage of roads and to fuel consumption [4].

In order to achieve the aforementioned objectives, each platooned vehicle implements a

properly designed controller that determines the appropriate throttle and brakes commands

[5] by using information collected from local sensors and from other vehicles through either

inter-vehicle communication [6] or external networks [7]. As a result, vehicular platoons

have a potential attack surface that can be exploited by malicious parties (attackers) and

may result in disruptive platoon behavior. For this reason, security of platooning CPS has

been widely researched in order to both define possible vulnerabilities that can be exploited

by attackers, and to understand possible consequences, such as disarranging normal per-

formance of platooned vehicles and causing fatal impacts, such as collisions at high speeds

[8] or significantly-increased energy consumption in platoon vehicles due to modification of

the behavior of one vehicle [9]. In addition, attacking vehicular platoons could also induce

oscillations in vehicle movements, which lead to passenger discomfort, platoon instability,

and reduced efficiency of platoon operation. These consequences can be triggered by an

attacker capable of either controlling one vehicle in the platoon [10], multiple vehicles in a

platoon [11], or of modifying messages transmitted between vehicles through communication

channels [12, 13, 14]. False Data Injection (FDI) attacks are carried out by an adversary ca-

pable of manipulating the readings of CPS sensors, and thereby causing misbehavior in the

decision-making process. Such attacks have been proven possible in previous works, such

as [15], wherein authors propose conditions under which an FDI attack could destabilize an

LTI control system without being detected. It has also been shown that an FDI attack could

be staged against an electricity power grid, whereby the attacker had full or limited access

to some of the installed meters or network topology and could thereby introduce errors in

the states estimation, which could lead to unreliable operation of the power grid [16, 17].

Furthermore, the states estimation process was also the target of another FDI attack, as

presented in [18], which was designed to compromise a subset of LTI discrete-system sensors

without being detected.
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As mentioned earlier, a platooning CPS controller requires measurements from on-

board sensors for its operation. Existing work has demonstrated that RADAR, LIDAR,

cameras, and ultra-sonic sensors, the most-used sensors in automated vehicles, can be vic-

tims of FDI attacks executed at a distance. For example, [19] presents external jamming

and spoofing attacks that can be carried out against ultrasonic sensors and cameras, and

experimental results show a possibility of malfunctioning a Tesla vehicle. Also, it was proven

possible to falsify the readings of a vehicle’s RADAR [20], LIDAR, or cameras [21] and, as

a result, disrupt the behavior of the automated vehicle. In addition, FDI attacks on a ve-

hicle’s sensors have demonstrated impacts on the vehicle’s platoon. Authors of [22] provide

an analysis of different types of platooning controllers under FDI attacks mounted against

RADAR and LIDAR sensors. Their results showed that such an attack could potentially

lead to a crash between vehicles further behind the attacked vehicle. Also, the authors of

[23] studied FDI attacks which compromised vehicular sensors measuring position, velocity,

or both. The results showed multiple impacts, including passenger discomfort and collisions.

Reachability analysis defines the reachable set of a dynamic system, that is the set

of all system states that can be attained within a finite time. Considering the physical

bounds and performance constraints of the system states and inputs, reachability analysis

helps us verify whether from a given initial point, a system can eventually reach another

given final point. With that in mind, reachability can be applied to real-world applications

where safety must be determined, such as collision avoidance problems in airplanes [24]

and vehicles [25], or controller design for the platooning of unmanned aerial vehicles (UAV)

[26, 27].

In this chapter, we are also concerned with the safety of a vehicular platoon operating

in an adversarial setting wherein it is possible to target one or more of the platoon vehicle’s

sensors with an FDI attack. Particularly, we are interested in defining the set of final states

that the platoon can reach as a result of experiencing a manipulation in the measurements

obtained from one or more of the locally-equipped sensors. For that purpose, we will use the

optimal control-based reachability approach to determine the reachable (final) set of states,
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as it allows us to include attacker capabilities, physical limits on the vehicle’s acceleration

and speed, and resolution and physical limits of the attacked sensor(s) in the problem

formulation as constraints, as will be explained Section 3.4. Furthermore, this approach

requires a prior definition of the final states of interest. For that reason, and because our

primary concern is the safety of the platoon, we will focus on unsafe states which can be

translated as a collision between two or more vehicles in the platoon and at different speeds.

Regardless of the type of equipped sensors, from this point on we will refer to the sensors

measuring relative distance and speed as range and range-rate sensors, respectively. The

contributions of this chapter are:

• We analyze the performance of a vehicular platoon undergoing an FDI attack mounted

against one or multiple locally equipped range and range rate sensors. Specifically, we

will define what conditions and capabilities are required by an adversary to make such

an attack capable of violating the safety of the platoon.

• To generalize the problem, we will define threat models for targeting either the range

sensors, range-rate sensors, or both. Also, we analyze the resulting impacts from those

attacks

• After defining both the platoon and threat models, wherein the attack vector will be

acting as the new control input to the system, we will use the optimal control-based

reachability approach to determine the final reachable set by the platoon. This will

show whether collision(s) are possible as a result of an FDI attack.

3.1.1 Related work

In the context of FDI attacks on vehicular sensors, the authors of [19] present exter-

nal jamming and spoofing attacks that can be carried out against ultrasonic sensors and

cameras, and experimental results even show a possibility of malfunctioning a Tesla vehicle.

Also, it was proven possible to falsify the readings of a vehicle’s RADAR [20], LIDAR, or

cameras [21], and, as a result, disrupt the behavior of the automated vehicle. In addition,

FDI attacks on a vehicle’s sensors have demonstrated impacts on the vehicle’s platoon.
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Authors of [22] provide an analysis performed on various types of platooning controllers

under FDI attacks mounted against RADAR and LIDAR sensors. Their results show that

such attacks could potentially lead to a crash between vehicles further behind the attacked

vehicle. Also, [23] studied FDI attacks which compromised platooned vehicles sensors mea-

suring position, velocity, or both. These results show multiple impacts including passenger

discomfort and collisions.

In the context of conducting reachability analyses, various methods have been proposed

for obtaining the reachable sets. In [28, 29], ellipsoidal techniques are used to calculates

outer elliptical bounds around the reachable set of a linear system. This method has been

applied in problems such as finding algorithms for collision avoidance in UAVs [30] and

determining new artificial physical bounds for a system’s actuators [31]. Another method

is generally known as Hamilton-Jacobi (HJ) reachability [24] and has been used to solve

problems such as auto landing of an aircraft [32], and path planning for UAVs [33]. Finally,

another method suggested for determining the reachable set is based upon using optimal

control theory, wherein the final states points are included in the formulation of an opti-

mization problem which, in turn, calculates the appropriate control sequence required to

drive the system towards those final states and also considers state/input constraints [34].

This method has been applied in problems such as determining a safe landing area for a

moon lander [35], and suggesting an alternate trajectory for vehicles to be tracked to avoid

colliding with other vehicles [36].

In the context of security of vehicular platooning, reachability analysis has been used

to quantify the impacts of attacks mounted against vehicular platoons. In [31], the authors

defined reachable sets that a CACC-based platoon could reach while experiencing an attack

on its V2V communication channels. The resulting sets included unsafe states for the

platoon, wherein two or more vehicles could crash. In [37], the authors investigated the

behavior of an ACC-based platoon during a motion modifying attack, wherein the attacker

controls one of the platooned vehicles. The resulting reachable sets revealed that accidents

are possible as a result of that attack as well. Similar to the aforementioned works, we are
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also using reachability analysis to study the safety of a vehicular platoon. However, we will

use that analysis with realistic scenarios of FDI attacks.

3.1.2 Organization

Section 3.2 explains the vehicle, vehicular platoon, and threat models used in this

chapter. In Section 3.3, we present an algorithm to determine an FDI attack vector that

induces instability in the attacked vehicle. Section 3.4 describes the approach used in

this chapter to conduct the reachability analysis for constrained FDI attacks on platooned

vehicles’ sensors while Section 3.5 discusses the reachable sets resulting form those attacks.

Finally, conclusions are given in Section 3.6.

3.2 System Model

The modeling of platooned vehicles as well as the control strategies, to achieve pla-

tooning, are discussed in this section.

3.2.1 Vehicle model

We consider a homogeneous platoon with n vehicles, which means that all vehicles

share the same dynamics, controller design, and performance characteristics. In general,

each platooned vehicle’s dynamics are described as

ẋ(t) = f(x(t),u(t)) (3.1)

where x and u are the state and input (commands) vectors, respectively. The evolution of

each vehicle’s states over time is described as follows

ẋi(t) = vi(t)

v̇i(t) = ui(t), for i = 1, . . . , n

(3.2)

where xi, vi, and ui to the ith vehicle’s absolute position, absolute velocity, and commanded

acceleration, respectively, and n is the number of vehicles in a platoon.
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V1 V2 V3 · · · Vn−1 Vn
r1,2 ṙ1,2

r2,1 ṙ2,1

r2,3 ṙ2,3

r3,2 ṙ3,2

rn−1,n ṙn−1,n

rn,n−1 ṙn,n−1

inter-vehicle separation

direction of travel

Fig. 3.1. A platoon with n vehicles. ri,j and ṙi,j represent the relative distance and speed,
respectively, measured by the ith vehicle’s range and range-rate sensors with respect to the
jth vehicle.

3.2.2 Platoon model

In this chapter, we consider a platoon with n vehicles, as shown in Fig. 3.1, where each

vehicle is equipped with range and range-rate sensors. For platooned vehicles equipped with

an ACC control structure, the latter utilizes information provided by the local vehicular

sensors. For each platooned vehicle, the error coordinates are defined as follows

exi(t) = xi+1(t)− xi(t)− xd

evi(t) = vi+1(t)− vi(t)
(3.3)

where exi and evi refer to the ith vehicle’s position and velocity errors, respectively, and xd

is a constant denoting inter-vehicle desired separation. It should be noted that error states

are fully measured using the locally equipped range and range-rate sensors. The evolution

of error states over time can be described as follows

ėxi(t) = vi+1(t)− vi(t)

ėvi(t) = ui+1(t)− ui(t)
(3.4)

The position and velocity errors can be described for all vehicles in a platoon using the

following state-space representation

ė(t) = A1e(t) +B1u(t) (3.5)



61

where

e(t) =

[
ex1(t) . . . exn(t) ev1(t) . . . evn(t)

]T
u(t) =

[
u1(t) . . . un(t)

]T

Matrices A1 and B1 are described in Appendix B. Each platooned vehicle uses a bidirectional

control law to determine its commanded acceleration [38]. Bidirectional control is able to

guarantee platoon string stability, which maintains proper traffic flow [5, 38], and it does

not need any (V2V) transmitted information to generate driving decisions. Each vehicle’s

commanded acceleration is calculated according to its position in the platoon. For the last

vehicle in a given platoon, we have

u1(t) = kpex1(t) + kdev1(t), (3.6)

where kp and kd are the controller’s proportional and derivative gains, respectively. For the

rest of the vehicles in the platoon, we have

ui(t) = kp
(
exi(t)− exi−1(t)

)
+ kd

(
evi(t)− evi−1(t)

)
,

for i = 2, . . . , n

(3.7)

Commanded acceleration of all vehicle can be combined in the following state-space repre-

sentation

u(t) = A2e(t) (3.8)

matrix A2 is also defined in Appendix B.

3.2.3 Threat model

FDI attacks against vehicular sensors aim to generate harmful impacts in the platoon

by injecting false data into the attacked sensor(s) in order to confuse their measurements.
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Existing work has demonstrated that the most-used sensors in automated vehicles, such as

LIDAR or cameras, can be jammed or spoofed, and that such attacks can be accomplished

at a distance [19, 20, 21, 39]. For the purpose of demonstrating FDI attack impacts in

our study, we assume the following: First, the attacker is informed of the platoon model,

which includes the controller design and type of sensors used. Second, the attacker has

the capability of compromising the reading of one or multiple sensors equipped on one or

more platooned vehicles by using drones, units installed on the road for that purpose, or by

an attacker-controlled vehicle driving alongside the platoon. Finally, the attack sequence

(vector) can only assume discrete values such that once injected it does not violate the reso-

lution of the attacked sensor(s). The last assumption helps create realistic attack scenarios.

It also helps distinguish feasible attacks from non feasible ones.

1. Attacking Range Sensors: in this case, the commanded acceleration becomes as follows

u1(t) = kp
(
ex1(t) + δx1(t)

)
+ kdev1(t)

...

un(t) = kp
((
exn(t) + δxn(t)

)
− exn−1(t)

)
+ kd

(
evn(t)− evn−1(t)

)
(3.9)

where δxi is the amount of false-data injected against the ith vehicle’s range sensor.

(3.9) can be rewritten as follows

u(t) = A2e(t) +B2,xδ(t)

δ(t) =

[
δx1(t) . . . δxn(t)

]T (3.10)
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2. Attacking Range-rate Sensors: in this case, the commanded acceleration becomes as

follows

u1(t) = kpex1(t) + kd
(
ev1(t) + δv1(t)

)
...

un(t) = kp
(
exn(t)− exn−1(t)

)
+ kd

((
evn(t) + δvn(t)

)
− evn−1(t)

)
(3.11)

where δvi is the amount of false-data injected against the ith vehicle’s range-rate

sensor. (3.11) can be rewritten as follows

u(t) = A2e(t) +B2,vδ(t)

δ(t) =

[
δv1(t) . . . δvn(t)

]T (3.12)

3. Attacking Both Range and Range-rate Sensors: in this case, the commanded acceler-

ation becomes as follows

u1(t) = kp
(
ex1(t) + δx1(t)

)
+ kd

(
ev1(t) + δv1(t)

)
...

un(t) = kp
((
exn(t) + δxn(t)

)
− exn−1(t)

)
+ kd

((
evn(t) + δvn(t)

)
− evn−1(t)

)
(3.13)

which can be rewritten as follows

u(t) = A2e(t) +B2,xvδ(t)

δ(t) =

[
δx1(t) . . . δxn(t) δv1(t) . . . δvn(t)

]T (3.14)

Matrices B2,x, B2,v, and B2,xv are given in Appendix B.
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Considering the presence of attack vectors, acceleration commands, given in (3.8), become

as follows

u(t) = A2e(t) +Baδ(t)

Ba ∈
{
B2,x, B2,v, B2,xv

} (3.15)

by substituting (3.15) into (3.5), we get

ė(t) = Ace(t) +Bcδ(t)

Ac = A1 +B1A2

Bc = B1Ba

(3.16)

3.3 Formulating an Instability-inducing FDI Attack Against Vehicular Pla-

toons

In this section, we will formulate an FDI attack vector that aims to cause instability

in the movement of a vehicular platoon. That means, by injecting the formulated attack

vector into the targeted sensor(s), the attacked vehicle(s) will begin to behave erratically by

accelerating/decelerating and, as a result, relative distance and speed will grow over time

and accidents may occur.

3.3.1 Attacks on a single sensor

We will start by formulating an FDI attack vector that could be mounted against either

the range or the range-rate sensor equipped on one of the platooned vehicles, whose flawed

commanded acceleration is described as follows

ūi(t) = kp
(
exi(t)− exi−1(t)

)
+ kd

(
evi(t)− evi−1(t)

)
+ kaδi(t)

= ui(t) + kaδi(t)

(3.17)

where ka is equal to either kp if the range sensor is targeted or kd otherwise. On the

other hand, for the attacked vehicle the evolution of distance and speed errors over time is
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described as follows

˙̄exi(t) = vi+1(t)− vi(t)

= ēvi(t)

˙̄evi(t) = ui+1(t)− ūi(t)

(3.18)

by substituting (3.17) into (3.18), we get

˙̄evi(t) = ui+1(t)− ui(t)− kaδi(t) (3.19)

In order to show platoon instability as a result of an FDI attack, we will use the

following Lyapunov candidate function

V (ē) = ēT (t)P ē(t) (3.20)

where

ē(t) =

[
ēxi(t) ēvi(t)

]T
(3.21)

and (P = P T ) is a symmetric positive definite function described as follows

P =

P1 P2

P2 P3

 (3.22)

by differentiating (3.20) we get (time notation is omitted)

V̇ (ē) = 2ēxiP1 ˙̄exi + 2ēviP2ēvi + 2
(
ēxiP2 + ēviP3

)
˙̄evi (3.23)

by substituting (3.18) and (3.19) into (3.23) we get the following

V̇ (ē) = 2ēxiP1 ˙̄exi + 2ēviP2ēvi + 2
(
ēxiP2 + ēviP3

)(
ui+1 − ui − kaδi

)
(3.24)
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we will define the following attack vector

δi =
−1

ka

(
− ui+1 + ui + h1ēxi + h2ēvi

)
(3.25)

by substituting (3.25) into (3.24) we get the following

V̇ (ē) = 2ēxiP1 ˙̄exi + 2ēviP2ēvi + 2
(
ēxiP2 + ēviP3

)(
h1ēxi + h2ēvi

)
(3.26)

which can be rewritten as follows

V̇ (ē) = ēTQē (3.27)

where

Q =

 2h1P2 P1 + h2P2 + h1P3

P1 + h2P2 + h1P3 2
(
P2 + h2P3

)
 (3.28)

In order to destabilize the platoon, the attacker must select gains h1 and h2 such that

V̇ is not negative. Therefore, we will select the attack gains such that the matrix Q is

positive semi-definite as follows

2h1P2 ≥ 0

2
(
P2 + h2P3

)
≥ 0

4h1P2

(
P2 + h2P3

)
−
(
P1 + h2P2 + h1P3

)2 ≥ 0

(3.29)

and the attack vector is given by (3.25).

3.3.2 Attacks on two sensors

In this section, we will formulate an FDI attack vector that could be launched against

both the range and range-rate sensors equipped on one of the platooned vehicles, whose
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commanded acceleration is described as follows

ūi(t) = kp
(
exi(t)− exi−1(t)

)
+ kd

(
evi(t)− evi−1(t)

)
+ kpδi,1(t) + kdδi,2(t)

= ui(t) + kpai,1(t) + kdai,2(t)

(3.30)

by substituting (3.30) into (3.18) we get

˙̄evi(t) = ui+1(t)− ui(t)− kpδi,1(t)− kdδi,2(t) (3.31)

We will use the same candidate Lyapunov function given in (3.20) to derive conditions

for platoon instability. Therefore, (3.31) is substituted into (3.23) and we get

V̇ (ē) = 2ēxiP1ēvi + 2ēviP2ēvi + 2
(
ēxiP2 + ēviP3

)(
ui+1 − ui − kpδi,1 − kdδi,2

)
(3.32)

we will define the following two attack vectors

δi,1 =
−1

2kp

(
− ui+1 + ui + h1ēxi + h2ēvi

)
δi,2 =

−1

2kd

(
− ui+1 + ui + h1ēxi + h2ēvi

) (3.33)

by substituting (3.33) into (3.32) we get the following

V̇ (ē) = 2ēxiP1ēvi + 2ēviP2ēvi + 2
(
ēxiP2 + ēviP3

)(
h1ēxi + h2ēvi

)
(3.34)

which is similar to the expression given in (3.26). As a result, we can reach the same

conclusions for selecting the gains h1 and h2 as shown in (3.29).

3.3.3 Finding the attack vector sequence

In this section, we will explain how to find the FDI attack vector sequence such that the

resulting vector is realistic in constraints and once injected in the attacked sensor instability

is induced in the platoon. We will begin by defining the matrix P as the identity matrix.

As a result, (3.29) can be rewritten as
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h2 ≥ 0

h1 ≤ −1

(3.35)

Therefore, the attack vectors given in (3.25) and (3.33) will destabilize the platoon if

the gains h1 and h2 are selected according to (3.35). However, to make the FDI attack more

realistic, we still need to consider the following constraints

• the instantaneous values of the FDI attack vector cannot assume any continuous

values. That is, the attack sequence will result in spoofed measurements agree with

the resolution of the attacked sensor(s). As a result, the instantaneous values are

discrete and selected from a predefined range of feasible values.

• once injected, the instantaneous values of the FDI attack vector cannot result in a

spoofed measurement that violates the physical bounds of the attacked sensor.

• the instantaneous values of the FDI attack vector will meet the instability condition

given in (3.35), as will be explained later.

Since the instantaneous values are selected from a predefined range, it is possible that

at some time steps more than one value meet the aforementioned constraints. To handle

that, the attack vector sequence will be selected based on minimizing the following cost

function

Jc =

t+Nh∑
k=t

δTi (k)Qδi(k) (3.36)

where i is the index of the attacked vehicle, Nh is a time horizon, and (Q = QT > 0) is a

weighing matrix. Equation (3.36) can be rewritten as

Jc = δTi (t)Qδi(t) + · · ·+ aδTi (t+Nh)Qδi(t+Nh)

= ∆T Q̄∆

(3.37)
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where

∆ =

[
δi(t) . . . δi(t+Nh)

]

Q̄ =



Q 0 . . . 0

0 Q . . . 0

...
. . .

. . .
...

0 0 . . . Q


In order to make the calculations more tractable, and using (3.35), one of the attacker

gains, h1 or h2, will be assigned a constant value. For example, we can define the following

h1 = −1 (3.38)

by substituting (3.38) into (3.25) and rewriting the latter we get the following

h2 =
−1

ēvi(t)

(
kaδi(t)− ui+1(t) + ui(t) + ēxi(t)

)
≥ 0 (3.39)

which means that the attack vector sequence must be determined such that the condition

given in (3.39) is true. Using the same approach, we can get the following conditions for

the attack vectors given in (3.33)

h2 =
−1

ēvi(t)

(
2kpδi,1(t)− ui+1(t) + ui(t) + ēxi(t)

)
≥ 0 (3.40)

and

h2 =
−1

ēvi(t)

(
2kdδi,2(t)− ui+1(t) + ui(t) + ēxi(t)

)
≥ 0 (3.41)

In summary, (3.39) defines the instability condition for the case of attacking one sensor

while (3.40) and (3.41) define the instability conditions for the case of attacking two sensors.

Next, we need to determine the attack vector sequence ∆. For that purpose, we will use
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the following Branch and Bound based algorithm

1. Inputs to the algorithm are: the current measurements of the relative distance and

speed of the attacked vehicle, the current commanded acceleration of the attacked

and preceding vehicles, and a predefined range of feasible values for the attack vector.

Output of the algorithm is the attack vector sequence ∆.

2. At the current time step k = t, set the following

J >> 0

∆ = zeros(Nh, 1)

Jc = 0 (initially)

∆c = zeros(Nh, 1)

(3.42)

3. Get the current measurements of relative distance and speed for the attacked vehicle

and use them to calculate ēxi(k) and ēvi(k). Also, determine ui(k) and ui+1(k).

4. Select a candidate value for δi(k) from the predefined range.

5. Depending on the number of attacked sensors, calculate h2 using either (3.39) or (3.40)

and (3.41). Does h2 satisfy the corresponding instability condition(s)? If yes, then

continue. If no, then go to (4).

6. Once injected into the attacked sensor(s), is the spoofed measurement(s) within the

bounds of the sensor(s)? If yes, then continue. If no, then go to (4).

7. Store δi(k) in ∆c and calculate the following

Jc = ∆T
c Q̄∆c (3.43)

8. Is Jc ≤ J ? If yes, then continue. If no, then go to (4), which is the Bound part.
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9. Is k = t+Nh ? If yes, then continue. If no, then go to (12), which is the Branch part.

10. Set the following

J = Jc

∆ = ∆c

(3.44)

11. Have all the values in the range been tested? If yes, then go to (13). If no, then go to

(4).

12. For the next time step k = t + 1, determine ēxi(k) and ēvi(k) using the model given

in (3.18) and use them to calculate ui(k) and ui+1(k). Then go to (4).

13. We have determined ∆.

The steps for determining the FDI attack vector ∆ are given in Algorithm 2. Fig. 3.2

shows simulation results for two attack cases and using the formulated attack vectors given

in (3.25) and (3.33). In this simulation, we have a platoon of ten vehicles and an attacker

is targeting the range and range-rate sensors of the lead (tenth) vehicle. Before the attack,

the platoon is travelling at steady-state. That is, the desired inter-vehicle separation of 5 m

and a desired speed of 30 m/s are achieved for all vehicles in the platoon. Also, the attack

vector sequence was determined using Algorithm 2. For the results shown in Fig. 3.2a and

3.2c, the range sensor of the lead (tenth) vehicle is targeted with an FDI attack vector given

in (3.25) and determined using Algorithm 2. We can see in Fig. 3.2a how the inter-vehicle

separation of the attacked vehicle, with respect to the following (ninth) vehicle, is growing

larger than the desired separation and then the targeted vehicle collides with the following

vehicle at time almost equals to 28 s. This collision happens is because the injected FDI

attack vector is misleading the platooning controller of the attacked vehicle and, as a result,

the generated control commands are manipulated. We can also see in Fig. 3.2c that the

collision happens at a high relative speed of almost -3.5 m/s.
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Algorithm 2: Determining an optimal FDI attack vector

Input: for the current time step (k = t) the measurements of the relative distance
and speed of the attacked vehicle, the current commanded acceleration of
the attacked and preceding vehicles, and a predefined range of feasible
values ar for the attack vector.

Output: attack vector sequence ∆.
1 set J >> 0
2 ∆← zeros(Nh, 1)
3 Jc ← 0
4 ∆c ← zeros(Nh, 1) ;
5 for i = 1 : |ar| do
6 δi(k)← ar(i) ;
7 h2 ← either (3.39) or (3.40) and (3.41) (depending on the number of attacked

sensors) ;
8 if (h2 ≤ 0) then
9 if (δi(k) does not violate the attacked sensor bounds) then

10 store δi(k) into ∆c ;
11 Jc ← ∆T

c Q̄∆c ;
12 if (Jc < J) then
13 if (k < t+Nh) then
14 start the algorithm for the next time step (k = t+ 1) where the

inputs ēxi(k) and ēvi(k) are calculated using using (3.18) and
use them to calculate ui(k) and ui+1(k);

15 else
16 J ← Jc ;
17 ∆← ∆c ;

For the results shown in Fig. 3.2b and 3.2d, both the range and range rate sensors of

the lead (tenth) vehicle are targeted with FDI attack vectors given in (3.33) and determined

using Algorithm 2. Similar to attack case above, we can also see in Fig. 3.2b how the inter-

vehicle separation of the attacked vehicle, with respect to the following (ninth) vehicle, is

growing larger than the desired separation and then the targeted vehicle collides with the

following vehicle at time almost equals to 11.8 s. This collision also happens due to the

influence of the two FDI vectors on the platooning controller of the attacked vehicle. We can

see, however, in Fig. 3.2d that in this attack case the collision happens at a higher relative

speed of almost -6 m/s. In summary, these simulation results show that it is possible to

craft an FDI attack vector to target one or two locally equipped sensors of a platooned
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Fig. 3.2. (a) and (c) show inter-vehicle separation and relative speed profiles, respectively,
of a ten-vehicle platoon where the lead (tenth) vehicle’s range sensors is targeted with an
FDI attack vector, calculated using Algorithm 2. (b) and (d) show inter-vehicle separation
and relative speed profiles, respectively, of a ten-vehicle platoon where the lead (tenth)
vehicle’s range and range rate sensors are targeted with FDI attack vectors, both calculated
using Algorithm 2.

vehicles and disrupt the formation. Furthermore, these results also show that such FDI

attacks are able to induce harmful impacts on the attacked vehicle , such as collisions and

at high relative speeds.

3.4 Reachability Analysis For Constrained FDI Attacks

Generally, reachability analysis is a mathematical tool which provides information

about the evolution of dynamic system states over time considering that the system may

have physical constraints on the control inputs and the states. In this work, we will use

this analysis to answer the following question: ”Given the attacker capability to manipulate
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one or more functionalities of the vehicle’s automation system, is it possible to drive the

vehicular platoon to an unsafe state (i.e., collisions between two or more vehicles within the

platoon)? If so, what is the speed of impact (collision)?”

We use the optimal control based reachability method [34, 35] in order to compute the

reachable set of a platoon undergoing an FDI attack. Using this method, the error state

space is divided into a number of equidistant target points es and for each one of them an

optimal control problem is solved to determine whether a feasible trajectory exists between

initial states e0 and the target states es. Mathematically, we seek a solution to the following

optimization problem

minimize
δ(.)

J =
1

2
||Ce(m)− es||22 (3.45)

subject to

• initial error states.

• dynamics of the platoon, which are the error states, acceleration (control commands),

and the FDI vector.

• constraints on the state, input, targeted sensors, and FDI vector.

• the FDI attack vector is determined such that the increment/decrement of the spoofed

measurements is according to the attacked sensor(s) resolution.

The matrix C defines the target vehicle, by selecting its position and velocity errors

from the state vector e. The attacker intends to cause a collision with the target vehicle,

while the attacked vehicle is where the attacker injects the FDI attack vector. If a solution

can be found for (3.45), then there is an attack sequence δ(.) which can minimize the

distance between the final state of the platoon e(m) and es, meaning the attacker can cause

the platoon to steer towards es. If, on the other hand, a solution does not exist, then the

attacker cannot drive the platoon to the candidate states es.

Since our primary concern is determining the safety of the vehicular platoon while

experiencing an FDI attack, we will merely define es as the unsafe points in the error state
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space, that is, the points wherein the position error is equal to −xd (for collisions), and for

various velocity errors (speed of impact). In order to solve the problem in (3.45) numerically,

we need the following formulations

3.4.1 Evolution of errors state vector

For an initial state vector e(0), the error coordinates of the platoon , given in (3.16),

will develop over time for k = 0, 1, . . . ,m as follows

e(1) = Ae(0) +Bδ(0)

e(2) = Ae(1) +Bδ(1) = A2e(0) +ABδ(0) +Bδ(1)

...

e(m) = Ame(0) +Am−1Bδ(0) + · · ·+Bδ(m− 1)

(3.46)

final error state vector can be rewritten as

e(m) = Āe(0) + B̄δ (3.47)

where

Ā = Am

B̄ =

[
Am−1B Am−2B . . . B

]
δ =

[
δ(0) δ(1) . . . δ(m− 1)

]T

3.4.2 Initial conditions and constraints

We assume that the FDI attack begins once the platoon is at the steady-state, which

means both desired separation and relative speed are achieved for all vehicles. Mathemat-

ically, the steady-state of the platoon is equivalent to zero position and velocity errors for

all vehicles. Besides, in order to create realistic scenarios for the FDI attacks, we define the

following constraints
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• At any time sample, the attack vector must take a value between a predefined mini-

mum δmin and maximum δmax values, as shown below

δ(k) ≤ δmax

δ(k) ≥ δmin

which can be rewritten as follows

δ ≤ δmax

δ ≥ δmin

(3.48)

where

δmax =

[
δmax . . . δmax

]T
δmin =

[
δmin . . . δmin

]T

• As shown in section 3.2.3, the attack vector has an effect on the calculation of com-

manded acceleration. Furthermore, each vehicle has physical acceleration limits. For

those two reasons, the attack vector must not result in acceleration commands violates

a predefined minimum umin and maximum umax limits once injected into the attack

sensors, as shown below

A2e(k) +B2δ(k) ≤ umax

A2e(k) +B2δ(k) ≥ umin

using (3.46), this constraint can be rewritten as follows

K1e(0) +K2δ ≤ umax

K1e(0) +K2δ ≥ umin

(3.49)
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where

umax =

[
umax . . . umax

]T
umin =

[
umin . . . umin

]T

• Each sensor has physical limits, that is the reading is always between a minimum smin

and a maximum smax values. That means, once injected, the attack vector will not

result in a spoofed measurement outside the attacked sensor limits, as shown below

k3e(k) + δ(k) ≤ smax

k3e(k) + δ(k) ≥ smin

where k3 is a row vector specifies error states corresponding to the attacked sensors.

Using (3.46), this constraint can be rewritten as follows

K3e(0) +K4δ ≤ smax

K3e(0) +K4δ ≥ smin

(3.50)

where

smax =

[
smax . . . smax

]T
smin =

[
smin . . . smin

]T

• No collision should be induced in the platoon before reaching the end of attack window

(time), as shown below

k5e(k) + δ(k) ≤ ψ

where k5 is a row vector specifies the position errors in the state vector and ψ is the



78

collision threshold, which is equal to −xd in our case. Using (3.46), this constraint is

rewritten as follows

K5e(0) +K6δ ≤ Ψ (3.51)

where

Ψ =

[
ψ . . . ψ

]T

• Increment/decrement of the FDI attack vector is predefined using a certain resolution.

For that reason, the range of possible values for δ(k) is also predefined and the solution

of the problem in (3.45) is set to integer.

All constraints given in (3.48)-(3.51) can be combined in the following compact form

Aineqδ ≤ bineq (3.52)

Definitions of K1, K2, K3, K4, K5, K6, Aineq, and bineq are given in Appendix B.

3.4.3 Computation of FDI reachable sets

The cost function of the problem in (3.45) can be rewritten as

J =
1

2

[
(Ce(m)− es)T (Ce(m)− es)

]
=

1

2

[
eT (m)CTCe(m)− 2eTs Ce(m) + eTs es

] (3.53)

by substituting (3.47) into (3.53), we get

J = M1δ + δTM2δ + other terms (3.54)
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where

M1 = eT (0)ĀTCTCB̄ − eTs CB̄

M2 = B̄TCTCB̄

It should be noted that the ”other terms” in (3.54) do not include any attack vector sequence

and, hence, will be omitted since they do not affect the minimization of J . In summary, for

each one of the target states es of interest, the reachable set is determined by solving the

following

min
δ

M1δ + δTM2δ

s.t. Aineqδ ≤ bineq
(3.55)

3.5 Results and Discussion

For FDI attacks, the approach explained in Section 3.4 is used to determine the reach-

able set of the attacked platoon. CPLEX solver was used to determine the integer solution

of (3.55). Tables 3.1 and 3.2 show the reachable sets resulting from mounting FDI attacks

against one range sensor and range-rate sensor, respectively, equipped on one vehicle in a

platoon with (n = 4). In each table, δx,i and δv,i refer, respectively, to the attacked range

and range-rate sensors equipped on the ith attacked vehicle, Vi refers to the ith target vehicle

in the platoon, specified by C in (3.55), ci,j refers to a collision between the ith and jth

vehicles, and the numbers shown in parenthesis are the maximum reachable speed of impact

with respect to the two collided vehicles. For these results, resolution of the attacked sensor

is selected as 0.5 m and 0.25 m/s2 for the range and range-rate sensors, respectively. We

can see in the aforementioned tables that different impacts can be generated for different

scenarios of FDI attacks. For example, attacking the range sensor of the 1st vehicle in the

platoon can cause the target vehicle V1 and the preceding 2nd vehicle to collide at relative

speed that could reach -1.955 m/s however attacking the same sensor does not cause any

accidents when the target is any vehicle other than the first one V1 in the platoon, as shown
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in the first row of Table 3.1. On the other hand, we can see in the second row of Table 3.2

that attacking the range-rate sensor of the 2nd vehicle in the platoon can cause a crash at

the target vehicle V3 and, in addition, the 2nd and 4th vehicles, even though these last two

were not part of the attacker’s intention in the first place.

Tables 3.3 and 3.4 show the reachable set resulting from attacking two range sensors

and range-rate sensors, respectively, equipped on two vehicles in the same platoon (n = 4).

In each table, δx,ij and δv,ij refer, respectively, to the attacked range and range-rate sensors

equipped on the ith and jth attacked vehicles. We see clearly that targeting two sensors,

Table 3.1. Reachable set for FDI attacks on a single range sensor

V1 V2 V3 V4
δx,1 c1,2 (-1.995) - - -
δx,2 - c2,3 (-3.996) - -

δx,3
- - c3,4 (-4.005) c3,4 (-1.848)

c4,5 (-2.003)
δx,4 - - - c4,5 (-5.987)

Table 3.2. Reachable set for FDI attacks on a single range-rate sensor

V1 V2 V3 V4
δv,1 c1,2 (-1.977) - - -

δv,2

c2,3 (-1.959)
- c2,3 (-2.017) c3,4 (-1.992) -

c4,5 (-2.210)

δv,3
- - c3,4 (-2.432) c3,4 (-3.715)

c4,5 (-2.003)
δv,4 - - - c4,5 (-7.962)

Table 3.3. Reachable set for FDI attacks on two range sensors

V1 V2 V3 V4

δx,12

c2,3 (-1.873) c2,3 (-3.666)
c1,2 (-2.021) c2,3 (-5.997) c3,4 (-2.004) c3,4 (-3.853)

c4,5 (-2.130) c4,5 (-3.997)

δx,13 c1,2 (-4.003) c1,2 (-1.807) c3,4 (-7.984) c3,4 (-5.743)
c3,4 (-3.860) c2,3 (-2.013) c4,5 (-6.002)

δx,14

c1,2 (-1.831) c1,2 (-1.468)
c1,2 (-3.988) c2,3 (-1.987) c2,3 (-1.508) c4,5 (-8.006)

c3,4 (-1.771) c3,4 (-1.982)

δx,23 - c2,3 (-4.003) c3,4 (-7.993) c3,4 (-5.723)
c3,4 (-4.008) c4,5 (-6.005)

δx,24 - c2,3 (-3.996) c2,3 (-1.833) c4,5 (-8.997)
c4,5 (-3.998) c3,4 (-1.997)

δx,34 - - c3,4 (-3.566) c4,5 (-8.270)
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regardless of type, on two different vehicles, generates a bigger reachable set for the FDI

attack and it is possible in some scenarios to cause collisions at greater speeds of impacts

when compared to the results of attacking one sensor only.

Tables 3.5 and 3.6 show the reachable set resulting from attacking two range and range-

rate sensors equipped on one or two vehicles, respectively, in the same platoon (n = 4).

Finally, we increased the size of the platoon to (n = 5) and determined the reachable set

resulting from attacking two range-rate sensors on two different vehicles. Table 3.7 shows

the results for these attack cases.

Similarly, we have conducted the same analyses to determine the reachable sets of FDI

attacks on a single/double range or range-rate sensors however we neglected the constraint

regarding the sensor resolution, which means that δ(.) can take any continuous values

Table 3.4. Reachable set for FDI attacks on two range-rate sensors

V1 V2 V3 V4

δv,12 c1,2 (-8.004) c2,3 (-8.102) c3,4 (-4.193) -

δv,13 c1,2 (-7.989) c2,3 (-7.984) c3,4 (-3.970) -
c2,3 (-7.990)

δv,14

c1,2 (-5.585)
c1,2 (-6.003) c2,3 (-5.975) c3,4 (-7.981) c4,5 (-5.988)
c3,4 (-5.921) c3,4 (-6.138)

δv,23 - c2,3 (-5.967) c3,4 (-1.974) c3,4 (-1.982)
c4,5 (-2.015)

δv,24 - c2,3 (-5.997) c3,4 (-7.984) c4,5 (-3.991)
c3,4 (-6.224)

δv,34 - - c3,4 (-7.977) c4,5 (-6.011)

Table 3.5. Reachable set for FDI attacks on range & range-rate sensors

V1 V2 V3 V4

δx,1
δv,1

c1,2 (-1.866)
c1,2 (-2.010) c2,3 (-1.987) - -

c3,4 (-2.166)

δx,2
δv,2

- c2,3 (-1.991) - -
c3,4 (-2.593)

δx,3
δv,3

- - c3,4 (-1.799) c4,5 (-1.791)

δx,4
δv,4

- - - c4,5 (-3.992)
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between δmin and δmax. The reason for that was to compare the results with those shown in

Tables 3.1 to 3.6. In the case of continuous δ(.), resulting reachable set was bigger in terms

of the number of induced collisions and the magnitude of the speed of impact. However,

Table 3.6. Reachable set for FDI attacks on two range & range-rate sensors

V1 V2 V3 V4

δx,12
δv,12

c1,2 (-7.984) - - -

δx,13
δv,13

c1,2 (-1.970) - - -
c2,3 (-2.532)

δx,14
δv,14

c1,2 (-4.027) c1,2 (-1.883)
c2,3 (-4.460) c2,3 (-2.004) c3,4 (-6.011) c4,5 (-3.974)
c3,4 (-4.701) c3,4 (-2.254)

δx,23
δv,23

- c2,3 (-2.015) - -

δx,24
δv,24

- c2,3 (-7.952) c3,4 (-3.963) c4,5 (-3.985)
c3,4 (-8.118)

δx,34
δv,34

- - c3,4 (-1.983) -

Table 3.7. Reachable set for FDI attacks on two range-rate sensors (n = 5)

V1 V2 V3 V4 V5

δv,12 c1,2 (-5.221) c2,3 (-8.343) - - -

δv,13 c1,2 (-7.559) c2,3 (-7.401) c3,4 (-3.720) - -

δv,14 c1,2 (-7.022) c2,3 (-6.775) c3,4 (-6.981) c4,5 (-4.218) -
c3,4 (-6.631) c3,4 (-6.138)

δv,15 c1,2 (-5.277) - - - c5,6 (-6.011)

δv,23 - c2,3 (-5.967) c3,4 (-1.974) - -

δv,24 - c2,3 (-6.127) c3,4 (-5.226) c4,5 (-4.991) -

δv,25 - c2,3 (-7.034) - - c5,6 (-6.501)

δv,34 - - c3,4 (-8.244) c4,5 (-7.935) -

δv,35 - - c3,4 (-7.900) - c5,6 (-6.113)

δv,45 - - - - c5,6 (-5.731)
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that scenario represents an unrealistic case, as it is not feasible to inject false-data that

could take any arbitrary value. In summary, whether it is an attack on a single or multiple

sensors, the reachability analysis results shown in the aforementioned tables indicate that

the impacts of FDI attacks on the sensors of platooned vehicles are serious and must be

considered during the design of platooning controllers which rely on such sensors.

3.6 Conclusion

In this chapter, we focused on FDI attacks that can be mounted against vehicular range

and range-rate sensors. Such attacks have been shown to be possible by previous studies

and can induce accidents. As an example, we formulated an FDI attack against one or

two vehicular sensors that aims to induce instability, i.e., disrupts the platoon formation

and eventually could lead to collisions. Furthermore, we considered realistic constraints

in formulating our attack, such as a discrete attack vector sequence and non-violation

of attacked sensor(s) measurement bounds, in order to produce the most realistic attack

scenarios possible. We also employed reachability analysis to further study FDI attacks

against vehicular sensors. Our reasoning was that such an analysis would enable us to

validate whether it were possible for such attacks to cause collisions by targeting sensors on

a larger scale, such as sensors of two vehicles and/or of different types, and at which speed

of impact such collisions would be made possible. Our results indicate that FDI attacks are

serious and must be considered during the design of platooning controllers, which rely on

the measurements of potentially attackable sensors.
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CHAPTER 4

MITIGATION OF ATTACKS AGAINST HVAC SYSTEM TEMPERATURE SENSORS

USING MOVING TARGET DEFENSE

Heating, Ventilating, and Air Conditioning (HVAC) systems are considered an integral

part of smart automated buildings and are primarily employed to provide an acceptable in-

door environment in terms of thermal comfort and occupants’ air quality. The application

of appropriate control strategies in HVAC systems is important to improving the energy

efficiency of smart buildings. In this chapter, we utilize Model Predictive Control (MPC)

technique to formulate an optimal controller that aims to achieve an acceptable temperature

tracking of a desired set point in each zone of the building. To develop such a controller, a

model of the process under consideration (the smart building) is needed. For that purpose,

we employ a thermal model which captures heat storage and transfer between connected

spaces of the building, as well as the influence of outside temperature. Several previous

studies have defined potential vulnerabilities in HVAC systems that could be exploited by

parties with malicious intentions in order to induce harmful impacts. One possible vul-

nerability is manipulating the measurements of temperature sensors, which are installed in

various sections of buildings employing HVAC systems. An important factor that facilitates

such attacks against temperature sensors is the fact that the MPC controller, which uses

those sensors, is static in nature, and thus, attackers can easily induce predictable impacts.

Therefore, in this chapter, we consider attacks that modify the readings of temperature sen-

sors and show how such tampering could mislead the MPC controller and, as a result, cause

occupants’ discomfort. Furthermore, in order to counter such attacks, we suggest Moving

Target Defense (MTD) technique-based algorithms, which aim to add unpredictability to

the system by constantly changing the sensors set used by the MPC controllers and, as a

consequence, reduce the impacts of potential attacks.
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4.1 Introduction

A smart building is a term used to describe a structure that utilizes automation tech-

nology to supervise and control important functionalities/subsystems such as fire and flood

safety, lighting, heating/cooling, and building ventilation [1, 2]. Designing a smart build-

ing, or even upgrading an existing building to a smart one, requires installing sensors and

actuators to manage the relevant subsystems. Additionally, dedicated controllers are im-

plemented to collect and analyze data from sensors and thereby generate the appropriate

commands to the actuators of each subsystem. Employing advanced control algorithms is

highly critical to reduce energy consumption and operating costs in smart buildings [3].

Smart buildings can provide multiple benefits, such as improved comfort level for the oc-

cupants, efficient operation of the building’s subsystems, improved life cycle of utilities,

customizable spaces, and 24/7 monitoring, all of which result in a boost of productivity.

An HVAC system is an example of a CPS that is commonly employed in smart residen-

tial and commercial buildings, as it can provide thermal comfort and consume less energy

[4]. For the purpose of designing an appropriate controller that achieves certain goals for

HVAC systems, detailed information about the heat dynamics of the building under con-

sideration is needed. Acquiring and employing an accurate building thermal model is also

helpful with regard to the decision-making process of the controller, especially if the con-

trol strategy is highly dependent on a model of the process under control, such as MPC

technique [5, 6]. The thermal model is derived from the physical properties of buildings,

e.g. the material used in the building structure, heat storage and loss in each section of

the buildings, and interaction between physically-connected spaces. These parameters are

tailored to the form of a thermal building model. To achieve a better performance, distur-

bances such as outside weather, heat provided by presence of occupants, and machines and

devices inside each building section should be considered as well.

A number of existing works have demonstrated that it is possible for parties with ma-

licious intentions (attackers) to pose threats against the operation of some CPSs, including

threats that could lead to destabilizing and inducing collisions among platooned vehicles
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[7, 8] or an unreliable state estimation process in electrical grids [9, 10]. Also, some previous

works have suggested defenses to prevent or lessen the effects of such threats [11, 12, 13].

Similarly, in this chapter, we consider the possibility of the presence of attacks intended

to influence HVAC sensors and disrupt their performance. Specifically, we will show that

manipulating the measurements of temperature sensors by injecting false data and creating

incorrect readings could lead to deceiving HVAC systems which rely on those measurements.

Such manipulations could lead to raising the temperature in the building, thereby causing

occupant discomfort. In addition to potential attacks, incorrect measurements resulting

from defective sensors may also mislead the HVAC system, and thereby generate the same

harmful impacts mentioned above. Thus, if not detected and repaired, such sensors can pose

a threat to the operation of the corresponding HVAC system. With the goal of deterring

such threats, in this chapter, we will suggest defenses that aim to constantly change the

behaviour of the HVAC system and preemptively reduce the chances of mounting successful

attacks.

MTD has been suggested as a countermeasure intended to decrease the ability of an

attacker to influence the targeted CPS [14]. From an attacker perspective, such an ability

stems from the fact that most, if not all, CPSs are static in their operation, i.e., the com-

ponents/functionalities required for the CPS’s performance, such as sensors, actuators, or

communication channels are already assigned and rarely changed. That static nature gives

an attacker the necessary time to analyze the targeted CPS and define its weaknesses. MTD

attempts to tackle this problem by constantly and unpredictably changing the behavior of

the CPS, and thereby adding a dynamic nature. Therefore, MTD is considered a proactive

strategy [14]. In the context of control systems, the MTD mechanism utilizes switching

among available actuators and/or sensors, such that the attacker’s knowledge of the control

system becomes uncertain.

Assuming the presence of potential attacks against HVAC-equipped sensors, the main

contribution of this chapter is to suggest two MTD-based proactive algorithms, each of

which determines a random set of installed sensors to be used for the following two tasks:
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First, a partial measurement of the temperatures in some of the building’s zones. Second,

a prediction (estimation) of the temperatures in the remaining zones. To implement the

second task, we will formulate an optimal state observer that primarily relies on the col-

lected data of inputs and outputs and the randomly-selected sensor set. Achieving the two

aforementioned tasks guarantees the availability of the data (measurements) required for

the operation of the HVAC system. By continuously selecting a random set at each time

step, the attacker’s ability to induce predictable effects by targeting one or multiple sensors

is minimized.

4.1.1 Related work

In this section, we discuss some of the previous studies related to HVAC systems

security and MTD mechanism.

1. Security of HVAC systems

The authors of [15] defined possible vulnerabilities in the automation systems that

employ HVAC technology. Such vulnerabilities include the attacker’s capability to

gain physical access either to the controllers, by guessing the correct password and

shutting down the whole system, or to the interconnection between the HVAC’s crit-

ical components, such as actuators, and, as a result, generating negative impacts. To

counter such vulnerabilities, the authors also suggested a neural network-based intru-

sion detection mechanism. The authors of [16] have noted another vulnerability in

HVAC systems, the inaccurate measurements in the temperature or air flow rate sen-

sors. By exploiting such vulnerability, targeted sensors could produce measurements

that are either below (negative bias) or above (positive bias) the real value of the

measured quantities. Similarly, a wavelet neural work was also suggested and trained

in order to diagnose faulty sensor(s).

In [17], several threats against HVAC systems were defined, including manipulating of

the set points, sensors feeding either a constant false measurement or varying measure-

ments within the bounds of the sensor measurements, or sending harmful commands
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to the actuators. In the same work, a system model-based detection method was

suggested. Similar to the above mentioned works, in this chapter we will focus on

potential attacks against the temperature sensors of HVAC systems that result in

incorrect measurements. Furthermore, we also suggest countermeasures to reduce the

impacts generated by such attacks.

2. MTD-based countermeasures

Initially, MTD was suggested for applications in the area of computer and network

security [18]. For instance, the authors of [19] proposed an MTD based algorithm

to protect the privacy of IPV6 users by repeatedly changing the addresses belong-

ing to the sender and receiver, and thus, leaving the attacker unable to identify the

two communication hosts. Similarly, the authors of [20] developed an MTD-based

strategy for mutating the IP address to create high chances of unpredictability while

maintaining the original configuration of the address. Also, MTD-based techniques

have been applied in the area of smart grids protection [13, 21, 22], specifically for the

process of state estimation which is critically important to ensure a reliable operation

of the electric grid.

MTD has also been applied in the context of control theory. In [23], the authors im-

plemented an MTD-based mechanism that introduced additional states to the control

system, with time-varying dynamics that can be measured using additional sensors.

These new states are difficult to identify by the attacker, and thus, the latter fails to

design stealthy attacks. Also, the authors of [24] considered Denial-of-Service (DoS)

attacks on control systems that can cease control commands. To prevent such attacks,

the authors proposed an MTD-based mechanism that randomly switches among mul-

tiple controllers, such that alternate control commands are available to replace the

ceased ones, and the operation of the control system is not disrupted.

Close to our work, the authors of [25] proposed an MTD-based mechanism that ran-

domly switches among multiple LQR controllers or sensors, such that unpredictability

of the control system is increased. The switching is based on maximizing the entropy
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produced and minimizing the control cost. The authors also suggested a detection

mechanism in order to identify the attacked actuating/sensing mode and take it offline.

On the other hand, the authors of [26] used an MTD-based mechanism that randomly

switches between different controllers or sensors. However, the switching is based

upon solving a formulated optimization problem that minimizes the attack impacts.

Similar to the aforementioned works, in this chapter, we also propose MTD-based

countermeasures that aim to reduce the impacts of attacking the temperature sensors

of HVAC systems. Our algorithms randomly switch among the installed sensors, such

that a set of them is selected, and an estimation is obtained for the non-measured

temperatures. The switching in both of our algorithms relies mainly upon minimizing

the deviation in state (temperature) estimation.

4.1.2 Organization

Section 4.2 explains the thermal model derived for the smart building. Section 4.3

explains the formulation of an MPC based controller for temperature tracking. Section 4.4

describes the threat model against temperature sensors of HVAC systems. In Section 4.5,

we discuss the formulation of an optimal state observer, the two suggested MTD based

algorithms, and the simulation results. Conclusions are given in Section 4.6.

4.2 Thermal Model

For the purpose of designing an appropriate controller that achieves certain goals for

HVAC systems, detailed information about the heat dynamics of the building under consid-

eration is needed. Acquiring and employing an accurate building thermal model is helpful

with the decision-making process of the controller, especially if the control strategy is highly

dependent upon a model of the process under control, such as the MPC technique. A ther-

mal model is derived from the physical properties of buildings, e.g., the material used in

the building structure, heat storage and loss in each section of the building, and interaction

between physically connected spaces. Furthermore, disturbances such as outside weather

and the ground temperature are considered as well.
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Fig. 4.1. a) A side view of a two-floor building with two zones on each floor. Ti, for
i = 1, . . . , 4, is the temperature of each zone. b) RC network representation of the building
shown in Fig. 4.1a.

In this chapter, we use the thermal model developed in [27, 28], using the grey-box

approach. In this model, the building is divided into a number of zones, wherein each zone is

represented as an RC electrical circuit. For the simulation results presented in this chapter,

we consider a building with two floors and two zones per floor, as shown in Fig. 4.1a and its

RC equivalent circuit in Fig. 4.1b. In the RC representation of the building, R represents

the thermal conduction between any two connected (neighboring) zones, C represents the

thermal capacity in each zone, Ti is the ith zone’s measured temperature, and ui is the



96

input, calculated by the MPC controller and supplied to the ith zone. Furthermore, this

model also considers the sun temperatures v3 and v4, conducted through the windows to

the 3rd and 4th zones, and the ground temperatures v1 and v2, also conducted to the 1st

and 2nd zones.

In this study, we assume that each zone in the building is equipped with a Variable

Air-flow Volume (VAV), which is a terminal box that provides conditioned air [29]. The

conditioned air is provided to each zone with a specific air flow rate that can be selected

from multiple predefined discrete levels [30]. Each VAV unit consists of a damper, which

regulates the air flow rate, and a heating coil, to raise the supplied air temperature if needed

[31]. Therefore, the control input u will be calculated using our MPC based controller from

a predefined discrete range, as will be explained in Section 4.3.

By using Nodal analysis, the heat dynamics of each zone in the building can be de-

scribed in first-order differential equations. For example, the heat dynamics of the 1st zone

in Fig. 4.1b can be described as follows

C1Ṫ1(t) =
1

R1
(v1(t)− T1(t)) +

1

R12
(T2(t)− T1(t)) +

1

R13
(T3(t)− T1(t)) + u1(t) (4.1)

Similarly, the same analysis can be used to write the heat dynamics for the other zones.

As a result, the thermal model of the whole building can be described using the following

state space representation

ẋ(t) = Acx(t) +Bcu(t) +Gcw(t)

y(t) = Cx(t)

(4.2)
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where x ∈ Rn×1, u ∈ Rp×1, w ∈ Rn×1, and y ∈ Rn×1 (with n = p = 4) refer to the state,

input, disturbance, and output vectors, respectively, defined as follows

x(t) =

[
T1(t) T2(t) T3(t) T4(t)

]T
u(t) =

[
i1(t) i2(t) i3(t) i4(t)

]T
w(t) =

[
v1(t) v2(t) v3(t) v4(t)

]T
y(t) =

[
T1(t) T2(t) T3(t) T4(t)

]T
(4.3)

also A ∈ Rn×n, B ∈ Rn×p, G ∈ Rn×n, and G ∈ Cn×n are system matrices defined as follows

Ac =



−1
C1

( 1
R1

+ 1
R12

+ 1
R13

) 1
C1R12

1
C1R13

0

1
C2R12

−1
C2

( 1
R2

+ 1
R12

+ 1
R24

) 0 1
C2R24

1
C3R13

0 −1
C3

( 1
R3

+ 1
R13

+ 1
R34

) 1
C3R34

0 1
C4R24

1
C4R34

−1
C4

( 1
R4

+ 1
R24

+ 1
R34

)



Bc =



1
C1

0 0 0

0 1
C2

0 0

0 0 2
C3

0

0 0 0 1
C4



Gc =



1
C1R1

0 0 0

0 1
C2R2

0 0

0 0 2
C3R3

0

0 0 0 1
C4R4



C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(4.4)
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Finally, the model given in (4.2) can be discretized, using the forward difference approxi-

mation [32], into the following discrete-time system (building) model

x(k + 1) = Ax(k) +Bu(k) +Gw(k) (4.5)

4.3 Formulating an MPC based Controller for Temperature Tracking

In this section, we will formulate an MPC based controller with the goal to regulate

the temperature at each zone in the building a reference (desired) temperature. For this

purpose, we will consider the model given in (4.4). To ensure an offset-free tracking in the

presence of model uncertainty and unmeasured disturbances, we will add integral action to

the controller. One method for incorporating an integrator in the MPC controller framework

is to modify the plant model such that the input is the control difference ∆u(k), instead of

u(k) [33, 34]. This is achieved by taking the difference of both sides of (4.5) as follows

∆x(k + 1) = A∆x(k) +B∆u(k) +G∆w(k) (4.6)

where

∆x(k) = x(k)− x(k − 1)

∆u(k) = u(k)− u(k − 1)

∆w(k) = w(k)− w(k − 1)

(4.7)

The suggested MPC controller determines ∆u(k) which minimizes the following cost func-

tion

J =

k+N−1∑
l=k

{[
xr(l + 1)− x(l + 1)

]T
Q
[
xr(l + 1)− x(l + 1)

]
+ ∆uT (l)R∆u(l)

}
(4.8)
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where xr ∈ Rn×1 refers to the reference state vector, and Q ∈ Rn×n and R ∈ Rp×p are

weighing matrices. We can rewrite (4.8) as follows

J = (Xr −X)T Q̄(Xr −X) + ∆UT R̄∆U (4.9)

where

Xr =

[
xr(k + 1) xr(k + 2) . . . xr(k +N)

]T
X =

[
x(k + 1) x(k + 2) . . . x(k +N)

]T
∆U =

[
∆u(k) ∆u(k + 1) . . . ∆u(k +N − 1)

]T
(4.10)

from (4.7), we can rewrite ∆x(k) as follows

x(k + 1) = ∆x(k + 1) + x(k) (4.11)

by substituting (4.5) into (4.11), we can write the following

x(k + 1) = ∆x(k + 1) + x(k)

= A∆x(k) +B∆u(k) +G∆w(k) + x(k)

...

x(k +N) = x(k) + (Ak+N +Ak+N−1 + · · ·+A)x(k)

+ (Ak+N−1B + · · ·+B)∆u(k) + . . .

+ (Ak+N−2B + · · ·+B)∆u(k + 1) + . . .

+B∆u(K +N − 1)

+ (Ak+N−1G+ · · ·+G)∆w(k) + . . .

+ (Ak+N−2G+ · · ·+G)∆w(k + 1) + . . .

+G∆w(K +N − 1)

(4.12)
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which can be rewritten in the following compact form

X = M1x(k) +M2∆x(k) +M3∆U +M4∆W (4.13)

where

∆W =

[
∆w(k) ∆w(k + 1) . . . ∆w(k +N − 1)

]T
(4.14)

Matrices Q̄, R̄, M1, M2, M3, and M4 are defined in Appendix C. By substituting (4.13)

into (4.9), we get the following

J = ∆UTHc∆U + fc∆U + other terms (4.15)

where

Hc = MT
3 Q̄M3

fc = 2
([
xT (k)MT

1 + ∆xT (k)MT
2

+ ∆W TMT
4 −XT

r

]
Q̄M3

) (4.16)

it should be noted that the ”other terms” in (4.15) do not include the term ∆U and, hence,

shall be omitted. Therefore, the MPC controller determines the control sequence ∆U by

solving the following optimization problem

minimize
∆U

J(k) = ∆UTHc∆U + fc∆U (4.17)

the current control input u(k) is determined by using ∆u(k), which is obtained from ∆U ,

and the previous input as follows

u(k) = ∆u(k)− u(k − 1) (4.18)
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Fig. 4.2. a) Temperature profiles of the outside and four zones in a smart building where
our MPC controller is tracking a desired temperature of 25C. b) Measured and reference
temperature profiles of each zone. c) The absolute temperature tracking error of each zone.
d) Control input of each zone.

4.3.1 Results

For the results presented in this section, we used MATLAB to simulate a building

wherein n = 4 and (number of zones) and p = 4 (number of control inputs), using the system

thermal model developed in Section 4.2. The MPC controller regulates the temperature in

each zone to a desired value of 25C and the simulation time is equal to twenty four hours.

Fig. 4.2 shows simulation results using the MPC-based controller to regulate the tem-

perature of four zones inside a building wherein the controller is aiming to keep the tem-

peratures close to or around 25C (desired setting) by providing heating only. For these

results, the simulation time is a one-day period. Fig. 4.2a shows the temperature profiles

of the four zones, the outside of the building, and the reference (desired setting) during the

simulation time. We can see that the controller is able to keep the indoor temperatures
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Fig. 4.3. The control input discrete sequences resulting from using an input energy of a)
1kW, b) 0.5kW, and c) 0.1 kW. d) The absolute temperature tracking error resulting from
using the shown input sequences.

close to the reference. Fig. 4.2c shows the absolute tracking error in the four zones. It

is clear that the controller manages to keep the tracking errors around 1C. However, we

can also see that e3 and e4, the tracking errors of the third and fourth zones, respectively,

exceed 1C, particularly within the time before 12 hours. This is because of the effect of the

outside temperature on the above-mentioned zones. As we can see in Fig. 4.2a, the outside

temperature fluctuates throughout the day, and heat propagates from the outside to the

third and fourth zones. As a result, propagated heat manages to raise the temperature

above the reference. For that reason, the controller does not generate control commands

for those zones during the first 12 hours, as is shown in Fig. 4.2d. Fig. 4.2b shows the

measured and reference temperature profiles in the four zones. We can see in Fig. 4.2d that

the controller generates specific non-zero discrete commands to provide heating specifically

for the time instances when the measured temperature is below the reference.

In Fig. 4.3, we focus on the temperature response of the 1st zone in the building. As
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was explained in Section 4.2, the control input u is selected from predefined discrete levels,

which are obtained as a percentage of a certain energy. Therefore, three values for the input

energy are defined and tested with the proposed MPC controller. Fig. 4.3a, 4.3b, and 4.3c

show the percentage of air mass flow supplied to the 1st zone as a result of using an input

energy of 1kW, 0.5kW, and 0.1KW, respectively. We can see that the input always settles

at a level of 1%, indicating less energy consumed by the controller. However, we can also

see that the time needed to keep the controller turned on becomes less as the predefined

input energy increases. Furthermore, regardless of the discrete levels the controller uses, we

can see in Fig. 4.3d that it is possible to achieve the desired temperature for the 1st zone

with an acceptable absolute tracking error which is less than 2C at the worst.

4.4 Threat Model Against HVAC Systems

Generally, an HVAC system, as a CPS, employs optimal controllers which require the

integrating and managing of various subsystems/functionalities. For instance, communica-

tion protocols are utilized to connect multiple components of the HVAC system and relay

data to the controllers. Also, a diverse network of sensors, such as temperature or air pres-

sure sensors, is installed at different parts of the smart building in order to perceive and

monitor the condition either inside or outside the building. Obtaining accurate measure-

ments from the installed sensors is particularly important in order to ensure both a reliable

operation by the optimal controllers and the generation of correct commands. At the same

time, employing the aforementioned functionalities creates potential vulnerabilities in the

HVAC systems that can be exploited by attackers intending to disrupt the normal (proper)

operation [35]. For example, these attacks could be the exchange of false or modified infor-

mation [36] or the manipulating of sensor-measured values to modify the generated control

commands [37], also referred to as false-data injection attacks.

In the context of CPS security, the operation of HVAC systems in the presence of pos-

sible threats against the interconnection among the system’s components has been studied

[15]. Furthermore, the inaccurate measurements of sensors deployed for HVAC systems has

also been identified as a vulnerability. For instance, the installed sensors may constantly
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feed positive or negative biases, i.e., temperature measurements that are larger or smaller,

respectively, than the real values [16] or the sensors may feed falsified, yet still seemingly

realistic, readings [17]. Therefore, in this chapter, we also consider possible scenarios of at-

tacks intending to manipulate the temperature sensor(s) measurements of HVAC systems,

such that the controllers using those measurements are misled.

To demonstrate the impacts of attacks against HVAC-sensing functionality in our study,

we make the following two assumptions: First, the attacker is capable of targeting one or

multiple sensors installed in a smart building. Second, the mounted attack(s) succeeds

in manipulating the readings of the targeted sensor(s). We consider three possible types

of attacks against HVAC sensors, namely, a negative bias attack, wherein the manipulated

measurement is constant and below the real sensed temperature, a sine-wave attack, wherein

the attacker is injecting within-the-bounds sinusoidal-like data into the targeted sensor(s),

and a random-value attack, wherein the attacker is also injecting within-the-bounds data

into the targeted sensor(s), but such data is randomly selected from the range within the

sensor bounds. To assess the impacts induced by the aforementioned attacks, we will define

and use the following metric

Aimpact =
1

Ta

t0+Ta∑
k=t0

[
x(k)− xr(k)

]T [
x(k)− xr(k)

]
(4.19)

where t0 refers to the initial time instance when the attack begins, Ta is the length of attack

time, and xr is the vector of desired temperature. In short, Aimpact represents the mean

squared error of each zone’s temperature with respect to xr.

Fig. 4.4a shows Aimpact calculated both for an attack-free case, and when targeting one

or multiple temperature sensors with the attacks defined in the legend. Regardless of the

type of attack, it is clear that more severe impacts are induced as the number of targeted

sensors increases. Fig. 4.4b shows the simulated temperature profiles of a specific case of

negative bias attack, wherein the first zone sensor is feeding a constant false reading of 22C.

We can see how the temperature of the first (targeted) zone rises, due to misleading the

controller by the falsified measurement. Furthermore, we can also see the attack impact
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Fig. 4.4. (a) Attack impact (Aimpact) calculated for different attack cases. b) Measured and
reference temperature profiles of four zone in a building where the sensor of the first zone is
targeted with a negative bias attack. c) Control input profiles of the four zones generated
by the MPC controller in response to the attack case given in (b).

on the fourth zone temperature, as it also rises, despite the fact that zone sensor was not

attacked. Fig. 4.4c shows the controller actions for the same attack case. The attack

impact is clearly seen in the control input of the targeted zone, as it is increasing over time,

which indicates a greater energy consumption. For this attack case, Aimpact is found equal

to 149.253.

4.5 MTD-based Algorithms

In order to increase the uncertainty of the attacker’s knowledge about the HVAC system

structure, particularly the operation of the MPC controller, we suggest two MTD algorithms

each of which constantly changes the set of sensors selected to produce an estimation of the
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system states, thereby adding unpredictability to the system, and, as a result, reducing the

impacts of any potential attacks against one or multiple sensors installed in the building.

4.5.1 State estimation using an optimal observer

The goal of employing an MTD-based strategy with the designed MPC controller is

to increase the uncertainty of the attacker’s knowledge about the HVAC system structure,

and, as a consequence, reduce the impacts of potential attacks against the system sensors.

We suggest a way to achieve that goal by constantly changing the set of sensors with

measurements fed to the MPC controller. In the baseline system structure, we assume

that each zone of the smart building is equipped with at least one temperature sensor.

Furthermore, we also assume, in Section 4.4, that one or more of those sensors could be

potentially compromised. Therefore, instead of using measurements from all of them, a

subset of those sensors is selected randomly, and its readings used both to perform state

estimation in order to provide data for the remaining unmeasured temperatures and to use

that data to generate control commands.

State estimation is a process that provides knowledge about system states which cannot

be measured or determined directly on the basis of available sensor measurements, a model

of that system, and previous inputs/outputs. Furthermore, an observer is a circuit block or a

computer software capable of performing the state estimation process. An important factor

to consider when it comes to state estimation is that the available sensor measurements,

along with the system model, can render the system fully observable, which means it is

possible to reconstruct all unmeasured states [38]. As a part of our suggested MTD-based

algorithms, we will utilize the state estimation process to determine the temperatures for

which sensors have not been selected during the implementation of the algorithms. For that

purpose, we will formulate an optimal state observer as follows

1. Formulation of the optimal observer
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Our formulated observer uses previously collected data to estimate the current tem-

peratures. The estimated system dynamics can be described as follows

x̂(k + 1) = Ax̂(k) +Bu(k) +Gw(k)

ŷ(k) = Cx̂(k)

(4.20)

where x̂ and ŷ refer to the estimated state and output vectors, respectively. If A is

nonsingular, as is the case with our system model, then we can write

x̂(k) = A−1x̂(k + 1)−A−1Bu(k)−A−1Gw(k) (4.21)

using (4.21), we can describe the past state vector over a time horizon N recursively

as follows

x̂(k − 1) = A−1x̂(k)−A−1Bu(k − 1)−A−1Gw(k − 1)

...

x̂(k −N) = A−N x̂(k)− · · · −A−1Bu(k −N)

+A−NGw(k − 1)− · · · −A−1Gw(k −N)

(4.22)

using (4.22), we can describe the past output vector over N recursively as follows

ŷ(k − 1) = Cx̂(k − 1)

= CA−1x̂(k)− CA−1Bu(k − 1)

− CA−1Gw(k − 1)

...

ŷ(k −N) = Cx̂(k −N)

= CA−N x̂(k)− · · · − CA−1Bu(k −N)

+ CA−NGw(k − 1)− · · · − CA−1Gw(k −N)

(4.23)
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which can written as follows

Ŷ = Āx̂(k) + B̄U + ḠW (4.24)

where

Ŷ =

[
ŷ(k −N) ŷ(k −N + 1) . . . ŷ(k − 1)

]T
U =

[
u(k −N) u(k −N + 1) . . . u(k − 1)

]T
W =

[
w(k −N) w(k −N + 1) . . . w(k − 1)

]T
(4.25)

Matrices Ā, B̄, and Ḡ are defined in Appendix C. The squared error between measured

and estimated outputs can be defined as follows

J(k) =
(
Y − Ŷ

)T (
Y − Ŷ

)
(4.26)

where Y is a vector of N collected previous outputs. By substituting (4.24) into (4.29)

we get

J(k) = x̂(k)Hex̂(k) + fex̂(k) (4.27)

where

He = ĀT Ā

fe = 2
(
[UT B̄T +W T ḠT − Y T ]Ā

) (4.28)

In summary, the objective of our formulated optimal state observer is to estimate

the current states (temperatures) vector x̂(k) by solving the following optimization

problem

minimize
x̂(k)

J(k) = x̂(k)Hex̂(k) + fex̂(k) (4.29)
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Fig. 4.5. a) Real and estimated temperature profiles using the optimal observer with 200
previous readings from the second zone’s sensor. b) Real and estimated temperature profiles
using the optimal observer with 100 previous readings from the second zone’s sensor. c)
Absolute estimation error for an observer using 100 previous from the second and third
zones’ sensors. d) Absolute estimation error for the results shown in (a). e) Absolute
estimation error for the results shown in (b). f) Absolute estimation error for an observer
using 30 previous from the second, third, and fourth zones’ sensors.

2. Estimation results

Fig. 4.5 shows various simulation results using the optimal observer formulated in

Section 1 and for different cases. Fig. 4.5a shows the results for estimating the



110

temperatures of the four zones in the building, whereby the observer is using the

measurements from a single sensor installed in the second zone. For this case, the

number of collected data samples (Ne) is equal to 200. Given that the sampling

frequency is equal to 1/120 Hz, collecting 200 data samples requires about six and

a half hours, which is when the estimation begins (green line) as shown in the same

figure. For the same case, the estimation error, or the absolute difference between

real and estimated temperatures, is shown in Fig. 4.5d. We can see clearly in both

Figures mentioned above that the observer is capable of predicting the temperatures

of the first, third, and fourth zones reliably, where the maximum estimation errors

are equal to 0.421 C, 0.398 C, and 0.135 C, respectively.

Fig. 4.5b and 4.5e show the results for another case, wherein the observer is still

using a single sensor but Ne is equal to 100. For this case, the estimation process

starts earlier, at time equals to 3 hours, when compared to the previous case, as Ne

is smaller. It is clear that the observer does not perform as reliably as it did in the

previous case, particularly with regard to predicting the temperatures of the first and

third zones, wherein the maximum prediction errors are equal to 7.022 C and 5.384

C, respectively. From both cases explained above, we conclude that increasing the

value of Ne helps to improve the performance of the state observer although a bigger

Ne means a longer time is needed for the data collecting process.

Alternatively, we will run the observer in new cases, where in addition to Ne, the

number of installed sensors is varied. Fig. 4.5c shows the estimation error for a case

wherein the observer is using two sensors, installed in the second and third zones, and

Ne is equal to 100. We can see that the observer’s performance is improved when

compared to the case shown in Fig. 4.5b and 4.5e, wherein Ne was also equal to 100.

In fact, it is clear that the prediction of the first and fourth zones’ temperatures, where

no sensors are installed, is nearly equivalent to that of the second and third zones,

where we assumed the presence of sensors, a clear indication of a reliable estimation.

Finally, Fig. 4.5f shows the estimation error for the case wherein the observer is using
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the measurements of three sensors installed in the second, third, and fourth zones, and

Ne is equal to 30. Similar to the previous case, we can see nearly equivalent results

for all predictions, however, with more sensors and fewer collected data samples. In

summary, we conclude from all the cases above that the performance of the formulated

optimal observer improves as the value of Ne increases. Furthermore, we also conclude

that in order to produce a reliable estimation, the observer needs fewer data samples

as the number of installed sensors increases, which, in turn, indicates that a shorter

time is needed to collect those samples.

In order to analyze the robustness of both our MPC-based controller and optimal

observer, we run a number of simulations wherein we assumed the presence of mea-

surement noise and system uncertainty. In these simulations, an MPC-based controller

regulates the temperature in four indoor zones where control commands are generated

using either measurements from each zone’s temperature sensor or estimations from

the optimal observer formulated in Section 4.5.1. Also, for each simulation run, we

calculated the mean absolute temperature tracking error ei (for i = 1,2,3,4) for the

four zones. Depending on the number of measurements used in state estimation, we

color-coded the results for using one, two, three, and four sensors with brown, green,

yellow, and blue, respectively.

Table 4.1 shows the values of ei calculated for the four zones wherein measurements

Table 4.1. Mean absolute tracking error ei (for i = 1,2,3,4) calculated with measurements
noise of zero mean and the variance shown in the leftmost column. Brown, green, yellow,
and blue colored cells indicate state estimation calculated using measurements from one,
two, three, and four sensors, respectively.

using sensor measurements using estimated state vector x̂
e1 e2 e3 e4 e1 e2 e3 e4

20%
0.524 0.391 0.565 0.343 0.226 0.213 0.274 0.194 0.344 0.316 0.322 0.301

0.207 0.162 0.199 0.181 0.236 0.211 0.329 0.196

40%
1.519 1.311 1.942 1.761 0.238 0.216 0.294 0.237 0.351 0.317 0.320 0.325

0.214 0.201 0.215 0.209 0.321 0.214 0.324 0.214

60%
2.411 2.623 3.052 3.098 0.343 0.311 0.305 0.285 0.348 0.328 0.347 0.361

0.306 0.293 0.240 0.224 0.325 0.291 0.336 0.237

80%
3.746 3.730 3.849 3.992 0.402 0.358 0.363 0.348 0.364 0.342 0.421 0.405

0.369 0.362 0.341 0.346 0.349 0.327 0.344 0.347
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are susceptible to zero mean noise and the variance shown in the leftmost column.

We can see that the controller performs well, with noise variance equal to or below

20%, and wherein temperature tracking is achieved with ei values close to or below

0.5C. However, we can also see that the performance of the controller worsens as the

variance increases above 20%, as the values of ei are also increasing. On the other

hand, it is clear that the use of the estimated state vector x̂ with the MPC-based

controller improves results, regardless of the number of sensors used for estimation,

since all values of ei are close to or below 0.4C. Furthermore, it is also clear that

employing more sensor reading for estimations improves the temperature tracking by

reducing the value of ei.

Table 4.2 shows the values of ei calculated for the four zones wherein we assumed that

the system matrix A, which is used to simulate the thermal dynamics of the building,

has uncertainty. That is, the matrix A is perturbed by random values as follows

Anew = A+ β. ∗A (4.30)

where β ∈ Rn×n is a matrix containing random uniformly distributed numbers gen-

erated within the ranges shown in the leftmost column of Table 4.2. Whether using

direct measurements or an estimation, we can see that the controller is performing

well with system uncertainty for the cases corresponding to the range of (±10%) or

below. Similarly, the same pattern is exhibited when using x̂, as the values of ei are

Table 4.2. Mean absolute tracking error ei calculated with system uncertainty where
matrix A is perturbed with random values selected from within the ranges shown in the
leftmost column. Cell colors are defined similarly as in Table 4.1.

using sensor measurements using estimated state vector x̂
e1 e2 e3 e4 e1 e2 e3 e4

±2%
0.297 0.209 0.375 0.355 0.368 0.225 0.223 0.251 0.385 0.346 0.374 0.326

0.220 0.213 0.239 0.230 0.357 0.317 0.325 0.341

±6%
0.233 0.241 0.476 0.543 0.676 0.439 0.328 0.361 0.520 0.386 0.382 0.375

0.364 0.356 0.313 0.352 0.391 0.404 0.382 0.389

±10%
0.491 0.482 0.507 0.556 0.791 0.510 0.496 0.426 0.612 0.474 0.545 0.527

0.463 0.421 0.424 0.411 0.459 0.461 0.536 0.425

±30%
2.305 1.249 2.203 1.791 2.114 1.629 1.531 1.197 2.252 2.159 1.765 1.173

0.948 0.957 0.871 0.855 1.221 1.127 1.046 1.135
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reduced, and employing more sensors for the state estimation process improves the

temperature tracking.

4.5.2 First MTD based algorithm (MTD1)

In order to understand the main idea behind this algorithm, we will begin with a case

study. We will consider a building with four zones where a single temperature sensor is

installed in each zone. Therefore, the following combinations of sensor sets can render the

system fully observable and, hence, will be used in the state estimation process

sensor ={s1, s2, s3, s4}

sensor set ={s4, s3, s3s4, s2, s2s4, s2s3,

s2s3s4, s1, s1s4, s1s3, s1s3s4,

s1s2, s1s2s4, s1s2s3}

(4.31)

where si is the sensor installed in the ith zone. Each one of those sets can be obtained using

the corresponding row(s) of the output matrix C. For this particular case, we will assume

that the second sensor s2 was targeted with a negative bias attack. Therefore, the sensor

set given in (4.31) will contain intact sets, which include s2, and flawed sets, which do not

include s2. As a first step of this algorithm, the following cost function J is calculated for

each set given in (4.31)

Ji(k) =

[
yi(k)− Cix̂i(k)

]T
Qyi

[
yi(k)− Cix̂i(k)

]
for i = 1, . . . , |sensor set|

(4.32)

where Ci is the row(s) of output matrix C that result in the output vector yi, and Qyi

is a weighing matrix. Figures 4.6a and 4.6b show the calculated values of J for both the

intact and flawed sets, given in (4.31), respectively. For both those figure, the MTD based

algorithm is engaged at the same time with the optimal observer, which is almost at time



114

6 7 8 9 10 11 12

time [hour]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

c
o
s
t 
fu

n
c
ti
o
n

J
1

J
2

J
3

J
8

J
9

J
10

J
11

(a)

6 7 8 9 10 11 12

time [hour]

0

100

200

300

400

500

600

c
o
s
t 
fu

n
c
ti
o
n

J
4

J
5

J
6

J
7

J
12

J
13

J
14

(b)

6 7 8 9 10 11 12

time [hour]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
a
c
k
in

g
 e

rr
o
r 

[C
]

e
1

e
2

e
3

e
4

(c)

6 7 8 9 10 11 12

time [hour]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
s
ti
m

a
ti
o
n
 e

rr
o
r 

[C
]

e
1

e
2

e
3

e
4

(d)

6 7 8 9 10 11 12

time [hour]

0

2

4

6

8

10

12

in
d

e
x
 o

f 
s
e

le
c
te

d
 s

e
n

s
o

r 
s
e

t

(e)

Fig. 4.6. a) Cost function (J) calculated, using (4.32), for the intact sensor sets. b) Cost
function (J) calculated for the flawed sensor sets. c) Absolute temperature tracking error
when the MPC controller is using measurements selected by the MTD based algorithm. d)
Absolute temperature estimation error when the observer is using measurements selected by
the MTD based algorithm. e) Indices of sensor sets selected by the MTD based algorithm.

equal to 6.6 hours. We can see clearly that intact sets produce smaller values for J compared

to those produced by the flawed sets. This is an expected behaviour due to the presence

of a manipulated measurement from s2 which, in turn, will induce an estimated vector x̂

deviating from the actual measurements vector y. As a result, we have an indication of

an attacked (manipulated) measurement although we cannot define exactly which sensor is
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Algorithm 3: First MTD based defense (MTD1)

Input: a combination of sensor sets along with their measurement yi vectors, for
i = 1, . . . , |sensor sets|.

Output: a randomly selected estimated state vector x̂r, where
1 ≤ r ≤ |sensor set|.

1 for i = 1 : |sensor set| do
2 determine x̂i using the optimal observer and yi ;

3 Ji ←
[
yi − Cix̂i

]T
Qyi

[
yi − Cix̂i

]
;

4 arrange Ji in an ascending order;
5 randomly select a Jr from the first half of the ascending arrangement;
6 x̂r ← the estimated state vector corresponding to Jr;

giving that measurement. Therefore, we will benefit from this attack indication in suggesting

our first MTD based algorithm whose steps are as follows

1. At the current time step k, use the optimal observer to determine x̂i(k) for each sensor

set.

2. Calculate Ji(k) using (4.32) for each sensor set. Then, arrange Ji(k) in an ascending

order.

3. Out of the first half of the ascending arrangement, randomly select a Jr(k), where

1 ≤ r ≤ |sensor set|.

4. Use the estimated state vector x̂r(k), obtained using the measurements provided by

the rth set, in the MPC controller to determine u(k).

5. For the next time step k + 1, collect measurements from the sensors and go to step

(1).

The steps for our first MTD based defense approach are shown in Algorithm 3. For

the same attack scenario against s2, Figure 4.6c shows the absolute temperature tracking

error when the MPC controller is employing measurements selected by the above explained

algorithm. Similarly, Figure 4.6d shows the absolute temperature estimation error when the

optimal observer is employing measurements selected by the above explained algorithm. In
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addition, Figure 4.6e shows the indices of selected sets which belong to the following range

(1, 2, 3, 8, 9, 10, 11). We can see that the algorithm selects only one of the intact set, whose

indices are shown in the legend of Figure 4.6a, which indicates the success of our MTD

based approach to deter the attack mounted against s2.

Since increasing the number of targeted sensors will reduce the number of intact sets,

this algorithm can fail to reduce the impacts of multi sensor attacks. One possible remedy

for this drawback is to increase the number of installed temperature sensors in the building.

Another possible remedy is to modify the algorithm, which leads us to suggesting another

MTD based algorithm in the next section.

4.5.3 Second MTD based algorithm (MTD2)

In this section, we suggest another MTD based algorithm with the goal to overcome

the shortcomings of the first algorithm. For this algorithm, we also will use the same sensor

sets given in (4.31) which make the system fully observable. In order to understand the

idea behind this algorithm, we will also consider the same case study from the previous

section. By examining Fig. 4.6a, we can see that the cost function J of the intact sets

does not exactly reach zero, which is expected since we have inherent measurement noise.

We will benefit from that Figure in selecting a threshold value, which we will refer to as ε

henceforth, and use it in our second MTD based algorithm whose steps are as follows

1. Initially, define ε > 0 by making use of Fig. 4.6a. ε should be a value where at each

time step, one or multiple J , of intact sets, is equal to or smaller than.

2. At the current time step k, randomly select two sensor sets.

3. use the optimal observer to determine x̂1(k) and x̂2(k) for the selected sets.

4. Calculate the modified cost function for each selected set as follows

Ji(k) =
1

|k − k0|
k∑

l=k0

{ [
yi(l)− Cix̂i(l)

]T
Qyi

[
yi(l)− Cix̂i(l)

]}
(4.33)

where k0 is the index of the initial time step, and i = 1, 2.



117

5. If the following is true

J1(k) ≤ ε and J2(k) ≤ ε (4.34)

then select either one of the sets Jr, where r ∈ {1, 2}, and go to step (9).

6. Else if the following is true

J1(k) > ε and J2(k) ≤ ε (4.35)

then, ignore J1(k) along with its sensor set. Select another set randomly and go to

step (3).

7. Else if the following is true

J1(k) ≤ ε and J2(k) > ε (4.36)

then, ignore J2(k) along with its sensor set. Select another set randomly and go to

step (3).

8. Else, ignore both sets. Select another two sets randomly and go to step (3).

9. Use the estimated state vector x̂r(k), obtained in step (3), in the MPC controller to

determine u(k).

10. For the next time step k + 1, go to step (2).

The steps for our second MTD based defense approach are shown in Algorithm 4.

Results for using this algorithm and a performance comparison, with respect to the previous

algorithm, are given in the next section.

4.5.4 Performance evaluation for the MTD-based algorithms

In order to show the efficacy of the two suggested defenses, we will evaluate the per-

formance of the two MTD-based algorithms with the designed MPC controller when one or
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Algorithm 4: Second MTD based defense (MTD2)

Input: a combination of sensor sets along with their measurement yi vectors, for
i = 1, . . . , |sensor sets|, a threshold value ε > 0, initial and current time
steps k0 and k.

Output: a randomly selected estimated state vector x̂r, where
1 ≤ r ≤ |sensor set|.

1 randomly select two sensor sets y1 and y2 ;
2 BreakFlag ← 0 ;
3 while BreakFlag = 0 do
4 for i = 1 : 2 do
5 determine x̂i using the optimal observer and yi ;
6 Ji ← equation (4.33) ;

7 if (J1 ≤ ε and J2 ≤ ε) then
8 Jr ← either J1 or J2 ;
9 BreakFlag ← 1 ;

10 else if (J1 > ε and J2 ≤ ε) then
11 ignore J1 and y1 ;
12 J1 ← randomly select another set ;

13 else if (J1 ≤ ε and J2 > ε) then
14 ignore J2 and y2 ;
15 J2 ← randomly select another set ;

16 else
17 ignore J1, J2, y1, and y2 ;
18 J1 ← randomly select another set ;
19 J2 ← randomly select another set ;

20 x̂r ← the estimated state vector corresponding to Jr ;

multiple sensors are compromised. In our evaluation, we consider a building with four zones

that utilizes an MPC controller. The MPC controller inputs are the measurements provided

from four temperature sensors, one installed per each zone. In this case, the four sensors

form a total of 14 sensor sets wherein each one can be used for the state estimation process.

We also assume that all the installed sensors are susceptible to the three types of attacks

defined in the threat model. Furthermore, in our evaluation, we include the results for a

baseline scenario in which the MPC controller operates without any of the MTD defenses,

and also attack-free scenarios in which the MPC controller operates with either of the two

defenses, though the sensors are not compromised.
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Fig. 4.7. A comparison for using the suggested MTD based algorithms to reduce Aimpact
generated by the following attacks: a) negative bias, b) sinusoidal, and c) random. d)
Number of selected sensor sets by the two MTD based algorithms and for different cases of
random attack. For all these results, we assume that four temperature sensors are installed
in the building.

Fig. 4.7a shows the attack impact Aimpact for varying cases with respect to the applica-

tion of the MTD-based algorithms and the number of sensors targeted by a constant-value

attack. In this Figure, we can see that both MTD-based algorithms manage to deter the

above-mentioned attack, targeting only a single sensor in the building, for which the result-

ing Aimpact is nearly equivalent with respect to each attack and to that resulting from the

attack-free cases. However, for cases involving multiple-sensor attacks, we can see clearly

that MTD1 fails when it comes to attack cases targeting 2 (50%) or more of the installed

sensors. On the other hand, MTD2 produces values for Aimpact for attack cases involving

up to 3 (75%) of the sensors equivalent to those produced by the attack-free cases, and this

algorithm fails only with attacks targeting all of the sensors, which, in turn, increases the

cost of the mounted attacks.
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Fig. 4.7b shows Aimpact under different cases involving a sinusoidal attack. Similar to

the previous attack case, we see the same performance by the two MTD-based algorithms.

We can also draw the same conclusion from Fig. 4.7c, which shows the results for cases

of random attack. In general, we can see from the results depicted in Fig. 4.7 that both

algorithms achieve the main goal of MTD, which is to create a proactive defense by adding

uncertainty to the control structure employed by the smart building, using the potentially

attacked sensors, and, hence, reducing the attack space, even though one of the algorithms

outperforms the other.

For MTD1, the algorithm relies on the values of performance indices, calculated using

(4.32) without considering how significantly big or small those values are. For that reason

and also because of the limited number of sensor sets, we see that that algorithm fails to

deter attacks against multiple sensors. On the other hand, the MTD2 algorithm relies on

the performance indices, calculated using (4.33), as well as the predefined threshold ε. This

reliance allows the algorithm to search for the intact sensor sets and randomly select one of

them. As a result, it is clear from Fig. 4.7a, 4.7b, and 4.7c that MTD2 fails only when all

(100%) of the sensors are attacked, resulting in the unavailability of intact sets. Fig. 4.7d

shows the number of selected sets by both MTD-based algorithms for the different cases of

random attack depicted in Fig. 4.7c. We can see clearly how MTD tends to select fewer

numbers of sets as the number of attacked sensors increases, meaning that the number of

intact sets decreases.

Alternatively, we will evaluate the performance of the suggested algorithms with a

redundancy of sensors. More specifically, we will consider a four-zoned smart building with

an MPC controller whose inputs are the measurements from eight temperature sensors, two

installed per each zone. In this case, the eight sensors provide a total of 64 sensor sets, each

of which can be used for the state estimation process. Fig. 4.8a, 4.8b, and 4.8c show Aimpact

with the application of the MTD-based algorithms with sensors redundancy, for different

cases of constant-value, sinusoidal, and random attacks, respectively, mounted against one

or multiple sensors. In all the aforementioned figures, we can see that MTD2 exhibits
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Fig. 4.8. A comparison for using the suggested MTD based algorithms to reduce Aimpact
generated by the following attacks: a) negative bias, b) sinusoidal, and c) random. d)
Number of selected sensor sets by the two MTD based algorithms and for different cases of
random attack. For all these results, we assume that eight temperature sensors are installed
in the building.

the same performance, in that it fails only when all the equipped sensors are attacked.

Furthermore, in Fig. 4.8d, which shows the number of selected sets for different cases of

random attack, MTD2 selects sets in a descending order as the number of attacked sensors

grows, which, in turns, reduces the attack window.

Fig. 4.8a and 4.8b show that the performance of MTD1 is improved with sensor re-

dundancy, as the algorithm fails when 75% and 87.5% of the installed sensors are attacked,

respectively. However, we can see in Fig. 4.8c that MTD1 fails after 50% of the sensors are

attacked. This drawback could be solved by adding more sensors to the system structure,

and, as a result, creating more sensor sets. In summary, the suggested MTD-based algo-

rithms are able to reduce the impacts of attacks mounted against the temperature sensors.

On one hand, MTD1 requires sensor redundancy in order to be able to deter multiple-sensor
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attack cases. On the other hand, MTD2 does not need more than one sensor per zone as

long as the resulting sensor sets make the system observable. Furthermore, MTD2 only

fails when all sensors are attacked. However, it should be noted that implementing MTD2

requires a number of offline system simulations to calculate the cost functions, shown in

Fig. 4.6a and 4.6b, in order to select an appropriate value for ε.

4.6 Conclusion

In this chapter, we considered the HVAC systems which are employed in residential

and commercial smart buildings to provide thermal comfort for the occupants. First, we

formulated an MPC based controller with the goal of tracking a desired temperature for

each zone in the building. Then, we analyzed the impacts that could result from target-

ing (attacking) the temperature sensors, with readings used by the MPC-based controller,

by manipulating their measurements. Such deliberate actions could lead to deceiving the

controller, and, hence, cause discomfort for the occupants. For that reason, we suggested

two MTD-based algorithms, with the goal of reducing the impacts of such attacks. Our

suggested algorithms constantly change the sensor set with readings fed to the controller

and also estimate the other non-measured temperatures. The results showed an improve-

ment in the performance of the MPC-based controller if combined with either one of the

algorithms, in terms of providing an acceptable temperature tracking despite the presence

of sensor attacks.
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CHAPTER 5

ATTACK MITIGATION IN ADVERSARIAL PLATOONING USING

DETECTION-BASED SLIDING MODE CONTROL AND SWITCHING OF CONTROL

FROM AUTO TO HUMAN

In this chapter, we study the behavior of a single vehicular platoon where one of the

platooned vehicles is controlled by an attacker. The latter is able to modify the platooning

controller of the seized vehicle and, hence, produce sudden accelerating/decelerating move-

ments that can lead to collisions inside the platoon. A previous study suggested a sliding

mode controller which uses only local vehicular sensor information without the need for

inter-vehicle communications, to mitigate the impacts of the aforementioned attack. Also,

the suggested controller is assisted with a decentralized attack detection. Simulation re-

sults from that study demonstrate that collisions are eliminated, or significantly reduced

at certain cases. However, the same results also indicate that the intact vehicles concede

platooning and start following the attacker. For instance, the lead vehicle, assuming not

being attacked, will no longer follow a reference trajectory, which is part of its platooning

goals, once it detects an attack behind it. Therefore, we will modify the suggested mitiga-

tion controller such that the collisions are also reduced and the control of intact vehicles

will eventually switch from auto to human driving, i.e., disband the platoon, such that the

attacker cannot have an influence on them anymore.

5.1 Introduction

The formation and maintaining of automated vehicular platoons is an area of exten-

sive and ongoing research. Platooning has been shown to have environmental, safety, and

passenger comfort benefits [1, 2]. They also help to alleviate traffic congestion on highways

[3] and have proven more fuel efficient than manually-operated vehicles [4]. The safety and

security of a platooning CPS is important and essential. For a platooning CPS, it has been
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shown that a single attacker can disrupt normal operations simply and easily, and that

such disruptions can cause catastrophic collisions [5]. For that reason, a previous study [6]

proposed a sliding mode controller aimed at ensuring that the impacts induced as a result of

the attack presented in [5] would be mitigated. More specifically, a sliding mode controller

was formulated with the goal of ensuring that deviations from expected platoon behavior

due to the aforementioned attack would not cause collisions.

In this chapter, our work builds upon the results presented in [6] and also attempts

to solve the safety problem of an adversarial environment. The results of the aforemen-

tioned work indicated that the proposed sliding mode controller was able to considerably

eliminate, or at least significantly educe, accidents. However, though the engagement of

the proposed controller resulted in a collision-free platoon, said platoon was still influenced

by the attacker-controlled vehicle. For that reason, we modify the proposed sliding mode

controller such that it is still able to avoid collisions and, at the same time, lead the way to

disbanding, which is switching control from auto to humans.

5.1.1 Related work

Sliding Mode Control has been used previously in many scenarios. Platooning strate-

gies exist where sliding mode control has been used in a homogeneous platoon [7] under

normal operation. Graph theoretic approaches similar to ours have been used before in

platooning [8, 9], and in general problems of multiple vehicle target tracking in the presence

of uncertainties [10].

Apart from platooning, much work has been completed in interconnected dynamic

cyber-physical systems. The security and robustness of these systems in the face of an attack

or failure is crucial and an active area of research [11]. Graph theory and information flow

analysis have been used to analyze such systems as well [8, 9]. Much of this work focused on

ensuring suitable operating conditions for dynamic systems, with an emphasis on stability,

controllability, and observability.
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5.1.2 Organization

Section 5.2 explains the platooning, vehicle, and threat models used in simulations for

this chapter. In Section 5.3, we present the sliding mode controller and its modification for

attacks mitigation. Section 5.4 discusses the simulation results. Conclusions are given in

Section 5.5.

5.2 System Model

In this section, we discuss the vehicle, platooning, and threat models used for simula-

tions of this chapter.

5.2.1 Platooning Model

In keeping with the current literature [12, 13], each vehicle is analyzed as a double in-

tegrator system, where the control input is a desired acceleration. For an n-vehicle platoon,

the state vector x ∈ R2n is made up of positions and velocities and the input vector u ∈ Rn

consists of control inputs. The state and input vectors can be expressed as

x =

[
x1 x2 . . . xn v1 v2 . . . vn

]T
u =

[
u1 u2 . . . un

]T (5.1)

and the state space system becomes

ẋ =

0n×n In×n

0n×n 0n×n

x+

0n×n

In×n

u (5.2)

where car i has position and velocity xi, vi, respectively, and control input ui. These po-

sitions are measured from the center of mass of all the cars. In the bidirectional control

scheme, we have

ui = fi(xi−1 − xi, vi−1 − vi, xi+1 − xi, vi+1 − vi) (5.3)
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(a) Controllers of a single vehicle.

Traditional
Controller

Mitigation
Controller

Attack
Detector

MUX

ui

ui

er, ef

er, ef

er, ef

ui

(b) Inside high level controller: attack detection and controller selection based on
attack state.

Fig. 5.1. Overview of Platoon. Each vehicle knows its own velocity and measures a relative
distance and velocity from rear and front (er, ef ). These same measurements are used in
the high level controller to switch between rear or front tracking if an attack is detected [6].

which means that each vehicle’s control input can only use relative distance and speed

measurements, obtained using the local range and range rate sensors, respectively, with

respect to its immediate neighbors. This function fi constitutes a high level controller that

is meant to be independent of a vehicle’s dynamics (Fig. 5.1b); as such the control input

ui serves as the vehicles desired acceleration.

As the rearmost and leader vehicle lack a follower and predecessor, respectively, they

follow a slightly modified version of (5.3) wherein the rearmost car uses a unidirectional
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law, and the leader follows a reference trajectory while maintaining a follower separation

u1 = f1(xi+1 − xi, vi+1 − vi)

un = fn(xi−1 − xi, vi−1 − vi, xref − xi, vref − vi)
(5.4)

5.2.2 Vehicle Model

A realistic model of a vehicle has a throttle input or some other type of actuator. The

purpose of this section is to find how a desired acceleration can be achieved based on our

knowledge of the vehicle. A model of the vehicle’s dynamics is required in this case. This

can be specific to different vehicles, but the general idea is to find an expression for the

control input required for a desired acceleration. This constitutes the low level controller

shown in Fig. 5.1a.

The vehicle model we use is a 2nd order plant with a linear friction/drag coefficient.

Such models are easy to analyze while capturing the major dynamics of the system. Similar

models have been used in other control systems literature to analyze fundamental properties

of single vehicles and platoons [14, 15]

ẋi = vi

v̇i = αFi − βvi
(5.5)

where Fi ∈ [F−, F+] is a variable to set the actuator (throttle) and α, β are the model’s

parameters which can be chosen based on the vehicle’s internal design values or through

system modeling [12].

For the high level controller described in (5.3) to work, we need to compensate for the

internal dynamics of the vehicle. We use feedback linearization [12, 15] to compensate for

terms in the model described by (5.5) gives us

Fi =
1

α
(ui + βvi) (5.6)

Note that this controller does require a velocity measurement of vehicle i. A sensor which
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provides this reading will be required, but this is just car sensing its internal data and does

not violate the decentralized condition.

The reason for including this model is to emphasize that there are bounds F−, F+ on Fi

which lead to saturation. We simulate with these saturation limits in order to demonstrate

our controller on a realistic system where the desired acceleration cannot always be achieved.

A favorable consequence of this is that we cannot achieve infinite acceleration.

Substituting (5.6) into (5.5) gives us the required double integrator type system for

each vehicle

ẋi = vi

v̇i = ui

(5.7)

as long as the condition 1
α (ui + βvi) ∈ [F−, F+] holds true. These saturation constraints

apply to the attacker as well and ensure that we do not have a car with unrealistic capabil-

ities.

We also add another constraint on this controller which prohibits reverse motion. This

is to maintain relevance with the real application of AHS. It can be expressed as Fi > F−i

if (vi > 0) and Fi > 0 otherwise, which means that if a vehicle’s speed is zero or below, it

cannot apply negative actuator input.

5.2.3 Threat Model

For this chapter, we consider a platoon of n members, each equipped with front- and

rear-facing sensors that measure relative distance and velocity. Aside from the attacker-

controlled vehicle, each of the vehicles adheres to the same control law and has the same

capabilities, as described in the previous section (5.2.2). The last member is indexed as 1

and the leader is at index n. We focus on the bidirectional platoon scheme [16], wherein

every car gathers information (e.g. relative distance and speed) about, and reacts to the

movements of, both the preceding and following vehicle. The leader attempts to maintain

a separation with its follower and has access to a reference trajectory. The last car only
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Fig. 5.2. Oscillatory behavior brought on by an attacker, resulting in a high speed crash
[5]. Each line represents the trajectory of a vehicle in a ten vehicle platoon with an attacker
at the rear.

tracks the car immediately in front of it.

We assume just a single attacker in control of a car at an arbitrary position in the

platoon. The attack car is possibly more powerful than the regular cars, in that it may have

greater acceleration capabilities. The goal of the attacker is to cause multiple collisions. To

accomplish this, the attacker follows a modified control law that induces oscillations in the

platoon (Fig. 5.2). It has been shown that an attacker can leverage oscillatory behavior to

cause more accumulated damage, and more collisions over time, than if he simply accelerates

in one direction. This can be achieved simply by changing the controller gains [5]. The

attack always begins in a steady state configuration, when the cars are traveling at their

desired separations, which was chosen to be one car length of separation in our tests.

If we limit our discussion to a single attacker, we propose to use the consensus condition

that is required in both cases anyway. We recommend a secondary controller that attempts

to keep a constant distance from the more dangerous and uncooperative car (in front or

behind), relying instead on the other car to move and make room. Under normal circum-

stances, a traditional bidirectional law is followed; however, upon detection of anomalous

behavior indicating the onset of an attack, this secondary controller is engaged to mitigate

the attack (Fig. 5.1b). This approach allows a straightforward, ultimate boundedness anal-

ysis, and simulation results show that it greatly reduces total damage when compared with

a bidirectional scheme.

Since total or instantaneous damage is not formally defined, we propose to use a metric

that depends upon two things: whether an impact takes place and the relative velocity of
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the colliding vehicles. The choice of measuring damage is motivated by previous work on

automated vehicle and platooning safety [17, 18]. To measure the accumulation of damage,

we assign the following as a rate of change to a state D:

Ḋ = cT vrel (5.8)

where c is an n− 1 length vector whose entries are 0 normally, but 1 if there is a collision.

vrel is a vector containing the absolute values of n−1 relative velocities at time of collision.

5.3 Attack Mitigation

In [6], two sliding mode controllers were designed for the front and rear of each pla-

tooned vehicle. Then, the two controllers were combined using the graph theory [10].

Furthermore, a detection scheme was also suggested to detect possible attacks with respect

to the front and rear of each platooned vehicle. The final form of one of the controllers,

front or rear, is as follows

ui = sat
(s
ε

)
[2k1vmax + amax + ε] (5.9)

with

s = k1e1 + e2

e1 = xi+1 − xi − σref

e2 = vi+1 − vi

(5.10)

and

sat
(s
ε

)
=


s
ε , if

∥∥ s
ε

∥∥ < 1

sgn
(
s
ε

)
, otherwise

(5.11)

where e1 and e2 are the position and speed errors, σref is the inter-vehicle desired separation,

and k1, ε > 1.
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Fig. 5.3. Inter-vehicle separations, vehicular positions, and damage data with an attacker-
controlled vehicle at position 3 in the platoon. Results shown in (a), (c), and (e) are
obtained using the suggested mitigation controller without detection. Results shown in (b),
(d), and (f) are obtained using the suggested mitigation controller with detection.

Table 5.1. Simulation Parameters

Vehicle Dynamics
Controller Detection Filter

normal attacker

F+
i = 1 F+

i = 1 k1 = 0.1 l1 = 200
β = 0.1 β = 0.1 ε = 0.025 l2 = 600
α = 5 αatt ≥ 5 fcutoff = 0.01 Hz
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To demonstrate the effectiveness of our approach, we consider a five-vehicle platoon

with the attacker at position three. The attacker vehicle follows a square-wave acceleration

pattern, wherein the attacker applies maximum control effort followed by minimum control

effort, with a given frequency fatt. Our platooning goals stipulate σref = 9 m and vref = 25

ms-1, for which each car length l = 4.5 m (one car length of separation between cars). The

parameters in the dynamic model of the cars, controller, and detection filter are given in

Table 5.1. In order to increase attacker power, αatt was chosen to be greater than α. This

is equivalent to having a more powerful engine. Consequently the maximum acceleration

and velocity of the attacker will be equal or higher than those of normal vehicles. Also, we

assume that the third vehicle in the platoon is controlled by the attacker.

Figure 5.3 shows the results for an attack case wherein the attacker is of equal power

to other vehicles in the platoon (αatt = α). We can see clearly that despite the fact that the

mitigation controller was used, the damage increased with time, as shown in Fig. 5.3a, 5.3c,

and 5.3e, while, on the other hand, engaging the same mitigation controller with detection

significantly reduced the accumulated damage, as shown in Fig. 5.3b, 5.3d, and 5.3f.

Despite the ability of our first mitigation controller to significantly reduce collisions,

as shown in Fig. 5.3, it should be noted that the leader gives up the reference trajectory

once it detects the attacker behind it. That is to say, the platooning is abandoned and

the leader, in addition to other followers, are influenced by the attacker-controlled vehicle

which, in turn, act as the new reference for the platoon. For that reason, we will modify our

suggested mitigation controller in order to avoid that undesirable effect. By engaging our

second suggested mitigation, the goal is to gradually increase the inter-vehicle separations

until it is possible to switch control of intact vehicles from auto to human drivers and

effectively disband the platoon. The first step to this mitigation approach is adjusting the

value of amax used to calculate the commanded acceleration in (5.9) which is modified as

follows

ui = sat
(s
ε

)
[2k1vmax + am + ε] (5.12)
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Position error (ei)

Speed error (ėi)

r1r2r3r4

sliding surface

n3 × amax

n2 × amax

n1 × amax

amax

Fig. 5.4. The position - speed errors state space diagram which is employed for our second
mitigation controller. Depending on the current values of both errors, the value of am, used
in (5.12), is modified as nj × amax (j = 1, 2, 3), where (0 < n3 < n2 < n1 < 1). The radii of
concentric circles are determined as given in (5.13).

For that purpose, we will use the state space diagram shown in Fig. 5.4, which shows

the position-speed errors for the ith platooned vehicle, to determine the value of am. The

diagram also includes the sliding surface used by the fist mitigation controller. Depending

upon the value of σref , a number of concentric circles are added to the diagram, their radii

are defined as follows

r1 = n3 × σref

r2 = n2 × σref

r3 = n1 × σref

r4 = σref

(5.13)

where

0 < n3 < n2 < n1 < 1 (5.14)
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Fig. 5.5. Inter-vehicle separations, vehicular positions, and damage data with an attacker-
controlled vehicle at position 3 in the platoon. These results are obtained using the second
suggested mitigation controller with detection.

At each time step, the values of ei(t) and ėi(t) are calculated. Then, am is equal to

n3 × amax, n2 × amax, n1 × amax, or amax if (ei(t), ėi(t)) lie inside the circle with radius

r1, r2, r3, or r4, respectively. The second step of this mitigation approach is to gradually

increase the inter-vehicle separations until it is safe for the non-attacked vehicles to switch

control from auto to human driving and thus disband the platoon, which means the latter

vehicles are no longer controlled by the attacker. Also, at each time step, the position error

ei(t) is determined, and if it lies inside the inner circle, which circle’s radius is equal to

r1, then the desired inter-vehicle separation increase by 0.5 m. The last action is repeated

until the inter-vehicle separation reaches a certain predefined threshold, at which point

the disbanding process begins. Fig. 5.5 shows the results for using the second mitigation

controller, with which the disbanding begins once the inter-vehicle separation is increased

by two meter. We can see that the damage is further reduced, compared with the results
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Fig. 5.6. Total damage across relative attacker power and frequencies calculated for a
platoon using bidirectional controller without attack detection. Collision line in green [6].

from Fig. 5.3, and the fourth and fifth vehicles do not follow the attacker anymore; they

attempt, instead, to recover to the reference trajectory.

5.4 Results Comparison

In this section, we compare the results obtained using linear bidirectional controller,

sliding mode controller, and the modified sliding mode controller. In all the results shown in

this section, we simulate a platoon with five vehicles, wherein the attacker is controlling the

third vehicle. To calculate the effect of an attack, we assign a damage state to the platoon

along the lines of 5.8. This damage state begins with a value of zero, and all the collisions’

relative velocities are accumulated as the simulation progresses and cars collide. We also

define a ‘collision line’ as follows: Given an attacking and a defending vehicle along with

some initial conditions, with both applying maximum effort, it is possible to calculateb the

time they collide (tcol) using the solution to (xi+1(t) − xi(t) = 0) and (fcol = 1
2tcol

), which

is a function of relative attacker power and initial conditions [6]. Above this frequency we

can avoid collisions if a suitable control scheme is adopted. In all the results shown in this

section, the accumulated damage is calculated across a range of frequencies and a range

of relative attacker power. The numbers on the x-axis correspond to the attack frequency

while the numbers on the y-axis correspond to the ratio of attacker power over normal

vehicle power.
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Fig. 5.7. Total damage across relative attacker power and frequencies calculated for a
platoon using sliding mode controller without attack detection. Collision line in green [6].
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Fig. 5.8. Total damage across relative attacker power and frequencies calculated for a
platoon using sliding mode controller with attack detection. Collision line in green [6].

For a reference, we start with total damage measurement using a bidirectional platoon-

ing control law, for which the results are shown in Fig. 5.6. The high level controller for

this case is described as follows

ui = kp(xi+1 − xi − σref) + kp(xi−1 − xi + σref)+

kd(vi+1 − vi) + kd(vi−1 − vi) (5.15)

with kp = 1 and kd = 3. Fig. 5.6 and 5.7 show the total damage calculated for a platoon

using the bidirectional and sliding mode controllers, respectively. We can see that high
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Fig. 5.9. Total damage across relative attacker power and frequencies calculated for a
platoon using the modified siding mode controller with attack detection. For these results,
disbanding begins when the inter-vehicle separation is increased by two meters.
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Fig. 5.10. Total damage across relative attacker power and frequencies calculated for a
platoon using the modified siding mode controller with attack detection. For these results,
disbanding begins when the inter-vehicle separation is increased by four meters.

damage results in both cases at low frequencies and then reduces greatly as the attack

frequency increases. Furthermore, Fig. 5.8 shows the total damage for the same platoon,

but uses attack detection with the sliding mode controller. Although we still can see high

damage at a certain attack frequency and power, the maximum accumulated damage is
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Fig. 5.11. Total damage across relative attacker power and frequencies calculated for a
platoon using the modified siding mode controller with attack detection. For these results,
disbanding begins when the inter-vehicle separation is increased by seven meters.

lower than that for the two previous cases, which means that adding detection helps with

reducing the number of collisions.

On the other hand, Fig. 5.9, 5.10, and 5.11 show the total damage calculated for a

vehicular platoon using the modified mitigation controller. As can be seen, the platoon

disbands when the inter-vehicle separation, for any of the intact vehicles, reaches two, four,

or seven meters with respect to the preceding vehicle. Compared to Fig. 5.8, the results

shown in both Fig. 5.9 and 5.10 show higher total damage, even though the attack detection

is engaged. This is due to the accomplished inter-vehicle separations which deploy once the

disbanding begins, resulting in sudden brakes that can lead to collisions. However, we can

see in Fig. 5.11 that the total damage is reduced when compared with the last two cases. In

fact, the maximum total damage is nearly equivalent to that of the case shown in Fig. 5.8.

The primary difference is that the control of intact vehicles is switched to human drivers,

and, thus, the attacker is no longer able to influence the platoon.

5.5 Conclusion

In this chapter, we focused on an existing mitigation controller formulated with the
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goal of reducing the collisions that result by attacking a vehicular platoon. Despite success

in mitigating attack impacts, engaging the aforementioned controller resulted in a platoon

influenced by the attacker. In order to overcome this drawback, we modified the mitigation

controller such that the inter-vehicle separation of the intact vehicles increases gradually.

Then, after reaching a certain threshold, the automation system of the intact vehicles switch

control back to the human driver, hence disbanding the platoon. The last action guarantees

that the attacker becomes unable to control the platoon, and the fewest collisions are

resulting as possible.
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CHAPTER 6

CONCLUSION

In this dissertation, we studied the performance of two examples of CPSs while oper-

ating in an environment where security and safety-violating attacks can happen. For each

CPS, we analyzed the harmful impacts that could be generated by specific a attack against

one of the system functionalities. Also, if possible, we suggested potential defenses, with

the goal of reducing attack impacts. The first CPS we studied was a vehicular platoon

wherein we analyzed attacks against the vehicular range and/or range-rate sensors, which

are considered important, as their measurements are utilized by the platooning controller

of each vehicle. For this part, we defined a ”disbanding attack” with impacts can affect a

stream of vehicular platoons, even those which were not specifically attacked. In addition,

two solutions were suggested to handle such an attack. Then, we analyzed the impacts of

FDI attacks against vehicular platoons using reachability analysis. We also considered an

existing mitigation controller that was suggested to handle attacks in which the attacker

controls one of the platooned vehicles. Finally, we studied the HVAC systems which used to

regulate the indoor temperatures of smart buildings. For this part, we formulated an MPC-

based controller to track the desired temperature, and then, assuming the possibility of an

attacker with the capability of manipulating the measurements provided by temperature

sensors in the building, we suggested MTD-based countermeasures to deter the impacts of

such potential attacks. In summary, the following is a list of contributions of each chapter

in this dissertation

• For Chapter 2

– We study the effect of a ”disbanding attack” that involves transition of control of

multiple vehicles in a platoon. We show the harmful impacts such an attack can
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induce, with special focus on how it can cause upstream (non-attacked) platoons

to experience slowdowns and collisions.

– We define the disbanding attack by formulating it as an optimization problem

wherein the objective is to maximize the deviation in vehicles’ speeds, selected as

a proxy for slowdowns and increased chances of colliding, by selecting platoon(s)

to be disbanded and time(s) for disbanding.

– To mitigate the aftermath of such an attack, we formulate an optimal solution

using a Model Predictive Control (MPC) technique. However, as the optimal

approach is not scalable in practice, since it is centralized and both information

and communication-intensive, we also propose a heuristic algorithm to be used

locally by vehicles of intact (non-disbanded) platoons. Our findings indicate

that our algorithm produces nearly equivalent results in terms of reducing speed

changes and avoiding accidents.

– We also demonstrate the validity of the above attack and the suggested heuristic

countermeasures with experiments on a hardware testbed consisting of a motion

capture system and small mobile robots acting as vehicles.

• For Chapter 3

– We analyze the performance of a vehicular platoon undergoing an FDI attack

mounted against one or multiple locally-equipped range and range rate sensors.

– To generalize the problem, we define threat models for targeting either the range

sensors, range-rate sensors, or both. Also, we analyze the resulting impacts from

those attacks.

– After defining both the platoon and threat models, wherein the attack vector

will act as the new control input to the system, we use the optimal control-based

reachability approach to determine the final reachable set by the platoon. This

will show whether collision(s) are possible due to an FDI attack.

• For Chapter 4
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Assuming the presence of potential attacks against HVAC-equipped sensors, the main

contribution of this chapter is to suggest two MTD-based proactive algorithms each

of which determines a random set of installed sensors to be used for two tasks: First,

a partial measurement of the temperatures in some of the building’s zones. Second, a

prediction (estimation) of the temperatures in the remaining zones. To implement the

second task, we will formulate an optimal state observer that relies primarily on the

collected data of inputs and outputs and the randomly-selected sensor set. Achieving

the two aforementioned tasks guarantees the availability of the data (measurements)

required for the operation of the HVAC system. By continuously selecting a random

set at each time step, the attacker’s ability to induce predictable effects by targeting

one or multiple sensors is minimized.

• For Chapter 5

In this chapter, our work builds upon the results presented in a previous study and

also attempts to solve the safety problem in an adversarial environment. The results

shown in that study indicate that the proposed sliding mode controller was able to

considerably eliminate or at the very least, to significantly reduce accidents. But

though the engagement of the proposed controller resulted in a collision-free platoon,

it was still influenced by the attacker-controlled vehicle. For that reason, we modify

the proposed sliding mode controller such that it will still be able to avoid collisions

and at the same time lead the way to disbanding, switching control from auto to

human, of the intact vehicles and, thus, releasing the platoon form the control of the

attacker.
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APPENDIX A

Formulation of the MPC based mitigation approach for Chapter 2

Using MPC technique, the controller of the intact vehicle Vi will determine an acceler-

ation required to alleviate disbanding impacts with respect to preceding vehicle Vi−1. Let

us define the following


e(t)

ė(t)

ë(t)

 =


xi(t)− xi−1(t)− d

vi(t)− vi−1(t)

ai(t)− ai−1(t)

 , (A.1)

(d is the desired separation) which can be rewritten in a discrete-time matrix form as


e(k + 1)

ė(k + 1)

ë(k + 1)

 =


1 Ts 0

0 1 Ts

0 0 1− Ts
τ



e(k)

ė(k)

ë(k)

+


0

0

−Ts
τ

ui(k) +


0

0

Ts
τ

ui−1(k), (A.2)

(Ts is the sampling time) which can then be rewritten in a state-space form as

e(k + 1) = Ae(k) +B1ui(k) +B2ui−1(k). (A.3)

Then, the objective is to determine the control sequence that will minimize the following

quadratic cost function

J = eT (N)Y e(N) +

k+N−1∑
k

{eT (k)Qe(k) + uTi (k)Rui(k)}, (A.4)
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subject to the dynamics given in (A.3) and the following state and control constraints

C1e(k) ≤ d (A.5)

C2e(k) ≤ vmax − vi−1(k) (A.6)

C3e(k) ≤ vmin + vi−1(k) (A.7)

umin ≤ ui(k) ≤ umax (A.8)

where

C1 =

[
−1 0 0

]
C2 =

[
0 −1 0

]
C3 =

[
0 1 0

]

State constraints ensures no collisions, (A.5), velocity is within bounds, (A.6) and (A.7),

and resulting commanded acceleration is within bounds too, (A.8). Furthermore, Y , Q,

and R are weighing matrices selected to satisfy the following [? ]

Y = Y T ≥ 0

Q = QT ≥ 0

R = RT > 0

(A.9)
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The predicted error vector ē can be written as a function of the current (measured) error

vector e(k) as follows

ē = Āe(k) + B̄1U + B̄2Ui−1 (A.10)

where

ē =

[
e(k + 1) . . . e(k +N)

]T
Ā =

[
A . . . AN

]T

B̄m =



Bm 0 . . . 0

ABm Bm . . . 0

...
...

. . .
...

AN−1Bm AN−2Bm . . . Bm


{for m = 1,2}

U =

[
ui(k) . . . , ui(k +N − 1)

]T
Ui−1 =

[
ui−1(k) . . . ui−1(k)

]T

The cost function A.4 can be rewritten in a matrix form as

J = ēT Q̄ē+UT R̄U + eT (k)Qe(k) (A.11)



155

where

Q̄ =



Q 0 . . . 0

0
. . . . . .

...

...
... Q 0

0 0 . . . Y



R̄ =



R 0 . . . 0

0 R . . . 0

...

0 0 . . . R


If (A.10) is substituted into (A.11), then we get

J = 2M1U +UTM2U , (A.12)

where

M1 = eT (k)Ā
T
Q̄B̄1 +Ui−1

T B̄2
T
Q̄B̄1

M2 = R̄+ B̄1
T
Q̄B̄1

It should be noted that few terms are omitted from (A.12) because they are constant. The

state and control constraints (A.5)-(A.8) can also be rewritten in a matrix form as

Ce(k) ≤W (A.13)

and

U ≤ Umax (A.14)
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−U ≤ −Umin (A.15)

where

C =

[
C1 C2 C3

]T
W =

[
d vmax − vi−1(k) vmin + vi−1(k)

]T

Umax =

[
umax . . . umax

]T
Umin =

[
umin . . . umin

]T

Equation (A.13) can be expressed using the predicted error vector as

C̄ē ≤ W̄ (A.16)

where

C̄ =


C 0 . . . 0

...
...

. . .
...

0 0 . . . C


W̄ =

[
W W . . . W

]T

If (A.10) is substituted into (A.16), we get

C̄B̄1U ≤ W̄ − C̄Āe(k)− C̄B̄2Ui−1 (A.17)

Equations (A.14), (A.15), and (A.17) can be written in a compact form as

M3U ≤M4 (A.18)
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where

M3 =

[
C̄B̄1 I −I

]T
M4 =

[
W̄ − C̄Āe(k)− C̄B̄2Ui−1 Umax −Umin

]T
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APPENDIX B

Definitions of Matrices from Chapter 3

A1 =

0(n×n) I(n×n)

0(n×n) 0(n×n)



B1 =



0(n×n)

−1 1 0 . . . 0

0 −1 1 . . . 0

...

0 0 0 . . . −1



A2 =



kp 0 . . . 0 kd 0 . . . 0

−kp kp . . . 0 −kd kd . . . 0

...

0 0 . . . kp 0 0 . . . kd



B2,x =



kp 0 . . . 0

0 kp . . . 0

...

0 0 . . . kp


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B2,v =



kd 0 . . . 0

0 kd . . . 0

...

0 0 . . . kd



B2,xv =

[
B2,x B2,v

]

K1 =

[
A2 A2A . . . A2A

m−1

]T

K2 =



B2 0 . . . 0

A2B B2 . . . 0

...

A2A
m−2B A2A

m−3B . . . B2



K3 =

[
k3 k3A . . . k3A

m−1

]T

K4 =



I 0 . . . 0

k3B I . . . 0

...

k3A
m−2B k3A

m−3B . . . I


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K5 =

[
k5 k5A . . . k5A

m−1

]T

K6 =



0 0 . . . 0

k5B 0 . . . 0

...

k5A
m−2B k5A

m−3B . . . 0



Aineq =

[
I −I K2 −K2 K4 −K4 K6

]T

bineq =
[
δmax − δmin umax −K1e(0) − umin +K1e(0)

smax −K3e(0) − smin +K3e(0) Ψ−K3e(0)
]T
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APPENDIX C

Definitions of Matrices from Chapter 4

Q̄ =



Q 0(n×n) . . . 0(n×n)

0(n×n) Q . . . 0(n×n)

...
...

. . .
...

0(n×n) 0(n×n) . . . Q



R̄ =



R 0(n×n) . . . 0(n×n)

0(n×n) R . . . 0(n×n)

...
...

. . .
...

0(n×n) 0(n×n) . . . R



M1 =

[
I(n×n) I(n×n) . . . I(n×n)

]T

M2 =



A

A2 +A

...

AN +AN−1 + · · ·+A


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M3 =



B 0(n×p) . . . 0(n×p)

AB +B B . . . 0(n×p)
...

...
. . .

...

AN−1B + · · ·+B AN−2B + · · ·+B . . . B



M4 =



G 0(n×n) . . . 0(n×n)

AG+G G . . . 0(n×n)

...
...

. . .
...

AN−1G+ · · ·+G AN−2G+ · · ·+G . . . G



Ā =

[
CA−N CA−N+1 . . . CA−1

]T

B̄ =



−CA−1B −CA−2B . . . −CA−NB

0(n×p) −CA−1B . . . −CA−N+1B

...
...

. . .
...

0(n×p) 0(n×p) . . . −CA−1B



Ḡ =



−CA−1G −CA−2G . . . −CA−NG

0(n×n) −CA−1G . . . −CA−N+1G

...
...

. . .
...

0(n×n) 0(n×n) . . . −CA−1G


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