86 research outputs found

    Multipath propagation characterization for terrestrial mobile and fixed microwave communications

    Get PDF
    Multipath propagation is a key issue studied throughout this thesis, and it causes dispersions in delay, frequency and spatial domains. These are dominant phenomena in both terrestrial mobile and fixed wideband communications. In this thesis, multipath propagation mechanisms including diffraction, refraction, reflection and scattering are studied when radio waves interact with dielectric and metallic objects, or an atmospheric duct. Measurements were also performed for empirical modelling and validation of the theoretical work carried out in this thesis. By using physical optics (PO) method, the attenuation by double knife edges with ground reflections is solved for the first time under a general formula of the attenuation by multiple knife edges with ground reflections derived in this thesis, and some important and interesting conclusions are obtained. The attenuations by curvilinear-topped obstacles and by multiple flat-topped obstacles are also presented in closed forms. The results are the simplest and easiest ones available now, and they can be applied for field strength predictions both in mobile and fixed microwave communications. Based on three-ray (direct, reflected and super-refracted) and two-ray (direct and super-refracted) multipath models for plane and spherical earth, respectively, frequency selective fading (FSF) and depolarization due to clear air are studied by simulations and experiments for terrestrial line-of-sight (LOS) microwave links and dual-polarized communication systems. Novel simulation methods have been introduced and applied based on the fact that the amplitudes and excess delays of the rays are functions of the (modified) refractive index gradients which are random variables with exponential and normal distributions inside and outside the duct in lower atmosphere, respectively. Some important empirical or semi-empirical models and parameters are presented at 5 GHz based on large amount of measured data in indoor and outdoor environments. The results include path loss models, excess delay and rms delay spread, spatial and frequency correlations, window (sector) length of averaging fast fading components, path number distribution, and tapped-delay-line (TDL) channel models. These empirical or semi-empirical parameters and models are the latest results achieved at 5 GHz, and they are of great importance in designing of future wireless local area networks (WLAN), especially the TDL models are developed for the first time in this frequency band. Using a general autocorrelation function derived in this thesis for three-dimensional (3-D) scattering environments, a novel theoretical modelling method is developed to study the propagation mechanisms of different types of Doppler spectra observed in measurements. The 3-D autocorrelation function is connected to the probability density functions (PDF) of the angles of arrival (AoAs) of the scattered waves and the antenna radiation patterns in the azimuth and elevation planes. This is a new work which tries to define and explain the physical reasons of 3-D Doppler spectra from propagation point of view. A new computer simulation method for wideband 3-D received signal level in an urban environment is developed under the general assumptions of the distributions for path number, amplitude, excess delay etc. This simulation method can provide detailed fading characteristics for wideband mobile communications in a specific urban environment.reviewe

    Characterization of Single- and Multi-antenna Wireless Channels

    Get PDF
    The wireless propagation channel significantly influences the received signal, so that it needs to be modeled effectively. Extensive measurements and analysis are required for investigating the validity of theoretical models and postulating new models based on measurements. Such measurements, analysis, and modeling are the topic of this thesis. The focus of the included contributions are Multiple-Input Multiple-Output (MIMO) propagation channels and radio channels for sensor network applications. Paper I presents results from one of the first MIMO measurements for a double-directional characterization of the outdoor-to-indoor wireless propagation channel. Such channels are of interest for both cellular and wireless LAN applications. We discuss physical aspects of building penetration, and also provide statistics of angle and delay spreads in the channel. The paper also investigates the coupling between DOD and DOA and the two spectra are found to have non-negligible dependence. We test the applicability of three analytical channel models that make different assumptions on the coupling between DODs and DOAs. Our results indicate that analytical models, that impose fewer restrictions on the DOD to DOA coupling, should be used preferrably over models such as the Kronecker model that have more restrictive assumptions. Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO measurements analyzed in Paper I. A subset of parameters of the COST 273 channel model, a generic model for MIMO propagation channels, are characterized for the outdoor-to-indoor scenario. MPC parameters are extracted at each measured location using a high-resolution algorithm and clusters of MPCs are identified with an automated clustering approach. In particular, the adopted clustering approach requires that all MPC parameters must be similar in order for the MPCs to form a cluster. A statistical analysis of the identified clusters is performed for both the intra- and inter-cluster properties. Paper III analyzes the spatial fading distribution for a range of canonical sensor deployment scenarios. The presented results are relevant to communicating within, and between, clusters of nodes. Contrary to the widely accepted assumption in published literature that the channel is AWGN at a small-enough distance, our measurements indicate that values of the Rice factor do not, in general, increase monotonically as the Tx-Rx distance is reduced. A probability mixture model is presented, with distance dependent parameters, to account for the distance dependent variations of the Rice factor. A simulation model that includes small- and large-scale fading effects is presented. According to the modeling approach, a sensor node placed anywhere within the spatial extent of a small-scale region will experience the channel statistics applicable to that region. Paper IV presents results characterizing a radio channel for outdoor short-range sensor networks. A number of antennas are placed on the ground in an open area and time-variation of the channel is induced by a person moving in the vicinity of the nodes. The channel statistics of both the LOS path and the overall narrowband signal are non-stationary. We investigate the stationarity interval length to be used for small-scale analysis. Our analysis of the various measured links shows that the Rx signal strength is significantly influenced by a moving person only when the person blocks the LOS path. We present a generic approach for modeling the LOS blockage, and also model the time-variant Doppler spectrum of the channel's scattered components

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Dual-Band Non-Stationary Channel Modeling for the Air-Ground Channel

    Get PDF
    Multiple air-to-ground (AG) radio propagation channels are experimentally characterized for two frequency bands, C-band and L-band. These characterizations are aimed to support the specification of the control and non-payload communication (CNPC) links being designed for civil unmanned aircraft systems (UAS). The use of UAS is expected to grow dramatically in the coming decades. In the United States, UAS will be monitored and guided in their operation within the national airspace system (NAS) via the CNPC link. The specifications of the CNPC link are being designed by government, industries, academia and standards bodies such as the Radio Technical Commission for Aeronautics (RTCA). Two bands have been allocated for the CNPC applications: from 5030 to 5091 MHz in C-band and a portion of the aeronautical L-band from 960 to 1215 MHz. The project under which this work was conducted is entitled “Unmanned Aircraft Systems Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations”, and this is a sub-project of a NASA project entitled “Unmanned Aircraft Systems Integration in the National Airspace System.” Measurements and modeling for radio propagation channels play an essential role in wireless communication system design and performance evaluation; such models estimate attenuation, delay dispersion, and antenna diversity in wireless channels. The AG channel differs significantly from classic cellular, ground-to-satellite, and other terrestrial wireless channels, particularly in terms of antenna heights and velocity. The previous studies about the AG channels are reviewed and the significant gaps are indicated. NASA Glenn Research Center has conducted an AG channel measurement campaign for multiple ground station local environments, including over sea, over freshwater, desert, suburban, near urban, hilly and mountainous settings. In this campaign, over 316 million power delay profiles (PDPs) or channel impulse responses (CIRs), over 82 flight tracks, have been collected. The measurement equipment was a dual-band single-input multiple-output (SIMO) wideband channel sounding system with bandwidth of 50 MHz in C-band and 5 MHz in L-band. Given the dynamic nature of the AG environments, the channels are statistically non-stationary, meaning that the channel’s statistical parameters change over time/space. We have estimated, via two distinct methods, that the stationarity distance is approximately 15 m—this is the distance over which the channel characteristics can be assumed to be wide sense stationary. The AG channel attenuation is considered as a combination of large scale path loss, small scale fading, and airframe shadowing. The large scale path loss is modeled by both the log-distance model and two-ray models. The theoretical flat earth and curved earth two-ray models are presented, along with their limitations, boundaries and some enhancements. Numerous propagation effects in the AG channels are discussed, and this includes earth spherical divergence, atmospheric refraction, atmospheric gas and hydrometeor attenuations, and ducting. The small scale fading is described by the Ricean distribution, which for unit-energy normalizations are completely characterized by Ricean K-factors; these K-factors are approximately 28.7 dB in C-band and 13.1 dB in L-band. The line-of-sight (LOS) signal can be obstructed by the airplane itself in some specific maneuvers, and this is termed airframe shadowing. For the specific flights and NASA aircraft used in our measurements, the shadowing duration was found to be on average 30 seconds, and the shadowing loss can be as large as 40 dB. The statistics, models and simulation algorithm for the airframe shadowing are provided. The wideband characteristics of the AG channel are quantified using root-mean-square delay spread (RMS-DS), and illustrated by sequences of PDPs. Tapped delay line (TDL) models are also provided. Doppler effects for over water channels are also addressed. Given the sparsity of the diffuse multipath components (MPCs) in the AG channels and generally short lifetime of these MPCs, the CIRs are modeled by the two-ray model plus intermittent 3rd, 4th or 5th “rays.” Models for intermittent ray probability of occurrence, duration, relative power, phase, and excess delay are provided. The channels at C-band and L-band were found to be essentially uncorrelated; this conclusion holds for the specific antenna locations used in our experiments (the aircraft underside), but is not expected to change for arbitrary antenna locations. For the aircraft antenna locations employed, intra-band signals are highly correlated, and this is as expected for channels with a dominant LOS component; analytical correlation computations show interesting two-ray effects that also appear in measurements. Multiple aircraft antennas and carefully selected locations are recommended for mitigating airframe shadowing for the CNPC link. Future work for AG channel modeling includes characterization of L-band delay dispersion and L-band TDL models, estimation of building and/or tree shadowing for small UAS that fly at very low altitudes, evaluation of multiple ground site(s) antenna diversity, and AG channel modeling via geometric techniques, e.g., ray-tracing

    Narrowband Propagation Statistics of Aeronautical Mobile-Ground Links in the L- and C-Bands

    Get PDF
    To provide for the safe integration of unmanned aircraft systems (UAS) into the National Airspace System (NAS), command and control (C2) links must be highly reliable. Hence, protected aviation spectrum is required to support such links for UAS that are integrated into controlled non-segregated airspace. For air-ground (i.e., non-satellite) links, protected aviation spectrum to support C2 links is available in the 960-1164 MHz (L) and 5030-5091 MHz (C) bands. The performance of any C2 system is critically dependent upon the characteristics of the air-ground (AG) channel. Therefore, as part of its UAS Integration in the NAS (UAS in the NAS) project, the U.S. National Aeronautics and Space Administration (NASA) performed a series of air-ground propagation flight tests to collect AG channel data for model development and analysis of potential C2 communications links capable of providing the required reliability. NASA's Glenn Research Center (GRC) conducted an extensive air-ground channel propagation measurement campaign (at altitude) for frequencies in the 960-977 MHz and 5030-5091 MHz ranges, for seven different terrain environments. The measurements were conducted in 2013, and produced the largest set of AG channel data ever gathered to date. This data was subsequently processed to develop models for the AG channel. The statistics collected enabled the derivation of channel model parameters for both narrowband and wideband channels. In order to make the propagation data widely available, the resulting narrowband statistics were processed and submitted to the International Telecommunications Union Radiocommunication Sector (ITU-R) Study Group 3 Data Banks. Formats for data tables were developed, and tables of the aggregate narrowband propagation statistics for the seven ground site terrain environments were prepared, submitted to, and approved by, the ITU-R Study Group 3. This paper provides brief background on the measurement campaign, collection and processing of data, and development of the narrowband data tables. It further provides examples of the data and its use

    Modelling and and measurement analysis of the satellite MIMO radio channel

    Get PDF
    The increasing demand for terrestrial and satellite delivered digital multimedia services has precipitated the problem of spectrum scarcity in recent years. This has resulted in deployment of spectral efficient technologies such as MIMO for terrestrial systems. However, MIMO cannot be easily deployed for the satellite channel using conventional spatial multiplexing as the channel conditions here are very different from the terrestrial case, and it is often dominated by line of sight fading. Orthogonal circular polarization, which has long been used for increasing both frequency reuse and the power spectral density available to earth-bound satellite terminals, has recently been recommended for directly increasing the throughput available to such devices. Following that theme, this thesis proposes a novel dual circular polarisation multiplexing (DCPM) technique, which is aimed at the burgeoning area of throughput-hungry digital video broadcasting via satellite to handheld devices (DVB-SH) and digital video broadcast to the next generation of hand held (DVB-NGH) systems. In determining the working limits of DCPM, a series of measurement campaigns have been performed, from which extensive dual circular polarised land mobile satellite (LMS) channel data has been derived. Using the newly available channel data and with the aid of statistical channel modelling tools found in literature, a new dual circular polarised LMS MIMO channel model has been developed. This model, in contrast with previously available LMS MIMO channel models, is simpler to implement since it uses a distinct state-based empirical-stochastic approach. The model has been found to be robust and it easily lends itself to rapid implementation for system level MIMO and DCPM analysis. Finally, by way of bit error rate (BER) analysis in different channel fading conditions, it has been determined when best to implement polarisation multiplexing or conventional . MIMO techniques for DVB-type land mobile receivers. It is recommended that DCPM be used when the channel in predominantly Ricean, with eo-polar channel Rice factors and sub-channel cross correlation values greater than 1dB and 0.40 respectively. The recommendations provided by this research are valuable contributions, which may help shape the evolving DVB-NGH standardisation process.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Experimental statistical channel modelling for advanced wireless communication systems in indoor environments

    Get PDF
    Draadloze communicatiesystemen voor mobiele telefonie en draadloos internet zijn onmisbaar geworden in het dagelijkse leven. De grootste troef van draadloze communicatie over bedrade communicatie is de toegenomen mobiliteit. Draadloze communicatie heeft evenwel ook één groot nadeel, namelijk de onzekerheid over de kwaliteit van de link tussen zender en ontvanger. Waar bedrade communicatie een doorgedreven ontwerp van het kanaal tussen zender en ontvanger (d.i. de kabel) toelaat, is het ontwerp van het draadloze kanaal (d.i. de omgeving) bijna onmogelijk. Desondanks kunnen wel modellen van de propagatie van draadloze signalen opgesteld worden voor verschillende types omgevingen. Deze modellen laten toe om de betrouwbaarheid en de performantie van een draadloze link in te schatten. Modellering van draadloze propagatie voor indooromgevingen is het algemeen onderwerp van dit proefschrift. De propagatiemodellering in dit proefschrift betreft drie types indooromgevingen, nl. industriële en kantooromgevingen, en de omgeving binnen in een voertuig. De modellering bestaat uit statistische modellen gebaseerd op veldmetingen in deze omgevingen. Verschillende parameters van draadloze signalen worden onderzocht, zoals de variabiliteit van het signaalvermogen met de afstand en in de tijd, het signaalbereik, de dispersie in het tijdsdomein, de dispersie in het spatiaal domein en het vermogensverlies bij propagatie van buiten naar binnen een voertuig

    Millimeter wave and UWB propagation for high throughput indoor communications

    Get PDF
    Millimeter-wave systems at 60 GHz and ultra-wideband (UWB) systems in the microwave range of 3-10 GHz have been received with great interest for their high data rate wireless communications. In design, test and optimization of future wireless systems, channel models featuring the relevant characteristics of radiowave propagation are required. Furthermore, detailed understanding of the propagation channel and its interaction with system, creates insights into possible solutions. In this work, both theoretical (ray-tracing) and statistical models of the 60 GHz and UWB channels are studied. Propagation characteristics of the 60 GHz and UWB indoor channels are also compared for providing useful information on design of radio systems. More specifically, based on real-time channel sounder measurements performed in the 60 GHz band, propagation mechanisms including person blocking effect are concluded. Ray-based models in LOS and NLOS indoor corridors are proposed. Multipath power distributions in the 60 GHz band are studied first time. Moreover, propagation interdependencies of path loss, shadowing, number of paths, Rice K-factor and cross polarization discrimination (XPD) with channel delay spread are established. In the UWB propagation channel, frequency- and bandwidth- dependencies are investigated. Multipath and clustering propagation characteristics are analyzed. A new cluster model is proposed and compared with the classical Saleh-Valenzuela model for gaining more understanding of channel general properties. Finally, the performance and capacities of the 60 GHz UWB and MIMO (multiple-in and multiple-out) systems are analyzed for providing reliable parameters for system design and useful information for standardization groups

    Measurement, modelling and performance evaluation of the MIMO radio channel

    Get PDF

    Multiple Antenna Systems for Mobile Terminals

    Get PDF
    corecore