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Abstract 

The increasing demand for terrestrial and satellite delivered digital multimedia services 

has precipitated the problem of spectrum scarcity in recent years. This has resulted in 

deployment of spectral efficient technologies such as MIMO for terrestrial systems. 

However, MIMO cannot be easily deployed for the satellite channel using conventional 

spatial multiplexing as the channel conditions here are very different from the terrestrial 

case, and it is often dominated by line of sight fading. Orthogonal circular polarization, 

which has long been used for increasing both frequency reuse and the power spectral 

density available to earth-bound satellite terminals, has recently been recommended for 

directly increasing the throughput available to such devices. Following that theme, this 

thesis proposes a novel dual circular polarisation multiplexing (DCPM) technique, which 

is aimed at the burgeoning area of throughput-hungry digital video broadcasting via 

satellite to handheld devices (DVB-SH) and digital video broadcast to the next generation 

of handheld (DVB-NGH) systems. 

In determining the working limits of DCPM, a series of measurement campaigns have 

been performed, from which extensive dual circular polarised land mobile satellite (LMS) 

channel data has been derived. Using the newly available channel data and with the aid of 

statistical channel modelling tools found in literature, a new dual circular polarised LMS 

MIMO channel model has been developed. This model, in contrast with previously 

available LMS MIMO channel models, is simpler to implement since it uses a distinct 

state-based empirical-stochastic approach. The model has been found to be robust and it 

easily lends itself to rapid implementation for system level MIMO and DCPM analysis. 

Finally, by way of bit error rate (BER) analysis in different channel fading conditions, it 

has been determined when best to implement polarisation multiplexing or conventional 

MIMO techniques for DVB-type land mobile receivers. It is recommended that DCPM be 

used when the channel in predominantly Ricean, with co-polar channel Rice factors and 

sub-channel cross correlation values greater than 1dB and 0.40 respectively. The 

recommendations provided by this research are valuable contributions, which may help 

shape the evolving DVB-NGH standardisation process. 
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Chapter 1 

1 Introduction 

It has been established both theoretically and practically in the last two decades that 

multiple-input multiple-output (MIMO) can increase the capacity of communication 

systems without the need for additional spectrum. This increase is usually dependent on 

the presence of a rich scattering environment between the multiple transmit and receive 

antennas. However, most Land Mobile Satellite (LMS) two-way communication and 

broadcast systems spend most of their time in the line of sight (LOS) channel, where there 

is limited scattering, and are therefore in the danger of missing out on the MIMO 

advantage. Despite this drawback, some research [1],[2],[3],[4],[5] aimed towards 

implementing MIMO in the LMS channel have recently been conducted and the results of 

most of these, especially that of [4], point towards marginal capacity increase of MIMO 

over single-input single-output. However, there are a few promising results, as can be 

found in the work of Ozcelik [6], which actually predict increased MIMO capacity when 

the LOS channel is diagonally correlated. An example of such a channel is the dual 

orthogonally polarised LMS LOS channel. Therefore, since orthogonal circular 

polarisation has been proposed as a panacea that allows for MIMO sub-channel 

independence, permits the co-location of transmit-end and receive-end multiple antennas 

and then ultimately guarantees the workability of MIMO techniques in the LMS LOS 

channel [7], it is not trivial to investigate the limits of such MIMO operation. This thesis 

thus sets out to answer to questions of why it is necessary to bother with MIMO in the 

multipath-poor LMS LOS channel and when exactly can MIMO be beneficial in such 

channels. The questions will be answered in terms of commonly used empirical channel 

parameters including signal to noise ratio (SNR), channel correlation and channel Rice 

factor; and the answers would help determine if there are lower effort alternatives to 

conventional MIMO and how these lower effort schemes can be implemented. Thus all 

the analysis in this thesis except otherwise stated is based on a single satellite single user 

and dual polar 2×2 MIMO channel having orthogonal circular polarized antennas co-
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located at the transmit link-end and used in communicating with closely spaced mobile 

receive antennas. This configuration fits into the on-going Digital Video Broadcasting-

Next Generation Handheld (DVB-NGH) project, where it is envisaged that compatible 

satellite delivered broadcast services will complement terrestrial services by providing 

coverage in sparsely populated rural environments where satellite delivery provides better 

economies of scale. 

1.1 Motivations and Objectives 

With spectral efficient MIMO techniques successfully implemented in fourth generation 

terrestrial cellular systems, the main motivation of this research is the prospect of 

extending this MIMO advantage to LMS applications like vehicle-mounted or handheld 

communication and entertainment devices, along the lines of Digital Video Broadcasting 

via Satellite to Handheld (DVB-SH) specifications. Achieving this would entail 

measuring, characterising and modelling the dual circular polarised land mobile satellite 

MIMO radio channel for subsequent analysis of the performance of new alternative 

schemes to MIMO. Therefore, the main objectives of the research work include: 

 Identification of gaps in the measurements and modelling aspects of the satellite 

MIMO radio channel. 

 Investigation of the effects of antenna polarisation on MIMO channel capacity 

using statistical and numeric methods, and then derivation of appropriate metrics 

to estimate such capacity. 

 Derivation of a simpler/low effort solution, termed dual circular polarisation 

multiplexing (DCPM), which gives comparable throughput to MIMO. 

 Organisation and implementation of measurement campaigns to provide data that 

is more representative of the dual circular polarised LMS MIMO channel than was 

previously available. 

 Fine tune old models and/or derive a new dual circular polarised LMS MIMO 

channel using the more realistic data from new measurement campaigns. 

 Verify and validate the new model’s reliability using branch power distributions, 

eigen value distribution, and bit error rate (BER) analysis. 
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 Identify the effects of parameters such as SNR and the related energy per bit over 

noise ratio (Eb/N0), Rice factor and correlation on the BER performance and 

capacity of the modelled channel and its polarisation multiplexing advantage 

when using zero forcing, minimum mean squared error and maximum likelihood 

channel equalisation schemes. 

 Application of polarisation multiplexing to the satellite component of the 

upcoming standards for digital video broadcasting to the next generation of 

handheld (DVB-NGH) devices. 

1.2 Original Contributions and Achievements 

The original and novel contributions of this work include the following: 

 A new low effort polarisation MIMO scheme, termed dual circular polarisation 

multiplexing (DCPM), has been proposed for use in the high Rice factor LOS 

LMS channel. This proposal has already been published in a conference paper 

titled "Unleashing the polarisation domain for land mobile satellite MIMO 

systems." Also derived is a metric for computing the capacity of zero-forcing 

based DCPM. 

 An updated and more accurate multi-state channel model for the dual circular 

polarised LMS MIMO channel has also been proposed. This model follows the 

physical statistical approach, is highly tractable and better renders dual polarised 

LMS MIMO channels than previously available channel models. 

 Relevant to coding techniques in DVB-SH/NGH, the limits for which DCPM is 

practicable has been determined by way of BER analysis using the proposed 

channel model. 

1.3 Publications 

The following journal publication has been written and is awaiting submission: 

 U. M. Ekpe, T. W. C. Brown, B. G. Evans, “Dual Circular Polarization 

Multiplexing for DVB-SH/NGH Applications” 
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The following conference papers have been published: 

 U. M. Ekpe, T. Brown, and B. G. Evans, "Unleashing the polarisation domain for 

land mobile satellite MIMO systems," in 3rd European Conference on Antennas 

and Propagation, Berlin, Germany, 2009, pp. 2288-2291. 

 U. M. Ekpe, T. W. C. Brown, and B. G. Evans, "Markov chain analysis for land 

mobile satellite MIMO channels," in The 27th IET and AIAA International 

Communications Satellite Systems Conference, Edinburgh, UK, 2009 

 T. W. C. Brown and U. M. Ekpe, "When is Clarke's Approximation Valid?," 

IEEE Antennas and Propagation Magazine, vol. 52, pp. 171-181, 2010. 

 U. M. Ekpe, “Dual Circular Polarisation Multiplexing for the Satellite Component 

of DVB-NGH Systems, 1st CCSR Research Symposium, June 2011 

 U. M. Ekpe, T. W. C. Brown, and B. G. Evans, "Channel characteristics analysis 

of the dual circular polarized land mobile satellite MIMO radio channel," in IEEE-

APS Topical Conference on Antennas and Propagation in Wireless 

Communications, Turin, Italy, 2011, pp. 781-784. 

1.4 Structure of Thesis 

Chapter 2 deals with background theory to the MIMO radio channel and channel 

modelling issues. It explains using diagrams and equations the meaning of instantaneous 

channel gain and relevant MIMO channel metrics including channel correlation, capacity, 

singular values and singular vectors. A brief description of available LMS MIMO channel 

models is given followed by the potential applications of MIMO technology in the LMS 

channel. 

Chapter 3 starts off by providing a background to MIMO transceivers, with emphasis on 

how zero forcing, minimum mean squared error and maximum likelihood detection 

equalisation are done. With this safely covered the chapter then introduces the concept of 

dual circular polarisation multiplexing (DCPM), which is an alternative to conventional 

MIMO, and makes a connection on how DCPM is dependent on receiver architectures. 

Using simple models that allow for channel properties like Rice factor, channel 

correlation and XPD to be varied, the capacity potentials of DCPM and conventional 
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MIMO are investigated. The chapter is rounded off by BER simulations of different 

channel types and equalisation schemes. 

Chapter 4 gives a detailed account of previous dual circular polarised LMS measurement 

campaigns that have been previously carried out by others and the recent measurements 

that have been undertaken to provide realistic channel data for the subsequent 

development of a new channel model. A method of extracting relevant statistics from the 

huge volume of measured channel data is also provided. 

Chapter 5 presents the building blocks and methodology of modelling the dual circular 

polarised LMS channel. It divides the modelling process into two parts: the large scale 

fading part, which is modelled using Markov state switching, and the small scale fading 

aspect, modelled using an empirical based stochastic approach. 

Chapter 6 employs the developed channel model to implement BER simulations and 

analysis on different channel fading states. These help in determining the channel 

conditions suitable for DCPM operation and the most practical candidates for channel 

equalisation. 

Finally, chapter 7 concludes the findings by listing the major research contributions and 

giving pointers to future work. 
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Chapter 2 

2 MIMO and LMS Channel Modelling Issues 

This chapter reviews literature on multiple-input multiple-output (MIMO) channel 

modelling as applied in relevant terrestrial and land mobile satellite (LMS) systems. 

Starting with the overall MIMO input-output relationship, the effects of channel 

coefficients and additive white Gaussian noise on the received signal of the MIMO 

channel is explained. Also discussed are some important and widely used MIMO channel 

terms such as correlation, capacity and eigenvalue distribution. Then using data that has 

been obtained from a previous measurement campaign, it is graphically shown how 

MIMO channel eigenvalues and branch powers are distributed when signal propagation is 

in line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. The two main methods 

of modelling the land mobile satellite (LMS) channel, namely: deterministic and 

stochastic channel modelling is thoroughly reviewed in order to determine which 

modelling method is more suitable for the LMS MIMO channel. Having revealed that the 

stochastic modelling approach is the better alternative, the channel fading phenomena of 

large- and small scale fading is also reviewed. The chapter ends by examining previous 

stochastic channel models with the aim of determining if they adequately render the dual 

polarised LMS MIMO channel and are tractable enough for use in designing LMS MIMO 

systems of the future. 

2.1 The MIMO Radio Channel 

MIMO systems are an outgrowth of multi-element antenna systems in which multiple 

antennas are placed at both the transmitting and the receiving link-ends. The multiple 

antennas at both link-ends can be used to increase system reliability (i.e. reduce the 

probability of the signal to noise ratio fading below a required threshold) through 

diversity techniques or to increase system capacity (i.e. increase data throughput over the 

same bandwidth and transmit power) using multiplexing techniques. A detailed treatment 
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of the many diversity techniques, which make use of space, time, frequency, angle, 

polarisation or channel coding, can be found in [8]. Multiplexing on the other hand entails 

transmitting independent information through the multiple antennas for increased system 

capacity. The channel conditions and the number of transmit-receive antenna pairs being 

used dictates how much increase in capacity is achievable. One of the earliest 

investigations by [9] uncovered a linear relationship between capacity increase for MIMO 

systems and the number of transmit-receive antenna pairs used. The influence of the 

channel condition on the predicted capacity increase or spectral efficiency is such that 

MIMO systems must operate in either the beamforming or multiplexing modes (using 

spatial, polarisation multiplexing or space-time coding) [10-12]. Figure 2.1 shows a 

schematic of the wireless MIMO channel including ancillary equipment. 

Weighting/

demapping

Demodulation

Decoding

Multipath 

Channel
Output bit stream

Coding

Modulation

Weighting/

mapping

Input bit stream

 

 

 

Figure 2.1: The wireless MIMO channel 

 

The overall input-output relationship of the MIMO system of Figure 2.1 can be 

represented by a simplified time-invariant frequency-flat fading channel model given as: 

      ,       (2.1) 

where y is a  j×1 received signal vector, with j being the number of receive antennas. x is 

a k×1 transmit signal vector, with k being the number of transmit antennas. Therefore H is 

a j×k channel coefficient matrix representing the channel attenuation terms between 

receive antenna j and transmit antenna k. n indicates an additive white Gaussian noise 

component at each of the receive antennas. Since H is a matrix, it is generally represented 

as: 
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   [

                

                

                      
              

].     (2.2) 

In an environment where there is a good line of sight (LOS) between the transmit and the 

receive terminals and where there are few interacting objects (in the form of scatterers) to 

create rich scattering, it is usually more beneficial to orient the main beams of both the 

transmitter and the receiver at each other. This in effect creates a single-input single-

output (SISO) channel and increases the channel gain. To implement beamforming, the 

same signal is transmitted through all the multiple antenna elements but with different 

phase weightings applied to each of the antenna elements. This steers the created beam 

towards the desired direction while placing nulls in the direction of interferers. 

Beamforming has been used extensively in the downlink macrocell channels of mobile 

cellular communication systems to provide sectoring and improved frequency reuse [13]. 

To benefit from spatial multiplexing there needs to be a rich scattering environment 

between the communicating MIMO terminals [14],[15]. In spatial multiplexing, a high 

data rate bit stream is divided into several independent lower bit rate streams and 

simultaneously transmitted and received using multiple antenna elements without the 

need for additional spectrum and power. Spatial multiplexing can be easily implemented 

in terrestrial channels found in micro-, pico- and femto-cells, as the rich scattering in such 

environments ensure that correlation between the MIMO channels at the transmit and 

receive link-ends is minimal and within acceptable thresholds (i.e. the envelope 

correlation coefficient must be less than 0.7 [8]). The rich scattering environment 

sometimes allows the antennas to be placed as close as ¼ wavelengths [8], thus making 

MIMO feasible for devices with small form factors such as laptops and handhelds. 

Implementing spatial multiplexing MIMO in the case of LMS systems is much more 

challenging mainly due to the asymmetric nature of LMS channels and the huge distances 

between land mobile and satellite terminals. Channel asymmetry refers to the lack of 

scatterers within the vicinity of the satellite to adequately de-correlate propagating 

signals. This creates a scenario whereby antennas at the satellite link-end need to be 

separated by several hundreds of wavelengths to achieve the required correlation 
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requirements. To implement spatial multiplexing in LMS systems, some authors 

including [3],[16],[17] have suggested the use of two or more satellites located in 

different orbital slots. However, several factors militate against implementing such 

spatially separated LMS MIMO systems. One mitigating factor is the need to compensate 

for the huge propagation delay difference that can arises when bits of the same code-word 

is split between multiple satellite transmitters. These bits will have to travel different 

distances to the land mobile receiver, which may not be able to compensate for the delay. 

Even when compensation is possible, complex synchronisation and scheduling 

arrangements is required at both the satellite and mobile link-end. This can make the cost 

of implementing MIMO prohibitive. 

A more promising MIMO technique for LMS systems is the use of a single satellite with 

orthogonally polarised antennas [3],[18]. Single satellite LMS MIMO removes the need 

for synchronisation between two or more satellites and allows for the orthogonally 

polarised antennas to be co-located since orthogonal polarisations alone can effectively 

create independently fading channels. For a 2×2 LMS MIMO system, a pair of right hand 

circular polarised (RHCP) and left hand circular polarised (LHCP) antennas is used at 

both the satellite and land mobile terminals as illustrated in Figure 2.2. Satellite 

communication systems use circular polarisation in order to counter various adverse 

ionospheric effects, chief among with is Faraday rotation. For example, if linear 

polarisation is employed alongside a centre frequency of 1GHz and an elevation angle of 

30
o
, it has been reported in [19], pp. 101 that up a 108

o
 polarisation rotation is possible. 

This rotation causes a mismatch between communication antennas and results in extra 

path loss. Also, in the case of a geostationary satellite where orbital dynamics results in 

the satellite’s position, although fixed within an orbital slot, to continually change (tracing 

a figure eight) relative to a fixed point on the earth’s surface. A changing satellite position 

affects the polarisation alignment between the satellite and land-based antennas and the 

use of circular polarisation can minimise any adverse effects. 
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Figure 2.2: Single satellite dual circular polarised LMS MIMO channel 

 

However advantageous the use of single satellite dual orthogonal polarisation MIMO 

looks, there are numerous gaps in knowledge that this thesis sets out to fill before the 

technique can be implemented. Subsequent sections of this chapter will review some 

important metrics used in characterising the performance of MIMO systems in general, 

and with the scarcity of dual polarised LMS MIMO channel data, the strengths and 

weaknesses of some widely used terrestrial and LMS MIMO channel models will be 

investigated. This will then give a solid footing to analyse the newly available dual 

polarised LMS MIMO channel data obtained in the measurement campaigns described in 

chapter 3. 

2.2 Modelling Challenges 

A channel model is a mathematical expression describing radio propagation. The 

attenuating effects suffered by a propagating radio wave include those resulting from path 

loss absorption as well as reflection and diffraction, both of which cause the phenomenon 

called scattering. Two main modelling approaches have emerged to predict these 

attenuating effects. The first being a deterministic approach which employs solutions or 

approximate solutions of Maxwell’s propagation equations to predict the individual 
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contributions arising from the attenuating effects of the various propagation phenomena. 

The second main method, known as stochastic modelling, employs a statistical approach 

based on probabilistic (stochastic) methods to predict the level of a radio signal at given 

points in the propagation medium. The advantages and disadvantages choosing any of the 

modelling approaches have been exhaustively treated by [8],[20]. Whereas the 

computational complexity of deterministic models makes them unattractive for large scale 

LMS simulations, their accuracy (depending on the underlying database) and relatively 

easier implementation compared to undertaking real measurements make them the best 

candidates for simple point to point channel analysis. Also, deterministic models can 

allow for specific small scale channel attenuation effects to be closely studied. On the 

other hand, when large scale channel knowledge is required, especially in the case of 

highly mobile systems, stochastic models offer a better alternative. This is due to the ease 

with which stochastic models can predict signal levels propagating over very large areas. 

The two main modelling approaches earlier mentioned holds for both SISO and MIMO 

systems. However for MIMO systems there is an increased channel modelling complexity 

since there is at least an m×n fold increase in the number of individual propagation 

channels to be modelled. This increased complexity has made the simpler statistical based 

modelling approach more attractive for the MIMO case. This is especially true in the area 

of LMS MIMO as most of the models developed in recent years [3],[18],[21] have leaned 

towards statistical implementation. Additionally, an important consideration in MIMO 

channel modelling is to determine if there exist relationships between the attenuation 

effects affecting the individual MIMO sub-channels.  To this end, various modelling 

studies including [20] and [22] have shown that simple relationships hardly ever exist. 

What suffices is an environment dependent joint variation of parameters like the 

correlation and distribution of individual channel powers, and the eigenvalue distribution 

of the MIMO channel. Thus a challenging task in MIMO channel modelling, especially 

for the LMS case, is to simultaneously estimate the value of each of these parameters for 

the multiple sub-channels and also determine their joint and independent environment-

induced evolution. The following sections will treat the parameters used in characterising 

the channels and proceed to look at some popular approaches to MIMO channel 

modelling as applicable to the terrestrial and LMS channels. 
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2.2.1 Channel Coefficients 

Channel coefficients give an indication of the time (or frequency) evolution of the 

channel’s attenuating effects as the channel-sounding or information-carrying signals 

propagate from transmit to receive antennas. Since this thesis focuses on the radio 

channel, it is assumed that all antenna effects except for polarisation have been 

normalised out from the channel coefficient, therefore the terms channel coefficient and 

received signal power will be used interchangeably. In the time domain, channel 

coefficients can be determined by probing the channel using narrowband or wideband 

channel sounders. Figure 2.3 shows cumulative distribution plots of normalised channel 

coefficients of a 2×2 obstructed line-of-sight (OLOS) MIMO channel plotted from the 

dual circular polarised land mobile satellite measurement campaign data reported in [1]. 

The diagram indicates that co-polar channel coefficients are usually similarly distributed 

and distinct from the cross-polar channel coefficients. The channel coefficient matrix of a 

MIMO channel is also called an H-matrix and this was earlier shown in equation (2.2). 

 

Figure 2.3: CDF plots of normalised channel coefficients for a 2x2 OLOS dual circular 

polarised MIMO channel 
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2.2.2 Channel Correlation 

The cross correlation between the multiple sub-channels of a MIMO system is one of the 

most important parameters for MIMO channel characterisation. The correlation 

coefficient gives a measure of independence (or lack of it) of the individual MIMO sub-

channels as they traverse the propagation medium and it directly affects the capacity 

supportable by such channels. The effects of channel correlation on indoor MIMO 

channels has been investigated in [23], where the correlation coefficient is defined and 

calculated in three different forms, namely: the complex, envelope and power forms. If   

and   are complex variables respectively sampled from the fading signals of two 

individual MIMO sub-channels, their complex correlation coefficient,    , is defined as: 

    
 [   ]   [ ] [  ]

√( [| | ]  | [ ]| )( | |   | [ ]| )
,     (2.3) 

where * denotes complex conjugation. Similarly, the envelope and power correlations of  

  and   are respectively given by: 

    
 [| || |]   [| |] [| |]

√ [| |   ( [| |]) ]  [| |   ( [| |]) ]
,    (2.4) 

    
 [| | | | ]   [| | ] [| | ]

√ [| |   ( [| | ]) ]  [| |   ( [| | ]) ]
.   (2.5) 

This thesis will only make use of the complex correlation coefficient since its formulation 

compares both the magnitude and phase of the fading signals.  

It well known that the correlation coefficient calculated using the power and envelope 

formulations will give similar results. Also, the squared value of the complex correlation 

coefficient is equivalent to the envelope correlation of a Rayleigh channel [24]. These 

relationships have been investigated for both the Rayleigh and Ricean channels using 

synthetic and measured channel data in [25] and it was concluded that the relationships 

hold provided a sufficient number of samples is used in computing the correlation 

coefficients. Numerous studies including [26-28] of multi-antenna systems have shown 

that correlation can adversely affect channel capacity; hence for most channels it is 
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desirable to keep correlation to a minimum while in a few other channels, like the 

diagonally correlated channel, the effects of correlation can be beneficial [6],[29]. This 

thesis will explore the effects of correlation and provide in fine details its impact on 

MIMO channel capacity and bit error rates (BER). 

2.2.3 Channel Capacity 

Another metric to characterise the performance of MIMO channels is the Shannon 

channel capacity metric. Shannon in [30] defined capacity as the maximum data rate a 

channel can support at an arbitrarily low error probability. The capacity of a single-input 

single-output memoryless channel in bits per second per Hertz is given in [9] as: 

      (   ),      (2.6) 

where ρ is the signal to noise ratio (SNR) at the receive antenna. The channel coefficient, 

h, which should have been included in (2.6), has been dropped since it is assumed to have 

been normalised to unity. The well-known expression for the channel ergodic capacity of 

MIMO systems was then derived from (2.6) in [9] and is given as: 

      [   (    
 

 
   )],     (2.7) 

where In is an n × n identity matrix, N is the number of transmit antennas and H
H
 is the 

Hermitian transpose of H. Equation (2.7) is often the preferred metric to test how good a 

model represents the wireless channel and has also been derived in terms of the 

eigenvalues (λi) of HH
H
 by [31] as: 

   ∑     
 
   (   

 

 
  ).      (2.8) 

In equation (2.8), m represents the smaller of either number of transmitters or number of 

receivers. For completeness, the capacity of single-input multiple-output (SIMO) and that 

of multiple-input single-output (MISO) channels are given in [32] as: 
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where n and m represent the number of transmit and receive antennas respectively. 

Capacities that can be supported by ergodic and non-ergodic channel conditions and the 

effect of presence of channel state information (CSI) both at the transmitter and the 

receiver can be found in most MIMO texts including [11], [33] and [34]. Except 

otherwise stated, all capacity computations in this thesis will assume perfect CSI at both 

the transmit and receive antennas. 

2.2.4 Singular Values and Singular Vectors 

Since the focus of this thesis is on MIMO for LMS systems, it is important to know the 

number of independent channels that can be practically supported by the available 

transmit–receive antenna pairs. This is realised by decomposing the MIMO channel into 

independent sub-channels using the singular value decomposition (SVD) [35]. From 

equation (2.1) the SVD is operated on the MIMO channel matrix H as follows: 

              ,      (2.11) 
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      .     (2.14) 

In equations (2.11) to (2.13), H is decomposed into k parallel sub channels (s1 to sk) as 

indicated by the elements of the diagonal matrix S. U and V are the left and right singular 

vectors of H which indicate the array weights to be applied on the transmit and receive 

signal streams respectively. Looking at equation (2.14), we notice that the maximum 

diversity or multiplexing order that can be achieved is equal to k, which is the smaller of 

either the number of transmitters or receivers. Note that k is also equal to the rank of H. 

Singular values (and singular vectors) are related to eigenvalues (and eigen vectors) by: 
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   √   .     (2.15) 

In equation (2.15), si represents the singular values of H and λi the eigenvalues of HH
H
. It 

is interesting to note that Weichselberger in [36] used the eigenvalue distribution to 

estimate the order of diversity and beamforming present in the MISO channel. A good 

explanation of the effects the eigenvalue distribution has on the MIMO channel, i.e. 

whether beamforming or spatial multiplexing would be more favourable, can be found in 

[11]. Also, recent work by Webb in [37] has studied the effects of the channel eigen-

coherence time and the performance of different MIMO schemes in terms of capacity and 

bit error rates (BER). Both the eigen-coherence time and the eigenvalue (or singular 

value) distribution of a channel directly depend on the prevailing channel propagation 

conditions. A CDF plot of eigenvalues obtained from the same measurement as in Figure 

2.3 is shown in Figure 2.4, where the red plots indicate when the channel is more 

multiplexing friendly and the blue and black plots show when the channel would be more 

diversity friendly. 

 

Figure 2.4: CDF plots of Eigenvalue distribution for MIMO channel favouring 

multiplexing (red plots) and diversity (blue and black plots) 
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Questions arising from the multiplexing-diversity dilemma which has not been 

conclusively treated for the dual polarised LMS MIMO channel include the following: 

 When precisely does the eigenvalue distribution of a dual polarised LMS MIMO 

channel show that it would be more beneficial to implement multiplexing than 

diversity? 

 In addition to the eigenvalue distribution, what other channel parameters are 

required to make the choice between diversity and multiplexing? 

 What effects do the channel parameters have on channel performance metrics like 

channel capacity and bit error rate? 

A good understanding channel attenuation effects is necessary in order to answer some of 

the above multiplexing-diversity questions. Also, since LMS MIMO channel modelling is 

dependent upon a sound knowledge of channel attenuation, the next section provides a 

brief background on these phenomena. 

2.2.5 Channel Fading 

Channel fading is the random attenuation a signal suffers as it traverses the propagation 

medium. In terms of the time (or distance) scales at which this random attenuation is 

observed, channel fading is of two main types: large scale fading and small scale fading. 

Large scale fading, also called shadowing, is noticed as a slow variation in the local mean 

of the received signal power. It is caused by different degrees of attenuation the 

propagating signal suffers as it propagates through, reflects off or diffracts past large 

objects such as buildings, vegetation and terrain. Assuming a fixed terminal is 

transmitting to a mobile receiving terminal, large scale fading encountered by the mobile 

terminal may be observed over a distance of a few metres to tens or even hundreds of 

metres. On the other hand, small scale fading or fast fading manifests as a rapid 

fluctuation in the amplitude of the received signal power. It is caused by constructive or 

destructive addition of numerous multipath components reaching the receiver. 

Constructive addition happens when the arriving multipath components at the receiver 

have the same phase. Destructive addition happens when multipath components arrive out 

of phase at the receiver after having propagated through paths of different lengths. 

According to Brennan in [38], the time scales over which small scale fading occurs must 
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be short compared to the time it takes for the amplitude of the received signal to 

appreciably change, but long when compared to the period of the lowest frequency of the 

transmitted signal. 

2.2.6 Narrowband and Wideband Channels 

The definition of whether a channel is narrowband or wideband depends on the 

relationship between the duration of a symbol transmitted through the channel and the 

time it takes for multiple copies of the symbol, after having travelled through paths of 

different lengths, to arrive at the receiver. To illustrate further, we extract from equation 

(2.1) a SISO channel and fully notate it by adding t and τ to respectively represent the 

transmit time and encountered delay, we have: 

 ( )   (   )   ( )   ( )   ∫  (   ) (   )    ( )
 

  
,   (2.16) 

where * represents convolution. The convolution of the channel coefficient h(t,τ) and the 

transmitted symbol x(t) gives the channel impulse response and included in the measured  

impulse response, y(t), is an additive noise component n(t). Note that numerous copies of 

a transmission symbol will arrive with delays of between -∞ and ∞ and are scaled 

differently according to their respective h(t,τ). 

Let us assume in the time domain that there are N multipath copies of a transmit symbol, 

x(t), that possess significant energy. The first copy of x(t) to reach the receiver, having 

probably travelled along an LOS path, will arrive after a delay of τ1 and its last copy will 

arrive after a delay of τN. If the difference between τ1 and τN is much less than the duration 

of x(t), transmitted at time t =1, the channel is considered to be narrowband. On the other 

hand, a channel is wideband if the difference in time between τ1 and τN is greater than or 

of similar magnitude as the duration of x(t). Wideband channels cause the late arriving 

multipath copies of x(t; t =1) to arrive at similar times with trailing symbols transmitted at 

time t >1. The overlapping arrival times of copies of a prior transmitted symbol, say x(t; t 

=1), with early copies of a later transmitted symbol, say x(t; t =2), is known as 

intersymbol interference (ISI). 
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A channel may either be narrowband or wideband depending on the signal transmission 

rate, mobility of the communicating terminals or changes within the channel itself. 

Significantly increasing the transmission rate in a channel that was previously 

narrowband may make it become wideband. This is because an increase in transmission 

rate amounts to a reduction in symbol duration, which may cause late arriving copies of 

earlier transmitted symbols to interfere with later transmitted symbols. Transmission rates 

and symbol durations used in LMS (MIMO) channels where interacting objects are within 

a few meters of the land mobile receiver do not usually cause enough delay that result in 

the wideband channel phenomenon of ISI. Hence, except otherwise stated, the discussion 

in this thesis assumes all LMS MIMO channels to be narrowband. This assumption is 

based on the fact that previous S-Band wideband LMS measurements by [1] and [39]  

revealed that multipath components with significant energy arrived after delays of  140ns 

and 153.5ns respectively. This delay is far less than 115.5µs, which according to ETSI 

[40] is the shortest symbol duration for the 8MHz channel designed for DVB satellite 

service delivery to handheld devices below 3GHz. 

2.3 Modelling the LMS MIMO Channel 

All land mobile satellite channels, whether originating from satellites placed in the 

geostationary, highly elliptic, medium earth, or low earth orbits, exhibit the same 

asymmetric configuration due to the absence of interacting objects (scatterers) within the 

vicinity of the satellite. Apart from the effects of Faraday rotation, which occurs in the 

ionosphere, and the deterministic path loss effects resulting from gaseous absorption, it is 

only the environmental effects of shadowing and multipath that adversely affects the 

propagation of satellite signals. The effects of Faraday rotation can be resolved by using 

circular polarisation while attenuation due to atmospheric gases and hydrometeors can be 

mitigated by avoiding certain frequencies for satellite communications. It is the 

asymmetric nature of the channel that makes the adoption of conventional MIMO 

difficult for LMS communications since the satellite link-end would require antennas to 

be spatially separated by several kilometres to achieve uncorrelated fading. This has led 

some authors [3],[16],[17] to suggest the use of multiple satellites located in different 

orbital slots. The large area covered by a satellite footprint, called a megacell, can only be 
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realistically modelled using statistical methods since deterministic methods would incur 

very huge computational resources. On this premise, the next sections will review in 

greater depth the deterministic and stochastic modelling methods as applicable to LMS 

MIMO (and SISO) channels. Compared with SISO channels, an additional requirement of 

LMS MIMO channel modelling is to simultaneously describe the propagation effects 

encountered by the individual MIMO sub-channels and to accurately represent the 

channel fading relationships existing between the sub-channels using the simplest 

possible means. 

 

Figure 2.5: The Land Mobile Satellite radio channel 

2.3.1 The Deterministic Modelling Approach 

Deterministic models rely on numerical methods to accurately predict the effects of 

electromagnetic interactions (reflection and diffraction) on a signal as it propagates 

through an environment. For LMS systems, the propagation environment of concern can 

be several hundreds of square kilometres and to reliably model the boundary conditions 

between different media in this large area and computing all the attenuation effects is 

usually prohibitive. Even when the area of concern is reduced to only a few metres radius 

of the receive/transmit terminal, the use of direct deterministic methods may still not be 

practical as there are limitations to how precise the environmental boundary conditions 

can be electromagnetically described. 

Examples of deterministic models include ray tracing and ray launching, both of which 

are mainly used for small scale indoor measurements. To apply the deterministic 

modelling approach for LMS channels requires breaking the channel down into different 

sections exhibiting distinct characteristics. As has been done by Frigyes in [41], in order 

Scatterers local to mobile 

terminal 
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to model satellite to indoor propagation, the channel is divided into three parts. The first 

part is of free space propagation from the satellite to the first interacting object, which can 

be conveniently modelled deterministically. The second and third parts comprise the path 

from the first interacting object to the land mobile receiver. These two sections are better 

modelled statistically. Other attempts at deterministically modelling the LMS channel by 

[3],[42-44] involve a lot of approximations, and such modelling approach can be called 

semi-deterministic or physical-statistical.  

2.3.2 The Stochastic Modelling Approach 

Stochastic models, whether SISO, MIMO, terrestrial or LMS, take a simpler probabilistic 

approach to predict the characteristics of signals reaching a receive terminal using 

geometric, parametric or correlation based methods. In the geometric-stochastic case as 

done in [45-47], scatterers or buildings are placed at defined geometric locations or 

placed following observed distributions within the propagating path of the radio wave. 

The signal at the receiver is then made up of the sum total of direct, reflected, diffracted 

and scattered waves, with each contribution computed according to electromagnetic 

principles. Parametric-stochastic models on the other hand use parameters such as mean 

angles of arrival and departure and their corresponding spreads, and the Doppler 

frequency to estimate the spatio-temporal cross correlations existing between the sub-

channels of a MIMO channel [48]. For the correlation-stochastic MIMO models, the aim 

is to use from measurements the correlation that exists between each of the receive-end 

(and transmit-end) antennas to impress upon an independent identically distributed matrix 

the desired correlation through pre- and post-multiplication by an appropriate 

transformation matrix. The transformation matrices being derived from the receive-end 

and transmit-end correlation values respectively. Two groups of correlation-stochastic 

MIMO models exist – one group [28],[49],[50], referred to as Kronecker models, 

considers the correlation of the receivers and transmitters to be independent of each other 

while the other group [51] considers a joint correlation at the two link-ends. 

Literature reveals the Kronecker modelling approach to be the most popular method of 

stochastic MIMO channel modelling and it has been shown in [20],[52] to give good 

estimates of channel capacity provided the channel matrix is not greater than 2×2 and the 
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correlation between antenna elements is low. The ease of channel representation and its 

relative accuracy makes the Kronecker model a good candidate for analysing the LMS 

MIMO channel. However, there are certain drawbacks in using the Kronecker modelling 

approach; these include the assumption that the correlation at the channel link-ends is 

completely separable and the requirement for correlation matrix to always be positive 

semi-definite. These assumptions/requirements are not a problem for Rayleigh channels, 

for which MIMO was originally conceptualised, but very much hampers the usability of 

the Kronecker model in the asymmetric and correlated LOS MIMO channel. Even with 

the adoption of orthogonal polarisations [21],[18],[53-58] to reduce channel cross-

correlation, it was observed as far back as 1955 [59] that channels can still remain 

correlated at certain frequencies. 

From the foregoing, and pertaining to the time scales in which channel fading and cross-

correlation is characterised, the next two sections of this chapter reviews large scale and 

small scale LMS channel modelling. Two stochastic channel models, the Loo and the 

Fontan models, representative of the large scale models are examined in greater detail. 

Regarding small scale modelling, aspects treated include Rice and Rayleigh distributions, 

the Kronecker model and the use of Cholesky factorisation to induce correlation. 

2.3.3 Large Scale LMS Channel Modelling 

Large scale fading, when viewed over spatial dimensions ranging from several tens to a 

few hundreds of signal wavelengths, is observed as a slow variation in the local mean of 

the received signal power. As far as the mobile stays within a distance for which the local 

variation stays within the same mean value, all propagation paths to the mobile in this 

period are said to possess some level of large scale correlation [13]. 

In order to model large scale fading in LMS channels, the receive signal power (in 

decibels) first needs to be averaged over periods corresponding to the observation 

distance/time scales earlier mentioned.  The second step involves subtracting from the 

received signal the computed average signal power and then plotting the probability 

density function of the resultant signal. It has been reported in [60] that in addition to 

modelling the large scale fading of an LMS channel by means of the log-normal 
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distribution, the observed local variability can be modelled using the standard deviation 

computed from a fitted theoretical log-normal distribution. 

Although the large scale fading of an LMS channel can be partially described by the log-

normal distribution, more than one distribution is needed to completely describe the range 

of fading a mobile terminal experiences as LMS propagation conditions change from 

LOS to OLOS and NLOS. To this end, the following subsections will review the Loo 

model, which uses a single log-normal distribution, and the Fontan model, which relies on 

the Loo model and uses multiple distributions to model the LMS channel.  

2.3.3.1 The Loo Model 

The Loo model is a stochastic model based on empirical data. In [61], Loo describes the 

SISO land mobile satellite channel in terms of its first order statistics by way of the 

probability density function, and in terms of second order statistics using the level 

crossing rate and average fade duration. This model is given as: 

     (  )       (  ̅)       (  ̃),    (2.17) 

where the received signal r is the sum of a slowly varying log-normally distributed LOS 

component, Z, and a faster varying Rayleigh distributed multipath component, W. The 

phases  ̅ and  ̃ are uniformly distributed over [0, 2 ]. If Z, is kept constant, the 

probability of r reduces to that of a Ricean vector, given by: 
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where    is the received power from multipath sources,    is the modified Bessel function 

of zeroth order. Since Z has been assumed to be log-normal, its probability is given by: 
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where √   and   are the standard deviation and mean of Z. From the assumption that Z 

can be fixed as well as log-normally distributed, the total probability theorem reveals that: 
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Equations (2.17)–(2.21) hold for a single land mobile satellite SISO channel in LOS 

conditions and can be extended to represent a MIMO channel by adding the required 

number of sub-channels and including factors to account for the relationships that exist 

between the various sub-channels. 

2.3.3.2 The Fontan model 

The Fontan model [62] is a stochastic LMS SISO channel model. It models the 

propagating LMS signal by subsuming the slowly varying environmental effects of large 

scale fading into three Markov states. Within each Markov state, large scale fading and 

multipath (small scale fading) effects are described by a Loo distribution and are 

correspondingly modelled using different parameters. The 3-state approach, which gives 

three different distributions, is adopted because single distributions cannot adequately 

describe the range of fading experienced in most LMS channels. The first state of the 

Fontan model represents LOS fading conditions, while the second and third states 

represent periods of moderate shadowing and deep large scale fading respectively. This 

model describes the SISO channel, h, using: 

 (   )   ∑   ( ) 
   ( ) (    ( )) ,    (2.22) 

where    represents the amplitude of a single direct, specularly reflected, or diffuse 

multipath signal. The multipath signal may be due to either the direct or the specularly 

reflected signal.     ( ) represents the associated phase shifts. The individual delta 

functions  (    ( ))  represent the delays while t indicates that all the functions are 

time varying. 

Also given in the Fontan model are state probability and state transition probability 

matrices which respectively give an indication of how long the signal stays in a given 

state and the probability of transiting from one state to the other. This model can be easily 

expanded to represent the MIMO channel by adding as many individual paths as there are 

antenna pairs using equation (2.22) and also including parameters to depict the 

relationships that exist between the individual paths. 
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The Fontan model has been recently revised in [60],[63] to better characterise OLOS and 

NLOS conditions. The revised version reduces the number of fading states from three to 

two and uses a more versatile set of Loo distribution parameters to describe each state. 

State changes are implemented using a semi-Markov model, where the fade distribution 

in one of the states (the ‘good’ state) is described by a power law distribution and in the 

other state (the ‘bad’ state) the fading signal is log-normally distributed. 

2.3.4 Small Scale LMS Channel Modelling 

Small scale fading, when viewed over spatial dimensions much smaller than the large 

scale correlation distance, is a rapid fluctuation in the amplitude of the received signal 

power. The signal fluctuation is so rapid that the only practical way of modelling it is by 

stochastic means. Literature [13] reveals three methods of stochastically modelling the 

small scale fading in LMS channels as: additive white Gaussian (AWGN), Ricean and 

Rayleigh. 

A channel is modelled as AWGN when the mobile terminal is stationary and in line-of-

sight, with the surrounding scatterers being also stationary. This results in the received 

signal power being of fixed amplitude and perturbed only by an additive white Gaussian 

noise component arising from extremely weak multipath components (relative to the LOS 

component) and electronic noise within the receiver itself. AWGN small scale fading, 

being the least adverse fading that can be experienced by a channel, is usually modelled 

only for comparison purposes since mobile terminals and scatterers are much more likely 

to be in motion than stationary. 

Small scale fading in an LMS channel is usually modelled using a Ricean distribution 

when there is a dominant LOS component in addition to significant multipath 

contributions. If a mobile then moves from an LOS to an NLOS location, the channel can 

now be better modelled using a Rayleigh distribution since all the power that arrives at 

the receiver now only come from numerous multipath sources. Stochastic methods, using 

the Ricean and Rayleigh probability density functions allows the receive signal power to 

be more easily predicted than with deterministic methods. Note that signal power 

prediction using deterministic means would require complete knowledge of the 
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propagation environment and including the electromagnetic and boundary properties of 

all the elements within the environment. The probability density function of the Ricean 

distribution was earlier given in equation (2.18) while that of a Rayleigh distribution, r, is 

given as: 

 ( )   
 

     (
   

   ),      (2.23) 

where  σ is the standard deviation of either the real or imaginary parts of r. 

In relation to MIMO channels and staying within the domain of small scale fading, 

correlation existing between individual MIMO sub-channels has always been a cause of 

concern in terms of channel capacity [18-22], and bit error rates [64]. These concerns are 

even more acute for single satellite LMS MIMO channels due to their propensity to 

accentuate both large scale and small scale channel cross correlation [3]. This being the 

case, the next section reviews the Kronecker model, which is the most popular method of 

statistically modelling correlation in MIMO channels. 

2.3.5 Channel Correlation and the Kronecker Model 

Channel correlation as discussed in the rest of this thesis, except otherwise stated, is 

within the dimensions of small scale fading. This section will examine the Kronecker 

model, which is defined in [65] as: 

     
  ⁄

       
  ⁄

,       (2.24) 

where       is a 2×2 matrix made up of uncorrelated identically distributed elements, 

   
  ⁄

 and    
  ⁄

  are respectively the Cholesky factorised matrices of the receive-end and 

transmit-end correlations. Equation (2.24) shows that the Kronecker model considers the 

receive-end and transmit-end correlation to be completely separable. This is not always 

the case. Also to be gleaned from the equation is the fact that Cholesky factorisation 

provides a convenient means to induce correlation on     . Another expression for the 

Kronecker model is:  

   (    )     ⁄    (    ),     (2.25) 
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where    (    ) stacks      into a column-wise vector and    ⁄  is an upper triangular 

matrix derived from Cholesky factorising matrix R, which is obtained from the Kronecker 

product of receive-end and transmit-end correlation matrices, and is expressed as: 

         .      (2.26) 

A necessary condition for (2.26) to be used in (2.25) is that R must be symmetric and 

positive definite or semi-definite. This cannot always be achieved especially when the 

complex correlation function is used in obtaining the link-end correlation coefficients. 

Hence this thesis will avoid the stringent requirement of obtaining positive definite or 

semi-definite matrices and will instead propose a simpler and more efficient correlation 

inducing scheme for its channel modelling. 

2.3.6 MIMO for Land Mobile Satellite Systems 

LMS systems have been designed over the years for optimum operation in LOS 

conditions. This is especially necessary due to link budget restrictions arising from the 

limited power of small handheld LMS terminals such as in devices being proposed for 

DVB-SH and DVB-NGH systems [40]. Local scatterers, which cause NLOS propagation 

are on one hand undesirable due to the severe reduction in signal power they cause while 

on the other hand they create NLOS conditions which is more suitable for MIMO 

implementation. Apart from LOS propagation or the lack of it, another important 

phenomenon is the influence of LMS channels on the polarisation orientation of 

propagating radio waves. Having found in the 1950s [66] that signals of orthogonal linear 

polarisation exhibit independent fading at frequencies of a few megahertz and as such 

were proposed for use in diversity systems, it was only recently that orthogonal circular 

polarization was introduced for use in LMS MIMO systems. It is therefore necessary for 

this thesis to review literature regarding the very important LOS propagation metric of 

Rice factor, how it is estimated and its influence on the application of MIMO for LMS 

systems. Also, a paragraph has been devoted to defining the characteristics of polarisation 

in the form of antenna and channel cross polar discrimination (XPD). 
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2.3.6.1 The Rice Factor and Its Influence of MIMO Capacity 

The Rice factor, K, gives a measure of the severity of fading of a wireless channel. It is 

defined as the ratio of arriving LOS components,  , to the multipath components,   [13] 

Hence when K =   there are no multipath components and no fading whatsoever. On the 

other end of the scale, when K = 0, the fading is at its most severe and the channel can be 

better described by a Rayleigh distribution. Methods proposed in literature for estimating 

the Rice factor include the maximum likelihood estimation (MLE) method of [67], the 

probability distribution fitting method of [68] and the moment based estimation method 

of [69]. This thesis will only use the MLE method since it gives very good estimates of   

and  . Although the MLE method has been reported in [69] as being of high 

computational complexity because it uses a unique expectation/maximisation algorithm, 

the variant employed in this thesis makes use of a simple MATLAB algorithm. 

The influence of LOS propagation, and inherently the Rice factor, on MIMO channel 

capacity has been not been conclusively investigated for LMS systems. We can only infer 

from investigations conducted in terrestrial systems [54],[70]  that high Rice factors will 

adversely affect LMS MIMO channel capacity if MIMO is implemented in its spatial 

dimension form. The use of orthogonal polarisation and the subsequent diagonalisation of 

the MIMO channel [6],[29] makes it necessary to use a capacity metric different from 

equations (2.7) and (2.8) to predict the MIMO channel capacity. This metric will be 

developed in chapter 3 of this thesis. 

2.3.6.2 Channel Cross-Polarisation Coupling and Antenna Cross-Polarisation 

Discrimination 

The polarisation sense of an electromagnetic wave is defined by the trace of its electric 

field vector relative to the direction of wave propagation. Depolarisation occurs when the 

propagation medium alters the polarisation sense of a propagating wave. This 

phenomenon is referred to as cross-polarisation coupling (XPC). For example, a wave 

transmitted with pure right hand circular polarisation may end up at the receiver with 

some components being left hand circular polarised. This depolarisation phenomenon can 

also be measured in terms of, and relative to, an antenna’s cross-polar discrimination 

(XPD) [13]. XPD is the ratio of the received co-polarised signal power to the received 
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cross-polarised signal power. It gives an indication of an antenna’s ability to reject 

oppositely polarised signals. Using     and     to represent the co-polarised RHCP and 

LHCP channels respectively, while      and      represent their cross-polarised 

components, the XPD in decibels is defined as: 

         (
    

    
)       (

    

    
).     (2.27) 

The XPD as used in this thesis is assumed to be only antenna dependent while XPC has 

only channel dependence. Hence the channel model to be developed will use a joint XPD-

XPC term since it is the channel that causes the depolarisation in the first place while the 

antenna possesses a finite ability to accept or reject signals of certain polarisations.  

2.4 Existing LMS MIMO Channel Models 

A good number of land mobile satellite MIMO channel models adopt the stochastic 

approach because of the ease with which stochastic methods describe the small and large 

scale fading effects experienced by land mobile terminals. Also, electromagnetic ray 

tracing over huge areas covered by a satellite’s footprint would be computationally 

prohibitive as there are millions, if not billions of diffraction, reflection, and other 

boundary conditions to consider. This section presents some of such recently developed 

channel models. 

2.4.1 The King Models, University of Surrey 

King, in his University of Surrey Ph.D. thesis [3], has proposed two models for the LMS 

MIMO channel. The first model adopts a physical-statistical approach and has been 

formulated for both multiple and single satellite scenarios. This model is based on the ray 

tracing algorithm and it employs a scatterer cluster-centre approach to define whether 

signals propagating from the satellite to the land mobile terminal are either reflected, 

diffracted or completely blocked. Time series data of instantaneous branch power is 

generated for each receive-transmit (M,N) left and right hand circular polarised antenna 

pair using the following parameters: 
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(2.28) 

The parameters in equation (2.28) are defined as follows: PM,N represents the mobile-

satellite antenna path loss, k represents the wave number, n represents the number of 

scatterers, T is tree attenuation, Γ is the reflection coefficient, d represents distance, D is 

diffraction loss and S represents cross-polar attenuation terms. This model has been 

validated against measured data and its first order and correlation statistics have been 

found to be relatively accurate. However the model has some draw backs which include: 

 The use of numerous parameters including diffraction loss and tree attenuation, 

which is usually calculated from the averages of edges grazed and in lengths (in 

metres) of tree matter (vegetation) traversed. These numerous parameters greatly 

increase computational complexity of the model. 

 In a bid to reduce the computational complexity, the model replaces real scatterers 

like irregularly shaped trees and buildings with spherical clusters. This 

inadvertently over simplifies the channel and incurs a huge penalty in prediction 

accuracy. 

The second of King’s LMS MIMO models in [3], of which a stepwise implementation has 

been given and validated in [71],[72], employs an empirical-stochastic approach and  has 
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been generated both for narrowband and wideband dual polarised 2×2 MIMO channels. 

In the narrowband case, large scale correlated Gaussian channel data samples having zero 

mean and unit standard deviation are generated and passed through a first order recursive 

filter to impose the appropriate temporal fading (memory). The recursive filter’s 

parameters include variables representing the mobile terminal’s velocity, channel 

sampling rate and the channel coherence distance and are given by: 

    |    ( )      |     ( )     ( 
    

  
)     |    (   ) ,  (2.29) 

where     |    ( )represents a channel sample in which large scale correlation has already 

been induced.     |     ( ) indicates an uncorrelated narrowband channel sample and the 

recursive filter terms vm, Δt and rc represent the mobile’s velocity, sample time and 

channel coherence distance respectively. 

Prior to equation (2.29), large scale correlation of the individual MIMO channels 

    |    ( ) is induced by way of Cholesky factorising a 4×4 large scale correlation matrix 

of the channel and multiplying that with a vectorised 4×1 stack of the 2×2  channel 

matrix. Different large scale correlation matrices are created for LOS periods and 

OLOS/NLOS periods. As with the large scale correlation, small scale correlation between 

the individual MIMO channels is then added to the generated channel data based on 

values extracted from measurements. A detailed treatment of the small scale modelling 

aspects of this model has recently been published in [71]. Finally, four large scale fading 

states are defined and a Markov model is used in switching between these fading states. 

For a 2x2 channel, this model is formulated as: 

   ̅    ̃  [
 ̅   ̅  

 ̅   ̅  

]  [
 ̃   ̃  

 ̃   ̃  

],    (2.30) 

where  ̅   (i,j = 1,2) represents the log-normally distributed large scale fading 

components, while  ̃   represents the Ricean distributed small scale fading components. 

This model represents one of the first attempts at empirical based dual polarised LMS 

MIMO channel modelling. However, due to its novelty, it suffers from some of the 

accuracy limitations of the earlier physical-stochastic model including: 
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 The use of very low elevation (7
o
 – 18

o
) channel data to determine the model 

parameters which makes the model only valid for that environment. Most practical 

LMS systems operate at elevations much higher than 18
o
 and as such 

contributions from multipath components are very low relative to the LOS 

components. This is especially true for suburban and open environments. 

 The Markov switching process generates abrupt and rapid transitions between 

channel states which is not very consistent with measurements. 

 The choice of four fading states is rather cumbersome. Recent channel data 

analysis has revealed that some of the fading states are extremely unlikely, hence 

the need to reduce the states to a more realistic number.  

Fixed correlation coefficients were used for both the large and small scale fading 

matrices. This creates some inaccuracy in the model as MIMO channels in real 

environments have variable correlation coefficients. 

2.4.2 The Sellathurai Model, Communications Research Centre of 

Canada 

While with the Communications Research Centre of Canada in Ottawa, Sellathurai in [21] 

proposed a polarisation scattering model for investigating different space-time coding 

techniques for land mobile satellite systems. The model builds a 2x2 horizontal and 

vertical polarised MIMO channel using: 
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where K11, K21 and K12, K22 are the Rice factors of the direct and specula reflected 

components respectively. Note that K11 and K12 represent the Rice factors for the co- and 

cross-polar vertical components respectively while K21 and K22 represent the cross- and 

co-polar horizontal components respectively. L, S and D are 2x2 matrices representing 
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the power in the LOS, specula and diffuse components respectively. They give an 

indication of the antennas XPD. Typical Rice factors for this model vary from 7 to 10 in 

suburban/ rural environments up to about 100 in open environments [21]. In urban areas 

the channel usually exhibits Rayleigh distribution and the available signal power is 

inadequate for LMS applications. 

A limitation of the Sellathurai model is the assumption that the cross-polarised channels 

in all three environments studied (urban, suburban/rural and open) has correlation 

coefficient values of between 0.3 and 0.7. This is not usually the case as higher 

correlation coefficients ranging from 0.76 to 0.92 have been reported in [3], even when 

orthogonally polarised antennas are employed. Another drawback of this model, despite 

its simplicity, is its lack of experimental validation.  

2.4.3 The Liolis Model, European Space Agency 

Liolis in [18],[73] proposed his dual polarised LMS MIMO channel model while working 

with the European Space Agency’s Research and Technology Centre (ESA/ESTEC) in 

Noordwijk, The Netherlands. The Liolis model is a statistical model derived from LMS 

SISO and terrestrial MIMO measurements and it uses a Markov chain process and the 

Loo distribution to describe the huge range of fading effects experienced in a typical LMS 

channel. Included in the model are parameters to account for polarisation and temporal 

correlation, LOS shadowing, elevation angle effects, antenna XPD and user environment 

effects as parameterised by the cross-polar coupling (XPC). 

To induce the required large scale fading correlation, the model proceeds by generating a 

4×4 positive semi-definite covariance matrix,           , based on measurement results. 

Examples of such measurement results can be found in [3],[1] Next, a 2×2 matrix,      

made up of identically distributed and circularly symmetric Gaussian elements with a 

given mean,  , and standard deviation,  , values is generated. The large scale correlation 

is then incorporated into      using equation (2.25). The large scale correlated vector 

(now a vector since it has been stacked by the vec function),            , is then 

exponentiated to give it a log-normal (Loo) distribution. 



Chapter 2. MIMO and LMS Channel Modelling Issues 

 

34 

The Liolis model uses the Kronecker approach to induce correlation on the small scale 

fading components. A semi-definite covariance matrix, as done in the large scale case, is 

generated but this time the matrix is built using the Kronecker product as shown: 

               
     

 ,     (2.32) 

where the superscript T indicates that the positive semi-definite covariance matrices of the 

transmit link end,    , and the receive link end,    , have been transposed. The small 

scale correlation is then induced on a second      matrix following equation (2.25). Or, in 

the Kronecker form [50],[65],[74] , this correlation induction is expressed as: 

                
  ⁄

       
  ⁄

.    (2.33) 

Using the Liolis model, it has been shown that increasing antenna XPD leads to improved 

channel capacity. However, one of the major handicaps of the Liolis model is its 

dependence on a 4×4 positive semi-definite covariance matrix, which as explained in 

section 2.3.5, may be difficult to formulate. 

2.4.4 The King-Brown-Kyrgiazos Model, University of Surrey 

The King-Brown-Kyrgiazos model was recently proposed in [71] to more robustly model 

the small scale fading aspect of the King model [72]. Its strength lies in the description of 

the small scale fading of a dual polarised LOS MIMO channel in LOS channels. In such 

scenarios, the channel correlation is not separable and hence the popular Kronecker 

approach cannot be applied. Otherwise, as with the Sellathurai model, this model is made 

up of three main components as shown below: 

   √
  

        
   √

  

        
   √

 

        
 ,   (2.34) 

where    and    represent the Rice factor or the direct co-polar and direct cross-polar 

components respectively, A is a 2x2 matrix whose diagonal elements represent the two 

co-polar channels while its off-diagonal elements are equal to zero. S is also a 2x2 matrix 

representing the direct cross-polar components. Its diagonal elements are made equal to 

zero while its off-diagonal elements contain the two cross-polar channels. L is a matrix 



Chapter 2. MIMO and LMS Channel Modelling Issues 

 

35 

representing the diffuse multipath components and as such it is made up of zero mean 

circular symmetric complex Gaussian elements. 

The main difference between this model and other stochastic based LMS MIMO models 

is the way it applies complex correlation on the small scale fading component (matrix L) 

of both the co- and cross-polar channels. Firstly, using values extracted from measured 

channel data, it respectively defines the co- and cross-polar correlation matrices as: 

        [
    

 

    
]              [

    
 

    
].   (2.35) 

In the case of dual circular polarisations, matrix L is defined as: 

   [
      

      
]      (2.36) 

and the correlation procedure is performed in three steps given by: 
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]         
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].     (2.39) 

Lastly, the correlated L matrix is assembled as shown below: 

       [
   |        |     

   |        |     
].     (2.40) 

The above three steps avoid the problem of having to Cholesky factorise a 4×4 matrix as 

is required in the Kronecker approach. This represents a convenient work around since for 

Cholesky factorisation to be easily implemented 4×4 matrices must always be positive 

semi-definite, which in practice is not always the case. Using measured channel data, the 

model has been validated both for first order statistics and eigenvalue distribution. 
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However, more empirical data is needed to fine tune and validate the correlation, Rice 

factor and polarisation properties as described by the model. 

The King-Brown-Kyrgiazos model’s adoption of different Rice factor and correlation 

values to describe the small scale fading statistics of the co-polar and cross-polar channels 

makes it especially suitable for analysing new alternative schemes to conventional 

MIMO. This is especially true since the workability of MIMO schemes depend on the 

level of correlation that exist between the MIMO sub-channels and a model that isolates 

these two terms to describe its small scale fading aspect comes in very handy. Therefore, 

adopting the King-Brown-Kyrgiazos model in addition to the multistate modelling 

approach of Fontan [62], which handles the large scale fading aspects, allows all the 

possible fading characteristics of the dual polarised LMS MIMO channel to be isolated 

and their effects on the capacity and BER of MIMO and alternative schemes studied in 

very fine detail. With the availability of new empirical data, the relationship between  

Rice factor and correlation in the small scale fading domain can be uncovered and fed 

into the King-Brown-Kyrgiazos model or used in developing a new model for the dual 

circular polarised LMS channel. 

2.5 Potential Applications for LMS MIMO: Digital Video Broadcasting 

Services (DVB-SH and DVB-NGH) 

DVB-SH refers to the European Telecommunications Standards Institute (ETSI) 

broadcast standard for the satellite delivery of video, audio and data services to small 

mobile and fixed devices including vehicle mounted infotainment devices and personal 

mobile communication and entertainment devices like telephones, personal digital 

assistants (PDAs), laptops and palmtops [40],[75]. The DVB-SH system is essentially a 

satellite-terrestrial hybrid network operating at frequencies below 3GHz. Its satellite 

component (SC) provides coverage to very large areas since satellite is often the most 

economical means to reach sparsely populated rural areas. The terrestrial coverage of 

DVB-SH is made up of cellular-type complementary ground components (CGC) that fill 

the gaps left off by the SC. The DVB-SH hybrid transmission set up shown in Figure 2.6 

[76],[77] allows for continuity of service at acceptable QoS levels. 
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Figure 2.6: DVB-SH system architecture 

Two transceiver classes have been defined for the ground terminals of the DVB-SH 

system [75]. They are SH-A transceivers which can handle only orthogonal frequency 

division multiplexing (OFDM) on both the satellite and terrestrial links, and SH-B 

transceivers which use time division multiplexing (TDM) on the satellite link and OFDM 

for the terrestrial link. According to recommendations given in [77], the typical and 

maximum bit rates for the hybrid DVB-SH system is given in Table 2-1, while the 

transceiver structure showing demodulation modules of its SH-B transceiver is shown in 

Figure 2.7. Note that the SH-A transceiver is also contained within the SH-B transceiver 

and both transceivers are currently designed to reliably handle a minimum bit rate of 

2.2Mbps per 5MHz bandwidth when in satellite-only reception mode. 
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Table 2-1: Typical and maximum net bit rates in Mbps for the DVB-SH system in 

satellite-only and terrestrial-only coverage 

 

Hybrid network frequency configuration 

Transceiver Architecture 

SH-A SH-B 

SFN MFN MFN 

Typ Max Typ Max Typ Max 

3×5MHz beam 

satellite 

Satellite-only beam rate 2.5 10.0 2.5 10.0 2.7 10.6 

Terrestrial-only beam rate  10.0 30.0 7.5 20.0 7.4 20.5 

4×5MHz beam 

satellite 

Satellite-only beam rate 2.5 10.0 2.5 10.0 2.7 10.6 

Terrestrial-only beam rate 13.7 40.0 11.2 30.0 11.1 30.4 

 

In Table 2-1, 3×5MHz represents a 3 colour reuse – i.e. when a 15MHz bandwidth is 

divided into three sub-bands of 5MHz each. Both the SH-A and SH-B transceiver 

architectures have been designed to work in single frequency network (SFN) and multi-

frequency network (MFN) configurations. For SFN, the same sub-band is used by the 

transmitting SC and CGC while transmission in MFN configuration respectively is done 

on two separate frequency sub-bands. 
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front end + 

dual tuner

DVB-SH 

TPS

8, 7, 6, 5 MHz

8k, 4k, 2k

QPSK

1k

1.7MHz

16QAM

Time satellite 

de-interleaver

Turbo 

decoding

Signalling 

Field

8, 7, 6, 5 MHz

Pilots

QPSK

1.7MHz

16APSK8PSK

Time 

terrestrial de-

interleaver

Antennas

Transport 

stream

RHCP

LHCP

Radio DVB-SH-B Demodulator

PL-slots

 
Figure 2.7: Transceiver structure of DVB-SH showing modules of the SH-B demodulator 

 

The demodulator modules of the SH-B transceiver indicate that frequency sub-bands 

ranging from 1.7MHz to 8MHz are capable of being handled in the DVB-SH system. 

Whereas satellite only TDM reception (the lower blocks of the demodulator in Figure 2.7) 

can support quadrature phase shift keying (QPSK), 8PSK and 16PSK modulation formats, 

the terrestrial receiving mode is designed for OFDM modulation using QPSK or 16QAM 

(16 quadrature amplitude modulation)  constellations. While the DVB-SH receiver is in 

MFN configuration (SH-B), the SC and CGC transmitters are capable of using any of the 

8k, 4k, 2k or 1k OFDM modes to respectively obtain 6817, 3409, 1705 or 853 carriers 

[40]. 
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Orthogonal circular polarisation in satellite-earth communications has traditionally been 

used for reducing the effects of inter-beam interference and to promote a high order of 

frequency reuse by multi-beam satellites [19]. However, DVB-SH being a hybrid 

satellite-terrestrial system that would most likely employ multi-beam satellites, there is an 

overriding need to employ orthogonal circular polarisation to improve spectral efficiency 

in order to meet the minimum bit rate requirements. Methods of dealing with the expected 

increased inter-beam and inter system interference is a subject which this thesis will 

partially address. Therefore, in the example of a hypothetical 3-colour 6-beam satellite 

given in [77], the polarisation reuse mode where each European country (or sub region) is 

covered by two beams of orthogonal circular polarisations is chosen in this thesis 

according to recommendations in [77] as the de facto standard for the satellite component 

of DVB-SH systems.  Figure 2.8 pictorially represents this concept and given that spectral 

efficiency is:        (
               

                 
                       ), there is an eight 

fold increase in spectral efficiency compared with a satellite employing a single beam. 

The frequency reuse factor (i.e. the number of times a frequency sub-band is reused over 

the total coverage area of the satellite) increases to 4 compared with 2 as when orthogonal 

polarisation is employed in its traditional role of increasing inter-beam isolation. The only 

downsides of this choice are increased satellite payload complexity, increased inter-beam 

interference and an increased likelihood of causing harmful interference to other wireless 

systems. 
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Figure 2.8: Example of a multi-beam 3-colour dual circular polarised satellite coverage of 

Europe 

Each of the colours in Figure 2.8 represents a frequency band 5MHz wide. The bold lines 

represent RHCP coverage while the broken lines represent LHCP coverage. It is apparent 

that the 6-beam 3-colour satellite coverage scheme allows the bandwidth of each beam to 

be doubled, which can in turn support higher bit rates or can be used in improving the 

QoS through conventional MIMO diversity methods. This thesis in chapter 6 will 

determine what channel conditions can make the multiplexing of two circular 

orthogonally polarised signals more viable than conventional MIMO diversity techniques 

when compared within the context of DVB-SH systems. 

The demand for rich wirelessly delivered multimedia applications is expected to increase 

several-fold in the near future and the current systems of delivery may not be able to cope 

with this demand. This has prompted ETSI to seek for possible enhancements (in terms of 

a reduction in signal processing overheads and the use of multi-antenna techniques like 

MIMO) to the current DVB-H, DVB-SH and DVB-T2 standards so as to meet the 

predicted demand. The enhancement activities, which included a Call for Technologies 

[78], a Study Mission Report [79], and a commercial requirements specification [80] are 

expected to cumulate in the publication of a new ETSI digital video broadcasting via 
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satellite standard applicable to the next generation of handhelds (DVB-NGH). According 

to [80], the type of devices to be addressed in the DVB-NGH standard include small 

wearable receivers like mobile phones and video players capable of indoor and outdoor 

TV signal reception, portable devices like laptops, notebooks, netbooks and vehicle 

mounted devices. The DVB-NGH standard is bound to offer smooth degradation 

mechanisms in areas of poor network coverage and allow for receivers to seamlessly 

switch to other available systems like LTE if the QoS of NGH falls below acceptable 

levels. The QoS for NGH services in ideal conditions has been defined in [78] as a quasi-

error free quality of service which amounts to not more than one uncorrected error per 

hour. Since open source literature is lacking on acceptable QoS levels of DVB-SH and 

DVB-NGH systems, the BER analysis carried out in chapter 6 of this thesis is the first 

time at which the propagation environment-dependent QoS characteristics of such 

services are thoroughly determined; these are done via simulations using measured and 

modelled dual circular polarised LMS MIMO channel data. The BER analysis will 

determine if polarisation multiplexing meets the QoS requirements for both DVB-SH and 

DVB-NGH services. 

2.6 Conclusions 

This chapter has presented various metrics used in characterising wireless MIMO 

channels and models derived from measurements. Reasons have been given why most 

LMS MIMO channel models prefer the stochastic modelling approach. Various stochastic 

and polarisation based LMS MIMO channel models have been reviewed with an in-depth 

look on how they capture and present the large scale and small scale channel fading 

effects. This has revealed some weaknesses in previous modelling attempts and has 

highlighted the need to develop better and more accurate channel models that take into 

account earlier overlooked aspects like the relationship between the cross-correlation of 

orthogonally polarised MIMO sub-channels and their Rice factors, the branch power ratio 

of MIMO sub-channels as propagation conditions change from LOS to OLOS/NLOS and 

vice versa and the influence of antenna and environment dependent XPD on the signal 

power received the antennas. Fully incorporating these factors in a tractable channel 
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model would help in uncovering the true potentials of MIMO in orthogonally circular 

polarised LMS channels. 

Finally, since satellites have much larger footprints than terrestrial broadcast systems and 

can offer more economical broadcast solutions to highly dispersed users, literature 

concerning the newly proposed DVB-SH and DVB-NGH systems has been reviewed. 

With MIMO being proposed for adoption in future DVB systems, there is an open 

research question as to whether MIMO is really necessary in the LMS channel and under 

what propagation conditions can MIMO be implementable. Thankfully, there are 

indications that with slight increase in the complexity of present satellite broadcast 

systems and with the use of dual orthogonal circular polarisations, it is feasible to 

implement MIMO (at least in its polarisation multiplexing mode) in the LMS channel. 

Such MIMO implementations may help deliver high bit rate (and spectral efficient) 

services to dispersed land mobile satellite users. Therefore, it is necessary for the next 

chapter to review literature on popular transceiver structures since transceivers are vital to 

wireless communication systems and without their optimal operation, the potentials of 

MIMO diversity or MIMO multiplexing cannot be realised. 
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Chapter 3 

3 MIMO Transceiver Techniques and Dual 

Circular Polarisation Multiplexing 

The previous chapter reviewed literature relating to multiple-input multiple-output 

(MIMO) channel modelling for terrestrial and land mobile satellite (LMS) channels with 

particular emphasis on how available models describe the polarisation characteristics of 

LMS MIMO channels. The insight derived from chapter 2 thus lays a good foundation to 

embark on a brief review of different practical MIMO transceiver techniques in this 

chapter. Transceiver techniques deserve to be given much attention since one of their 

paramount roles, without which MIMO would remain an academic exercise, is their 

ability to identify and utilise the additional spatial and/or polarisation domains of MIMO 

even in the presence of increased inter-channel interference. Hence, one of the outcomes 

of chapter 3 is the proposal of a dual circular polarisation multiplexing (DCPM) scheme. 

DCPM is a low effort alternative to MIMO and has been found to yield comparable 

capacity to conventional MIMO at low signal to noise ratio (SNR) values and in channel 

conditions of sufficient polarisation purity. 

3.1 Background to MIMO Transceiver Architectures 

By transceiver architecture, this thesis refers a terminal capable of performing both the 

operations of transmission and reception. Due to the plethora of transceiver techniques 

available in literature, this chapter will only examine the receiver aspects of a transceiver 

system and in doing so will stick to the discrete time domain. Readers interested in the 

frequency domain aspects are encouraged to use the Fourier transform relationship 

between time and frequency to extend the analysis if needed. The receiver-only 

description adopted here, in addition to keeping the discussion brief is justifiable because 

wireless propagation channels obey the theory of reciprocity [13]. Channel reciprocity 
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allows for the convenience of viewing a channel in transmit mode while doing 

computational analysis and then assuming the same channel to be in the receiving mode 

while measuring the channel. The reciprocity principle is the premise on which linear 

receiver structures like Zero Forcing (ZF), Minimum Mean Squared Error (MMSE) 

detection and the non-linear Maximum Likelihood Sequence Estimator (MLSE) will be 

studied in this chapter. Matched filtering, a precursor to the linear receiver structures is 

also treated before examining how the linear transceivers can be used in highly correlated 

LMS channels to improve the performance of communication systems. 

It is important to emphasise that since a receiver’s main job on sensing the transmitted 

signal is to remove the channel attenuation effects and correctly detect the transmitted 

information, it can also be referred to a channel equaliser. Hence, the rest of the thesis 

will use receiver architectures and channel equalisation techniques interchangeably. 

3.1.1 Zero Forcing 

Zero forcing (ZF) is the simplest of the linear channel equalisation techniques. It operates 

on the assumption that the MIMO channel matrix, H, is fully invertible and the product of 

the received signal and the coefficient of inverted channel must fulfil the criteria: 

[   ( ) ( )]     
 {

               
           

      (3.1) 

and          ,       (3.2) 

where in the case of a 2×2 channel, y(t) represents a 2×1 received signal vector, wZF(t) is 

a 2×2 matrix of the Zero Forcing complex weights produced by inverting H using the 

Moore-Penrose pseudo-inversion process (H
+
) [35], and Ts represents the duration of the 

received symbol. Equation (3.1) means that the output of the channel equaliser will be 

forced to zero at all instants except when t = 0. The expression in (3.1) also assumes that 

the channel is narrowband. If the channel happens to be wideband, multiple taps are 

needed and w(t) for each of the taps are scaled corresponding to their level of contribution 

to the overall received signal power. 
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ZF is optimal in removing interference but in the process of channel inversion it enhances 

background channel noise [8],[13],[34]. However, despite the noise enhancement 

drawback, ZF’s simplicity makes it well suited for the LOS scenario of the dual polarised 

LMS MIMO channel since noise is such channels is usually minimal. The only significant 

channel distortion comes from the interference of depolarised signals and the receiving 

antennas inability to completely reject signals of orthogonal polarisation. It is then 

important that achievable bit error rate (BER) of the dual polarised LMS MIMO channel 

when using the ZF receiver be thoroughly investigated. This is the main crux of chapter 6 

of this thesis.  

3.1.2 Minimum Mean Square Error Detection 

The minimum mean square error (MMSE) detection criterion for linear channel equalisers 

goes a step further than ZF by trying to simultaneously minimise the effects of both 

interference and channel noise. The objective of this equaliser is to choose a matrix, M 

that minimises the error ϵ, given by: 

    [(   ̅) (   ̅)]   [(      ) (      )],   (3.3) 

where x is the transmitted signal vector and  ̅ is the signal vector estimated by the 

equaliser to have been transmitted. The other terms are as previously defined and since 

we are dealing with a 2×2 MIMO channel, x and y are both 2×1 vectors. The MMSE 

complex channel weights are contained in the 2×2 dimensional  wMM, which is arrived at 

by inverting both the channel matrix, H, and the noise contributions (in the SNR term), 

and is defined in [34] as: 

     (    
 

   
  )

  

  ,     (3.4) 

where I is an identity matrix with a dimension equal to the number of receive antennas, 

m, superscript H indicates Hermitian transposition. 

MMSE equalisation strives for a compromise between interference elimination and noise 

removal, making its implementation is more challenging than that of ZF. Provided there 

are no transceiver power constraints to hamper the increased complexity, MMSE is a 
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better candidate to equalise dual polarised LMS MIMO channels experiencing OLOS 

fading due to its ability to deal with increased channel noise. 

3.1.3 Maximum Likelihood Detection 

Receivers based on the maximum likelihood (ML) detection criterion are optimum 

because they exhaustively search through complete sets of code words or symbols to 

determine (in the particular case of ML Sequence Estimators (MLSEs)) the sequence in 

which they were most likely transmitted. Assuming that the transmitted data stream, x, is 

temporally uncoded, the MLSE criterion is defined in [34],[81] as: 

 ̅         ‖    ‖ ,     (3.5) 

where  ̅ is the estimated symbol vector obtained after exhaustively searching through all 

the vector constellations for the most probable transmitted vector. Due to the exhaustive 

search they perform, ML receivers are highly complex and not feasible to implement in 

most cases. They will only be used in this thesis to benchmark against the BER 

performance of the more practical ZF and MMSE transceivers and for constellation sizes 

not greater than QPSK. 

3.1.4 Matched Filtering 

At the front of every linear receiver is a filter that is matched to the convolution of the 

channel coefficient,  (   ), and the transmitted symbol,  ( ). The main function of such 

filters is to limit the amount noise and interference that is sampled from the channel. 

Looking from the transmit link-end, match filtering entails the application of precoder 

weights to the transmit signal so as to enforce channel orthogonality, which in turn 

supports eigen mode transmission. Recall in section 2.2.4 that eigen mode transmission is 

dictated by the eigenvalue distribution of the given MIMO channel. Therefore MIMO 

channel matched filtering is a system whereby multiple equivalent channels are created 

by matching each transit beam to a receive beam and sending independent bit streams 

through the matched beams. The enforced channel orthogonality eliminates inter bit 

stream interference, which implies that matched filtering is optimal when the channel is 

orthogonal. However, for conventional MIMO systems, eigen mode transmission via 
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matched filtering requires a very rich scattering environment, which is not usually the 

case in LMS channels. Luckily, the use of orthogonal circular polarised antennas with 

high XPDs has been recently shown to provide a good level of orthogonality and capacity 

[3],[82],[83], a phenomenon this thesis aims to explore further. 

3.2 Dual Circular Polarisation Multiplexing – An Application of 

Receiver-based Processing for the LMS Channel 

Dual circular polarisation multiplexing has been proposed by the author as a technique to 

optimally combine two orthogonally polarised channels for increased throughput when 

the LMS channel is mainly LOS and with highly correlated fading statistics. The choice 

of polarisation multiplexing is based on the findings of [84] which revealed that 

conventional equal power allocation MIMO becomes increasingly inefficient as the 

MIMO channel gets more correlated. Hence dual circular polarisation multiplexing, being 

an offshoot of beamforming, is proposed as a more appropriate MIMO technique to 

implement in such correlated channel conditions. A schematic diagram of the DCPM 

architecture is shown in Figure 3.1, where there is a 2×2 MIMO link between a satellite 

and a land mobile terminal. The RHCP and LHCP antenna pairs at both the satellite and 

the mobile terminal link-ends as shown in Figure 3.1 and previously explained in section 

2.5 are for the purposes of simultaneously transmission and reception two independent 

and parallel bit streams. Channel equalisation is performed only at the mobile while the 

satellite may be periodically updated of the large-scale fading statistics of the channel. It 

is important to emphasise that DCPM is fundamentally different to MIMO which applies 

weights processing at both the satellite and LMS terminal so as to enforce channel 

orthogonality. 
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Figure 3.1: DCPM architecture showing receiver based channel equalisation 

3.2.1 Iterative Receivers and Applications 

ZF and MMSE linear receiver techniques earlier described can be made to work in 

iterative designs to successively eliminate interference and channel noise. Iterative 

channel distortion elimination is the basis upon which popular transceiver architectures 

like the Diagonal Bell Labs Layered Space Time (D-BLAST) [85] and Vertical Bell Labs 

Layered Space Time (V-BLAST) [86],[87] channel equalisation schemes operate. Since 

the multiple channels of a MIMO communications system usually encounter different 

levels of channel interference, two types of iterative channel equalisation designs–ordered 

and unordered successive interference cancellation (OSIC or USIC)–have been proposed 

and implemented over the years. 

Selection order in OSIC transceivers is achieved by first choosing the MIMO sub-channel 

with the strongest signal to interference plus noise ratio (SINR), then estimating (using 

ZF or MMSE) and removing the contribution of this sub-channel in the overall received 

signal. Successive iterations are then performed on the depleted MIMO channel to 

estimate and remove the contributions from progressively weaker MIMO sub-channels. In 

the simpler USIC, sub-channels are chosen at random for first stage estimation and 
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elimination. This comes with certain drawbacks, chief among which is the higher 

probability of error propagation between iteration stages given the increased likelihood of 

a weaker MIMO sub-channel to be chosen for first stage estimation. First stage estimation 

errors would then be propagated to the second stage leading to higher error rates for 

USIC. Details of SIC transceivers can be found in [34],[88]. The BER performance of 

OSIC compared with SIC [89],[90] makes it a more favoured candidate for use in dual 

polarised LMS MIMO systems because of its reduced incidence of error propagation. 

Especially for LOS conditions characterised by high SINRs and minimal interference, the 

advantages of OSIC can be exploited and used with the simpler ZF equalisation (ZF-

OSIC) as compared to the more cumbersome MMSE-OSIC. 

Implementing ZF-OSIC in a dual polarised MIMO system would be a two-step operation 

which involves firstly estimating the stronger of the two co-polar channels (RHCP or 

LHCP) and removing its effect from the total H matrix and secondly estimating the 

transmitted symbols in the depleted H matrix. Although many different OSIC algorithms 

have been proposed for use in different environments [87],[91],[92] and the effect of the 

ordering criteria extensively studied [93], only one preliminary study [4] has looked at the 

influence of orthogonally polarised data-streams on the BER rates of LMS MIMO 

schemes. 

Since LMS communication systems mainly operate in the LOS mode and antenna co-

location remains the only practical means to implement MIMO in such systems, the 

correlation between supposedly independent MIMO sub-channels is bound to be very 

high. Therefore the effect of this high correlation on the transceiver bit and symbol error 

rates is very important and needs to be exhaustively studied. Up until now, only a few 

researchers have taken on this task.  One of such studies was done by Akhtar and Gesbert 

in [94], where they proposed a hybrid ZF/maximal ratio combiner with SIC (HZF-SIC) to 

combat the adverse effects of channel correlation. In the said reference, the MIMO 

channel is represented by a matrix, R, made up of large scale correlation coefficients and 

known only to the transmitter. A second part of the channel that is added to R, is an iid 

matrix, Hiid, which this time is known only by the receiver. The assumption is that the R 

changes slowly enough for it to be regularly fed back to the transmitter. Since Hiid is well-

conditioned and easy to invert, the zero forcing criteria is used in estimating this part of 
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the channel while the ill-conditioned R is handled using maximal ratio combining, which 

estimates the strongest of the multiple MIMO sub-channels. Successful estimation is 

followed by removing the effects of the estimated channel from the rest of the MIMO 

channel matrix. As with the recursive ZF technique, interference is successively cancelled 

by estimating and removing the effects of second, third, etc of the MIMO sub-channels. 

The main difference lies in not re-inverting the depleted MIMO channel each time but 

only performing MRC combinations instead. Additionally, a BER balancing criterion 

(BBC) is defined, giving rise to a pre-coder weighting scheme used in controlling the 

transmit-end large scale correlation. The benefit of the pre-coder design is such that the 

channel can either operate in full MIMO mode using spatial multiplexing when channel 

correlation as defined by R is low, or when R is high such that the entire MIMO channel 

is fully correlated, the scheme can operate in SIMO mode using constellation 

multiplexing to maintain predefined data rates. 

The improved BER performance of HZF-SIC in comparison with linear ZF and HZF-SIC 

without pre-coding points to the fact that ZF, if implemented in well-conditioned MIMO 

channels can be quite beneficial. However, apart from the tractability of using closed 

form expressions to handle individual channel components as done in [94], there is 

significant difficulty in separating dual polarised LMS MIMO channels into well-

conditioned small scale fading and ill-conditioned large scale fading components. 

Therefore, with diagonally correlated MIMO sub-channels being reported to achieve 

higher capacities than independently faded channels [6], and considering the works of 

Sarris [70], Arapoglou [58] and the references mentioned earlier in this section, this thesis 

proposes the use of Dual Circular Polarisation Multiplexing (DCPM) [95] for the highly 

correlated LMS MIMO channels. 

3.2.2 DCPM Capacity, Interference Mitigation and Channel Weighting 

Even though two orthogonal circular polarisations have been used to ensure independent 

small-scale fading of MIMO sub-channels, their large scale fading is known to be highly 

correlated [3]. It is thus necessary that such characteristics alongside any equalisation 

schemes are included in the metrics derived for testing the viability of DCPM. 

Supportable channel capacity is one of such metrics that can be used as a first step to test 
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DCPM. The following channel capacity derivation is based on the assumption that the 

satellite shown in Figure 3.1 does not require any channel state information (CSI) fed 

back to it and the channel weights used in nulling out interference are derived from a 

simple receiver-based linear ZF equalisation technique. Thus, starting from the overall 

input output relationship for MIMO channels, we have: 

      .      (3.6) 

Looking at Figure 3.1, observe that the signal vectors at the mobile terminal receive 

antennas are: 

                                 .   (3.7) 

Introducing the complex weights, the output of the two combiners (labelled Σ1 and Σ2) is 

given by: 

     
     

   (           )  (           ).   (3.8) 

Substituting (3.7) into (3.8) results in: 

  (           )    (           )    (           )    

(           )            (3.9) 

and rearranging (3.9) gives: 

   (             )   (             )   (             )   

(             )  .       (3.10) 

The first two terms in equation (3.10) are the output from the top combiner in Figure 3.1. 

This is made up of the signals emanating from the RHCP antenna, which have been 

equalised by the complex weights w11 and w12. The last two terms in (3.10) are output by 

the lower combiner. 
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3.2.3 Channel Capacity Potentials of the ZF-based DCPM 

To derive the capacity metric within the ZF channel equalisation context, the method 

explained in [13] is adopted in performing the following: 

1. Assuming that the channel matrix is correctly normalised, the coefficient of x1 in 

(3.10) is equated (forced) to one while the coefficient of x2 is forced to zero in 

order to obtain the capacity contribution emanating from the satellite’s RHCP 

antenna. 

                                 .   (3.11) 

2. In a second separate step, the contribution from the satellite’s LHCP antenna is 

obtained by forcing the coefficient of x1 to zero while the coefficient of x2 is 

forced to one. 

                                 .   (3.12) 

The resulting sets of equations of (3.11) and (3.12) are respectively solved simultaneously 

to obtain the ZF complex phase weights given by: 

     
   

             
 

   

  
,    (3.13) 

     
   

             
 

    

  
,     (3.14) 

     
   

             
 

    

  
,     (3.15) 

     
   

             
 

   

  
,     (3.16) 

where                  .     (3.17) 

Assuming that the derived ZF complex weights do a good job at cancelling out the 

interfering cross-polar signals (since the antennas cannot themselves completely reject 
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signals of orthogonal polarisation [13]), observe in Figure 3.1 that there are two SINRs 

respectively defined as: 

SINR1  
|             |

 

|             |
 
    

 
, and SINR2  

|             | 

|             |     
 , (3.18) 

where the noise contribution in SINR1 and SINR2 are respectively represented by:  

   
  

|   | 

   
 and    

  
|   | 

   
 .   (3.19) 

The capacity of DCPM is then given as: 

          (       )      (       ).    (3.20) 

The derivation of equation (3.20) then paves the way for preliminary channel capacity 

analysis in order to determine the conditions under which DCPM would work. For the 

preliminary analysis carried out in the course of this research, use was made of a simple 

statistical channel model, which specifically included a Rice factor component, K, and a 

depolarisation factor, M. The depolarisation factor allowed the author to uncover the 

effects of polarisation on the capacity of dual circular polarised LMS MIMO channels. 

Details of the simple channel model adopted can be found in chapter 10 of [13] and a 

circuit diagram for implementing a single branch of the Ricean LMS MIMO channel has 

been reproduced from [13] in Figure 3.2. The simple channel model was a necessity for 

the DCPM proof of concept due to the limited available data on measured dual circular 

polarised LMS MIMO channels. Details of this first stage analysis has been published in 

[95] and some of the assumptions adopted and initial results are given in the following 

paragraphs. 

 
 

Figure 3.2:  Circuit diagram for implementing a simple Rice-fading channel 
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The channel capacity analysis of ZF-based DCPM described in [95] is based on the 

assumption that a dual circular polarised LMS channel can be adequately represented by a 

synthetic 2×2 matrix, Hsyn, whose elements have unit mean values but different randomly 

distributed phases. The off-diagonal elements of Hsyn are scaled by a factor, M, 

representing a combination of channel induced depolarisation (also called cross 

polarisation coupling) and the receive antennas inability to completely reject signals of 

opposite polarisation. These off-diagonal elements are regarded as interference, and are 

thus defined as the square root of the power that leaks from right hand circular 

polarisation to the left hand circular polarisation or from the left hand circular polarisation 

to the right hand circular polarisation. These leakages are usually assumed to be the same 

for both polarisations and the transceiver’s duty in this case is to eliminate them using 

linear ZF channel equalisation. Mathematically,  

      [
   

   

 
   

 
   

].      (3.21) 

Elements of Hsyn in (3.21) are inserted into equations (3.13) – (3.20) in order to arrive at 

the appropriate capacity expression for DCPM. This setup allows for the magnitude of M 

to be adjusted in order to determine its effect on channel capacity. For comparing the 

achieved DCPM capacity with that of equal power allocation MIMO, equation (2.7) is 

used on a Rayleigh distributed channel data that has been appropriately scaled to render 

the same Frobenius norm as that of the dual polarised channel. The Frobenius norm of a 

channel H is defined in [35] as: 

‖ ‖   √∑ ∑ |   |
  

   
 
   ,      (3.22) 

where m and n respectively represent the number of receive and transmit antennas. The 

Frobenius norms of the two channels types - Hsyn and the appropriately normalised 

Rayleigh distributed channel–for the whole range of M are plotted in Figure 3.3.  
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Figure 3.3: Computed Frobenius norms of synthetic dual polarised Ricean (Hsyn) and 

normalised Rayleigh channels 

 

The very close fit between the two plots indicate that the capacity of the two channels 

independently computed using the DCPM capacity as expressed in equation (3.20) and 

the equal power allocation MIMO capacity of (2.7) can be directly compared. Examples 

of such comparisons are given in Figures 3.4(a) to (d), which at Rice factor values of 6dB, 

10dB, 15dB and 100dB show the influence of SNR on MIMO and DCPM capacities 

when M is kept at 10dB. In the figures, the equal power allocation MIMO capacity of the 

normalised Rayleigh channel is labelled as “MIMO Rayleigh” while the single-input 

single-output capacities for equivalent Ricean and Rayleigh channels are labelled as 

“SISO Rice” and “SISO Rayleigh” respectively; these were only included for 

benchmarking purposes. As reported in [6],[29], the diagonally correlated Ricean dual 

polarised LMS channel (MIMO Rice) achieves a slightly higher capacity than its 

Rayleigh counterpart at SNR values above 0dB. This implies that the channel model 

produces accurate capacity statistics and can be used with confidence to analyse the 

potentials of DCPM. Therefore, Figures 3.4(a) to (d) show that at a fixed M value of 10dB 

and with increasing Rice factor, DCPM capacity, labelled “DCPM Rice” steadily 

increases, approaching that of conventional MIMO. Since M is fixed, the observed 

improvement in DCPM capacity is solely due to the increasing efficiency of the receiver 

based channel weighting. Note specifically in Figures 3.4(a) and (b) that the DCPM 

capacity curves begin to widen away from that of MIMO at SNRs above 20dB. This 

phenomenon highlights the fact that SNR needs to be low for DCPM and MIMO to 
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achieve comparable capacity and low SNRs are typical of LMS systems. Figure 3.4(c) 

was included because 15dB is the average Rice factor value that was recorded in the dual 

circular polarised LMS channel measurements of chapter 4. Lastly and on the other end of 

the scale, Figure 3.5(d) shows an extremely high Rice factor of 100dB and as can be 

observed, DCPM capacity is almost equal to that of MIMO for the full SNR range. 

 

 
Figure 3.4: DCPM and MIMO capacities versus SNR for M = 10 dB at (a) Rice factor of 

6dB, (b) Rice factor of 10dB, (c) Rice factor of 15dB and (d) Rice factor of 100dB 

 

Figures 3.5(a) to (d) show the influence of the depolarisation factor, M, at Rice factor 

values of 6dB, 10dB, 15dB and 100dB. Observe that DCPM capacity becomes equal to 

that of conventional MIMO when M approaches 20dB and at very high channel Rice 

factor values (100dB). However, at a minimum M value of 10dB, which can be achieved 
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by most commercial grade antennas, and with high enough Rice factors (a minimum of 

around 6dB or a typical value of 15dB), DCPM gets to within 1bit/s/Hz the capacity of 

MIMO. This represents a very significant result because DCPM relies only on receiver 

based processing to achieve the capacity increase while conventional MIMO relies on 

both transmitter and receiver based processing. Since M has a joint channel and antenna 

dependence and the depolarisation effects of the channel cannot be controlled, much 

emphasis should be placed on designing antennas that possess very high polarisation 

purity. However, antenna design and testing is beyond the scope of this thesis and 

interested readers are referred to [96] and [97], which chronicle some of the recent 

attempts at designing antennas that may be suitable for the proposed DCPM scheme. 

 
Figure 3.5: DCPM and MIMO capacities versus M for SNR = 10dB at (a) Rice factor of 

6dB, (b) Rice factor of 10dB, (c) Rice factor of 15dB and (d) Rice factor of 100dB 
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The above results point to the fact that when polarisation rejection is good, which usually 

occurs in dual polarised systems operating under LOS conditions, DCPM can approach 

the capacities achievable using conventional equal power allocation MIMO. However, as 

can be observed in Figure 3.5(c), it is vital for the appropriate polarisation purity 

threshold to be set for DCPM implementation; else DCPM capacity can even become 

worse than that of SISO. Finally, Figure 3.4(c) indicates that even when the LMS channel 

is highly Ricean and with good polarisation purity, DCPM only achieves comparable 

capacity to MIMO at low SNR values. 

Therefore, following the presented low SNR based DCPM capacity results of the 

synthetic channel simulations, the next section uses a more detailed channel model to 

validate the effects of channel Rice factor and the combined effects of antenna cross polar 

discrimination (XPD) and channel cross polar coupling (XPC) on the capacities of DCPM 

and that of equal power allocation MIMO. On successfully validating the DCPM capacity 

characteristics, it then becomes imperative to test its bit error rate performance when 

using the recommended linear ZF equalisation scheme, which is the simplest of the 

popular channel equalisation techniques, and compare the results with bit error rates of 

more complex equalisation schemes such as MMSE and MLSE. 

3.2.4 Dual Circular Polarisation Multiplexing versus Equal Power 

Allocation MIMO: Additional Capacity Simulations 

Having found out in the previous section that DCPM can only deliver comparable 

capacities to equal power allocation MIMO when the channel has good polarisation purity 

– represented by an XPD of at least 10dB, this section explores the specific effects of 

XPC, XPD, channel Rice factor and SNR on deliverable capacity. The following analysis 

uses a more detailed channel model that explicitly defines antenna XPD, channel XPC 

and the Rice factor terms. The model is based on Oestges’s [98] multi-linear polarised 

channel model, which is given by: 

   [
      

      
],      (3.23) 



Chapter 3. MIMO Transceiver Techniques and Dual Circular Polarisation Multiplexing 

 

59 

where the two co-polar components,     and    , are Gaussian distributed, having values 

less than or equal to 1.     is a phase-shifted and attenuated version of    , given as: 

             (   ).     (3.24) 

In (3.24), µ accounts for the difference in the amplitude of the RHCP and LHCP channel 

coefficients and θ is a zero mean random variable. Similarly, the cross-polar components 

are defined as: 

             (   ) and              (   ).    (3.25) 

with χ accounting for the imbalance between the co-polar and cross-polar terms and   

being independently and uniformly distributed over [0 2π]. This imbalance directly results 

from the channel’s XPC ratio and the antennas XPD values. A close look reveals that the 

models of equations (3.21) and (3.23) are basically the same; the only difference is that in 

the former, an additional channel attenuation factor is externally applied by way of 

straight-forward division to represent the different states of channel XPC and antenna 

XPD. The earlier used depolarisation factor, M, is related to χ as follows: 

   
 

√ 
.       (3.26) 

Note that M in (3.26) above is in linear form, not in decibels (dB). A more formal 

approach following the method of [99] is to decompose the channel two parts as follows: 

   [
 √ 

√  
]   ̅,     (3.27) 

where (0 < χ < 1) account for the XPD and XPC effects while  ̅ represents the Ricean 

correlated channel components whose amplitudes are defined by µ in (3.24) and   

indicates Hadamard (element-wise) multiplication. Including a Rice factor component in 

(3.27) following the Sellathurai model [21] and adding on a second matrix that only 

contains diffuse multipath components gives: 

   [
 √ 

√  
]  (√

 

   
 ̅)  √

 

   
 ̃,   (3.28) 
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where K is the Rice factor in linear scale and  ̃ is the matrix of diffuse multipath 

components whose elements are zero mean, circularly symmetric and have different 

randomly distributed phases. Equation (3.28) represents the building blocks for the 

new/updated model, which will be explained in greater detail in chapter 5.  

To determine the effect of χ on the ergodic channel capacity, (3.28) was coded in 

MATLAB and 10
4
 channel instances (coefficients of H) produced. Equations (2.7) and 

(3.20) were then used in respectively computing the DCPM and equal power allocation 

MIMO ergodic channel capacities. The result of this is shown in Figure 3.6 where SISO 

capacities have again been included for comparison and benchmarking. 

Observe in Figure 3.6(a) that DCPM capacity decreases with increasing χ. At χ = 0.22, the 

capacity of DCPM reduces to that of a SISO channel and it is no longer advantageous to 

implement DCPM in such channels. The important point in the capacity versus χ curves 

of Figure 3.6(a) is that at an SNR as low as 10dB and a Rice factor of 10dB, DCPM 

achieves a capacity of 5.2bits/s/Hz, which is equal to the capacity of equal power 

allocation MIMO. This is possible only when χ approaches 0. Exactly how small χ needs 

to be in order for DCPM to achieve MIMO capacity has already been given using its 

equivalent M value in Figure 3.5(c). In the said figure it is shown that at an M of about 

20dB (equivalent to a χ of 0.01), DCPM capacity becomes equal to that of MIMO but at a 

very high Rice factor of 100dB. 

Since the value of χ has been tentatively chosen to be 0.01 for good DCPM capacity, the 

next task is to determine the range of Rice factors for which DCPM capacity is 

comparable to that of MIMO. The result of this is shown in Figure 3.69(b) where it can be 

observed that DCPM capacity comes within 0.4bits/s/Hz of MIMO capacity at a Rice 

factor of 20dB and at a low SNR of 10dB. As the Rice factor increases beyond 50dB, 

MIMO and DCPM capacity become indistinguishable. Note that 10dB SNR and 20dB 

Rice factor values have been used as capacity comparison reference points because these 

Rice factor values can be easily achieved by typical LMS broadcast systems. Also note in 

Figure 3.69(b) that even though the Rice factor region between 0dB and 10dB shows a 

very large MIMO capacity compared with DCPM, this type of channel may be practically 
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impossible to achieve since high polarisation purity of dual polarised channels in reality 

only correspond to LOS propagation, with the attendant high Rice factor values. 

In concluding the MIMO and DCPM capacity comparison, Figure 3.6(c) shows the 

ergodic capacity versus average SNR curves for DCPM (implemented with the 

recommended zero forcing complex weights), DCPM (implemented without the ZF 

weights, only relying on orthogonal polarisations), equivalent Ricean channel MIMO and 

SISO capacities. With χ set at 0.01 and a Rice factor of 10dB, it can be observed that 

DCPM with the channel weights always comes within 1.4bits/s/Hz of MIMO capacity for 

SNR values less than 10dB. Beyond this SNR, DCPM capacity starts falling further and 

further behind that of MIMO. The effect of increasing the Rice factor while keeping the 

SNR fixed is to improve DCPM capacity, thereby allowing it to become equivalent to that 

of MIMO as can be seen in Figure 3.4(c). At 20dB SNR, Figure 3.6(c) shows that ZF 

equalisation gives DCPM a 2.5bits/s/Hz advantage over DCPM when implemented 

without ZF weighting. This implies correct receiver based channel weighting is perhaps 

the most important aspect of DCPM as even in spite of using orthogonal circular 

polarisations, DCPM would never achieve acceptable channel capacity – observe that 

DCPM without channel weighting gives less capacity than SISO at 20dB SNR.  
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Figure 3.6: DCPM and equal power allocation MIMO ergodic capacities versus (a) χ, 

which is an XPD-XPC factor, (b) Rice factor and (c) SNR 

 

The fact that Figure 3.6(c) essentially follows the same pattern as the capacity versus 

SNR curves of Figure 3.4 is enough prove that the effects of Rice factor, XPD and XPC 

on DCPM and MIMO capacity has been validated since the two sets of results have been 

obtained using two different channel models. It is important to point out that in the results 

of Figures 3.4 to 3.6, only the capacity advantage of using ZF channel equalisation 

scheme was considered. It has been assumed that similar capacities would be achieved if 

other more complex (and perhaps better) channel equalisation schemes such as MMSE or 

MLSE are considered. However, this would entail a very tedious process that is beyond 

the scope of this research. A more feasible way to determine the effects of the other 

equalisation schemes and if the choice of ZF over them is justified is through bit error rate 

analysis. Therefore the next section alters the parameters of the channel model of (3.28) 

to represent three channel fading states that are broadly defined as LOS, OLOS and 

NLOS/Rayleigh, and uses these to determine the comparative BER advantage of the using 

any of the three equalisation schemes. 
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3.2.5 BER Characteristics of the Dual Orthogonal Circular Polarised 

Channel: Numeric Examples and Simulations 

In order to provide a better understanding of the effects of orthogonal circular polarisation 

on the transceiver scheme chosen for DCPM, three channel types with parameters given 

in Table 3-1 have developed based on the model of (3.28) for bit error rate analysis. For 

each channel type a random sample from the 10
4
 generated by a MATLAB 

implementation of the channel model is chosen for numeric analysis. In each of these 

cases, ZF and MMSE channel weights are obtained using equations (3.2) and (3.4), while 

MLSE decoding employs exhaustive search to determine the most likely transmitted 

symbols. 

Table 3-1: Table showing Rice factor and the XPC-XPD factor different channel types 

Channel type Average co-polar Rice factor 

(K) 

Average XPC-XPD factor (χ) 

LOS 10 dB 0.02 

OLOS 6 dB 0.01 

NLOS/Rayleigh -4 dB 1.0 

3.2.5.1 LOS Channel 

The channel type chosen for this example is when polarisation purity is high and this 

corresponds to situations where χ in (3.27) approaches zero. The dual circular polarised 

MIMO channel rendered in this case is shown in Figure 3.7 and is given as: 

   [
                            
                            

].    (3.29) 

Rx

Tx

 
Figure 3.7: Illustration of a LOS LMS channel 
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The matrix of (3.29) contains relatively low values of the off-diagonal elements (hRL and 

hLR), which are at least 7dB below the elements in the main diagonal (hRR and hLL). To 

induce channel fading, the channel matrix is multiplied by independently transmitted data 

streams from each of the two circular polarised antennas. Using an example with QPSK 

modulated signals of 0+j1 transmitted from the RHCP antenna and 1+j0 transmitted from 

the LHCP antenna, and employing the nomenclature of (3.6), the effect of the channel on 

the transmitted bits is given by                , which is: 

           [
                            
                            

] [
               
              

]  

[
               
              

].     (3.30) 

In equation (3.30), the energies of the transmitted bits (x) have been normalised to 1, 

hence 0+j1 = –0.7071+j0.7071 while 1–j0 = 0.7071–j0.7071. The noise (n) is composed 

of complex valued pseudorandom numbers drawn from a standard normal distribution 

and is appropriately scaled to obtain a nominal energy per bit over noise ratio (Eb/N0) of 

5dB. Note that Eb/N0 is a normalised version of the SNR and it is a more appropriate 

metric for characterising the performance of digital systems. This is because each bit is 

transmitted with a certain amount of power and multiplying the bit’s power by its 

duration (time) gives the energy carried by that particular bit. The noise power spectral 

density is equal to its power divided by the bandwidth. Chapter 3 of [100] provides more 

details on why Eb/N0 is preferable to SNR for BER analysis. 

For ZF equalisation whose aim is to completely eliminate interference, H is inverted 

using the Moore-Penrose pseudo-inversion method [35] of (3.2), giving the channel 

weights as: 

     [
                             

                             
].   (3.31) 

While for MMSE equalisation the target is to simultaneously minimise the errors due to 

both interference and noise. Thus the matrix to be inverted is given by (3.4), which 

produces the following channel weights: 
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     [
                            

                             
].   (3.32) 

The channel is then equalised by multiplying the received signal with the weights, and the 

signal presumed to be received via ZF and MMSE are respectively given by 

                      [
               
              

]    (3.33) 

and                        [
               
              

].    (3.34) 

In the case of MLSE, an exhaustive search is performed over the entire constellation of 

the received QPSK signal according to (3.5) in order to determine which symbol was 

most likely transmitted. The MLSE algorithm implemented for this particular scenario 

correctly decodes the received signal as: 

        [
               
              

].     (3.35) 

To check the errors of the equalisation schemes, the transmitted symbols are subtracted 

from the decoded symbols, giving: 

     ‖        ‖
 

  [
      
      

],    (3.36) 

     ‖        ‖
 

  [
      
      

],    (3.37) 

and      ‖        ‖
 

  [
 
 
].     (3.38) 

Observe in (3.36 – 3.38) that the error due to ZF is slightly better than the supposedly 

superior MMSE. MLSE in this case does not produce any errors. However, the 

computation burden for full search MLSE is very high and this limits its practical 

application in many cases. 
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3.2.5.2 OLOS Channel 

The channel realisation chosen for this example is when antenna XPD is high. This 

corresponds to situations where χ approaches 0 and the channel as rendered by the model 

of (3.27) is illustrated in Figure 3.8 whiles its channel matrix is given as: 

   [
                            
                            

].    (3.39) 

Rx

Tx

A

 
Figure 3.8: Illustration of an OLOS LMS channel 

 

As with (3.29) the matrix of (3.39) contains very low values of the off-diagonal elements 

(hRL and hLR) relative to the main diagonal elements (hRR and hLL). In this particular case, 

the difference between hRR and hRL is about 15dB while the difference between hRL and 

hLR is about 8dB. To induce channel fading, the channel matrix is multiplied by 

independently transmitted data streams from each of the two circular polarised antennas. 

Using an example with QPSK modulated signals of 1+j1 transmitted from the RHCP 

antenna and 1+j0 transmitted from the LHCP antenna, and employing the nomenclature 

of (3.6), the effect of the channel on the transmitted bits is given by 

           [
                            
                            

] [
              
              

]  

[
               
              

].     (3.40) 
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The energy in the transmitted bits have been normalised to 1 while the noise is composed 

of complex valued pseudorandom numbers drawn from a standard normal distribution 

and is appropriately scaled to obtain a nominal Eb/N0 of 5dB. 

The Moore-Penrose pseudo-inversion of H gives the ZF weights as: 

     [
                             

                             
].   (3.41) 

While for MMSE the weights are given by 

     [
                            

                             
].   (3.42) 

The channel is then equalised and the signal presumed to be received via ZF and MMSE 

are respectively given by 

                      [
              
              

]    (3.43) 

and                        [
              
              

].    (3.44) 

MLSE performs an exhaustive search over the entire constellation of the received QPSK 

signal and correctly decodes the received signal as: 

        [
              
              

].     (3.45) 

To check the errors of the equalisation schemes, the transmitted symbols are subtracted 

from the decoded symbols, giving: 

     ‖        ‖
 

  [
      
      

],    (3.46) 

     ‖        ‖
 

  [
      
      

],    (3.47) 

and      ‖        ‖
 

  [
 
 
].     (3.48) 
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Observe in (3.46 – 3.48) that the errors due to MMSE in the RHCP channel (the top right 

hand side of (3.47)) is greater that due to ZF for the same channel (the top right hand side 

of (3.46)). Recall that the difference between the co- and cross-polar components of the 

RHCP channel was about 15dB. The result indicates that instances of high polarisation 

purity, ZF can prove to be better than MMSE. However, for the LHCP channel where the 

difference between its co-and cross-polar components was measured at 8dB, the error due 

to MMSE is less than that due to ZF. Finally and in line with expectation, MLSE gives an 

errorless performance. When the results of the LOS and OLOS channels are taken 

together, it can be concluded that during periods of good polarisation purity, ZF is more 

likely to outperform MMSE. Whether this scenario repeats itself in significant durations 

in real dual circular polarised LMS MIMO channel will be determined from the analysis 

of measured channel data. 

3.2.5.3 NLOS/Rayleigh Channel 

In this case the channel tends towards being Rayleigh, is illustrated in Figure 3.9 and 

represented by the matrix of (3.49). The procedure used in the two previous sections for 

the LOS and OLOS channels is employed to determine the following errors: 

   [
                             
                             

],     (3.49) 

     ‖        ‖
 

  [
      
       

],    (3.50)  

     ‖        ‖
 

  [
      
      

],    (3.51) 

and              ‖        ‖
 

  [
   
 

].     (3.52) 
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Figure 3.9: Illustration of NLOS/Rayleigh LMS channel 

This particular channel shows that MLSE (3.52) is after all not infallible as it has 

incorrectly decoded the sign of the QPSK symbol transmitted from the RHCP antenna, 

which gives rise to the huge error of 2.0. There are also random but significant errors by 

the MMSE decoder while zero forcing gives the worst performance as shown in (3.50) 

and (3.51) respectively. 

3.2.6 Monte Carlo simulations using variable Eb/N0 on different channel 

types 

Finally, to gain broader insight into the performance of the three equalisation schemes of 

ZF, MMSE and MLSE, Monte Carlo simulations with 10
4
 channel realisations were 

performed and the Eb/N0 varied from -15 to 25dB for the three dual polarised channel 

types described in the previous section. A case where no equalisation is performed has 

also been included for bench marking purposes. In all four cases, the bit streams are 

uncoded and hard decision decoding is employed at the receiver. A ‘maximum likelihood’ 

algorithm is used for decoding where for example, if the QPSK symbol 0+j0 were to be 

decoded, the logic used for determining the boundary conditions is coded in MATLAB as 

follows: 

for ii = 1: number of channel samples 

for row = 1:2 

if real(Yeq_zf(row,1,ii)) < 0 && 

imag(Yeq_zf(row,1,ii)) < 0; 
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zf_decode(row,1,ii) = – 0.7071– j0.7071; 

end 

end 

 

 
Figure 3.10 BER curves for QPSK modulation in a simulated dual circular polarised LOS 

channel 

 

For the simulations carried out in this chapter, the effects of variable channel correlation 

and successive interference cancellation using recursive designs have not been explored 

and are left for chapter 6. The results are shown in Figures 3.10 – 3.12, where the BER of 

a theoretical additive white Gaussian noise (AWGN) channel are also included for 

benchmarking. According to [8],[100], the theoretical BER of QPSK modulation in an 

AWGN channel is the same as that of BPSK and can be computed using  (√      ). 

It can be observed in Figure 3.10 that for the dual circular polarised LOS channel the 

BER due to orthogonal circular polarisations (no eql) alone equals that of MMSE and 

MLSE for Eb/N0 values below 3dB. The difference between the BER of ZF and MMSE is 

marginal for all Eb/N0 values and these two compare favourably with the computationally 



Chapter 3. MIMO Transceiver Techniques and Dual Circular Polarisation Multiplexing 

 

71 

more complex MLSE. The results indicate that it is not necessary to bother with the 

complexities of equalisation in such channels since exploiting polarisation orthogonality 

alone can be enough to achieve the desired BER rates when SNR or Eb/N0 is low. Note 

that the convergence of all the BER curves at low Eb/N0 values to the theoretical 

maximum value of 0.5 for QPSK modulation (see chapter 3, pp 219-220 of [100]) 

indicates the accuracy of the simulations. 

As the channel deteriorates and become obstructed by vegetative matter, we get into the 

OLOS channel. The BER curves for the dual circular polarised OLOS channel using the 

three equalisation schemes and no equalisation is shown in Figure 3.11. It is interesting to 

observe that the error rates in this channel are not very different from the LOS scenario. 

The only difference is the slight degradation of the BER for all three equalisation 

schemes. MLSE consistently gives the best results while MMSE and ZF follow very 

closely behind.  

 
Figure 3.11: BER curves for QPSK modulation in a simulated dual circular polarised 

OLOS channel 
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In Figure 3.12 where the same equalisation schemes have been implemented on an 

NLOS/Rayleigh channel, and it can be observed that when no equalisation is used, the 

probability of decoding a bit in error is only slightly lower than the worst case value of 

0.5 at an Eb/N0 of 25dB. MLSE is only better than MMSE for Eb/N0 values above 17dB 

while ZF is about 3dB worse than MMSE. 

 
Figure 3.12: BER curves for QPSK modulation in a simulated dual circular polarised 

Rayleigh/NLOS channel 

 

The marginal BER improvement of the highly complex MLSE over MMSE and ZF, and 

most especially ‘no equalisation’ in the low Eb/N0 region of the dual circular polarised 

LOS channel makes a good case for simple transceiver schemes like DCPM to be adopted 

for such channels. If and when equalisation is to be adopted, the fourth order complexity 

of MMSE [101] can be prohibitive given that it is just marginally better than the much 

simpler ZF. For MLSE equalisation, its complexity increases exponentially with the 

constellation size, making it impractical for constellation sizes larger than QPSK. Even 

though there exists exact MLSE algorithms that do not perform exhaustive searches (like 
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the Kannan algorithm [102], the KZ algorithm [103] and the sphere decoding algorithm 

[104],[105]), their complexity is still very high and implementing them for comparison 

with ZF is beyond the scope of this thesis. 

From the foregoing, the choice then to adopt the simpler ZF based DCPM is even more 

compelling when the BER results are view vis-à-vis the improved capacity results 

brought about by polarisation multiplexing (as shown in Figures 3.4 and 3.6).  

3.3 Conclusions 

In this chapter, the three main transceiver building blocks of ZF, MMSE and MLSE 

equalisation have been presented in order to understand how they are applied in the 

receive-only linear equalisation mode to mitigate the effects of interference and noise in 

the dual circular polarised LMS MIMO and Rayleigh channels. Also discussed was how 

the equalisation schemes can be applied in recursive designs to improve their 

performance. 

Due to the lack of channel metrics to properly characterise polarisation-MIMO schemes, a 

new metric based on ZF channel equalisation has been formulated to compute the 

capacity derivable from dual circular polarisation multiplexing (DCPM). Ideas behind 

DCPM have been published in a conference paper titled “Unleashing the Polarisation 

Domain for Land Mobile Satellite MIMO Systems [95]”, where initial results on 

achievable capacity were presented and repeated here, though in a slightly different 

formulation. 

Using an adapted version of the dual polarised terrestrial channel model, the BER of the 

dual polarised LMS channel under LOS, OLOS and NLOS/Rayleigh fading conditions 

have been analysed by way of numerical comparisons and Monte Carlo simulations. 

Among the characteristics found to greatly influence the practical application of DCPM 

are the channel XPC and antenna XPD, the channel Rice factor and the received SNR.  

Finally, since there are inherent limitations to the modelled channel data used in the initial 

DCPM capacity analysis, there is need for an extensive measurement campaign to make 

available more realistic channel data. One of such aspects which the channel model 



Chapter 3. MIMO Transceiver Techniques and Dual Circular Polarisation Multiplexing 

 

74 

completely ignored is the time evolution of the received signal powers of the dual 

polarised channels and their corresponding co- and cross-polar cross-correlation 

coefficients. Hence, the next chapter will describe the measurement campaigns that have 

been performed to obtain, understand and subsequently model the missing parameters.
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Chapter 4 

4 Measuring the Dual Circular Polarised 

LMS MIMO Channel 

The best way to understand the dual polarised land mobile satellite (LMS) multiple-input 

multiple-output (MIMO) channel is to directly measure the channel matrix H. A few 

MIMO and multiple-input single-output (MISO) LMS measurements including that of 

[1],[3],[5],[106],[107] have been conducted to determine the instantaneous channel 

coefficient, channel correlation, capacity and rank among other LMS MIMO channel 

parameters. Direct measurements help uncover not only the propagation channel effects 

but also the effects of the measurement antennas as it is through the antennas that the 

measurement equipment excite and sample the effect of the channel on the excitation 

signal. However, channel measurements can only be truly representative of the particular 

channels in which the measurements are taken and cannot conveniently be extended to 

portray different channel scenarios. Therefore several measurement campaigns are 

usually needed to completely characterise different environment types for which wireless 

communications or broadcast services are planned to be implemented. This chapter uses 

two sections to describe some of the measurement campaigns that have been performed to 

characterise the dual circular polarised LMS MIMO. The first section describes previous 

and new measurement campaigns while the second section explains in detail the new 

measurements that have been performed and the procedures undertaken to extract the first 

order channel statistics. 

4.1 Previous Measurements 

Most research in the area of dual polarised LMS MIMO systems have up until now 

depended on a single set of channel data obtained from the measurement campaigns of P. 

King [1],[3]. The measurements, which were conducted in the summer of 2005 around 
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the town of Guildford, UK, made use of hill top mounted directional antennas and vehicle 

mounted omnidirectional antennas to respectively emulate satellites transmitting from 

geostationary orbits to a land mobile receiving unit. The transmit antennas at the top of 

the hill were mounted such that a first pair of left and right hand circular polarised 

antennas were co-located and a second co-located antenna pair (also of RHCP and LHCP) 

were separated from the first pair by about 10 wavelengths. As graphically illustrated in 

Figure 4.1, this configuration emulated a two-satellite dual circular polarised LMS MIMO 

channel and also provided data for the more viable one-satellite LMS MIMO system. The 

measurement routes covered tree lined roads, suburban and urban environments and the 

topography ensured that satellite elevation angles varied from 5
o
 to 18

o
. 

A

 

A

A

A

Emulated satellites in geostationary orbit

Co-located RHCP and 

LHCP antennas on hilltop

RHCP and LHCP 

antennas on car roof

36000km to emulated satellite

Antenna pairs separated 

by 10 wavelengths

 
Figure 4.1: Graphic illustration of P.King’s dual circular polarised LMS MIMO 

measurement campaign setup. 
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The Elektrobit wideband channel sounder was the main equipment used for King’s 

measurement campaigns. This sounder was set to operate at a centre frequency 2.45GHz 

with a null to null bandwidth of 200MHz. Its transmit unit sent to the four transmit 

antennas a set of direct sequence spread spectrum signals produced from binary phase 

shift keyed (BPSK) modulated pseudo-noise codes. The receive unit used fast 

synchronised sequential switching to sample the channel from each of the four receive 

antennas. The sampling rate and switching allowed the 4×4 MIMO channel to be 

completely sampled well within the channel coherence time. The novelty of this 

measurement limited it to very low elevation angles whose characteristics cannot reliably 

be extrapolated to channels with higher elevation angles. Hence, more realistic 

measurements at higher elevation angles are needed. 

King’s emulated LMS MIMO channel measurements inadvertently excludes both 

tropospheric and ionospheric effects since the transmit antennas were mounted on a hill 

instead of being located thousands of kilometres away in orbit. Tropospheric effects 

include depolarisation [108] and attenuation due to gases, clouds, precipitation, sand and 

dust storms while ionospheric effects include Faraday rotation, propagation delay, 

dispersion and scintillation [13]. According to [19], ionospheric effects progressively 

decrease with increasing radio frequency while tropospheric effects increasingly become 

significant above 3GHz. Tropospheric effects is also known to become very severe at 

certain frequencies above 40GHz due to increased absorption by atmospheric oxygen and 

water vapour. To accommodate the adverse ionospheric and tropospheric effects, fade 

margins are usually added to the link budgets of LMS communication systems and 

analysts of emulated LMS channel data should always be aware of such needed fade 

margins. 

The other LMS measurement campaigns of higher elevation, though of the MISO type, 

that deserves the attention of this thesis were carried out in 2008 and 2009 under the 

MiLADY project [106],[107]. The objective of this set of measurements was to study the 

angle diversity derivable from multiple real satellites that may in future support 

multimedia satellite broadcast services to small handheld devices.  Unlike King’s 

measurements, the MiLADY measurements sampled data from satellites at high elevation 

angles (23
o
 to 83

o
) and the fade distribution statistics of its suburban environment was 
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found to closely match that of the Fontan models [60],[62], which have been 

recommended for DVB-SH systems in [63] and [77]. One of the conclusions of this set of 

measurements was that there is a good business case for satellite delivered services to 

land mobile terminals and that mobile reception strongly depends on environmental 

factors close to the mobile devices. This gives rise to a clear distinction between the 

effects of urban, suburban and rural-type environments on mobile satellite reception. 

The MiLADY measurements led on to the very recent (August 2010 and May 2011) dual 

polarised single and multiple satellite MIMO MIMOSA measurement campaigns reported 

in [5]. This measurement campaign made use of a set of RHCP and LHCP car-roof 

mounted mobile antennas and a set of stationary antennas of the same polarisation to 

receive right and left hand polarised 2.187 GHz centre frequency signals from a satellite 

in orbit. A small frequency offset was applied between the orthogonally polarised RHCP 

and LHCP signals to make the process of separating them at the receiver somewhat 

easier. The statistics derived from the MIMOSA measurements allowed for the effects of 

the environment on channel and antenna parameters like Rice factor, XPD and large scale 

correlation to be studied. The findings of this measurement campaign generally agree 

with that of earlier measurements by P. King in the following aspects: 

 Co-polarised signals are always stronger than cross-polarised signals during LOS 

propagation. This relationship was observed in both measurement campaigns to 

sometimes reverse during OLOS conditions or during periods of deep shadowing. 

 The signal XPD level, computed from the receive power levels at the RHCP and 

LHCP antennas, was found to strongly depend on environmental conditions – with 

the urban and suburban environments causing more signal depolarisation than the 

tree lined road/rural environment. 

 The large scale fading of single satellite dual polarised MIMO channels were 

found to be highly correlated, more so during LOS fading. This impacted 

negatively on the capacity predictions of King’s measurement whereas its impact 

on the MIMOSA measurements is yet to be ascertained. 

Given the unique characteristics of the dual polarised MIMO channel and due to the fact 

that in-depth characteristics analysis of such channels is at its infancy and has so far 
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depended on just two measured channel data sets, it is necessary that more measurement 

campaigns be executed to provide the much needed channel data. From the measured 

data, newer and better channel models that can more robustly relate the effects of XPD, 

Rice factor and channel correlation (among other parameters) on the achievable channel 

capacity and bit error rates of MIMO techniques in the dual polarised LMS channel can 

then be derived. The next section gives a brief description of additional channel 

measurements that have been conducted by the author to provide the much needed data to 

further the analysis into dual polarised multiplexing systems earlier started in section 3.2 

of this thesis. 

4.2 New Measurements 

This section discusses additional measurements that have since been carried out to shed 

more light on the dual circular polarised LMS MIMO channel. Two environment types 

similar to the ones in [3] but at higher elevation angles have been investigated. The first 

environment can be described as rural while the second is characterised as suburban. Both 

measurements were carried out in summer when trees and shrubs are in full foliage so as 

to capture the worst case attenuation. 

4.2.1  Measurement Campaign I 

The first measurement campaign was carried out in the summer of 2009 with the aim of 

recording LOS and OLOS propagation scenarios where obstruction in the channel is 

mainly caused by tree matter and occasional rural buildings. The measurement route 

chosen for this campaign was the Newlands Corner area of Guildford, U.K., a location 

that can be described as being predominantly rural. As shown in Figure 4.2, the route 

traverses a large area densely vegetated by tall road side trees and low growing crops 

interspaced with occasional farm houses. This allowed the receiver, which was roof 

mounted on a mobile vehicle to experience a channel that varies from LOS to OLOS and 

vice versa. This location was chosen to enable extensive propagation data to be collected 

such that LMS MIMO broadcasts to rural environments can be characterised and the 

expected large scale MIMO channel fading possibly modelled using a Markov switching 
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process. A schematic cross-section of the measurement campaign environment showing 

Fresnel zone clearance and elevation angle range is shown in Figure 4.4. 

 

Figure 4.2: Satellite image showing measurement route (in red) 

 

 

 

Figure 4.3: Directional circular polarised transmit antennas mast-mounted on a hill and 

pointing down towards a valley 

 



Chapter 4. Measuring the Dual Circular Polarised LMS MIMO Channel 

 

81 

Horizontal distance of Rx from Tx = 600m to 1400m

H
e

ig
h

t 
o

f 
m

a
s
t 
=

 1
0

m

Elevation angle range 6
o
 to 12

o

(depending on topography)

First Fresnel zone 

from Tx side 

completely clear 

of scatterers

Tx antennas mast-

mounted on a hill

Vehicular mobile Rx

H
e

ig
h

t 
o

f 
h

ill
 

re
la

ti
v
e

 t
o

 m
o

b
ile

 

R
x
 =

 6
0

m
 t
o

 1
2

0
m

A

Occasional 

scatterers 

only local to 

mobile Rx

 

 

Figure 4.4: Schematic cross-section of measurement campaign setup for rural 

environment 

4.2.1.1 Summary of Equipment and Measurement Parameters 

The equipment used in measuring the MIMO channel was the Elektrobit Propsound, a 

correlation-based wideband channel sounder, manufactured by Elektrobit of Finland. The 

parameters of the channel sounder were set as follows:  

 Basic parameters: 2.43GHz carrier frequency, 23dBm transmit power, 50MHz 

null to null bandwidth and a sensitivity of -94dBm. 

 Delay resolution parameters: 25×10
6
 chips/s, a pseudorandom code length of 63, a 

delay resolution of 40ns (1/25×10
6
 chips/s) and the length of impulse response = 

2.52µs (code length/25×10
6
 chips/s). 

 Measurement distance parameters: a path loss exponent of 2.1, nearest distance 

between transmitter and receiver to maintain synchronisation was chosen as 600m, 

transmitter and receiver gain were 13dBi and 0dBi respectively. Maximum 

impulse response dynamic range was set at 35dB. 

 Spatial resolution parameters: number of transmit and receive antennas were 4 and 

6 respectively, giving 24 MIMO channels plus 4 guard channels making a total of 



Chapter 4. Measuring the Dual Circular Polarised LMS MIMO Channel 

 

82 

28 channels. Since the pseudorandom code length used was 63, it took the sounder 

70.56µs to scan the 28 MIMO channels. Maximum mobile speed was set at 

96km/h, which directly affects the choice of MIMO channel sample rate as 

explained in the next section. 

The Elektrobit Propsound has only one RF chain and as such it can only sample MIMO 

channels by switching between all transmit-receive antenna pairs. It is thus important to 

ensure that the delay domain and spatial resolution parameters chosen for the Newlands 

Corner measurements enables all 28 channels to be sampled well within the channel 

coherence time. Details of the switching, synchronisation and timing of the Elektrobit 

sounder as used in a previous wideband measurement campaign can be found in [3] and 

for this measurement is explained in the next section. 

4.2.1.2 Channel Measurement Set-up and Procedure 

The Newlands Corner measurement campaign took advantage of the local topography and 

the routes covered as shown in Figure 4.2 are Water Lane, Guildford Lane and Chilworth 

Road. The transmitting antennas in this case were mast-mounted on a hill (see Figure 4.3 

and 4.4) while the receiving antennas were placed on the roof-top of a measurement 

vehicle as shown in Figure 4.5 and driven along a preselected route in the valley beneath. 

This configuration ensured that the elevation angle was never less than 6
o
 and not more 

than 12
o
, which not only adequately emulates a geostationary satellite viewed from high 

latitude cities but also ensures that the propagating signals are intermittently shadowed by 

the foliage from roadside trees. 

Four directional circular polarized (two LHCP) and two RHCP) transmit antennas were 

co-located on a mast to emulate a single satellite transmitting to four spatially separated 

omnidirectional receive antennas and two co-located experimental quadrifilar helix 

antennas. Thus a 4×6 MIMO channel was captured from which data from the first 2×2 

dual polarised MIMO channel (consisting of one each of an RHCP and an LHCP 

commercial type antenna pair) is analysed in this thesis.  The second 2×2 MIMO channel 

from the commercial type antennas served as a backup to check for inconsistencies, if 

any, in the channel data emanating from the first set of antenna pairs. The remaining two 

2×2 channels, received using the experimental quadrifilar helix antennas have been used 
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for other analyses beyond the scope of this thesis. The spatial separation between the 

commercial type receive antennas was set at 4 wavelengths with the antennas placed in 

the same configuration as was done in [3]. Table 4-1 shows a matrix of the antenna pairs, 

where the commercial type antennas are labelled R(L)HCP 1 and 2 while the 

experimental quadrifilar helix receive antennas are labelled Q-RHCP and Q-LHCP. 

Table 4-1: Channel matrix and antennas used for the Newlands Corner measurements 

The 1st 2×2 MIMO channel 

is in bold fonts and shaded 

grey. The 2nd 2×2 MIMO 

channel is shaded green 

Receive Antennas 

RHCP 1 RHCP 2 LHCP 1 LHCP 2 Q-RHCP Q-LHCP 

 

Transmit 

Antennas 

RHCP 1   1,1 1,2 1,3 1,4 1,5 1,6 

RHCP 2 2,1 2,2 2,3 2,4 2,5 2,6 

LHCP 1 3,1 3,2 3,3 3,4 3,5 3,6 

LHCP 2 4,1 4,2 4,3 4,4 4,5 4,6 

 

 

Figure 4.5: Omnidirectional receive antennas roof-mounted on measurement campaign 

vehicle 
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The channel switching frequency of the transmitter and receiver units of the Elektrobit 

Propsound channel sounder was synchronised prior to commencing each measurement 

campaign. This is because Elektrobit Propsound measures the MIMO channel by 

sequentially switching between all the transmit and receive antenna pairs and the penalty 

for lack of switching synchronisation can result in the power delay profile exiting the 

sounder’s power delay profile display window during measurement. 

Pre-measurement channel sounder calibration involves matching both the switching 

frequency and the pseudorandom code cycles at the transmitting and receiving units using 

in-built rubidium clocks through a measurement setup wizard that runs from a control 

laptop. A screenshot of the wizard for setting the measurement distance parameters is 

shown in Figure 4.7 and a link budget analysis to determine the feasibility of the 

measurement campaign is given in Appendix I. Since the channel sounder is correlation 

based, for the Newlands Corner measurements, the channel is measured by transmitting a 

BPSK modulated pseudorandom code sequence of predetermined length and at the 

receiver the received signal is cross-correlated with a locally generated pseudorandom 

code sequence of the same length. The pseudorandom codes are designed to have near 

perfect autocorrelation properties but very low cross-correlation properties when 

correlated against random channel noise. Cross-correlation at the receiver enables the 

amplitude and phase of the transmitted signal and hence the channel impulse response to 

be determined. Due to the difference in distance that signals propagate from the 

transmitter to the receiver (see Figure 4.2), the delay resolution of the channel sounder, 

which is determined by the pseudorandom code length, must be set such that the last 

arriving multipath component is captured well within the delay window. In other words, 

since the mean delay changes as a measurement campaign progresses, the delay 

resolution of the sounder must be greater than the total expected excess delay and also 

make allowance for the movement of the RMS delay spread up and down the delay 

window. Knowing from previous measurements [1],[39] that the maximum expected 

delay for LMS systems is about 153ns, the appropriate code length is determined with the 

aid of an in-built measurement calibration wizard, which specifically takes into account 

the effects of the mobile receiver velocity. This is because the relative velocity between 
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the transmitter and receiver affects the correlation distance, TC, of the channel.  TC is 

estimated using [8]: 

    
  

       
,     (4.1) 

where VC is the velocity of light, fC is the centre frequency and vmax is the maximum 

velocity of the receiver. For a maximum velocity of 96km/h (26.7m/s), the coherence 

time is 2.3ms. Hence the switching must be fast enough to completely sample the MIMO 

channel well within its coherence time. 

In rural outdoor environments where scatterers are not very closely spaced, a low delay 

domain spatial resolution in the order of a few MHz is enough to capture all relevant 

multipath components [109]. A choice of 50MHz is adequate for the Newlands Corner 

measurements, and this gives a chip frequency of 25×10
6
chips/s (MHz) following the 

Nyquist criterion which specifies that null to null bandwidth must be twice the chip 

frequency. This gives a chip duration of 40ns and a choice of 63 chips per code (63 being 

the length of the pseudorandom codes) as shown in Figure 4.6 ensures that the complete 

4×6 MIMO channel is captured in 70.56µs. A choice of 708.62Hz MIMO channel 

sampling frequency means that the MIMO array is completely captured every 1/708.62Hz 

= 1.4ms + 70.56µs. This is well within the channel coherence time, estimated at 2.3ms 

when the maximum receiver velocity is 96km/h. Also, the maximum resolvable Doppler 

shift for the channel sounder setup is 354.31Hz. The captured wideband complex channel 

impulse response is stored in real time and written to the hard drive unit of the channel 

sounder shown in Figure 4.8.  
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Figure 4.6: Timing diagram of the switch-based Elektrobit wideband channel sounder as 

used in the rural environment measurement campaign 
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Figure 4.7: Screenshot of Elektrobit’s measurement calibration wizard 

 

 

 

Figure 4.8: The Elektrobit Propsound channel sounder units during pre-measurement 

calibration 
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4.2.2 Measurement Campaign II 

The second measurement campaign carried out in the summer of 2010 aimed to uncover 

the characteristics of the dual circular polarised LMS MIMO channel in a suburban 

environment. A low density residential area in the town of Guildford, U.K. was chosen 

for this measurement campaign and the routes were specifically selected so that the 

mobile receiver views the emulated satellite from higher elevation angles than was 

achieved in previous measurements such as [1] and [3]. Routes covered in this suburban 

environment measurement campaign as shown in Figure 4.9 are Millmead Terrace, 

Portsmouth Road and Bury Fields. Figure 4.10 shows a schematic cross-section of the 

measurement campaign environment while Figure 4.11 gives a pictorial view of the 

satellite emulated by tower block-mounted transmitting antennas and the vehicular mobile 

receiver. 

 

Figure 4.9: Satellite image showing suburban measurement route (in red) 
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Figure 4.10: Schematic cross-section of measurement campaign setup for suburban 

environment 

 

 

Figure 4.11: Pictorial view of tower block mounted emulated satellite transmitter and 

vehicular mobile receiver 
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4.2.2.1 Summary of Equipment and Measurement Parameters 

The same equipment used for the Newlands Corner measurements were used for this 

second measurement campaign. The channel sounder parameters were set as follows: 

 Basic parameters: 2.5GHz carrier frequency, 23dBm transmit power, 200MHz 

null to null bandwidth and a sensitivity of -88dBm. 

 Delay resolution parameters: 100×10
6
 chips/s, a pseudorandom code length of 

2047, a delay resolution of 10ns (1/100×10
6
 chips/s) and the length of impulse 

response = 20.47µs (code length/100×10
6
 chips/s). 

 Measurement distance parameters: a path loss exponent of 2.1, nearest distance 

between transmitter and receiver to maintain synchronisation was chosen as 50m, 

transmitter and receiver gain were 13dBi and 0dBi respectively. Maximum 

impulse response dynamic range was set at 35dB. 

 Spatial resolution parameters: number of transmit and receive antennas were 2 and 

6 respectively, giving 12 MIMO channels plus 2 guard channels making a total of 

14 channels. Since the pseudorandom code length used was 2047, it took the 

sounder 286.58µs to scan the 14 MIMO channels. Maximum mobile speed was set 

at 50km/h, which directly affects the choice of MIMO channel sample rate as 

earlier explained for the previous measurement campaign. 

4.2.2.2 Channel Measurement Set-up and Procedure 

As shown in Figures 4.9 - 4.11,  the transmitting antennas were placed on the roof of a 

40m high tower block while the receive antennas were mounted on the roof of a vehicle, 

in the same configuration as was done in the Newlands Corner measurements, and driven 

along a preselected route. This geometry emulates a satellite located at between 15
o
 and 

37
o
 elevation, i.e. depending on where the receiver was located with respect to the 

transmitter. The route was designed such that these elevation angle bounds were never 

exceeded and also so that there would be periods of distinctly LOS, OLOS and NLOS 

propagation. 

The measurement route composed tarmac covered road of about 8m wide in most places 

and was bordered by single to three storey buildings interspaced with occasional tree 

matter. The buildings were traditional English buildings with walls made from fired 
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bricks and mortar while the roofs were made from slate. These man-made physical 

structures formed the bulk of the scatterers within the vicinity of the receiving antennas. 

Due to the nature of the scatterers, theory [8] predicts that the reflection and diffraction in 

OLOS and NLOS conditions would ensure low Rice factor with corresponding low 

correlation between the individual orthogonally polarised MIMO sub-channels. These 

channel fading characteristics will be investigated using first and second order statistics in 

subsequent sections of this chapter. 

To emulate a single satellite transmitting dual polarised signals, one RHCP and one 

LHCP antenna were co-located on the tower block mounted mast and direct sequence 

pseudorandom codes were transmitted to six vehicle mounted receive antennas. Thus a 

2×6 MIMO channel was captured from which data from a 2×2 dual polarised channel is 

analysed in this thesis. The configuration and spatial separation of the receive antennas in 

the suburban measurements were exactly the same as that of the rural Newlands Corner 

measurement campaign. 

Channel sounder calibration for this measurement campaign involved inserting a 20dB 

attenuator between the receive antennas and the Elektrobit receiver unit to avoid RF 

overload due to the relatively short distance between the transmit and receive antennas 

and the presence of wireless local area network (WLAN) signals leaking out from the 

surrounding residential buildings. A notable difference between the rural and the 

suburban measurement campaigns is the choice of a larger (200MHz) sampling 

bandwidth. This is to improve the delay resolution of the channel sounder and allow for 

multipath contributions from more closely spaced scatterers to be resolved. Note that 

there are more scatterers in an urban environment than a rural environment, necessitating 

a finer delay domain resolution which in turn enables all the significant multipath 

contributions to be determined. The delay resolution needed for an indoor measurement 

campaign where the scatterers are very close together would even be higher [109]. 

Since each delay domain chip must be sampled at least twice following the Nyquist 

criterion, the chip frequency for a 200MHz sampling resolution equals 100×10
6
chips/s 

(MHz). This implies that the duration of each chip will be 10ns long. A choice of 2047 for 
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the code length ensures that the measurement excess delay,     , is 20.47µs, which 

computed from: 

        
           

              
,      (4.2) 

is in excess of the maximum expected delay (    ), given by: 

       
                            

 
.    (4.3) 

C in (4.3) is the velocity of light. It is recommended in [109] that for correlation based 

channel sounding,      should be ideally greater than     . 

The time it takes for the complete 2×6 MIMO channel to be sounded is given by 

2047chips × 10ns × (12 pseudorandom codes + 2 guard channel codes) = 286.58µs. A 

choice of 488.77Hz MIMO channel sampling frequency means that the MIMO array is 

completely captured every 1/488.77Hz = 2ms + 286.58µs. This is well within the channel 

coherence time, estimated at 4.3ms using (4.1) when the maximum receiver velocity is 

50km/h (13.39m/s). Also, the maximum resolvable Doppler shift for the channel sounder 

setup is 244.38Hz. These parameters were inserted into the measurement set up wizard at 

the start of the campaign and the impulse response of the sounded channel written to the 

receiver hard disc storage unit in real time during the course of the measurements. 

Preliminary real time visual power delay profile inspection of the measured channel 

showed that a lot of interfering WLAN signals was also picked up and a technique for 

filtering out the interfering signals had to be developed. As with all wireless 

communications, antennas provide a means through which the channel can be excited 

(sounded) and the influence of the channel on the excitation signals measured. The next 

section will describe the antennas used for channel sounding. 

4.2.3 Measurement Campaign Antennas 

The antennas used for both measurement campaigns were right and left hand circular 

polarised commercially manufactured directional patch antennas (for the satellite 
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transmitter) and omnidirectional dipole antennas. Below are summarised the main 

characteristics of the antennas. 

4.2.3.1 Directional Transmit Antennas 

 Optimal frequency range of operation: 2.400 – 2.485GHz 

 Average co-polar boresight gain (elevation and azimuth): 12dBi 

 Average co-polar 3dB beamwidth (elevation and azimuth): 30
o
 

 Average cross-polar boresight gain (elevation): -10dBi 

 Average cross-polar boresight gain (azimuth): - 14dBi 

 Average antenna boresight XPD: 24dBi 

The average refers to mean values of the RHCP and LHCP antennas. Other details of this 

antenna including its elevational and azimuthal gain pattern can be found in [3]. 

4.2.3.2  Omnidirectional Receive Antennas 

 Optimal frequency range of operation: 2.35 – 2.55GHz 

 Average co-polar gain over 360
o
 (azimuth): 0dBi 

 Average cross-polar gain over 360
o
 (azimuth): -15dBi 

For more details about the co- and cross-polar elevation and azimuth gain patterns of the 

omnidirectional receive antennas, the reader is referred to [97], where they are referred to 

as reference antennas and compared with a co-located dual polarised quadrifilar helix 

antenna. Also, a look at the antenna elevation gain patterns shown in Figures 4.12 and 

4.13 reveal that the ratio between the co-polar and cross-polar antenna gains in excess of 

10dB for the 6
o
 to 37

o 
elevation angle range. This is the range within which the two 

measurement campaigns were performed. Thus assuming equal powers in the arriving co- 

and cross-polarised signals, the antenna relative difference between the receive antennas 

co- and cross-polar gains on its own should theoretically provide enough polarisation 

discrimination to make DCPM viable. This will be investigated in chapter 6. 
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(a) (b)  

Figure 4.12: Elevation gain pattern for (a) RHCP and (b) LHCP receive antennas 

(a) (b)  

Figure 4.13: Azimuth gain pattern for (a) RHCP and (b) LHCP receive antennas 

4.2.4 Extraction of Narrowband Channel Data and First Order 

Statistics 

Channel data obtained using the Elektrobit channel sounder was of the wideband type and 

in the case of the Newlands Corner measurements the delay resolution was 2520ns 

divided into 63 delay bins of 40ns each. Due to the change in the distance between the 
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transmit and the receive antennas and a possible loss of Tx-Rx synchronisation as the 

measurement campaign progressed, the arrival time of the first channel impulse response 

varied by a few tens of nanoseconds. This variation in arrival time of impulse responses 

of significant power was the reason why a larger than necessary delay resolution was 

chosen (maximum delay in the earlier measurements of [1] and [39] awas 153ns). Figure 

4.14(a) shows the power delay profile of the hRR co-polar channel for a small section of 

the Newlands Corner measurement run. Observe that significant multipath contributions 

all arrive within a few nanoseconds of the first impulse response. In Figure 4.14(b), all 

contributions below the -90dBm level have been filtered out. This is because the channel 

sounder’s sensitivity for this measurement run was set at -94dBm and any impulses below 

the -94dBm level is as a result of residual noise in the sounder’s correlation computation 

process. 

 
Figure 4.14: Power delay profile of co-polar hRR channel (a) with background channel 

noise and (b) with background channel noise < 90dBm filtered out 

 

The narrowband component was obtained by performing an FFT operation across the 

delay domain and then filtering out all frequencies apart from the centre frequency 

components. Note that the FFT operation on the delay bins implements a vector addition 

of all the arriving multipath components and transforms from the time to frequency 

domain. Figure 4.15 shows the spectrum of the wideband channel impulse response 

(power delay profile) of Figure 4.14. To complete the narrowband data extraction, centre 

frequency component extraction was then carried out for all the co-polar and cross-polar 

channels in all the measurement runs. 
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Figure 4.15: Spectrum of co-polar hRR channel without filter correction 

 

Sections of extracted narrowband time-series of co- and cross-polar received signal power 

from a single measurement run are shown in Figure 4.16. Observe in Figure 4.16 (a) that 

in the region marked LOS to OLOS, the co-polar signal powers (both hRR and hLL) are 

much stronger than their cross-polar counterparts, sometimes exceeding the latter by more 

than 10dB in pure LOS conditions. As channel fading gradually changes from pure LOS 

to OLOS, the cross-polar signals progressively experience deeper fades and the difference 

between the co- and cross-polar powers reduces. In Figure 4.16 (b) where it is shown a 

section of OLOS fading, the difference between the co- and cross-polar signal powers 

further diminishes and the co-polar signals begin to exhibit deeper fading. Figure 4.16 (c) 

shows a section of OLOS to NLOS fading, where the co-polar powers become 

comparable with the cross-polar powers. Since the antenna XPD value stays constant, the 

sections of comparable co- and cross-polar powers indicate very rich scattering 

environments which in turn cause several polarisation reversals due to the numerous 

instances of scattering, reflection and diffraction of the propagating signals. The 

observations are in agreement with other LMS measurements of [5] and the emulated 

satellite measurements of [3]. 
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(a) (b)

(c)

Figure 4.16: Received co- and cross-polar signal power in a single measurement run 

showing (a) LOS to OLOS fading, (b) OLOS fading and (c) OLOS to NLOS fading 

 

4.2.4.1 Normalisation 

The recorded channel data was normalised with respect to the LOS level and performed 

in such a way that the branch power ratio of the MIMO channel was maintained at all 

times. The first step of the normalisation process was both tedious and manual and 

involved classifying the channel data into LOS, OLOS and NLOS sections. This was 

done by matching the recorded channel data with GPS data of the receiver’s position and 

then comparing this with the most recent open sourced Google Earth maps. These 

sections, which were made to be multiples of the channel coherence distance (since the 

sampled time series channel data could easily be converted to position series) were then 

normalised one section at a time to preserve their respective MIMO branch power ratio. 
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The normalisation factor used was the total average power from the co-polarised RHCP 

received signal for each of the sections and is defined as: 

    (
 

   
    

 ∑ ∑  {|   
  | }

  
   

  
   )

  ⁄

,   (4.4) 

where       
  represents the number of RHCP transmit and receive antennas, and    

  is the 

co-polar RHCP channel coefficient. The normalisation can be viewed as a demeaning 

process in which the 2×2 MIMO channel is divided through by the mean signal level of 

the RHCP (or LHCP) co-polar channel. Note that the mean is computed using the same 

number of samples as the LOS, OLOS or NLOS fading sections. 

4.2.4.2 Channel Cross-polar Discrimination (XPD) 

Correct normalisation of the recorded channel data allows for the channel cross-polar 

discrimination ratios to be computed with good accuracy. These ratios are defined as: 

          (
   

   
) and           (

   

   
).    (4.5) 

It was observed that XPD1 is not always equal to XPD2 as given by Stutzman in [110]. 

This is partly as a result of the slight disparity in the radiation patterns of the RHCP and 

LHCP antennas. Figure 4.17 shows a CDF graph of the XPD for one of the Newlands 

Corner measurement runs where the propagation condition changed from pure LOS to 

OLOS. 
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Figure 4.17: CDF plots of XPD for LOS and OLOS channel conditions 

4.2.4.3 Large Scale Fading Characteristics 

Large scale fading results from signal attenuation by large intervening objects between 

the satellite transmitter and the land mobile receiver. For signal attenuation to be 

attributable to large scale fading, the received signal must be viewed over spatial 

dimensions ranging from several tens to several hundreds of wavelengths. Following the 

classification in section 4.2.4.1 of signal attenuation into LOS, OLOS and NLOS regions, 

this section characterises the observed large scale fading within these predefined regions 

using empirical and theoretical probability density function plots. 

Starting with a predominantly LOS fading region, Figure 4.18 shows probability density 

function (PDF) plots of large scale fading for RHCP and LHCP co- and cross-polar 

received signals. It is evident that the distributions of all four signals (channels) are 

characteristically lognormal – i.e. they follow a normal distribution over a logarithmic 

(dB) scale. Thus it is safe to conclude that the large scale fading in an LOS fading dual 

circular polarised LMS MIMO channel is lognormal since their empirical PDF plots very 

closely match their theoretical PDF plots. Note that on determining the mean level of the 

dB-valued received signal power, the theoretical PDF was computed from the normal 

(Gaussian) probability density function, defined in [111] as: 
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where σ > 0 is the standard deviation of the instantaneous received signal, x, and µ is its 

mean value over the large scale fading spatial dimension. The theoretical PDF plots of 

Figure 4.18 also give the same result if the received signal is converted into a linear scale 

and the lognormal probability density function employed in computing the PDF. The 

lognormal density function is given in [111] as: 
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An important point to observe about Figure 4.18 is that the co- and cross-polar LHCP 

signals have been shifted by 3dB to the left away from their respective RHCP values for 

increased clarity. If this was not done, the two co-polar and the two cross-polar signals 

would almost exactly overlap. The LOS fading channel has also been referred to as 

Channel Fading State1 and the mean values of the co-polar and cross-polar signals for 

this channel are respectively 0dB and -7dB. 

 
 

Figure 4.18: Empirical and theoretical fit of lognormally distributed large scale fading of 

LOS received signal 
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The second channel type that has been characterised is described as obstructed line of 

sight (OLOS). Since there are different levels or depths of obstruction that is experienced 

in the LMS channel, this channel type has been split into two main types: OLOS1 and 

OLOS2. OLOS1 represents a channel that is lightly shadowed, where the co-polar signals 

are greater than the cross-polar signals (and similar to the LOS case) while OLOS2 

represents a channel that is predominantly deeply shadowed and the cross-polar signals 

stronger than their co-polar counterparts for a greater percentage of time. The OLOS1 

channel is also called Channel Fading State2 and its empirical and theoretical signal PDFs 

are shown in Figure 4.19. 

 
 

Figure 4.19: Empirical and theoretical fit of lognormally distributed large scale fading of 

OLOS received signal 

 

As with the previous figure, the co- and cross-polar LHCP signals of the OLOS1 channel 

in Figure 4.19 have been shifted to the left by 3dB from their respective RHCP 

counterparts for better clarity. It is observed that the co-polar channels are lognormally 

distributed as indicated by the good match between their empirical and theoretical PDF 

plots. Also, although the cross-polar channels follow a lognormal distribution, their 

empirical values are not as well matched with their theoretical values as is the case in the 

LOS channel.  
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Figure 4.20 shows the large scale fading characteristics of the OLOS2 channel. In this 

case, the co- and cross-polar signals have been displaced to the right and left of their 

observed mean values by 5dB to 10dB. Otherwise, the PDF plots would have clustered 

around -6dB and -7dB for the cross-polar and the co-polar signals respectively. As 

observable, all distributions are approximations of the lognormal distribution, each with 

different degrees of deviation. 

 
 

Figure 4.20: Empirical and theoretical fit of lognormally distributed large scale fading of 

a different OLOS received signal 

 

The last of the large scale fading characteristic is shown for a channel that is 

predominantly in the non-line of sight mode (NLOS), which is given in Figure 4.21. In 

this channel type, all four sub-channels of the dual circular polarised LMS MIMO 

channels have the maximum density of their empirical PDFs hovering around -17dB 

while their maximum empirical PDF values are about -20dB. All four channels in this 

state (Channel Fading State4) are still relatively lognormal. A summary of the large scale 

fading characteristics of the four defined channel states of the dual circular polarised LMS 

MIMO channel is given in Table 4-2. 
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Figure 4.21: Empirical and theoretical fit of lognormally distributed large scale fading of 

signal receive in NLOS conditions 

 

Table 4-2: Large scale fading statistics for dual circular polarised LMS channel 

 

 

Channel State 

Received signal power (Path loss component) 

Co-polar channel Cross-polar channel 

Mean value 

(dB) 

Standard 

deviation (dB) 

Mean value 

(dB) 

Standard 

deviation (dB) 

State1 (LOS) -0.04 0.61 -7.04 1.37 

State2 (OLOS1) -3.20 1.09 -11.98 4.89 

State3 (OLOS2) -9.79 3.93 -7.87 2.18 

State4 (NLOS) -19.76 5.47 -19.53 5.57 

 

A phenomenon worth further investigation is the disparity that sometimes exists between 

the mean and standard deviation values of the co-polar RR and the co-polar LL channels 

even when the channel data comes from the same measurement run. As earlier mentioned, 

this may have to do with the slightly different radiation patterns of the orthogonally 

polarised antennas. The extracted mean and standard deviation values of Table 4-2 are 

averages of the two co-polar and two cross-polar channels for each of the channel fading 

states. These values are in close agreement with those published in [72]. The statistics 
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shown in Figures 4.18 to 4.21 and Table 4-2 were estimated using a MATLAB maximum 

likelihood estimation algorithm and at 99% confidence intervals. 

4.2.4.4 Small Scale Fading Statistics - Rice Factor and Channel Cross 

Correlation 

The importance of classifying of the recorded channel data into their correct fading states 

is once again emphasised here as this strongly determines if the Rice factor can be 

computed with reasonable accuracy. The Rice factor, defined as the ratio of the direct 

signal component to its multipath component, is determined using statistical maximum 

likelihood estimation on one section (a section comprising multiple of the channel 

correlation distance) at a time. LOS sections are expected to have higher Rice factors than 

OLOS and NLOS sections, and the distributions of obstructed propagation periods should 

tend towards being more Rayleigh than Ricean distributed. The use of large scale fading 

data sections to determine the small scale Rice and Rayleigh fading statistics ensure that 

sections of mixed distributions (e.g. when conditions change from LOS to OLOS and vice 

versa) are avoided and also helps to confirm that the Lee sampling criterion [112] is 

obeyed within the chosen data sections. Therefore, while not violating the Lee sampling 

criterion, the Rice factor computed using different numbers of data samples should 

remain relatively unchanged if all the samples chosen are within the same channel fading 

section. 

Figure 4.22 shows a scatter plot of the estimated Rice factor and the normalised average 

received signal power of a mostly LOS fading channel. The received signal power has 

been normalised with respect to the path loss component of a purely LOS fading channel, 

which itself has been given the value of 0dB. The normalisation can be referred to as a 

localised averaging process whereby the path loss component has been removed for each 

small scale fading section. Since the path loss has been removed, the remaining signal in 

the case of the LOS channel shown in the x-axis of Figure 4.22 is the average received 

signal resulting from localised scattering. Therefore each plotted point in the scatter 

diagram represents a Rice factor value and its corresponding average scattering loss 

component, and these are both computed from a section of sequentially recorded 

narrowband channel coefficients. As earlier explained, a section of channel coefficients is 
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composed of single length or multiple lengths of the minimum correlation distance. The 

choice of using single or multiple lengths depends on the Lee sampling criterion, that is, 

how fast the average value of the path loss component is changing. 

LOS channel (State 1)
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Figure 4.22: Average Rice factor versus normalised average scattering loss relative to 

LOS level for the LOS channel fading state 

 

As shown in Figure 4.22, the average scattering loss of the co-polar channel is lower than 

that of the cross-polar channel and their difference in dB is equal to the average channel 

and antenna dependent polarisation discrimination ratio (denoted as M and χ in the 

previous chapter). Increasing the clutter/scatterers in the channel (e.g. the OLOS or NLOS 

channels) can only serve to increase the scattering loss and reduce the corresponding Rice 

factor values as is shown in the OLOS-type and NLOS channels of Figures 4.23 to 4.25. 

Note that in the OLOS-type and NLOS channels, in addition to an increase in the 

localised scattering loss, there is also a shadowing loss component in the received signal 

level due to the presence of large intervening objects. The localised normalisation applied 

to these channels only removes the average path loss component one small scale fading 

section at a time. Therefore the x-axis of Figures 4.23 to 4.25 represent the average 

scattering plus shadowing loss relative to the LOS channel fading level. 
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A convenient way to analyse the trend behind scatter diagrams is by way of curve fitting 

and in the LOS channel fading state as shown in Figure 4.22, there is an underlying linear 

relationship between channel Rice factor and the corresponding path loss component. 

OLOS1 channel (State 2)

Average scattering plus shadowing loss relative to LOS (0dB) level
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Figure 4.23: Average Rice factor versus normalised average scattering plus shadowing 

loss relative to LOS level for the OLOS1 channel fading state 

 

A straight line equation is usually described as: 

        ,      (4.8) 

where c and m1 are coefficients representing the intercept and the slope respectively. It is 

usually assumed that the independent variable, x (which in this case is the average Rice 

factor), is measured without any error and all the errors reside in the dependent variable, y 

(being the average path loss). Note that the choice of dependent or independent variable 

for the purpose of determining the underlying trend behind the Rice factor versus path 

loss scatter diagram in this thesis is arbitrary. Therefore, employing the linear least 

squares estimation method [113], the first order polynomial of equation (4.8) was used in 

fitting the scatter plots of Figure 4.22. Note also that the fit may not always be linear and 

of first order, as is the case with the co-polar Rice factor fit of the OLOS1 channel in 

Figure 4.23; hence the required polynomial for curve-fitting can have more than two 
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coefficients and be of second or higher order. Therefore polynomial equations used in the 

curve fitting in this thesis are more generally represented by: 

                   ,    (4.9) 

where j represents the number of independent variables; or in the case where j represents 

the order of polynomial, the equation can take the form of: 

        
     

          .   (4.10) 

OLOS2 channel (State 3)
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Figure 4.24: Average Rice factor versus normalised average scattering plus shadowing 

loss relative to LOS level for the OLOS2 channel fading state 

 

Shown in Figures 4.24 and 4.25 are the scatter diagrams and their respective fitted plots 

for the predominantly OLOS2 and NLOS dual circular polarised LMS MIMO channels. 

In all cases, the least squares method serves to estimate the coefficients in the polynomial 

fitting equations by minimising the sum of the squares of residuals. Residuals are the 

differences between observed values (the provided scatter points) and the fitted values. 

Observe in Figures 4.24 and 4.25 that there is a wider scattering of average Rice factors 

and average scattering plus shadowing loss compared with the LOS and OLOS1 channel 
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states. A summary of empirical parameters derived from the state based small scale 

channel data analysis of Figures 4.22 to 4.25 is given in Table 4-3. 
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Figure 4.25: Average Rice factor versus normalised average scattering plus shadowing 

loss relative to LOS level for the NLOS/Rayleigh channel fading state 

 

 

Table 4-3: Mean polarisation discrimination factor and average channel Rice factor 

 

Channel type 

Mean channel and 

antenna polarisation 

discrimination factor (dB) 

Average Rice factor (dB) 

Co-polar channel Cross-polar 

channel 

LOS (State 1) 7 15 7 

OLOS 1 (State 2) 9 6 4 

OLOS 2 (State 3) -2 2 4 

NLOS (State 4) 0 -4 -8 

 

Lastly for this section and explained below is the relationship between the channel Rice 

factor and the mean co- and cross-polar channel correlations of the dual circular polarised 

LMS MIMO channel. This small scale first order channel statistics has not yet been fully 

published (see [114]) and this thesis, including a written up journal article [115] by the 

author, represents the first time that this is being presented and thoroughly analysed. The 

relationship in question is shown in Figure 4.26,  having derived it from channel data 
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from the two measurement campaigns of this thesis and the previous channel 

measurements of P. King [3]. 

 
Figure 4.26: Scatter diagram showing the Rice factor–channel correlation relationship for 

the dual circular polarised LMS MIMO channel 

 

A first step towards understanding and subsequently modelling the Rice factor–channel 

correlation relationship of Figure 4.26 is to choose the correct equation, whose parameters 

when estimated with minimal error would closely fit the observed distribution. One of 

such equations is a second order polynomial derived from (4.10). Hence the polynomial 

fitted curves for the Rice factor–channel correlation statistics of the co- and cross-polar 

channels is shown in Figure 4.27 and the equation used is given in Table 4-4, where the 

Rice factor is in dBs. 

Although Figure 4.27 provides a general trend of the Rice–correlation relationship, it is 

most likely misleading since it predicts that correlation would fall as Rice factor increases 

beyond 15dB. This is at variance with theory and a plausible explanation for this is the 

inherent errors within the Rice factor and correlation coefficient estimation algorithms. 

For the sake of completeness, Table 4-4 contains the estimated parameters of the 

polynomials used in fitting the Rice distributions of Figures 4.22-4.25 and Figure 4.27. 
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Also included is their goodness of fit statistics, which helps one to decide how good the 

models are at predicting the dependent variables. 

 
 

Figure 4.27: Rice factor–channel correlation relationship with polynomial fits showing 

general trend 

 

Table 4-4: Estimated coefficients and goodness of fit statistics for small scale fading 

 

Channel type 

Polynomial fit 

equation 

Least squares coefficient 

estimates 

Goodness of fit statistics 

c m1 m2 SSE r
2
 RMSE 

LOS 

(State1)* 

Co-pol c + m1x 14.720 0.6612 - 2.12e+3 0.5311 1.7208 

X-pol c + m1x 9.673 0.4079 - 2.14e+3 0.2503 1.7787 

OLOS1 

(State2)* 

Co-pol c + m1x + m2x 6.427 -0.0514 -0.0256 4.26+3 0.0581 2.4381 

X-pol c + m1x + m2x 6.277 -0.0162 -0.0151 3.68e+3 0.2843 2.2663 

OLOS2 

(State3)* 

Co-pol c + m1x 3.801 0.1508 - 1.50e+3 0.1360 3.6460 

X-pol c + m1x 6.782 0.2712 - 1.45e+3 0.2328 3.4333 

NLOS 

(State4)* 

Co-pol c + m1x 1.777 0.5016 - 4.63e+3 0.4381 4.6072 

X-pol c + m1x 0.5089 0.5321 - 7.43e+3 0.3661 5.8390 

All 

States
†
 

Co-pol c + m1x + m2x
2
 0.5676 4.78e-2 -1.47e-3 26.92 0.6976 0.1628 

X-pol c + m1x + m2x
2
 0.4883 0.0448 0.04883 38.7 0.5744 0.2062 

 

In Table 4-4, * indicates the linear fits to the average Rice factor versus average path loss 

while 
† 

indicates the fit to the Rice-channel correlation curve. SSE stands for sum of 



Chapter 4. Measuring the Dual Circular Polarised LMS MIMO Channel 

 

111 

squares due to error, also called the residual sum of squares. This statistic gives a measure 

of the squared scatter of the observed values around those calculated by the fitted 

equation [113]. An SSE approaching zero indicates that the model has very small random 

errors and the fit will predict the dependent variable with good accuracy. As can be 

observed, the SSEs for the individual channels are quite large, only those for the 

prediction of the Rice-channel correlation relationship are in the double digits. However, 

these are still very poor fits. r
2 

measures how successful the fit is in explaining the 

variation within the data, while RMSE is the standard error of regression. An RMSE close 

to zero indicates that the fit is very useful in predicting the dependent variable. 

An aspect of the scatter plot of Figure 4.27 that is detrimental to polynomial curve fitting 

is the issue of clusters. As can be observed, the correlation versus Rice factor values are 

sparsely clustered at both the upper and lower end of the Rice factor range relative to the 

middle section. This results from the overwhelming majority of the channel data having 

Rice factors of between -5dB and 15dB, hence the channel correlation coefficients are 

more densely clustered in this region. Ordinarily, the extreme isolated sparse values 

(otherwise called outliers) outside the main trend would have been ignored since they 

tend to have a greater influence on curve fitting algorithms than the centrally clustered 

values [113], but these values can only be ignored at our peril if the real cause of their 

existence is unknown. Besides, outliers have been known to be the source of a great many 

Nobel prizes. Therefore, even though there are doubts regarding the reduction in the cross 

correlation between the two cross-polar channels as Rice factor increases beyond 12.5dB, 

Figures 4.28 and 4.29 still include the negative slope for the sake of completeness. It is 

then recommended that with the availability of more channel data, efforts should be made 

to conclusively uncover the reason behind the observed negative slope. 

Therefore, following the method of [116], a better way to understand the trend behind the 

Rice factor–correlation data is to slice down the data into different Rice factor class sizes 

and obtain unique mean and standard deviation values for the Rice factors and correlation 

coefficients of each of these class sizes. The width of the class size, or granularity, 

depends on the area of interest and for the dual circular polarised LMS-type propagation 

the 0dB to 10dB region is of significant interest. This is because apart from the ‘good’ 

LOS (State1) propagation scenarios with Rice factor values beyond 10dB as indicated in 
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chapter 3, users of satellite enabled land mobile receivers may spend considerable time in 

shadowed (OLOS1 – State2) channel conditions. These users would still expect good 

quality service delivery in these conditions and an understanding of the channel 

characteristics in this scenario is invaluable. Hence, Table 4-5 contains the mean and 

standard deviation values of Rice factor and co- and cross-polar channel correlation 

coefficients for Rice factor granularities of 1dB and 5dB. The variable granularity also 

ensures that enough samples are available to get statistically significant results. 

 

Table 4-5: Mean and standard deviation values of complex correlation for varying Rice 

factors from measured channel data 

 

Rice 

factor 

range 

(dB) 

Co-polar channels (hRR and  hLL) Cross-polar channels (hRL and hLR) 

Rice factor Channel cross-

correlation 

Rice factor Channel cross-

correlation 

Mean 

value 

Std dev  Mean 

value 

Std dev Mean 

value 

Std dev Mean 

value 

Std dev 

-15 – -10  -11.8673 0.7121 0.2390 0.1560 -11.1773 0.7830 0.1219 0.0811 

-10 – -5  -7.1666 1.3743 0.2845 0.2103 -6.9810 1.4682 0.1593 0.1297 

-5 – 0  -2.2235 1.3727 0.3195 0.2244 -2.3535 1.3489 0.2478 0.2065 

0 – 1 0.5092 0.3003 0.4155 0.2377 0.3987 0.2653 0.4253 0.2357 

1 – 2  0.5606 0.3099 0.5883 0.1854 1.4995 0.2966 0.5796 0.1962 

2 – 3  2.4775 0.3126 0.6208 0.1773 2.4738 0.2961 0.6609 0.1448 

3 – 4 3.5198 0.2478 0.7019 0.0874 3.5779 0.2776 0.6583 0.1774 

4 – 5  4.6708 0.3064 0.7354 0.0753 4.4908 0.2766 0.6964 0.1527 

5 – 10 8.1670 1.3614 0.9142 0.0690 7.3792 1.4044 0.7988 0.1562 

10 – 15  12.0055 1.3425 0.9655 0.0299 12.1205 1.3960 0.8294 0.1419 

15 – 20 17.4473 1.3857 0.9619 0.0389 17.0814 1.1805 0.5383 0.2371 

 

It is observed in Table 4-5 that the Rice factor region of interest is further reduced to 0dB 

to 5dB for ease of Rice factor–channel correlation modelling and for reasons that will be 

stated later. Using the data from Table 4-5, Figure 4.28(a) is produced. Compare this with 

Figure 4.28(b), which is plotted with an increased granularity for the -5dB to 10dB Rice 

factor range. Observe that the difference in their middle section slopes is insignificant and 

the use of Figure 2.28(b), while simplifying channel characteristics analysis, also helps 

speed up the detailed channel correlation-dependent BER simulations of chapter 6. 
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(a) (b)  
Figure 4.28: Rice factor–channel correlation relationship mean values (a) emphasising 

Rice factor range of 0dB to 5dB (b) emphasising Rice factor range of -5dB to 10dB 

 

In Figure 4.29, the values of Table 4-5 have been rounded to two decimal places and 

incorporated in a so called centipede diagram in order to highlight the cross-correlation 

and Rice factor characteristics of the dual circular polarised LMS MIMO channels. 

Observe that from a Rice factor of -2.5dB up to 12.5dB, the characteristics of the co- and 

cross-polar channels are very similar. There is an almost linear increase of correlation 

coefficient with increasing Rice factor. This presents a very interesting modelling clue 

that wouldn’t have been possible just relying on the goodness of fit statistics from 

polynomial fit curves. The actual modelling attempt is a subject for chapter 5. 
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Figure 4.29: Rice factor–channel correlation relationship with details of mean and 

standard deviation values of correlation coefficients and dB-valued Rice factors 
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4.3 Conclusions 

It can be conclusively inferred from the data of Figures 4.22 to 4.27 and Table 4-4 that the 

use of orthogonal circular polarisation, though providing some level of channel 

independence, cannot provide the independent fading needed to implement conventional 

MIMO techniques in LMS channels. Hence in order harness the proposed advantages of 

MIMO in this exacting channel, other techniques which take into cognisance the peculiar 

characteristics of the dual polarised LMS channel need to be developed. One of these new 

techniques proposed in this thesis is DCPM. However, to fully test the workability of 

DCPM, channel data with realistic statistics (XPD, XPC, correlation and Rice factor) for 

different fading conditions is needed. Using measurements alone to provide such data 

would be too cumbersome, time consuming and expensive. Only a well-developed 

channel model having the flexibility to easily tune between different channel parameters 

can allow for the workability of DCPM to be properly tested. 

In arriving at the above conclusion, this chapter first of all laid down the details of 

previous dual circular polarised LMS measurement campaigns and two additional 

measurements campaigns that were carried out by the author. The measurement campaign 

procedure and equipment used in channel sounding have been explained in great detail. 

Channel characterisation, which involved extracting the narrowband first order channel 

characteristics, is the other important aspect that was discussed in this chapter. It was 

shown with the help of PDF and polynomial fits to scatter plots that most of the channel 

statistics follow expected theoretical trends and are similar to results obtained in earlier 

measurements. Finally, in the course of channel characterisation, a new relationship, the 

Rice factor-channel correlation statistics, was uncovered for the dual circular polarised 

LMS MIMO channel. This relationship, which has been partly published in a conference 

paper, “Channel Characteristics Analysis of the Dual Circular Polarized Land Mobile 

Satellite MIMO Radio Channel [114]”, is used as a guide in chapters 5 and 6 to aid in 

channel modelling and uncovering the BER characteristics of the dual polarised LMS 

MIMO channel.  
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Chapter 5 

5 Modelling the Dual Circular Polarised 

LMS MIMO Channel 

Channel models are very important tools used by satellite radio network operators, 

communication standards developers and system optimisation engineers for various 

purposes ranging from planning and rolling out of new services to trouble-shooting and 

optimisation of network system resources. A simple and generic channel model that may 

be very useful to network planning engineers may be grossly inadequate for system 

optimisation engineers. It is therefore necessary for the land mobile satellite (LMS) 

multiple-input multiple-output (MIMO) channel model to be developed in this thesis to be 

based on empirical results obtained from channel measurements and for it to simple and 

generic yet accurate enough to represent average characteristics of large scale channel 

conditions and at the same time and to possess additional tuneable parameters that can be 

adjusted in order to portray specific small scale channel fading conditions. The tuning 

flexibility built into the model would make it suitable for use by a wide range of wireless 

communication practitioners. Thus in line with the modelling trend found from extensive 

literature survey, the model to be developed in this thesis will follow a correlation based 

stochastic approach and use a few controlling parameters. These parameters include the 

channel Rice factor and cross-polar coupling ratio, the antenna cross polar discrimination 

ratio and the cross-correlation coefficients of the co- and cross-polar channels of the dual 

circular polarised LMS MIMO channel. 

5.1 Proposed Channel Model 

The model proposed in this thesis follows the stochastic approach as with most LMS 

models. The asymmetric nature of the LMS channel, with scatterers only located within 

the vicinity of the land mobile receiver, ensures that time dispersion of the channel is 
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minimal. Hence it is reasonable for the model presented here to only consider the 

narrowband aspects as the channel coherence bandwidth of satellite systems is in most 

cases always greater than their system bandwidths. Where larger system bandwidths are 

required, the orthogonal frequency division multiplexing (OFDM) technique can be used 

to slice the system bandwidth down into narrower frequency chunks with multiple sub-

carriers and thus eliminating wideband channel effects. The stochastic modelling 

approach adopted here can also be referred to as an empirical-stochastic or a physical-

statistical approach since the model’s parameters are tuned with respect to measurements 

(empirical) from real (physical) channels. The only aspect of this model, which could 

have easily been modelled using a deterministic approach is the free space path loss 

between the satellite and the land mobile terminal. However, this is not necessary because 

there is very little difference in the path loss within a satellite’s footprint/coverage area, 

and as such the model only concerns itself with statistically describing the attenuation 

effects of the environment within the vicinity of the land mobile receiver – i.e. all 

propagation interactions happening between the first scatterer and the receive antenna. It 

is assumed that effects of the deterministic path loss component have been completely 

normalised out of the proposed channel model and the different states of the model are 

described with respect to the LOS state. 

The dual circular polarised LMS MIMO channel model in this thesis follows the four-

state approach of [72] to model large scale fading (shadowing) while an empirical-

statistical approach is used in modelling the observed small scale fading.  Each of the 

states represents a combination of high or low co-polar and cross-polar signal powers. 

Since the interdependence of fading between the orthogonally polarised co-polar and the 

cross-polar channels of the dual circular polarised MIMO channel is initially ignored, 

modelling them using the well-established SISO approach of [63],[117] suffices for a 

start. Note that the SISO approach to LMS MIMO channel modelling has recently been 

gaining critical acclaim as it has been the method of choice in [3],[18],[73] and [118] and 

simplified versions of it have recently been used in [71],[72]. The next important 

modelling step is to impose onto the SISO sub-channels the large scale and small scale 

channel fading relationships uncovered during the measured channel data analysis. The 

proposed model simplifies and improves upon the previous models and the following 
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sections will explain how the model employs the Markov state approach to describe large 

scale fading (shadowing) before explaining the intricacies of modelling the small scale 

channel fading. 

5.1.1 Modelling the Large Scale Fading – The Markov State Approach 

The deep and shallow fades usually experienced in narrowband LMS channels make it 

impossible for single distributions to appropriately describe such channels. Hence, 

following the channel characterisation exercise of chapter 4, in which large scale fading 

of the dual circular polarised LMS MIMO channel was divided into sections of different 

average received signal powers, the proposed model follows the Markov chain approach 

of Fontan [60],[62],[63] and King [72] to model the large scale fading. The model is 

shown in Figure 5.1. 

CP High

XP High

(State 1)

CP High

XP Low

(State 2)

CP Low

XP High

(State 3)

CP Low

XP Low

(State 4)

P1|1

P1|2

P2|1

P2|2

P2|4P4|2

P4|4

P4|3

P3|4P3|3

P3|1 P1|3

P3|2

P2|3

P4|1

P1|4

 

Figure 5.1: Four-state Markov model illustrating state change probabilities 

In Figure 5.1, Pi|j represents the probability of moving from state i to state j. The reasons 

for choosing the four state Markov model are as follows: 

1. Based on empirical analysis of measured channel data, there are definite 

thresholds for when the received co-polar and cross-polar signal powers can be 

characterised as having dropped from their high LOS (State1) level to lower 

OLOS (States2 and 3) or NLOS (State4) levels or vice versa. 
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2. The received power levels of the cross-polar signals generally follow the time 

evolution (in the large scale fading domain) of the received co-polar signals. 

However, these are scaled by the propagation channel’s cross polar coupling 

(XPC) ratio and the cross polar discrimination (XPD) ratio of the receive 

antennas. 

3. Three different depths of large scale fading have been observed and relative to the 

LOS fade level, the fade depths of the co- and cross-polar signals have been 

characterised as OLOS1, OLOS2 and NLOS (see section 4.2.4.3). 

4. OLOS1 or State2 type fading were found to occur in light shadowing conditions, 

wherein a drop in the received signal power mainly resulted from the attenuation 

effects of intervening vegetative matter. In this state, the co-polar component 

retains its property of being proportionally stronger than the cross-polar 

component; therefore it is labelled as ‘CP High, XP Low’ in Figure 5.1. 

5. OLOS2 or State3 type fading was found to occur during brief periods of blocking 

by solid man-made objects. In addition to the drop in received signal power, a 

striking feature of this state is that the received cross-polar power becomes 

slightly greater than the received co-polar power. Therefore this state is labelled as 

‘CP Low, XP High.’ Apart from [72], this type of fading in the dual circular 

polarised LMS channel has also recently been reported in [5]. 

6. NLOS or State4 type fading occurs when the direct LOS paths and specular 

reflected components have been completely blocked. Both the co- and cross-polar 

signal level in this state are at the lower end of the LMS receiver’s dynamic range; 

therefore they are labelled as ‘CP Low, XP Low’. 

7. Since state transitions are never abrupt but are found to slowly evolve with time, a 

low pass infinite impulse response filter such as used in [3], is employed to 

impose the observed time evolution. 

8. A state probability matrix is built by deriving probabilities of when the channel 

stays or transits from one state to another. Channel sampling in order to determine 

the large scale state probability matrix is done within the channel correlation 

distance. 
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Note that the state probability matrix specifies the interdependence between the mean co-

polar and cross-polar signal levels, thereby removing the need for a large scale correlation 

matrix. A Markov model is suitable because it easily approximates the switching 

characteristics between the different channel fading states. One of the earliest uses of the 

Markov model for the LMS channel can be found in [119]. The Markov model described 

in steps 1 to 8 above is graphically illustrated in Figure 5.2 and the low pass filtering 

process of step 8 is given by: 

    (      (
   

  
)     )    (     (

   

  
))    ,   (5.1) 

where yn represents a normalised filtered sample of the of the average large scale fading 

level, xn represents an unfiltered sample of the large scale fading level, v represents the 

mobile receiver’s velocity, T is the sampling time, TC is the channel correlation distance 

and n is the sample number of the large scale fading level. σm and Sm are respectively the 

empirical standard deviation and the relative mean large scale fading levels; both obtained 

from measured channel data. The terms on the right hand side of (5.1) but left of the 

Hadamard product operator,  , represent the low pass filter while the terms on its right 

are factors to normalise the filtered signal back to its required level. 

When viewed in the log (dB) scale, the filtered and normalised large scale fading for each 

state result in the characteristic lognormal fading observed in chapter 4. 
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Figure 5.2: Illustration of relative mean signal levels/path loss (not to scale) of the large 

scale fading experienced in dual circular polarised LMS MIMO channels 

5.1.2 Modelling the Small Scale Fading – The Empirical-Stochastic 

Approach 

In the LMS channel, scatterers are only local to the land mobile receiver and as a result 

signals reach the receiver through direct paths or through paths involving single or several 

instances of reflections, diffractions and refractions. It is the constructive and destructive 

adding of these arriving signals, after having propagated through paths of different 

lengths that manifest as small scale fading. Since small scale fading phenomenon is 

random in nature and takes place over dimensions of a few wavelengths, it is usual 

practice to use the Rice probability distribution function to describe it. 

As earlier explained, Rice factor is the ratio of received signal power arriving from a LOS 

path (or a dominant specular reflected path) to the sum of the signal power arriving from 

diffuse multipath reflections. Therefore since the modelling approach adopted in this 

thesis is state-based, with different levels of co- and cross-polar LOS components for 

each of the states, the Rice factor is bound to vary very widely from state to state. Also, 
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considering that multipath components arrive randomly from all directions with equal 

probability, a realistic way to model them is by way of an appropriately scaled (i.e. in 

terms of their mean value and standard deviation and with respect to the LOS/coherently 

received component) probability distribution. Finally, not forgetting to take into account 

the XPC and XPD effects of the dual circular polarised LMS MIMO channel and with 

emphasis on the small scale fading aspects, the proposed channel model is completely 

described as follows: 

                    (           )  (           ),   (5.2) 

where HXPD-XPC is the antenna XPD and channel XPC matrix, which contains elements   , 

with subscript i representing distinct χ-values for each of the four states. This matrix was 

introduced in (3.26) and repeated here as: 

          [
 √ 
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].      (5.3) 

In equation (5.2),   indicates a Hadamard multiplication operation and HLOS is the mean 

level of the coherently received component in each channel fading state relative to the 

LOS level. HRiceF , HRaylF  and HMPC respectively represent a Rice factor matrix for the 

coherently received signal, a Rice factor matrix for the multipath signals and a matrix 

containing the  multipath components. As in (5.3) where i represents distinct values of 

their respective elements for each of the four states, these three channel model 

components are mathematically expressed as: 
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      [ 
           

            
].      (5.6) 

For equations (5.4)-(5.6), KRR and KLL represent Rice factors of co-polar RHCP and co-

polar LHCP channels respectively, KRL and KLR are cross-polar Rice factors of signals 

respectively originating from an RHCP and an LHCP transmit antenna; θij represent 

random phases of the narrowband channels. HMPC is of zero mean and specific but 

distinct standard deviation values for each of the channel states. 

The channel model of equation (5.2) is a rather detailed expression and a simplified 

version of it, earlier published in [114], is given as: 

  [
      

      
]   [

       (     )        (     )
       (     )        (     )

],   (5.7) 

where α and β are the large scale fading components and respectively represent the mean 

signal powers (per state) of the co-polar and cross-polar channels. These are respectively 

equivalent to the main diagonal terms and the off diagonal terms of the product of the first 

three terms on the right hand side of equation (5.2). σexp(θi,j) represents the multipath 

component, and is equivalent to the product of the last two terms on the right hand side of 

(5.2). Note that σ in this case is the standard deviation of the multipath components. 

Finally, in dealing with channel correlation, this model simplifies previous channels 

models like the Liolis [18] and King’s models [3],[72] by considering only the cross-

correlation between the two co-polar channels, CCP, and the cross-correlation between the 

two cross-polar channels, CXP. The Cholesky factorisation product, defined in [120] as: 

              (5.8) 

is for inducing the desired cross correlation. In (5.8), A is a Cholesky factorised 

symmetric matrix, R is a Cholesky product of A, R
T
 is R transposed and D is a diagonal 

matrix in which the correlation coefficients contained in R is imposed. Thus to induce 

correlation on the generated small scale channel data, we have: 

      [
   |      |   

   |      |   
],     (5.9) 
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where [
   |       

       |   
]      

 [
    
    

]    ,    (5.10) 

and [
   |       

       |   
]      

 [
    
    

]    .    (5.11) 

In (5.10) and (5.11), the hij|COR (i,j = R,L) terms on the left hand side represent the 

correlated co- and cross-polar channels of the overall HCOR channel matrix shown in (5.9). 

The off-diagonal terms, labelled xoff are unwanted products of the matrix multiplication on 

the right, which are discarded. Note that the co-polar and cross-polar cross-correlation 

matrices that have been Cholesky factorised as expressed in (5.8) are respectively defined 

by: 

     [
    

   
  

],      (5.12) 

and      [
    

   
  

].    (5.13) 

Therefore, the model proposed in this thesis induces empirically obtained cross-

correlation in a way that is similar to the King-Brown-Kyrgiazos model using an 

approach as simple as the Kronecker model but adopting a slightly different process. In 

contrasting this method with the Kronecker approach, it is worth pointing out that while 

the Kronecker method uses transmit-end and receive-end correlation coefficients to build 

positive semi-definite 4×4 matrices for correlation induction purposes, the new method 

uses two separate 2×2 matrices of cross-channel correlation coefficients. There is no 

requirement for these 2×2 matrices to be positive definite nor positive semi-definite. 

Finally, although the Kronecker method is adequate for 2×2 Rayleigh channels, it fails 

woefully to depict the correlation experienced in dual circular polarised LOS channels 

[65], therefore previous dual polarised LMS channel models that have followed this 

approach have done so at their own detriment. 

After inducing correlation in the small scale fading data, the generated and consequently 

up-sampled large scale fading data is added to the small scale fading part as shown in 

(5.2). The next section provides directions on how this is achieved. 
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5.1.3 Step-wise Generation of Time Series Data for the Dual Circular 

Polarised LMS MIMO Channel 

The following describes the steps used in generating the time series data for the large 

scale fading part of the dual circular polarised land mobile satellite channel: 

1. Specify the centre frequency, the receiver velocity, the minimum duration of time 

or distance spent in one state, the sampling spacing in metres or seconds, the total 

travelled distance, the minimum channel correlation and the 4×4 state probability 

matrix. Also, for each of the four states, specify the matrix containing the XPD-

XPC factors (HXPD-XPC), the matrix of mean co-polar and cross-polar Rice factors 

(HRiceF), and the matrix of mean co-polar and cross-polar signal levels relative to 

the LOS level (HLOS). 

2. Using the state probability matrix, set up a loop to randomly draw from a set of 

numbers lying between 0 and 1. The number of iterations of this loop should be 

equal to the earlier specified total travel distance divided by the minimum duration 

(in metres) in each state. Each draw, when probability-tested against the state 

matrix, identifies which state has been chosen and specifies the time spent or 

distance travelled in that state. Subsequent draws allow one to move on to a 

different state or to remain in the same state. 

3. Within the loop described above and according to (5.2), multiply out: 

                      (           ). 

4. Filter and normalise the co- and cross-polar large scale fading levels of HLargeScale 

using equation (5.1). 

5. Up-sample to match the finer resolution (in terms of sample spacing in time or 

distance) of the yet to be generated small scale fading. 

Table 5-1 gives the empirical averages of the large scale fading parameters for the 

proposed model. These values were extracted after thorough analyses of data from several 

different measurement runs of the measurement campaigns described in chapter 4. 
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Table 5-1: Average parameter values for modelling large scale fading of the dual circular 

polarised channel 

 χ  

(for HXPD-XPC) 

HRiceF HLOS 

K11 = K22 K12 = K21 co-polar x-polar 

LOS (State 1) 0.2 12 dB 8 dB 1 1 

OLOS 1(State 2) 0.1 6 dB 4 dB 0.9 0.9 

OLOS 2 (State 3) 0.5 2 dB 4 dB 0.5 0.8 

NLOS (State 4) 1 -4 dB -8 dB 0.001 0.001 

 

The parameters of Table 5-1 are average values and can range very widely in certain 

propagation conditions. However, for the purposes of channel modelling, strict thresholds 

had to be determined and the per-state average values computed from these. The process 

of extracting the values was both manual and tedious as it required comparing measured 

channel data (which in most cases came with GPS time-stamps) with detailed terrain 

maps and photographs to verify the type of fading being experienced. Then from the 

threshold values, first-order discrete-time Markov chain transitions (see [60],[117],[119]) 

are generated. These Markov four state transitions are defined by: 

   

[
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  |   | 
    

  |   | 

  |   | 

  |   | 

  |   | 
    

  |   | 

  |   | ]
 
 
 
 

, and   [

  

  

  

  

],    (5.14) 

where P is the state transition probability matrix that models the time spent (duration) in 

each of the states. Pi|j is the probability of transiting from state i to state j and ∑   |   
   

              . W is the absolute state matrix which gives the probability of total time 

spent in the four states. ∑       
   . 

For the small scale channel fading, Gaussian random number generators are used 

following the method of Fontan [117] to generate the wanted length of complex valued 

random numbers. These are then filtered according to the observed Doppler spread before 

adding on the required standard deviation values, which are unique to each of the four 

Markov states. An appropriate filter is the Butterworth filter since it is has been generally 

accepted [117],[121], and based on observations from measurements performed by the 

author and P. King [3], that in LMS channels, multipath contributions mainly come from 

both sides of the travelled route (i.e. from the 0
o
 and 180

o
 azimuth direction assuming the 
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mobile travels in the 90
o
 direction as shown in Figure 5.3) causing the Doppler spread to 

cluster round the centre frequency as shown in Figures 6.67 and 6.68 of [3]. 

Travel 

direction

180
o

0
o

270
o

Azimuth 

angles

Direction of wave 

propagation

Land 

mobile 

receiver

 

Figure 5.3: Land mobile receiver travel direction in relation to transmitting satellite 

 

The other main aspect of small scale channel modelling is correlation induction, which is 

performed one correlation length at a time as explained in section 5.1.2. The model uses 

only the cross-channel correlations (i.e the correlation value between the two co-polar and 

the two cross-polar channels) since it has been proven in [122] that an increase in cross-

channel correlation has more influence on, and positively affects, the MIMO channel 

capacity when compared with the effects of transmit-end or receive-end correlations. 

Finally, the small scale fading, which has been generated at very fine sample spacing–in 

the order of fractions of wavelengths–is added to the up-sampled large scale fading data. 

In one of the measurement runs around Newlands Corner (an open/rural type 

environment), the following state transition matrix shown in Table 5-2 was extracted from 

the recorded channel data. Note that each of the rows all sum to one. 

Table 5-2: Sample state transition probabilities for rural type environment 

P 

P1|1 = 0.6942 P1|2 = 0.2413 P1|3 = 0.0098 P1|4 = 0.0547 

P2|1 = 0.5670 P2|2 = 0.3941 P2|3 = 0.0107 P2|4 = 0.0282 

P3|1 = 0.3187 P3|2 = 0.1445 P3|3 = 0.2396 P3|4 = 0.2972 

P4|1 = 0.0956 P4|2 = 0.3786 P4|3 = 0.1872 P4|4 = 0.3386 
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A schematic diagram, based on the LMS channel model circuit diagrams in [117] and 

[119], showing how the proposed model generates time series channel data is given in 

Figure 5.4. 

 
Figure 5.4: Circuit diagram for simulating the four-state Markov model of the dual 

circular polarised LMS MIMO channel 

 

It is obvious from Table 5-2 that the probability of occurrence of State 3 is statistically 

very small; this is also true for the totality of measured channel results of chapter 4 and of 

the results obtained by [5]. However its inclusion in the four-state model makes for a 

complete description of the probable power levels of the dual circular polarised LMS 

MIMO channel. 

A very interesting but previously ignored aspect of the dual circular polarised channel is 

the relationship between the Rice factor and the channel correlation. The next section of 

the thesis is devoted to modelling this phenomenon. 
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5.1.4 Modelling the Rice Factor–Channel Correlation Relationship 

Following from section 4.2.4.4 where the general trend for the channel correlation–Rice 

factor relationship was established by way of Figure 4.29 and the equation in Table 4-4, it 

is necessary to develop a model to link these two parameters. Among the expected 

characteristics of the proposed model are the following: 

1. To ensure the accurate prediction of the channel correlation within the Rice factor 

range of -15dB to 12.5dB. 

2. To ensure the continuity of correlation prediction throughout the above state Rice 

factor range, even if it means using multiple slopes. 

3. Expression of the model in a tractable form to allow for high speed execution in 

simulations. 

The developed model ultimately aims to provide a better understanding of the dual 

circular polarised channel and enable such channels to be used in more efficient ways for 

present and future communication and broadcast systems. Going by the trend in Figure 

4.29, the approach adopted is a two-slope linear regression method, where the model’s 

coefficients are calculated using the least squares algorithm. The model is given as: 

     {
                                       (           )

           
                  (            )

,  (5.15) 

where ρ12 is the channel correlation coefficient, η0 is the constant parameter, η1 is the 

slope coefficient, K is the channel Rice factor in dB and xb is the Rice factor breakpoint in 

dB. Regression analysis is performed separately for either side of xb and care must be 

taken to choose the right breakpoint to maintain function continuity. The algorithm for the 

least squares estimation works by first selecting prospective model coefficients that is 

deemed to fit the data. It then tests the 95% confidence bounds of the chosen coefficients 

and successively removes coefficients with very large bounds. Both linear and nonlinear 

fits are used according to the distribution of the fitted parameter. In the process of 

regression fitting for (5.15), outliers were treated with utmost caution because they are 

known to have a greater than necessary influence on the curve fitting process. Since the 

generally accepted methods of dealing with outliers (either by complete elimination or by 
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appropriate weighting [123]) are both are fraught with unique problems, this thesis adopts 

a simpler approach by only fitting the data within regions of relatively few extreme 

outliers. Apart from Figure 4.29, which identified outliers (in terms of the correlation 

axis) by way of their large standard deviation values, the Grubbs Test [124] can also be 

used. The regression fitted two-slope model of the Rice factor–channel correlation 

relationship is as follows: 

   |      {
                                                      (           )

                                      (            )
, (5.16) 

   |      {
                                                    (           )

                                       (            )
.  (5.17) 

The appropriate choice of breakpoint, xb, is determined through a recursive process; this 

lies between -2.5dB and -1.6dB. Using the models in (5.16) and (5.17), the co-polar and 

cross-polar channel cross correlations are superimposed on the Rice factor-channel 

correlation scatter diagrams and these are shown in Figures 5.5 (a) and (b). Figure 5.6(a) 

and (b) give an indication of the accuracy of the model by plotting the residuals of the 

curve fitting process. As can be observed by the decrease in the spread of the residuals at 

higher Rice factors (especially for the co-polar cross correlation fits), the model is fairly 

accurate. However its high residual spread at low Rice factors indicate that there are large 

errors, the causes of which need to be further investigated as more empirical channel data 

becomes available. 

The simplified and novel channel modelling method implemented in this thesis aptly 

describes the large and small scale fading phenomena and also the relationship between 

the channel cross-correlation and the Rice factor. As is shown in the next section, the 

modelled channel’s first and second order statistics stay consistent with measurements. 
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Figure 5.5: Modelled co-polar and cross-polar channels cross correlation fits for (a) lower 

Rice factor range and (b) upper Rice factor range 

 

 
Figure 5.6: Residuals from curve fitting the upper Rice factor range for (a) co-polar 

channel cross correlation and (b) cross-polar channel cross correlation 

5.2 Model Validation 

The channel data generated from the proposed model needs to be compared against 

measured channel data in order to verify that the model accurately captures all the 

important characteristics of the measured dual circular polarised LMS MIMO channel. 

Resorting to use measured channel data from which the model was derived for validation 

purposes is because other sources of measured dual circular polarised LMS MIMO 

channel data (for example, [5]) were not readily available. The validation process adopted 
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here is worthwhile since apart from comparing direct channel characteristics like branch 

power distribution and Rice factor, validation involves the comparison of indirect 

parameters like eigenvalue distribution and channel capacity. For example, if the 

eigenvalue distribution of a section of measured channel data of a certain Rice factor is 

compared with modelled channel data of the same Rice factor and both their eigenvalue 

distributions match, it confirms that the model can accurately represent first and second 

order statistics of the LMS MIMO channel and any interdependences that exists between 

the individual MIMO sub-channels [72]. For first order channel characteristics, this thesis 

validates the model using CDF plots of branch power, eigenvalue and Rice factor 

distribution. Also compared for the purposes of channel model validation are the 

capacities of the modelled and measured channels. Validation of the second order 

statistics of the model is by comparing the level crossing rates and the average fade 

durations of the modelled channel with that of the measured channel. The recorded 

measured channel data used for model validation has been obtained from the 

measurement campaigns of King [3] and measurement campaigns I and II (see sections 

4.2.1 and 4.2.2) whose elevation angles range from 5
o
 to 37

o
. 

5.2.1 Branch Power Distribution 

Branch (MIMO sub-channels) power distribution of the 2×2 dual polarised LMS MIMO 

channel is a function of both the antenna and channel cross-polar discrimination. As a 

first step towards validating the channel model, CDF plots are used to compare the branch 

power distributions of the modelled and measured channel for different fading sections 

characterised in Table 5-3. 

Table 5-3: Rice factor of measured and modelled channels for sections of LOS and 

OLOS1 fading used in Figure 5.7 

 Rice factor in dB 

 LOS fading OLOS1 fading  

 Co-polar 

channel 

Cross-polar 

channel 

Co-polar 

channel 

Cross-polar 

channel 

Measured channel 16.6 9.6 9.7 5.3 

Modelled channel 17.2 9.9 10.1 5.6 
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The CDF plots are shown in Figure 5.7. Observe the very close match between the two 

data types for both LOS and OLOS1 fading. Note specifically that at a probability of 10
-3

, 

the modelled receive signal power of the LOS fading is within 1dB of the measured 

channel for the co-polar MIMO sub-channels. Figure 5.7 only shows the co- and cross-

polar RHCP MIMO sub-channels for LOS fading and shows only the LHCP co- and 

cross-polar sub-channel for OLOS1 fading for increased clarity of the plots. The close 

match between modelled and measured MIMO sub-channel power distributions and their 

Rice factor values, especially during LOS fading (which this thesis is more interested in), 

is a good proof that the model accurately reproduces the branch power ratios observed 

during measurements. OLOS2 type fading is not shown due to the limited available 

measured channel data while that of NLOS is omitted as this type of fading can be easily 

modelled using the popular Kronecker channel models. Besides, these fading conditions 

are not of much interest to this thesis since they do not reliably support dual circular 

polarisation multiplexing. 

 

 
Figure 5.7: CDF plots of received signal power for LOS and OLOS1 channels 

 



Chapter 5. Modelling the Dual Circular Polarised LMS MIMO Channel 

 

134 

5.2.2 Eigenvalue Distribution 

The distribution of eigenvalues of the dual polarised LMS channel indicates what MIMO 

mode–whether multiplexing or diversity–would be best suited for such a channel. A good 

match between the CDF of eigenvalues of the measured and modelled channel helps to 

confirm whether the interdependence between the MIMO sub-channels have been 

correctly preserved and are in line with channel fading conditions. Figure 5.8 compares 

the eigenvalue CDF plots of the measured and modelled channel for the same data 

sections that were used in generating Figure 5.7, and as can be observed, there is a very 

good match between the two. This serves as further proof of the accuracy of the proposed 

model and indicates that it can be reliably used to demonstrate the multiplexing or 

diversity capabilities of the dual polarised LMS MIMO channel. The left side of Figure 

5.8 shows an LOS propagation scenario where the first and second eigenvalues are 

closely spaced with the second eigenvalue being about 6dB less than the first eigenvalue 

at a probability of 10
-3

. Compare this with the plot on the right where there is about 30dB 

difference between the first and second eigenvalues of an OLOS1 channel. Such 

eigenvalue distributions point to a situation that is more suitable for diversity-combining 

MIMO techniques. For LOS propagation, it would be more spectrally efficient to transmit 

independent bit streams through the two available channels and multiplex the bit streams 

at the receiver. A scheme for implementing such multiplexing has been proposed in [95] 

and is the subject of chapter 6. 
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Figure 5.8: CDF plots of channel eigenvalues for LOS and OLOS1 channels 

 

5.2.3 Channel Capacity 

Another very important metric used in model validation is the Shannon channel capacity 

metric given in equation (2.7) for MIMO channels. Two realisations of channel capacity 

are used; the first of which is within the small scale fading wideband domain while the 

second considers the small scale fading narrowband aspects of the channel. In the small 

scale fading wideband domain, the channel coherence time is smaller than the duration of 

the transmitted codeword and as such the codeword experiences many different channel 

realisations. This implies that the capacity that can be supported by such a channel can 

only be computed as an ensemble average of its many fading instances. This average 

capacity is referred to as the channel ergordic capacity. In the small scale fading 

narrowband channel where the coherence time is much larger than the duration of the 

transmitted codeword, the classic assumption that the experiences channel block fading 

holds (i.e. the channel is quasi-static and stays the same throughout the duration of a 

codeword). Hence the appropriate channel capacity to use in this case is the outage 

capacity, which is defined as the percentage of time that a given information rate can be 

guaranteed by the channel [122]. 
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For both the ergodic and the outage capacity in the ensuing comparisons of the modelled 

and measured channels, it is assumed that the transmit and receive link-ends both possess 

perfect channel knowledge and power is allocated equally to the two MIMO sub-

channels. Hence in using the Shannon channel capacity equation given in (2.7), each 

channel matrix realisation, H, has been normalised with respect to the LOS signal level 

and the capacity computed for different SNR values. The result of this is given in Figure 

5.9 where a very good fit can be observed between the measured and the modelled 

channel ergodic capacity predictions. The predicted SISO capacity is also included for 

benchmarking purposes. Note that predicted capacity of the proposed model (in its final 

version) given in Figure 5.9 is almost identical to that of the interim model provided 

earlier (see equation (3.27) and Figure 3.7). This is because channel cross correlation, 

which is not considered in the earlier model but is taken into account in the final model, 

has limited effects on the ergodic channel capacity. 

 
Figure 5.9: Ergodic channel capacity per SNR for modelled and measured channels 

 

The average Rice factor of the data sections used in the ergodic capacity comparison in 

Figure 5.9 was 16dB. Whereas it would have been more interesting to compare modelled 

and measured channel capacity at different Rice factors (various levels of LOS or OLOS 

propagation), the aim of validating the channel model would have been defeated since 

variations within the Rice factor value of the measured channel data would have 
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introduced errors resulting from the conflicting effects of SNR and Rice factor on the 

channel capacity. This conflict has been explained by the ergodic capacity results in [122] 

(also see the analysis in section 3.2.4) where it has been shown that increasing the Rice 

factor decreases the channel capacity while and at the same time if transmit power is kept 

constant, the presence of a Ricean component (LOS) implies an increase in SNR which 

results in higher capacities than obtainable during periods when the channel is less Ricean 

(Rayleigh or OLOS). 

 
Figure 5.10: Outage probability at a capacity of 4b/s/Hz 

 

The very good match between the measured and the modelled channel capacity is 

repeated in Figure 5.10 for the outage capacity predictions. When taken together, Figures 

5.9 and 5.10 conclusively prove that the model can accurately predict the channel 

capacity. 

5.2.4 Level Crossing Rate 

The level crossing rate (LCR) is the rate at which a received signal crosses a specified 

level in the positive direction. It has great significance in the choice of transmission bit 

rates and coding schemes for LMS communication systems. The LCR is defined in [109] 

and [125]  as: 
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     √         (   ),      (5.18) 

where    is the maximum Doppler shift of the received signal r, which itself has been 

normalised by its RMS value. The Doppler shift component in (5.18) indicates that LCR 

has a dependence on the mobile terminal’s velocity, making it a second order statistic. 

Since the modelled and measured channels in this thesis have already been normalised 

with respect to the LOS channel, the LCR for the co-polar channel can be computed from: 

   

  
  √  |   |     ( (|   | ) ),    (5.19) 

where |   |  is the absolute value of RHCP co-polar channel. For a fair comparison, the 

LCR of measured channel data in Figure 5.11 is obtained from a single measurement run 

and is compared against modelled channel data that exhibits the same fading state 

evolution. An example of fading state evolution for the measured channel was earlier 

shown in Figure 4.16. 

The good fit between the LCR of the co-polar and cross-polar modelled and measured 

channels of Figure 5.11 shows that this very important second order statistic has been 

accurately rendered by the proposed channel model. Observe that the highest rate of level 

crossings for the co-polar channels occur at around 0dB while that of the cross-polar 

channels occur at about -7dB. This indicates that for most of time, the value of the co-

polar channel power stays at about 0dB while that of the cross-polar channel hovers 

around 7dB below. 

 



Chapter 5. Modelling the Dual Circular Polarised LMS MIMO Channel 

 

139 

 
Figure 5.11: Normalised level crossing rates for co- and cross-polar measured and 

modelled channels 

 

5.2.5 Average Fade Duration 

In addition to the LCR, another very important second order channel statistic which needs 

to be represented accurately is the average fade duration (AFD), which is the length of 

time the received signal, r,  stays below a given level, R. AFD is defined in [117] as: 

         (   )    ,     (5.20) 

where     (    )   ∑       is sum of times (t) the signal crosses a level within the 

total period of observation (T). Hence the AFD can simply be computed by counting the 

total length of time the received signal stays below a given level and then dividing the 

value by the crossing rate at that signal level (the LCR). 

As with the LCR, Figure 5.12 shows that the model is valid as it accurately predicts the 

AFD for different channel fading conditions. Observe that the length of time in seconds 

that the received cross-polar signal will stay below 0dB is greater than that of the co-polar 

channel.  
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Figure 5.12: Normalised average fade duration for co- and cross-polar measured and 

modelled channels 

5.3 Conclusions 

A comprehensive model for simulating the dual circular polarised LMS MIMO channel 

has been presented. A stepwise procedure for building this model was also given 

alongside a high level schematic of its circuit diagram construct. The Rice factor-channel 

correlation relationship, which forms a cornerstone of the proposed model and which 

prior to now has never been investigated in any detail, has been presented in the form of a 

two-slope linear model. The values of the coefficients of the Rice factor-channel 

correlation model have been derived using a least squares estimation method and detailed 

statistical analysis has shown that given high Rice factor values, the correlation 

coefficient prediction of the model becomes more accurate. 

Going back to the newly proposed model, by way of CDF plots comparing the branch 

power and eigenvalue distributions of the measured and the modelled channel, it has been 

shown that the model accurately predicts the first order statistics of the LMS MIMO 

channel. Also, to further verify the accuracy of the model, its predicted capacity and 

second order statistics of level crossing rates and average duration of fades have been 
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compared with that of the measured channel. The close agreement of all the compared 

modelled and measured channel parameters indicate that the model is indeed accurate and 

can be used with confidence to determine the effects of intervening objects within the 

close vicinity of the mobile terminal on the system level performance of communication 

systems designed for the dual circular polarised LMS MIMO channel. Among the system 

level indicators that may be of interest to developers of LMS MIMO systems, especially 

those working on the upcoming DVB-SH and DVB-NGH systems, include the effects 

channel cross-correlation and Rice factor on the bit error rates of various receive terminal-

based channel equalisation schemes. These effects are investigated in the next chapter. 
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Chapter 6 

6 BER Analysis of Equalisation Schemes 

Suitable for DCPM LMS Receivers 

The potential of multiple-input multiple-output (MIMO) to achieve linear capacity 

increase per number of additional transmit-receive antenna pairs depends very much on 

the ability of the transceiver to exploit the additional spatial and/or polarisation 

dimensions. Having seen in chapter 3 that Dual Circular Polarisation Multiplexing 

(DCPM), being a simple receiver-based channel equalisation scheme, is capable of 

doubling the capacity of land mobile satellite (LMS) devices equipped with orthogonal 

circular polarised antennas, it remains to be seen how different channel fading conditions 

affect the bit error rates (BER) of such receivers. Therefore, this chapter uses the channel 

model proposed in chapter 5 alongside the channel correlation and Rice factor values 

obtained in chapter 3 and the proposed Rice factor-channel correlation model to 

determine the bit error rates achievable with practical zero forcing (ZF) and minimum 

mean squared error equalisation (MMSE) schemes. The results obtained and the analysis 

thereof help in determining how best to deploy DCPM in LMS environments. The 

analysis carried out is based on a Digital Video Broadcasting via Satellite to Handhelds 

(DVB-SH)/Digital Video Broadcasting to Next Generation of Handhelds (DVB-NGH) 

scenario where the satellite is the transmit link-end while the land mobile device is a 

receive-only terminal and the channel is assumed to be quasi-static with its coherence 

time long enough for several bursts of symbols to be fully transmitted and received. 

Parameters used and scenarios considered in this chapter are based on the DVB 

implementation guidelines published in [77] and the channel statistics earlier derived in 

chapter 4. 

The BER is a particularly suitable metric for determining the best possible equalisation 

scheme for DCPM implementation. This is because BER measures the complete end-to-
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end system performance–in terms of bits transmitted and bits correctly/incorrectly 

received–and takes into account the effects of noise (of the electronic and antenna 

subsystems), channel fading conditions and quantisation errors. Channel fading 

conditions relate to the level of signal obstruction and the presence of multipath 

components while quantisation errors depend on the modulation schemes employed; these 

last two parameters directly test the ‘goodness’ of the chosen equalisation scheme and 

how it influences the capacity doubling ambitions of DCPM. 

6.1 DCPM System Aspects 

Although orthogonal circular polarisation has long been used in multi-beam satellites for 

increasing the radiated power levels reaching earth terminals and inadvertently increasing 

the frequency reuse factor [19], [126], its use for capacity doubling has only recently been 

suggested and only a few papers including [2],[4] have attempted some preliminary 

investigation. As the name implies, DCPM is based on dual circular polarisation per 

satellite beam and it seeks to double the capacity of satellite broadcast systems but at the 

cost of increased inter-beam interference in multi-beam scenarios and/or increased intra-

system interference in single (global) beam scenarios. Even though the following DCPM 

analysis is based on the DVB-SH and DVB-NGH framework, where it is envisaged that 

satellite services will be complemented by terrestrial broadcast, inter-beam interference 

from the same satellite or from complementary terrestrial sources is ignored and a global 

beam broadcast scenario is assumed in order to keep the analysis simple. Therefore in the 

analysis, DCPM employs practical linear channel equalisation schemes like ZF and 

MMSE to eliminate the intra-system interference caused by the orthogonally polarised S-

band signals (2170 – 2200MHz) per satellite beam. Also, since the iterative use of linear 

equalisers such as V-BLAST [86] has been proven to improve interference elimination 

capabilities with marginal increase in system complexity, the operation of DCPM needs 

to be investigated using ordered successive zero forcing and ordered successive minimum 

mean squared error equalisation schemes. Also, BER simulations of DCPM operating 

under linear unordered ZF and MMSE modes in different fading conditions needs to be 

performed so as to determine its exact working limits.  
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To reveal the intricacies of the DCPM BER simulations carried out in this chapter, a high 

level block diagram of the mobile terminal-based DCPM equalisation architecture is 

provided in Figure 6.1. Here, a single user channel is assumed and shown in the diagram 

are the transmit data stream, available equalisation modes, the dual circular polarised 

channel and the composition of the received signals. A high bit rate data stream (x) meant 

for a land mobile user is demultiplexed by the satellite into two sub-streams (x1 and x2) 

of lower bit rates, encoded into QPSK, 8PSK or 16APSK symbols and transmitted using 

each of the two orthogonally circular polarised satellite antennas. As with V-BLAST, the 

same constellation is used for the two sub-streams and transmission is done in bursts of L 

symbols. The total available transmit power is shared equally between the two antennas. 

High bit rate

Transmit data

Vector 

encoder

QPSK, 8PSK 

or 16PSK

RHCP Tx

LHCP Tx

hRR

hLR
hRL

hLL

RHCP Rx

LHCP Rx

x1

x2

y1 = x1hRR + x2hLR

y2 = x1hRL + x2hLL

x

 

Figure 6.1: High level diagram of DCPM architecture 

 

At the receiver land mobile terminal, from equation (2.1) and using Figure 6.1, observe 

that the instantaneous overall input-output relationship for the DCPM scheme is given by: 

                                  ,    (6.1) 

where the wanted terms are       and       and the intra-system interference terms are 

      and      ; n is the noise vector = (n1, n2, n3, n4) present in each of the four sub-

channels. Note that the intra-system interference directly depends on the orthogonal 

polarised antennas ability to reject oppositely polarised signals and also on the channel's 

preponderance to depolarise the transmit signal. Hence, an important factor in the choice 

of channel equalisation technique is how significant are the       and       terms 

compared with the       and        terms. Recall that the dual circular polarised channel 

matrix is given by: 
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   [
      

      
]   [

      

      
].     (6.2) 

The channel effects of equation (6.2) plus the noise term need to be removed from the 

receive signal, and this can be done using either linear unordered or recursive equalisation 

techniques. How to implement linear unordered ZF and MMSE channel equalisation was 

explained in the BER simulations of section 3.2.5, while the process of implementing 

ordered successive ZF interference cancellation uses the algorithm given in [86] as 

follows: 

Recursion initialisation: 

    

       

           ‖(  ) ‖
 
 

Recursion: 

    (  )   

        

    

 ̂    (   ) 

          ̂  ( )   

         

  

             (      )
‖(    ) ‖

 
 

     ,     (6.3) 

where Gi,i=1 is a matrix of ZF channel weights obtained from the first step Moore-Penrose 

pseudo-inversion (given as H
+
) of H. k1 is the index number of the column of weights that 

correspond to the sub-channel with the best post detection SNR. Thus wki are the weights 

of the column with the best SNR, yki are the equalised received bits,  ̂   are the quantised 

equalised received bits and ri+1 is the received signal after subtracting the equalised 

component. Gi+1 is the pseudo-inverse of the depleted channel. In summary, equation 

(6.3) progressively chooses and eliminates the sub-channel with the next best SNR and 

the process is based on the receiver having perfect channel state information. Using the 
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notation developed in chapter 3 to explicitly show how the channel weights are employed 

in suppressing intra-system interference, equation (6.3) is presented in discrete baseband 

matrix form as follows: 

1. Compute the ZF channel weights by inverting H according to equation (3.2) to 

get: 

    [
      

      
].      (6.4) 

2. Determine the column with the best post detection SNR; for example column 2 

containing weights w21 and w22. 

3. Using the weights computed from the column chosen in step 2, equalise the 

channel as follows: 

      
    [        ] [

  

  
]   [            ].   (6.5) 

4. Subtract Yeq (which is a subset of the received signal that has been equalised and 

quantised) from the overall received signal: 

         [
  

  
]   [

 
           

].    (6.6) 

Equation (6.6) completely eliminates y2 leaving only y1, so the new channel matrix 

reduces to: [
          

  
], where the zero terms represent the components of y2 

that have been removed. 

5. Loop back to step 1 to compute the weights of the remaining channel and equalise 

as necessary. 

The steps given in 1 to 5 above provide a straight forward way to implement the ordered 

successive ZF algorithm in MATLAB. Also, the compact disc accompanying reference 

[34] provides robust MATLAB scripts for implementing ZF-OSIC. As can be observed in 

the above algorithm, only the interference components are removed and any available 

noise is amplified [8]. Though co-located and of the same design, orthogonally polarised 
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receive antennas (as proposed for the DCPM scheme) have been known to exhibit slightly 

different radiation patterns due to imperfect antenna manufacture. This phenomenon 

partly accounts for the sometimes dissimilar receive power of the two sub-channels and 

thus requiring that the row with the strongest SNR should always to be correctly 

determined in step 2 so as to achieve optimal interference cancellation. 

Implementing ordered successive MMSE equalisation follows the same procedure as with 

the ZF equalisation; the only difference being that the channel inversion of step 1 is 

performed in order to simultaneously suppress both the interference and noise. Therefore 

the MMSE channel weights are obtained by pseudo-inverting both H and the SINR terms 

as shown in equation (3.4). 

One of the assumptions underlying the choice of equalisation schemes for DCPM, which 

would be validated using simulations in the next section, is that even though ZF is inferior 

to MMSE, its BER performance should very closely approach that of MMSE because of 

the high correlation and minimal interference in line of sight (LOS) propagation. It is only 

when propagation conditions become more challenging, as during severe obstructed line 

of sight (OLOS1), OLOS2 and NLOS type fading that the more computationally complex 

MMSE may become more advantageous. Note that as earlier mentioned in chapter 5, 

OLOS1 describes a large scale channel fading state where the co-polar and cross-polar 

components are mainly attenuated by vegetative matter. In this fading state, and similar to 

the vegetation propagation measurements of [127],[128] and the ITU-R recommendations 

for attenuation in vegetation [129], the co-polar components are attenuated by between 2 

dB and 21dB from their LOS level (depending on the depth of foliage and the relative 

velocity between transmitter and receiver) while the cross-polar components are 

attenuated by more than 10dB. OLOS2 fading occurs in suburban and urban areas and is 

characterised by the cross-polar components, though attenuated, being stronger than the 

co-polar components. Such channel fading conditions are quite rare but significant 

instances of it have been observed in the measurements earlier described in chapter 4 and 

from the measurement results of [5]. 
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6.1.1 Scope of DCPM Simulations 

Wireless communication applications for which DCPM can be put to use are many; 

however, this thesis focuses on the LMS broadcast channel for which ETSI's digital video 

broadcasting standardisation activities is presently gathering momentum. Therefore 

following the DVB-SH and DVB-NGH recommendations [77], the receiver architecture 

proposed for DCPM-enabled devices was shown in Figure 2.7 and based on a single 

satellite single user scenario, Figure 6.2 below shows a block diagram of the BER 

simulations carried out in this chapter. 

Transmit 

bit streams

RHCP Rx

LHCP Rx

X1

X2

Channel

H
Random noise with 

variance σ
2

Equaliser

(DCPM happens here)

Bit

comparator

(Demodulator)

Perfect channel state information 

available at receiver

Error count,

Compute

% BER
X1,X2

Perfect knowledge of transmitted bit streams at reciever (for BER computation)

LMS RECEIVER

Figure 6.2: Block diagram showing how BER computation is implemented for a DVB-

SH-type receiver 

 

An explanation of the BER simulations procedure is as follows. 

1. Two randomly generated and QPSK modulated bit streams, x1 and x2, are 

transmitted from each of the satellite’s dual circular polarised antennas. Both 

the in-phase and quadrature-phase components of the bits are transmitted with 

a fixed energy given by EB. 

2. Using matrix multiplication, the effects of the modelled complex channel, H, 

is induced on the transmitted bits. This multiplication affects both the 

amplitude and phase of the transmitted bit streams. 

3. At the receiver, random noise with variance σ
2
 and power density N0 is added 

to the received bit stream. The variance of the noise power density is gradually 
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reduced to get ascending values of energy per bit to noise power density ratios 

(Eb/N0). 

4. The receiver, having perfect channel state information tries to remove the 

effects of the channel on the transmitted bit stream using ZF and MMSE. Note 

that steps 1, 2 and 4 have already been explained in great detail in Section 6.1. 

5. The originally transmitted bit streams are then compared with the 

demodulated/decoded bits. Erroneously decoded bits are counted and the bit 

error rate is determined. 

As can be observed with Figures 2.7 and 6.2 are compared, not all aspects of the receiver 

are considered in this thesis since this research concentrates on physical layer aspects. 

Therefore, with the receiver having perfect channel state information as stated in step 4 

above, there is no need to consider the pilot signalling and channel estimation aspects. 

Also, it is assumed that the satellite operates from a geostationary orbit, which allows the 

effects of Doppler shift to be easily compensated. Other assumptions are as follows: 

1. Only the satellite reception mode is considered although the DVB-SH receiver 

is capable of seamlessly moving between satellite and Complementary Ground 

Coverage (CGC) reception. 

2. Orthogonal circular polarisation provides the only means of sub-channel 

independence. 

3. Only QPSK modulation is considered since it has been recommended in [76] 

that QPSK at a code rate of 1/3 is optimal at maximising the satellite link 

margin. The absolute BER of higher order modulation schemes would be 

progressively worse than that of QPSK. However, if the other recommended 

modulation schemes (8PSK and 16APSK) are used in comparing the 

performance of different equalisation schemes, they would give in relative 

terms the same results as QPSK. 

4. Time interleaving and turbo coding aspects are not considered since they are 

as add-ons and only serve to improve the bit error rates. Note that the adoption 

of time interleaving techniques (both physical layer and link layer) depend on 

the available memory and battery life restrictions. While time interleaving and 

forward error correction turbo codes reduce the effective transmission rates 
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(capacity), they have been shown in [130] to increase satellite-only error free 

reception time of DVB-SH systems by more than 10%. 

6.2 Bit Error Rate Simulations for the Dual Circular Polarised LMS 

Channel 

The aim of this section is to compare the bit error rates of ZF and MMSE equalisation 

when used within the DCPM framework under different channel fading conditions. Also 

included for benchmarking purposes are the bit error rate curves of the optimal exhaustive 

search MLSE equalisation scheme and BER curves for when equalisation is not used. 

This last addition explores the advantage that orthogonal circular polarisation alone can 

bring to mobile DCPM-enabled LMS receivers. All the simulations in this section, except 

otherwise stated, make use of the channel model developed in chapter 5 and QPSK 

modulation. To set the stage for subsequent BER plots, Figure 6.3 shows linear ZF, 

MMSE, MLSE and ‘no equalisation’ BER curves for the measured and modelled dual 

circular polarised LOS channel while Figure 6.4 shows the BER curves for when the 

channel is NLOS. The bracket terms in the legend of the figures: (mod) and (mea) 

respectively represent error rates derived from modelled channel data and the BER from 

measured channel data. Observe in Figure 6.3 that the measured and modelled channel 

BER curves of the respective equalisation schemes are very closely correlated and this 

serves as a further verification of the accuracy of the model. Also observe that as 

expected, MLSE gives the best performance, achieving a BER of 10
-3

 at an Eb/N0 of about 

12.6dB for the LOS channel. ZF and MMSE achieve the same BER at a slightly higher 

Eb/N0 of 14.0dB and 13.8dB respectively. In the same LOS channel, ‘no equalisation’ 

does amazingly well, achieving a BER of 10
-3

 at an Eb/N0 of 16dB. Of particular 

significance in this channel is the fact that ‘no equalisation’ outperforms ZF at Eb/N0 

values less than 7dB. Observe that at low Eb/N0 values, all the error probability (BER) 

curves including that of the theoretical AWGN channel tend towards the worst case value 

of 0.5. The difference between the optimal MLSE BER curve and that of the theoretical 

AWGN channel BER at higher Eb/N0 is mainly due to the channel attenuation effects 

which cannot be completely removed by equalisation. Increasing the channel Rice factor 



Chapter 6. BER Analysis of Equalisation Schemes Suitable for DCPM LMS Receivers 

 

151 

would make the equalised channel BER curves to tend towards that of the AWGN 

channel. 

 
Figure 6.3: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the LOS measured and modelled channels 

 

 
Figure 6.4: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the NLOS/Rayleigh measured and modelled channels 
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The BER for the NLOS/Rayleigh channel shown in Figure 6.4 is several orders of 

magnitude worse than that of the LOS channel. Observe that increasing the Eb/N0 in this 

channel has almost no effect on the bit error rate when ‘no equalisation’ is used. An 

agreement between measured and modelled channel bit error rates once again indicates 

the accuracy of the model. 

Table 6-1: Average channel parameters for BER curves of Figure 6.3 to Figure 6.6 

 

The average Rice factors and the co-polar and cross-polar channel cross correlation for 

the channel data sections used in plotting Figures 6.3 and 6.4 are given in Table 6-1. Also 

included in the table are the average RHCP and LHCP co- and cross-polar sub-channel 

levels, which should be pointed out are balanced. A channel is described as balanced 

when the level of its co-polar RHCP sub-channel (hRR) is roughly equal to the level of its 

co-polar LHCP sub-channel (hLL); the same equal levels applies to the cross polar sub-

channels of a balanced dual circular polarised channel. 

In all dual circular polarised LMS channels with balanced branch powers and especially 

when the channel state information is completely known at the receiver, no advantage is 

expected from the use of ordered successive interference cancellation (OSIC) either in the 

ZF or MMSE mode. This has been proven in Figures 6.5 and 6.6, which show BER 

curves for ordered successive interference cancellation. Observe that these are almost 

identical to their linear unordered interference cancellation counterparts of Figures 6.3 

and 6.4 respectively. These results are not surprising because channel weights, 

particularly for ZF, are obtained by pseudo-inverting the channel matrix and when this 

matrix is known and the channel is in LOS fading, interference elimination by the 

unordered linear ZF achieves its optimal performance, same as with successive 

interference cancellation. With this insight, subsequent sections of this chapter will 

explore the BER rates when the channel fading is both balanced and unbalanced and is 

 

Channel 

type 

Average 

co-polar 

Rice 

factor 

Average 

cross-

polar 

Rice 

factor 

Average co-

polar cross 

correlation 

coefficient 

Average 

cross-polar 

cross 

correlation 

coefficient 

Average power level relative to 

LOS 

 

hRR 

 

hRL 

 

hLR 

 

hLL 

LOS 17dB 10dB 0.96 0.87 0dB -8dB -7dB 0dB 

NLOS -4dB -8dB 0.43 0.45 -33dB -35dB -34dB -32dB 
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predominantly in each of the four fading states (described by the proposed model). This is 

done in order to determine if successive interference cancellation is superior to linear 

interference elimination for DCPM implementation. 

 
Figure 6.5: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the LOS channel 

 
Figure 6.6: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the NLOS/Rayleigh channel 
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6.2.1 The Dual Circular Polarised LMS LOS Channel 

Some parameters of the LOS fading channel have already been given in Table 6-1 in the 

previous section while the rest of the parameters used in simulating this channel are 

provided in Table 6-2. This subsection expands on the earlier simulations by specifying 

two types of LOS fading conditions: Scenario A, when the co- and cross- polar branch 

powers (sub-channels) are balanced and Scenario B, when there is a significant imbalance 

between the two co-polar branches. A difference between the co-polar branch powers 

invariably creates some imbalance between the two cross-polar branch powers and in the 

case of a handheld LMS receiver, branch power imbalance is usually caused by 

obstructing one of the antennas while handling the device. Theoretically, two other 

possible scenarios exist, these are: Scenario C, when the co-polar branches are balanced 

but with unbalanced cross-polar branches and Scenario D, when both co- and cross-polar 

branches are unbalanced. Scenario C is not presented in this thesis because of its very low 

probability of occurrence while scenario D is very similar to scenario B. Besides, the 

BER characteristics of scenarios C and D are very similar to those of scenarios A and B 

since the co-polar branches–with their usually much larger magnitudes compared the 

cross-polar branches–dominate the BER performance of dual circular polarised LOS 

channels. Scenario A has already been shown as part of Figures 6.3 and 6.5 and will not 

be repeated here. 

Table 6-2: Channel parameters for Scenarios A and B of the dual circular polarised LOS 

channel 

 

 
 

HXPD-XPC   HLOS 

Coherently 

received 

component 

(model input) 

Correlation coefficients 

(model input) 

 

HRiceF 

Average 

Rice factor  

in dB 

(model 

input) 

HLOS 

Average path 

loss relative to 

LOS  in dB 

(estimated) 

Co-polar 

channels 

cross 

correlation 

Cross-polar 

channels 

cross 

correlation 

Scenario 

A 
[    √   

√      
] [

       
       

] [
       
       

] [
   
   

] [
        
        

] 

Scenario 

B [
 √       †

√       
] [

       
       

] [
       
       

] [
   
   

] [
        
        

] 

                                                 
†
 0.7 represents a 1.54dB reduction in the coherently received LHCP component. Using the channel model 

defined in equation (5.2), the values in the rightmost column were computed from the generated channel 

data. Note that the standard deviation of the multipath components in this case was set at 0.1 
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Figure 6.7: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the LOS channel Scenario B (unbalanced sub-channels) 

 

 
Figure 6.8: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the LOS channel Scenario B 

(unbalanced sub-channels) 
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6.2.1.1 Discussions on the BER performance of ZF-OSIC and MMSE-OSIC 

equalisation on the LOS channel 

What is immediately obvious in the balanced and unbalanced LOS channels is 

degradation in the BER performance of all three equalisation schemes. Whereas MLSE, 

MMSE and ZF (both linear unordered and OSIC) achieved 10
-3

 BER at Eb/N0 rates of 

12.6dB, 13.8dB and 14.0dB in the balanced channel respectively, in the unbalanced 

channel, they achieve the same BER at 15.8dB, 22dB and 22.1dB Eb/N0. In the worst case 

being that of ZF, this represents a 8.1dB loss for a 5.23dB* drop in the coherently 

received hLL sub-channel power relative to the coherent hRR sub-channel. (*see Table 6-2, 

where 10log (1 – 0.7) = 5.23dB). There is no significant difference between the BER 

performance of the linear equalisation schemes and their OSIC counterparts. Decoding 

signals transmitted through unbalanced LOS channels based only on orthogonal 

polarisations (i.e. ‘no equalisation’) gives very poor results and as can be observed, a 

BER of 10
-3

 cannot be achieved within the windowed Eb/N0. 

A salient point to note from the BER results is that orthogonally polarised systems are 

very sensitive to branch power imbalances. Since most dual polarised antenna systems are 

designed to be co-located on devices with small form factors, imbalances would be most 

likely caused by handling of such devices. For example, if a DCPM receiver is held with 

both hands, one hand may cover/obstruct one of the antennas while the second antenna is 

left unobstructed. Another potential source of imbalance is non-identical (i.e. the antennas 

not having the same XPD) radiation patterns of orthogonally polarised antennas. 

Although the channel modelling chapter of this thesis purposefully avoided using 

measured channel data from unbalanced data sections to build the channel model, the 

proposed model can be easily tuned to generate unbalanced channel data for BER and 

other analysis. This section has given just one example of the infinitely many ‘Scenario 

B’ examples to highlight the effects of branch power imbalance on BER. 

6.2.2 The Dual Circular Polarised LMS MIMO OLOS1 Channel 

The parameters used in modelling the OLOS1 (State 2) channel are given in Table 6-3, 

where it is shown the values of the XPD-XPC ratio multiplied with the coherently 

received signal component (relative to the LOS level): HXPD-XPC   HLOS. Also shown are 
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the cross correlation coefficients of the co-polar and the cross-polar channels and their 

corresponding Rice factors. The given parameters in addition to the state transition 

probability matrix (not shown) are used as inputs to the channel model of equation (5.2). 

The channel model then generates time series data from where the values of the fourth 

column have been computed. As usual, Scenario A is for balanced co- and cross-polar 

branch powers while Scenario B represents a situation where the co-polar branches 

powers are not balanced. The results for the BER simulations of linear unordered ZF and 

MMSE and ZF-OSIC, MMSE-OSIC are shown in Figures 6.9 to 6.12. 

Table 6-3: Channel parameters for Scenarios A and B of the dual circular polarised 

OLOS1 channel 

 

 
 

HXPD-XPC   HLOS 

Coherently received 

component 

(model input) 

Correlation coefficients 

(model input) 

 

HRiceF 

Average Rice 

factor  in dB 

(model 

input) 

HLOS 

Average path 
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LOS  in dB 
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Co-polar 

channels 

cross 

correlation 

Cross-polar 

channels 

cross 

correlation 

A 
[    √       

√          
] [

      
      

] [
       
       

] [
  
  

] [
         
         

] 

B 
[

   √        ‡

√          
] [

      
      

] [
       
       

] [
  
  

] [
         
         

] 

 

 

                                                 
‡
 0.54 = 0.9×0.6, where 0.9 represents 0.46dB reduction in the coherently received components of all 

channels due to OLOS1 fading and 0.6 represents a 2.22dB reduction in only the LHCP component 

(causing the imbalance). Using the channel model defined in equation (5.2), the values in the rightmost 

column were computed from the generated channel data. Note that the standard deviation of the multipath 

components in this case was set at 0.2 
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Figure 6.9: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the OLOS1 channel Scenario A (balanced sub-channels) 

 

 

 

 
Figure 6.10: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the OLOS1 channel Scenario A 

(balanced sub-channels) 
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Figure 6.11: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the OLOS1 channel Scenario B (unbalanced sub-channels) 

 

 

 
Figure 6.12: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the OLOS1 channel Scenario B 

(unbalanced sub-channels) 
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6.2.2.1 Discussions on the BER performance of ZF-OSIC and MMSE-OSIC 

equalisation on the OLOS1 channel 

Once again, as was the case with the LOS channel, the biggest effect on BER is caused by 

branch power imbalance. Neither ZF-OSIC nor MMSE-OSIC is able to improve the BER 

of the unbalanced channel to match that of the balanced channel. The recursive 

interference mitigation techniques have failed to provide any significant advantage over 

linear unordered interference mitigation. As expected, the BER of ‘no equalisation’ is 

worse in the OLOS1 channel than in the LOS channel. 

Although the OLOS1 channel has better polarisation discrimination than the LOS channel 

(χ = 0.2 in LOS and χ = 0.1 in OLOS1 – due to the cross-polar components suffering 

much greater attenuation than their co-polar counterparts), the relatively lower powers of 

the coherently received co-polar sub-channels (1 for LOS and 0.9 for OLOS1) produces 

limited effects on the BER of both ZF and MMSE but a much more substantial effect 

when ‘no equalisation’ is used. For example, whereas in the balanced LOS channel, to 

achieve a BER of 10
-3

 requires Eb/N0 of 13.8dB and 14.1dB for MMSE and ZF 

respectively, to achieve the same BER in the OLOS1 channel respectively require Eb/N0 

of 15.1dB and 15.4dB. However, when the channel becomes unbalanced, the Eb/N0 

required by MMSE and ZF in the OLOS1 channel to achieve BERs of 10
-3

 both increase 

to more than 30dB, from the 22.0dB and 22.1dB that was respectively needed in the 

unbalanced LOS channel. When no equalisation is used, balanced OLOS1 channel 

achieves a BER of 10
-2

 at an Eb/N0 of about 15.2dB; in the unbalanced OLOS1 channel, 

‘no equalisation’ may never be able to achieve the bit error rate of 10
-2

. 

The above results once again emphasise the need for co-polar sub-channel powers to be 

of the same magnitude in order for polarisation multiplexing to succeed. It has also shown 

that decent BER only using orthogonal circular polarisation decoding is limited to pure 

LOS channels. Ordered successive interference cancellation does not bring any obvious 

advantage when channel state information completely available at the receiver. 
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6.2.3 The Dual Circular Polarised LMS MIMO OLOS2 Channel 

The OLOS2 channel state occurs very rarely and is only included in the BER simulations 

for completeness. In Table 6-4 are the parameters used in simulating this channel and its 

BER results are shown in Figures 6.13 to 6.16. The OLOS2 fading channel is a more 

exacting channel state than the previous two cases as can be observed by the parameters 

in Table 6-4. As expected, the bit error rates for both linear unordered and OSIC 

equalisations, including MLSE and ‘no equalisation’ are worse than the previous two 

cases. Bits decoded with ‘no equalisation’ are always very close to the worst case value of 

0.5, hence the almost horizontal green plot. The use of OSIC in this channel doesn’t bring 

any significant BER advantage over linear unordered equalisation. The important feature 

about this channel is the fact that MMSE outperforms ZF by about 5dB Eb/N0 for most of 

the BER range. 

Table 6-4: Channel parameters for Scenarios A and B of the dual circular polarised 

OLOS2 channel 
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   √        §
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§
 0.32 = 0.8×0.4, where 0.8 represents a 0.97dB reduction in the coherently received components of all 

channels due to OLOS2 fading and 0.4 represents a 3.98dB reduction in only the LHCP component 

(causing the imbalance). Using the channel model defined in equation (5.2), the values in the rightmost 

column were computed from the generated channel data. Note that the standard deviation of the multipath 

components in this case was set at 0.2. 
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Figure 6.13: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the OLOS2 channel Scenario A (balanced sub-channels) 

 

 

 

 
Figure 6.14: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the OLOS2 channel Scenario A 

(balanced sub-channels) 

 



Chapter 6. BER Analysis of Equalisation Schemes Suitable for DCPM LMS Receivers 

 

163 

 
Figure 6.15: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the OLOS2 channel Scenario B (unbalanced sub-channels) 

 

 

 

 
Figure 6.16: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the OLOS2 channel Scenario B 

(unbalanced sub-channels) 
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6.2.4 The Dual Circular Polarised LMS MIMO NLOS Channel 

The NLOS/Rayleigh channel (State 4) is the antithesis of the LOS channel. Here, the LOS 

component is negligible and an overwhelming majority of the receive signal power comes 

from multipath components. Some of the parameters of this channel were given in Table 

6-1 and the rest are provided in Table 6-5. Since Figures 6.4 and 6.6 already contain 

components of the balanced NLOS channel, only the unbalanced unordered and OSIC bit 

error rates of this channel are provided here: see Figures 6.17 and 6.18. 

Table 6-5: Channel parameters for Scenarios A and B of the dual circular polarised NLOS 

channel 
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√            
] [

       
       

] [
       
       

] [
    
    

] [
          
          

] 

B 
[

     √       
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**

 This is a totally random channel with negligible coherently received components. Using the channel 

model of equation (5.2), the standard deviation of the multipath components of this channel was set at 0.3 to 

get the estimated values shown in the last column. 
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Figure 6.17: BER curves for linear unordered ZF and MMSE, exhaustive search MLSE 

and ‘no equalisation’ in the NLOS channel Scenario B (unbalanced sub-channels) 

 

 

 
Figure 6.18: BER curves for ordered successive interference cancellation ZF and MMSE, 

exhaustive search MLSE and ‘no equalisation’ in the NLOS channel Scenario B 

(unbalanced sub-channels) 
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6.2.4.1 Discussions on the BER performance of ZF-OSIC and MMSE-OSIC 

equalisation on the NLOS channel 

The BER in this channel is the worst of the four cases. There is a complete depolarisation 

in this channel which does not favour any form of polarisation multiplexing. Since most 

of the received signal power comes from multipath sources, conventional MIMO 

diversity techniques would fare better in these kinds of channels. A close inspection of the 

BER plots of the OLOS2 and NLOS channels reveal that their BER performance is very 

similar. Therefore it is inferred that since conventional MIMO would outperform DCPM 

in the NLOS channel, there is no need to bother with DCPM in the OLOS2-type channels. 

6.2.5 Effects of Channel Correlation and Rice Factor on BER 

In order to determine the effects of channel correlation and Rice factor on the BER of 

receive-only DCPM devices, only two channel states are considered; these are the LOS 

fading channel and the OLOS1 fading channel. The reason for limiting the analysis to 

these two channel states is because only these two possess the required polarisation purity 

suitable for polarisation multiplexing. Also the two channel states are chosen based on 

their relatively good BER results in the previous sections, where it is shown using Figures 

6.4, 6.9 and 6.10 that the BER of DCPM, which is implemented with ZF and MMSE 

equalisation schemes, approach those achieved using an optimal exhaustive search MLSE 

equalisation. The Rice factor range used in the simulation of this section is given in Table 

6-6 while the corresponding channel cross correlation values and the XPD-XPC factors 

are given in Table 6-7. The values of correlation to match the Rice factors were computed 

using equations (5.16) and (5.17) and instances where the Rice factor values fall outside 

the validated range of the Rice-correlation model, the channel statistics found in Figure 

4.29 were used in determining the correct cross correlation values to apply. The results of 

the BER simulations for the LOS channel are shown in Figures 6.19 to 6.22. In the 

figures, K11 represents the Rice factor of the RHCP co-polar sub-channel while K12 stands 

for the Rice factor of the RHCP cross-polar sub-channel. The BER simulations for both 

LOS and OLOS1 channels only consider balanced channels, therefore K11 = K22 and K12 = 

K21. As was the case previously, BER from MLSE equalisation are only included for 

bench marking purposes. 
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Table 6-6: Rice factor values used in the Rice factor-BER effects simulations  

 State 1 (LOS) State 2 (OLOS 1) 

Co-polar channels Rice factor range 3dB to 21dB -5dB to 17dB 

Cross-polar channels Rice factor range -4dB to 14dB -8dB to 14dB 

 

 

Table 6-7: Table of complete channel parameters used in the simulations of Rice factor-

BER characteristics of the LOS channel 

Channel description Sub-channel Rice factor 

in dB 

Cross correlation 

coefficient 

XPD-XPC 

factor in dB 

Lower end of LOS 

channel state 

Co-polar 3 0.62 6.9 

Cross-polar -4 0.24 6.9 

Intermediate region I 

of channel state 

Co-polar 9 0.90 6.9 

Cross-polar 2 0.46 6.9 

Intermediate region 

II of channel state 

Co-polar 15 0.96 6.9 

Cross-polar 8 0.80 6.9 

Upper end of LOS 

channel state 

Co-polar 21 0.96 6.9 

Cross-polar 14 0.82 6.9 

 

 

 

 

 
Figure 6.19: Effect of Rice factor on the BER of ‘no equalisation’ in the LOS channel 
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Figure 6.20: Effect of Rice factor on the BER of linear unordered ZF in the LOS channel 

 

 

 

 
Figure 6.21: Effect of Rice factor on the BER of linear unordered MMSE in the LOS 

channel 
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Figure 6.22: Effect of Rice factor on the BER of linear unordered MLSE in the LOS 

channel 

 

Observe that all four LOS channel BER plots above follow the same trend. Specifically, 

when the co- and cross-polar Rice factors respectively increase from 3dB and -4dB to 

21dB and 14dB, the Eb/N0 required to achieve a BER of 10
-2

 reduces by at least 1.5dB in 

all four ‘equalisation’ modes. However marginal this improvement is, it represents a 

significant result since this is achieved without resort to any error correction coding. 

The same trend repeats itself in the OLOS1 channel where as shown in Figures 6.23 to 

6.25, that increasing the co- and cross-polar Rice factor respectively from -5dB and -8dB 

to 13dB and 10dB gives a minimum Eb/N0 gain of 10dB (for MLSE equalisation) at 10
-2

 

Eb/N0. As shown in Figure 6.23, it is not even worth attempting to decode transmitted 

symbols without channel equalisation since a BER of 10
-2

 cannot be achieved even at an 

Eb/N0 of 30dB. Interestingly, the simplest of the equalisation schemes, ZF, achieves 

almost the same BER of 10
-3

 as the more computationally complex MMSE when the 

Eb/N0 is 15dB. 
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Table 6-8: Table of complete channel parameters used in the simulations of Rice factor-

BER characteristics of the OLOS1 channel 

Channel description Sub-channel Rice factor 

in dB 

Cross correlation 

coefficient 

XPD-XPC 

factor in dB 

Lower end of OLOS1 

channel state 

Co-polar -5 0.28 10 

Cross-polar -8 0.16 10 

Intermediate region I 

of channel state 

Co-polar 1 0.42 10 

Cross-polar -2 0.24 10 

Intermediate region 

II of channel state 

Co-polar 7 0.90 10 

Cross-polar 4 0.66 10 

Upper end of OLOS1 

channel state 

Co-polar 13 0.96 10 

Cross-polar 10 0.83 10 

 

 

 

 

 
Figure 6.23: Effect of Rice factor on the BER of ‘no equalisation’ in the OLOS1 channel 
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Figure 6.24: Effect of Rice factor on the BER of ZF in the OLOS1 channel 

 

 

 

 

 
Figure 6.25: Effect of Rice factor on the BER of MMSE in the OLOS1 channel 
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Figure 6.26: Effect of Rice factor on the BER of MLSE in the OLOS1 channel 

 

In order to conclusively determine the most appropriate equalisation scheme to use for 

DCPM, the BER results of Figures 6.19 to 6.26 and the channel model parameters used in 

deriving them are summarised into Figures 6.27(a) to (d); their description and 

implications are as follows: 

 Figure 6.27(a) shows the relationship between the co-polar channel Rice factors 

and the cross-polar channel Rice factors used in the BER simulations, where it can 

be observed that there is an overlap between the Rice factor of the LOS and 

OLOS1 channels. However, the main function of the graphs is to show that 

increasing co-polar channel Rice factors correspond to increasing cross-polar 

channel Rice factor for both the LOS and OLOS1 fading channel.  

 Figure 6.27(b) shows the relationship between the co-polar channel cross 

correlation and the co-polar channel Rice factor for the LOS and OLOS1 fading 

channels. Also shown in the same figure is the cross-polar channel cross 

correlation and their corresponding Rice factor values. This diagram indicates that 

the co- and cross-polar channel cross correlation coefficients increase with 
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increasing Rice factor for both LOS and OLOS1 channels and the trend observed 

in the measured channel data has not been violated. 

(a) (b)

(c) (d)  
Figure 6.27: Summary of BER simulation results and channel parameters 

showing: (a) range of co- and cross-polar channel Rice factors, (b) channel 

correlation coefficients and corresponding Rice factor values, (c) Eb/N0 and 

corresponding Rice factor needed by ZF, MMSE and ‘no equalisation’ 

equalisation schemes to achieve a BER of 10
-3

 in the LOS channel, (d) Eb/N0 and 

corresponding Rice factor needed by ZF, MMSE and ‘no equalisation’ 

equalisation schemes to achieve a BER of 10
-3

 in the OLOS1 channel 

 

 Figure 6.27(c) shows the Rice factors and corresponding Eb/N0 values needed to 

achieve a BER of 10
-3

 when applying ‘no equalisation’, ZF and MMSE in a 

predominantly LOS fading channel. Observe that the Eb/N0 needed by ZF is 

within 0.2dB of that required by MMSE for the full simulated Rice factor range. 

The meagre 0.2dB Eb/N0 advantage of MMSE over ZF in the LOS channel makes 

it unsuitable for limited power DCPM devices since its more numerous 
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computation operations would offset this advantage. Therefore it is recommended 

that ZF is the equalisation scheme of choice in the highly correlated LOS channel 

since its lower number of computation operations, despite its 0.2dB Eb/N0 

disadvantage, would better preserve the battery life of DCPM devices. 

 Figure 6.27(d) shows the Rice factors and corresponding Eb/N0 values needed to 

achieve a BER of 10
-3

 when applying ‘no equalisation’, ZF and MMSE in channel 

experiencing OLOS1-type fading. In this channel, the Eb/N0 required for ZF is 

within 0.1dB that of MMSE when the Rice factor is above 0dB. Therefore there is 

no need to bother with the more complex MMSE. ZF should also be the 

equalisation of choice in the OLOS1 fading channel. 

6.3 Recommendations for the use of DCPM in Dual Circular Polarised 

LMS Channels 

Having seen in chapter 3 that polarisation multiplexing can only deliver comparable 

capacities to conventional MIMO when the polarisation purity of the channel (as 

characterised by the XPD-XPC) ratio is high, and going by the BER results presented in 

this chapter, it is recommended that DCPM is only suitable for channels exhibiting LOS 

and OLOS1-like fading characteristics.  More robust but practical channel equalisation 

schemes like ZF-OSIC and MMSE-OSIC cannot provide better BER than their linear 

unordered equivalents and hence DCPM receivers do not need to be encumbered with 

such technologies. However, when the channel tends towards being more OLOS2-like 

and Rayleigh/NLOS-like, it is recommended that ZF-based DCPM be abandoned due to 

its poor bit error rates. The technique of choice in such channels should be conventional 

MIMO since MIMO was originally designed for such multipath-rich channels in the first 

place. These recommendations are in line with the DVB-SH [40] guidelines, which 

specifically require that receivers should be able to exploit parallel transmission modes by 

multiplexing two separate orthogonally polarised data streams during LOS periods and to 

exploit diversity during OLOS/NLOS propagation. Finally, the recommendations for the 

operation of dual circular polarised land mobile satellite receiving terminals are 

summarised as follows: 
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 Use DCPM with ZF equalisation when channel condition is predominantly LOS 

and co-polar and cross-polar branch Rice factors are greater than 3dB and -4dB 

respectively. Based on empirical channel data, these Rice factors correspond to 

XPD values of at least 7dB and cross correlation coefficients of the two co-polar 

channels of at least 0.65. Similarly, the cross correlation coefficients of the two 

cross-polar channels should not be less than 0.20 for good DCPM performance in 

the LOS channel. 

 Only use DCPM in the OLOS1 channel when the co-polar and cross-polar channel 

Rice factors are greater than 1dB and -2dB respectively and the branch power 

ratio of the co- and cross-polar channels is close to unity since an imbalance in the 

branch power ratio adversely affects the BER of ZF. The corresponding 

correlation coefficients for DCPM to work in this channel type must be at least 

0.40 for the co-polar channel and 0.25 for the cross-polar channel while the XPD 

should be greater than 10dB. If the above channel parameters are not met, DCPM 

would fail in the OLOS1 channel. 

 In all other channels experiencing deep shadowing or obstruction, such as the 

OLOS2 and NLOS/Rayleigh channels, polarisation multiplexing cannot be 

beneficially exploited and conventional MIMO diversity techniques become more 

suitable. 

6.4 Conclusions 

Using a newly developed dual circular polarised LMS channel model, this chapter 

embarked on a detailed and extensive analysis of bit error rate simulation results. The 

effects on equalisation techniques of different channel fading conditions, as exemplified 

by the channel states of the new channel model, were studied. It was found that ZF-OSIC 

and MMSE-OSIC do not provide any obvious BER advantage over their linear unordered 

counterparts and hence should not be applied in DCPM. The effects of Rice factor and the 

attendant channel correlation were also studied within the LOS and OLOS1 channel states 

where simulations revealed that increasing Rice factor positively correlates with 

improved bit error rates. Finally, it was determined that the biggest threat to successful 
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implementation of DCPM even in the highly favourable LOS channel is an imbalance in 

channel branch power ratios. The actual causes of these imbalances were however not 

explored and are left for future researchers to tackle. 

The work presented in this chapter and the measurement campaign chapter was compiled 

into a journal paper titled “Dual Circular Polarization Multiplexing for DVB-SH/NGH 

Applications”, and is awaiting submission. 
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Chapter 7 

7 Conclusions and Future Work 

This research work commenced with the intention of implementing multiple-input 

multiple-output (MIMO) in the land mobile satellite (LMS) channel. In the course of the 

literature survey and subsequent research, it was realised that conventional MIMO, 

employing spatially separated antennas and even of orthogonal circular polarisations, 

cannot be beneficially adopted from the terrestrial channel into the mostly line of sight 

(LOS) LMS channel. Therefore, a polarisation multiplexing approach, termed dual 

circular polarisation multiplexing (DCPM) was proposed as the technique of choice. In 

order to determine the workability of DCPM, measured channel data from previous 

campaigns was examined and it was found that high elevation LOS propagation scenarios 

that are more representative of LMS systems were in short supply. Therefore a series of 

higher elevation measurement campaigns were carried out to provide the much needed 

data. Since recorded channel data lacks flexibility of use and can only represent channel 

fading conditions from which the measurements were taken, a realistic and tractable 

channel model, based on empirical statistics extracted from the recorded data needed to 

be developed. The new channel model presented in this thesis has been shown to 

accurately depict dual circular polarised LMS MIMO channel fading and has been used in 

bit error rate (BER) simulations to determine the channel equalisation modes most 

suitable for DCPM implementation. 

7.1 Research Contributions 

The main contributions of this thesis are as follows: chapter 2 presented various metrics 

for characterising the MIMO radio channel and provided reasons why most LMS channel 

models adopt the stochastic modelling approach. A thorough review of available 

stochastic models of the polarised LMS MIMO channel revealed some weaknesses and 

their lack of representation of the Rice factor-channel correlation effects. It was posited 
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that fully incorporating these factors in a tractable channel model would help in 

uncovering the true potentials of MIMO in orthogonally circular polarised LMS channels. 

Since transceivers are the structures through which the benefits of MIMO channels is 

harnessed, chapter 3 reviewed literature on the popular transceiver architectures, and 

considering them in the receive-only mode, the intricacies of channel equalisation 

techniques were laid bare. This allowed for the adoption of two of them – zero forcing 

and MMSE – for the proposed DCPM. Analysis and preliminary simulations were 

performed to glean the potential capacity benefits of DCPM compared with conventional 

MIMO. It was found that polarisation multiplexing can only provide superior capacity to 

conventional MIMO when the polarisation purity of the orthogonal channels is high and 

at low SNR values. 

Chapter 3 used a basic model to study the effects of polarisation on the capacity and BER 

of dual circular polarised LMS channels, the best way to understand such channels is by 

actually measurements and studying the realised data. To this end, a series of 

measurement campaigns were set up and conducted as described in chapter 4. From the 

obtained measured channel data, it was concluded that orthogonal circular polarisation, 

though providing some level of sub-channel independence, cannot provide the enough 

independent fading needed by conventional MIMO techniques. Also, using polynomial 

fits to the measured channel data, trends between channel fading variables were 

uncovered and these were in agreement with earlier and independently obtained channel 

data. 

Building on the trends found in the measured channel data and the on earlier attempts to 

model the LMS MIMO and terrestrial polarised channels, extensions to the channel model 

for the dual circular polarised LMS channel was presented in chapter 5. This channel has 

been validated against measured channel data using first and second order channel fading 

statistics. Also presented in this chapter is a way to model the relationship between the 

channel Rice and channel correlation based on empirical fits to measurements. 

Chapter 6 made use of the newly developed dual circular polarised LMS channel model 

to perform extensive BER analysis. These analyses revealed that ZF can provide adequate 

bit error rates when the channel is mainly LOS and slightly shadowed (OLOS1). Also 
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uncovered was the fact the ordered successive interference cancellation, either with ZF or 

MMSE, does not provide significant BER advantage over their linear unordered 

counterparts. The biggest threat to implementing polarisation multiplexing in the LMS 

channel comes from branch power imbalances. 

Finally, the channel conditions that favour DCPM implementation in the LOS channel 

were enumerated to include co-polar and cross-polar Rice factors of at least 3dB and -4dB 

respectively and with the XPD being at least 7dB. The cross correlation coefficient of the 

two co-polar channels must be at least 0.65 while that of the two cross-polar channels 

must be at least 0.20. For DCPM to be viable in the OLOS1 channel, the co-polar and 

cross-polar channel Rice factors must be greater than 1dB and -2dB respectively and the 

branch power ratio of the two co-polar (and cross-polar) channels should be close to unity 

while the cross correlation coefficient between the co-polar channels must be at least 0.40 

and the cross correlation between the cross-polar channels should be greater than 0.25. 

Of the approximately 43km of route travelled during the course of the two measurement 

campaigns of this thesis, less than 15% of the sampled dual circular polarised LMS 

channel data met the criteria for good DCPM operability and out of this 15%, 92% of the 

time was in the rural environment. Since DCPM was intended for rural environments, 

92% coverage represents very good results and the remaining 8% is only when the more 

complex conventional MIMO can be considered. 

7.2 Future Work 

Based on the findings and the conclusions drawn, the following areas are recommended 

for future work:  

 There was a strict limitation on the interference sources that were considered for 

the DCPM analysis since the analysis considered a broadcast-only scenario. In 

addition to the depolarised sub-channel interference considered in this thesis, all 

other possible sources of interference need to be taken into account. It is 

especially important for the interference coming from terrestrial sources (the 

complementary ground components of integrated satellite-terrestrial networks 
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used for local content insertion) to be considered. However, such additional 

interference may not be significantly in rural areas where DCPM is most likely to 

be implemented. 

 The BER analysis carried out was limited to uncoded transmissions. This is not 

usually the case in practice and future work need to factor in the effects of turbo 

coding, time interleaving and forward error correction schemes in the DCPM 

system with real time implementation. 

 One of the assumptions in this thesis was that pilot signals were transmitted by the 

satellite and through this, the receiver accurately estimated the channel state 

information. However, the receiver may not always have an accurate knowledge 

of the channel and at times this knowledge may be outdated. The effects of having 

imperfect channel state knowledge should be considered as this would have a 

significant effect on the DCPM channel equalisation schemes. 

 For each of the four channel states defined by the new channel model, chapter 6 

considered single cases where there were imbalances in the branch power ratio. 

The extent of these imbalances (as characterised by varying channel XPC and 

antenna XPD) and their causes need to be conclusively determined if the 

application of DCPM is to be further considered. 

 Since the proposed channel model employed ‘ideal’ data from each of the fading 

states for its development, it was not possible to determine the full extent of Rice 

factor variability in each of the channels in a single Markov state. To obtain this 

information, the already available measured channel data needs to be further 

analysed and where necessary, new measurement campaigns performed to extract 

the required information. 

 Specific antenna effects on the implementation of DCPM, such as those induced 

by compact co-location of orthogonal circular polarised antennas [97] needs to be 

studied in greater detail. 

 The effects of rainfall and snow attenuation on the BER and capacity of DCPM 

systems need to be considered. 

 Tropospheric and ionospheric effects need to be incorporated into the model for it 

to be more representative of the LMS channel. 
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 Other specific environments like maritime and aeronautical mobile environments, 

with their distinct Doppler characteristics and where the channel fading is 

characteristically different from the LMS case need to be studied. 

 Wideband channel analysis is another important area to consider for further work. 

 Finally, both the new channel model and the model describing the Rice factor–

channel correlation relationship can be further validated and fine-tuned with the 

availability of new measured channel data, for example L-band channel 

measurements. 
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Appendix 

Link Budget Analysis 

To ensure that measurement campaigns are successfully conducted, link budget analysis 

must first be performed. The following represents a link budget analysis carried out for 

the Newlands Corner measurement campaign. It is important that at maximum 

measurement distance, there is enough impulse response dynamic range (IRDR) to 

accommodate the channel effects of shadowing and small scale fading. Factors 

considered are 

1. The emulated satellite’s effective isotropic radiated power (EIRP), which is given as 

transmit power plus transmit antenna gain. 

2. The Free Space Loss (FSL), which is given as: 

20   (
   

 
), 

where d = 1400 metres is the maximum distance between the transmit and receive 

antennas and using a centre frequency of 2.43GHz gives λ = 0.12m 

3. Receiver sensitivity is given in the Elektrobit (channel sounder) user manual as: 

            (  )      , 

where        is the thermal noise of the sounder’s resistors, given as -174dBm/Hz; 

BW is the null to null bandwidth, which is 50MHz; 

     is system noise figure of the channel sounder, which is specified as 3dB. 

4. The channel sounder processing gain is given as: 

      (  ), 

where    is the number of chips per code (also known as code length), which is 63 

for the Newlands Corner measurements. 

5. The theoretically available impulse response dynamic range (IRDR) is then given as  

EIRP – FSL – Receiver Sensitivity + Processing Gain, 

which amounts to 35dBm – 103.3dB + 94dBm + 17.9dB = 43.6dB. 


