51,814 research outputs found

    Spin up and phase fluctuations in the timing of the accreting millisecond pulsar XTE J1807-294

    Get PDF
    We performed a timing analysis of the 2003 outburst of the accreting X-ray millisecond pulsar XTE J1807-294 observed by RXTE. Using recently refined orbital parameters we report for the first time a precise estimate of the spin frequency and of the spin frequency derivative. The phase delays of the pulse profile show a strong erratic behavior superposed to what appears as a global spin-up trend. The erratic behavior of the pulse phases is strongly related to rapid variations of the light curve, making it very difficult to fit these phase delays with a simple law. As in previous cases, we have therefore analyzed separately the phase delays of the first harmonic and of the second harmonic of the spin frequency, finding that the phases of the second harmonic are far less affected by the erratic behavior. In the hypothesis that the second harmonic pulse phase delays are a good tracer of the spin frequency evolution we give for the first time a estimation of the spin frequency derivative in this source. The source shows a clear spin-up of ν˙=2.5(7)×10−14\dot \nu = 2.5(7) \times 10^{-14} Hz sec−1^{-1} (1 σ\sigma confidence level). The largest source of uncertainty in the value of the spin-up rate is given by the uncertainties on the source position in the sky. We discuss this systematics on the spin frequency and its derivative.Comment: 17 pages, 4 figures, Accepted by Ap

    PMU-Based ROCOF Measurements: Uncertainty Limits and Metrological Significance in Power System Applications

    Full text link
    In modern power systems, the Rate-of-Change-of-Frequency (ROCOF) may be largely employed in Wide Area Monitoring, Protection and Control (WAMPAC) applications. However, a standard approach towards ROCOF measurements is still missing. In this paper, we investigate the feasibility of Phasor Measurement Units (PMUs) deployment in ROCOF-based applications, with a specific focus on Under-Frequency Load-Shedding (UFLS). For this analysis, we select three state-of-the-art window-based synchrophasor estimation algorithms and compare different signal models, ROCOF estimation techniques and window lengths in datasets inspired by real-world acquisitions. In this sense, we are able to carry out a sensitivity analysis of the behavior of a PMU-based UFLS control scheme. Based on the proposed results, PMUs prove to be accurate ROCOF meters, as long as the harmonic and inter-harmonic distortion within the measurement pass-bandwidth is scarce. In the presence of transient events, the synchrophasor model looses its appropriateness as the signal energy spreads over the entire spectrum and cannot be approximated as a sequence of narrow-band components. Finally, we validate the actual feasibility of PMU-based UFLS in a real-time simulated scenario where we compare two different ROCOF estimation techniques with a frequency-based control scheme and we show their impact on the successful grid restoration.Comment: Manuscript IM-18-20133R. Accepted for publication on IEEE Transactions on Instrumentation and Measurement (acceptance date: 9 March 2019

    Discrete spherical means of directional derivatives and Veronese maps

    Get PDF
    We describe and study geometric properties of discrete circular and spherical means of directional derivatives of functions, as well as discrete approximations of higher order differential operators. For an arbitrary dimension we present a general construction for obtaining discrete spherical means of directional derivatives. The construction is based on using the Minkowski's existence theorem and Veronese maps. Approximating the directional derivatives by appropriate finite differences allows one to obtain finite difference operators with good rotation invariance properties. In particular, we use discrete circular and spherical means to derive discrete approximations of various linear and nonlinear first- and second-order differential operators, including discrete Laplacians. A practical potential of our approach is demonstrated by considering applications to nonlinear filtering of digital images and surface curvature estimation

    A modulation property of time-frequency derivatives of filtered phase and its application to aperiodicity and fo estimation

    Full text link
    We introduce a simple and linear SNR (strictly speaking, periodic to random power ratio) estimator (0dB to 80dB without additional calibration/linearization) for providing reliable descriptions of aperiodicity in speech corpus. The main idea of this method is to estimate the background random noise level without directly extracting the background noise. The proposed method is applicable to a wide variety of time windowing functions with very low sidelobe levels. The estimate combines the frequency derivative and the time-frequency derivative of the mapping from filter center frequency to the output instantaneous frequency. This procedure can replace the periodicity detection and aperiodicity estimation subsystems of recently introduced open source vocoder, YANG vocoder. Source code of MATLAB implementation of this method will also be open sourced.Comment: 8 pages 9 figures, Submitted and accepted in Interspeech201

    Analyzing weak lensing of the cosmic microwave background using the likelihood function

    Get PDF
    Future experiments will produce high-resolution temperature maps of the cosmic microwave background (CMB) and are expected to reveal the signature of gravitational lensing by intervening large-scale structures. We construct all-sky maximum-likelihood estimators that use the lensing effect to estimate the projected density (convergence) of these structures, its power spectrum, and cross-correlation with other observables. This contrasts with earlier quadratic-estimator approaches that Taylor expanded the observed CMB temperature to linear order in the lensing deflection angle; these approaches gave estimators for the temperature-convergence correlation in terms of the CMB three-point correlation function and for the convergence power spectrum in terms of the CMB four-point correlation function, which can be biased and nonoptimal due to terms beyond the linear order. We show that for sufficiently weak lensing, the maximum-likelihood estimator reduces to the computationally less demanding quadratic estimator. The maximum likelihood and quadratic approaches are compared by evaluating the root-mean-square (rms) error and bias in the reconstructed convergence map in a numerical simulation; it is found that both the rms errors and bias are of order 1 percent for the case of Planck and of order 10–20 percent for a 1 arcminute beam experiment. We conclude that for recovering lensing information from temperature data acquired by these experiments, the quadratic estimator is close to optimal, but further work will be required to determine whether this is also the case for lensing of the CMB polarization field

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result
    • …
    corecore