4,918 research outputs found

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    A Domain-Independent Algorithm for Plan Adaptation

    Full text link
    The paradigms of transformational planning, case-based planning, and plan debugging all involve a process known as plan adaptation - modifying or repairing an old plan so it solves a new problem. In this paper we provide a domain-independent algorithm for plan adaptation, demonstrate that it is sound, complete, and systematic, and compare it to other adaptation algorithms in the literature. Our approach is based on a view of planning as searching a graph of partial plans. Generative planning starts at the graph's root and moves from node to node using plan-refinement operators. In planning by adaptation, a library plan - an arbitrary node in the plan graph - is the starting point for the search, and the plan-adaptation algorithm can apply both the same refinement operators available to a generative planner and can also retract constraints and steps from the plan. Our algorithm's completeness ensures that the adaptation algorithm will eventually search the entire graph and its systematicity ensures that it will do so without redundantly searching any parts of the graph.Comment: See http://www.jair.org/ for any accompanying file

    Planning through Automatic Portfolio Configuration: The PbP Approach

    Get PDF
    In the field of domain-independent planning, several powerful planners implementing different techniques have been developed. However, no one of these systems outperforms all others in every known benchmark domain. In this work, we propose a multi-planner approach that automatically configures a portfolio of planning techniques for each given domain. The configuration process for a given domain uses a set of training instances to: (i) compute and analyze some alternative sets of macro-actions for each planner in the portfolio identifying a (possibly empty) useful set, (ii) select a cluster of planners, each one with the identified useful set of macro-actions, that is expected to perform best, and (iii) derive some additional information for configuring the execution scheduling of the selected planners at planning time. The resulting planning system, called PbP (Portfolio- based Planner), has two variants focusing on speed and plan quality. Different versions of PbP entered and won the learning track of the sixth and seventh International Planning Competitions. In this paper, we experimentally analyze PbP considering planning speed and plan quality in depth. We provide a collection of results that help to understand PbP�s behavior, and demonstrate the effectiveness of our approach to configuring a portfolio of planners with macro-actions

    PLTOOL: a knowledge engineering tool for planning and learning

    Get PDF
    Artificial intelligence (AI) planning solves the problem of generating a correct and efficient ordered set of instantiated activities, from a knowledge base of generic actions, which when executed will transform some initial state into some desirable end-state. There is a long tradition of work in AI for developing planners that make use of heuristics that are shown to improve their performance in many real world and artificial domains. The developers of planners have chosen between two extremes when defining those heuristics. The domain-independent planners use domain-independent heuristics, which exploit information only from the ‘syntactic’ structure of the problem space and of the search tree. Therefore, they do not need any ‘semantic’ information from a given domain in order to guide the search. From a knowledge engineering (KE) perspective, the planners that use this type of heuristics have the advantage that the users of this technology need only focus on defining the domain theory and not on defining how to make the planner efficient (how to obtain ‘good’ solutions with the minimal computational resources). However, the domain-dependent planners require users to manually represent knowledge not only about the domain theory, but also about how to make the planner efficient. This approach has the advantage of using either better domain-theory formulations or using domain knowledge for defining the heuristics, thus potentially making them more efficient. However, the efficiency of these domain-dependent planners strongly relies on the KE and planning expertise of the user. When the user is an expert on these two types of knowledge, domain-dependent planners clearly outperform domain-independent planners in terms of number of solved problems and quality of solutions. Machine-learning (ML) techniques applied to solve the planning problems have focused on providing middle-ground solutions as compared to the aforementioned two extremes. Here, the user first defines a domain theory, and then executes the ML techniques that automatically modify or generate new knowledge with respect to both the domain theory and the heuristics. In this paper, we present our work on building a tool, PLTOOL (planning and learning tool), to help users interact with a set of ML techniques and planners. The goal is to provide a KE framework for mixed-initiative generation of efficient and good planning knowledge.This work has been partially supported by the Spanish MCyT project TIC2002-04146-C05-05, MEC project TIN2005-08945-C06-05 and regional CAM-UC3M project UC3M-INF-05-016.Publicad

    Marvin: A Heuristic Search Planner with Online Macro-Action Learning

    Full text link
    This paper describes Marvin, a planner that competed in the Fourth International Planning Competition (IPC 4). Marvin uses action-sequence-memoisation techniques to generate macro-actions, which are then used during search for a solution plan. We provide an overview of its architecture and search behaviour, detailing the algorithms used. We also empirically demonstrate the effectiveness of its features in various planning domains; in particular, the effects on performance due to the use of macro-actions, the novel features of its search behaviour, and the native support of ADL and Derived Predicates

    ASAP: An Automatic Algorithm Selection Approach for Planning

    Get PDF
    Despite the advances made in the last decade in automated planning, no planner out- performs all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners’ performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a plan- ner can be improved by exploiting additional knowledge, for instance, in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings–planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans

    TALplanner in IPC-2002: Extensions and Control Rules

    Full text link
    TALplanner is a forward-chaining planner that relies on domain knowledge in the shape of temporal logic formulas in order to prune irrelevant parts of the search space. TALplanner recently participated in the third International Planning Competition, which had a clear emphasis on increasing the complexity of the problem domains being used as benchmark tests and the expressivity required to represent these domains in a planning system. Like many other planners, TALplanner had support for some but not all aspects of this increase in expressivity, and a number of changes to the planner were required. After a short introduction to TALplanner, this article describes some of the changes that were made before and during the competition. We also describe the process of introducing suitable domain knowledge for several of the competition domains

    Long-Horizon Task Planning and Execution with Functional Object-Oriented Networks

    Full text link
    Following work on joint object-action representation, functional object-oriented networks (FOON) were introduced as a knowledge representation for robots. A FOON contains symbolic (high-level) concepts useful to a robot's understanding of tasks and its environment for object-level planning. Prior to this work, little has been done to show how plans acquired from FOON can be executed by a robot, as the concepts in a FOON are too abstract for immediate execution. We propose a hierarchical task planning approach that translates a FOON graph into a PDDL-based representation of domain knowledge for task planning and execution. As a result of this process, a task plan can be acquired, which can be executed by a robot from start to end, leveraging the use of action contexts and skills as dynamic movement primitives (DMPs). We demonstrate the entire pipeline from planning to execution using CoppeliaSim and show how learned action contexts can be extended to never-before-seen scenarios.Comment: Preliminary Draft, 8 pages, IEEE Conference Forma
    corecore